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Abstract— This paper presents adaptive bidirectional minimum mean-
square error (MMSE) parameter estimation algorithms for fast-fading
channels. The time correlation between successive channel gains is ex-
ploited to improve the estimation and tracking capabilities of adaptive algo-
rithms and provide robustness against time-varying channels. Bidirectional
normalized least mean-square (NLMS) and conjugate gradient (CG) algo-
rithms are devised along with adaptive mixing parameters that adjust to
the time-varying channel correlation properties. An analysis of the pro-
posed algorithms is provided along with a discussion of their performance
advantages. Simulations for an application to interference suppression in
DS-CDMA systems show the advantages of the proposed algorithms.

Keywords— Bidirectional signal processing, adaptive interference sup-
pression, fast-fading channels, adaptive receivers.

I. INTRODUCTION

Low-complexity reception and interference suppression is es-
sential in multiuser mobile systems if battery power is to be con-
served, data-rates improved, and quality of service enhanced.
Conventional adaptive schemes fulfil many of these require-
ments and have been a significant focus of the research literature
[1], [2]. However, in time-varying fading channels commonly
associated with highly mobile systems, adaptive techniques en-
counter problems when estimating and tracking parameters such
as the receive filter and the channel coefficients. The develop-
ment of cost-effective parameter estimation and tracking tech-
niques for highly dynamic channels remains a very challenging
problem.

Existing strategies to enhance the performance of estimation
techniques include the use of optimized convergence parame-
ters in conventional adaptive algorithms to extend their ability
to deal with fading and improve their convergence and tracking
performances [3], [4], [5], [6]. However, the stability of adap-
tive step-sizes and forgetting factors is a concern unless they
are constrained to lie within a predefined region [4]. Further-
more, the fundamental problem of demodulating the transmitted
data symbols whilst suppressing multiuser interference (MUI)
remains. Approaches to avoid and/or improve the tracking and
estimation of the fading coefficients have been reported in [7],
[8], [9], [10], [11], [12]. Although a channel might be highly
time-variant, adjacent fading coefficients can be approximately
equal and have a significant level of correlation. These prop-
erties can be exploited to obtain a sequence of faded symbols
where the primary purpose of the receive filter is to suppress
interference and track the ratio between successive fading coef-
ficients, dispensing with the estimation of the fading coefficients
themselves. However, this scheme has a number of limitations
due to the fact that only one correlation time instant is employed,
which results in instability and a difficulty to track highly time-
variant signals.

In this paper, a bidirectional minimum mean-square error
(MMSE) based interference suppression scheme for highly-

dynamic fading channels is presented. The channel correla-
tion between adjacent time instants is exploited to improve the
robustness, tracking and convergence performances of existing
adaptive schemes. Bidirectional normalized least mean squares
(NLMS) and conjugate gradient (CG) algorithms are devised
along with a mixing strategy that adaptively weights the con-
tribution of the considered time instants. An analysis of the pro-
posed schemes is given and establishes the factors behind their
behaviour and improved performance. The proposed schemes
are applied to DS-CDMA systems and simulations show that
they significantly outperform existing schemes.

The remainder of the paper is structured as follows, Section II
describes the DS-CDMA signal model, states the problem and
explains the motivation of the work. Section III presents the
proposed bidirectional processing scheme. The algorithmic im-
plementations of the proposed bidirectional methods are given
in Section IV, and analysis of the proposed algorithms in Sec-
tion V. Simulations and performance evaluation are given in
Section VI and conclusions in Section VII.

II. DS-CDMA SIGNAL MODEL AND PROBLEM
STATEMENT

Consider the uplink of a multiuser DS-CDMA system with K
users, processing gain N and multipath channels with L paths.
The M×1 received signal after chip-pulse matched filtering and
sampling at the chip rate is given by

r[i] = A1b1[i]H1[i]c1[i] +
K∑

k=2

Akbk[i]Hk[i]ck[i]︸ ︷︷ ︸
MUI

+ η[i] + n[i],

(1)

where M = N + L − 1, and ck[i] and Ak are the spreading
sequence and signal amplitude of the kth user, respectively. The
M × N matrix Hk[i] models the channel propagation effects
for the kth user, bk[i] corresponds to the transmitted symbol of
the kth user, η[i] is the intersymbol interference (ISI) vector and
n[i] is the noise vector.

The design of linear receivers consists of processing the re-
ceived vector r[i] with the receive filter wk[i] with M coeffi-
cients that provide an estimate of the desired symbol as follows

zk[i] = wH
k [i]r[i], (2)

where the detected symbol is given by b̂k[i] = Q(wH
k [i]r[i]),

where Q(·) is a function that performs the detection according to
the constellation employed. It is also possible to use non-linear
receiver techniques. The problem we are interested in solving in
this work is how to estimate the parameter vector wk[i] of the
receive filter in fast time-varying channels.



III. PROPOSED BIDIRECTIONAL PROCESSING SCHEME

Adaptive parameter estimation techniques have two primary
objectives: estimation and tracking of the desired parameters.
However, in fast fading channels the combination of these two
objectives places unrealistic demands on conventional estima-
tion schemes. Differential techniques reduce these demands by
relieving the adaptive filter of the task of tracking fading coef-
ficients. This is achieved by posing an optimization problem
where the ratio between two successive received samples is the
quantity to be tracked. Such an approach is enabled by the pre-
sumption that, although the fading is fast, there is a significant
level of correlation between the adjacent channel samples

f1[i] = E [h1[i]h
∗
1[i+ 1]] ≥ 0, (3)

where h1[i] is the channel coefficient of the desired user. The
interference suppression of the resulting filter is improved in
fast fading environments compared to conventional adaptive fil-
ters but only the ratio of adjacent fading samples is obtained.
Consequently, differential modulation, where the ratio between
adjacent symbols is the data carrying mechanism, are suited to
differential MMSE schemes.

However, limiting the optimization process to two adjacent
samples exposes the differential MMSE process to the negative
effects of uncorrelated samples

E [h1[i]h
∗
1[i+ 1]] ≈ 0, (4)

and does not exploit the correlation that may be present between
two or more adjacent samples, i.e.

f2[i] = E [h1[i]h
∗
1[i− 1]] > 0 and

f3[i] = E [h1[i+ 1]h∗
1[i− 1]] > 0.

(5)

To address these weaknesses, we propose a bidirectional MSE
cost function based on adjacent received data vectors so that the
number of channel fading scenarios under which an algorithm
performs reliable estimation and tracking is increased and the
performance improved. Termed the bidirectional MMSE, due
to the use of multiple and adjacent time instants, the proposed
scheme can exploit the correlation between successive received
signals and reuse data [2]. The optimization problem of the pro-
posed scheme is given by

wMMSE = argmin
w

E

[D−2∑
d=0

D−1∑
l=d+1

ρn[i]|b[i− d]wHr[i− l]

− b[i− l]wHr[i− d]|2
]
,

(6)

where wMMSE is the expected value of the filter, ρn[i] is a
weighting factor used in the cost function to address problems
with uncorrelated fading coefficients and n = d(D− 3)+ l+1.
Note that the time instants of interest have been altered to avoid
the use of future samples. In addition to (6), an output power
constraint is required to avoid the trivial zero correlator solution

E
[∣∣wHr[i]

∣∣2] = 1. (7)

In fast-fading channels, the correlation between the considered
time instant is unlikely to be equal. Therefore variable weight-
ing or mixing of the cost function will be required to obtain
improved performance. However, the setting of the weights is
problematic if they are to be fixed. An adaptive scheme is prefer-
able which can take account of the time-varying channels. The
errors extracted from the cost function (6) are chosen as the met-
ric for this approach. This provides an input to the weighting
factor calculation process that is directly related to the optimiza-
tion in (6). The time-varying mixing factors are given by

ρn[i] = λeρn[i− 1] + (1− λe)
eT [i]− |en[i]|

eT [i]
(8)

where eT [i] = |e1[i]|+ |e2[i]|+ . . .+ |eD[i]| and the individual
errors terms are calculated for d = 0, . . . , D − 2 and l = d +
1, . . . , D − 1

en[i] = b[i− d]wH [i]r[i− l]− b[i− l]wH [i]r[i− d]. (9)

The forgetting factor, 0 ≤ λe ≤ 1, is user defined and,
along with the normalization by the total error, eT [i], and∑D

n=1 ρn[0] = 1, ensures
∑D

n=1 ρn[i] = 1 and a convex com-
bination at each time instant.

IV. PROPOSED BIDIRECTIONAL ALGORITHMS

In this section, the proposed bidirectional MMSE-based al-
gorithms based on (6) are derived. In particular, we concentrate
on the case where D = 3 as it captures most of the gains of
the proposed scheme, and develop bidirectional NLMS and CG
adaptive algorithms. Let us consider the following cost function

C(w[i], ρn[i]) = E
[
ρ1[i]|b[i]wH [i]r[i− 1]

− b[i− 1]wH [i]r[i]|2

+ ρ2[i]|b[i]wH [i]r[i− 2]

− b[i− 2]wH [i]r[i]|2

+ ρ3[i]|b[i− 1]wH [i]r[i− 2]

− b[i− 2]wH [i]r[i− 1]|2
]

(10)

The time-varying mixing factors are adjusted by

ρn[i] = λeρn[i− 1] + (1− λe)
eT [i]− |en[i]|

eT [i]
(11)

where eT [i] = |e1[i]| + |e2[i]| + |e3[i]| and the individual error
terms are given by

e1[i] = b[i]wH [i− 1]r[i− 1]− b[i− 1]wH [i− 1]r[i]

e2[i] = b[i]wH [i− 1]r[i− 2]− b[i− 2]wH [i− 1]r[i]

e3[i] = b[i− 1]wH [i− 1]r[i− 2]− b[i− 2]wH [i− 1]r[i− 1].

(12)

The forgetting factor, 0 ≤ λe ≤ 1, is user defined and,
along with the normalization by the total error, eT [i], and∑3

n=1 ρn[0] = 1, ensures
∑3

n=1 ρn[i] = 1 and a convex com-
bination at each time instant.



A. Bidirectional NLMS Algorithm

We first devise a low-complexity bidirectional NLMS algo-
rithm that iteratively computes the solution of (10). The instan-
taneous gradient of (10) is taken with respect to w∗[i], and the
errors terms of (12) are incorporated to yield the update equation

w[i] = w[i− 1] + µ
M [i] [ρ1[i]b[i− 1]r[i]e1[i] · · ·

+ρ2[i]b[i− 2]r[i]e2[i] + ρ3[i]b[i− 2]r[i− 1]e3[i]]
,

(13)
where µ is the step-size and the adaptive mixing parameters have
been included. The normalization factor, M [i], is given by

M [i] = λMM [i− 1] + (1− λM )rH [i]r[i] (14)

where λM is an exponential forgetting factor [9]. The enforce-
ment of the constraint is performed by the denominator of (13)
and ensures that the filter w[i] does not tend towards a zero cor-
relator. The complexity of this algorithm is O(DM), which
corresponds to roughly D = 3 times that of the NLMS.

B. Bidirectional Conjugate Gradient Algorithm

Due to the incongruous form of the bidirectional formulation
and the conventional matrix inversion lemma based recursive
least-squares (RLS) algorithm, an alternative bidirectional CG
algorithm is now derived. We begin with the time-averaged au-
tocorrelation and crosscorrelation structures R̄ and t̄ from (10)

R̄1[i] = λR̄1[i− 1] + b[i− 1]r[i]rH [i]b∗[i− 1]
R̄2[i] = λR̄2[i− 1] + b[i− 2]r[i]rH [i]b∗[i− 2]
R̄3[i] = λR̄3[i− 1] + b[i− 2]r[i− 1]rH [i− 1]b∗[i− 2]

(15)
and

t̄1[i] = λt̄3[i− 1] + b[i− 1]r[i]rH [i− 1]w[i− 1]b∗[i]
t̄2[i] = λt̄2[i− 1] + b[i− 2]r[i]rH [i− 2]w[i− 1]b∗[i]
t̄3[i] = λt̄3[i− 1] + b[i− 2]r[i− 1]rH [i− 2]w[i− 1]b∗[i− 1]

,

(16)
respectively. After some algebraic manipulations with the terms,
the final correlation structures are given by

R̄[i] = ρ1[i]R̄1[i] + ρ2[i]R̄2[i] + ρ3[i]R̄3[i] (17)

t̄[i] = ρ1[i]̄t1[i] + ρ2[i]̄t2[i] + ρ3[i]̄t3[i] (18)

where the adaptive mixing factors have been included. Inserting
these structures into the standard CG quadratic form yields

J(w[i], ρn[i]) = wH [i]R[i]w[i]− tH [i]w[i]. (19)

From [13], the unique minimizer of (19) is also the minimizer
of

R[i]w[i] = t[i]. (20)

At each time instant, a number of iterations of the following
method are required to reach an accurate solution, where the
iterations are indexed with the variable j. At the ith time instant
the gradient and direction vectors are initialized as

g0[i] = ∇w∗[i]J(w[i], ρn[i]) = R[i]w0[i]− t[i] (21)

and
d0[i] = −g0[i], (22)

respectively, where the gradient expression is equivalent to those
used in the derivation of the NLMS algorithm. The vectors dj [i]
and dj+1[i] are R[i] orthogonal with respect to R[i] such that
dj [i]R[i]dl[i] = 0 for j ̸= l. At each iteration, the filter is
updated as

wj+1[i] = wj [i] + αj [i]dj [i] (23)

where αj [i] is the minimizer of JLS(wj+1[i]) such that

αj =
−dH

j gj [i]

dH
j [i]R[i]dj [i]

. (24)

The gradient vector is then updated according to

gj+1[i] = R[i]wj [i]− t[i] (25)

and a new CG direction vector found

dj+1[i] = −gj+1[i] + βj [i]dj [i] (26)

where

βj [i] =
gH
j+1[i]R[i]dj [i]

dH
j [i]R[i]dj [i]

(27)

ensures the R[i] orthogonality between dj [i] and dl[i] where
j ̸= l. The iterations (23) - (27) are repeated until j = jmax.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

The form of the bidirectional MSE cost function precludes
the application of standard MSE analysis. Consequently, we
concentrate on the signal to interference plus noise ratio (SINR)
of the proposed NLMS algorithm to analyze its performance.

A. SINR Analysis

To begin, we convert the SINR expression given by

SINR =
wH[i]RSw[i]

wH[i]RIw[i]
, (28)

where RS and RI are the signal and interference and noise cor-
relation matrices, into a form amenable to analysis. Substituting
in the filter error weight vector, ε[i] = w[i]−wo[i], where wo is
the instantaneous standard optimal linear MMSE receiver, and
taking the trace of the expectation yields

SINR =
K[i]RS +G[i]RS + PS,opt[i] +GH[i]RS

K[i]RI +G[i]RI + PI,opt[i] +GH[i]RI

, (29)

where K[i] = E[ε[i]εH [i]], G[i] = E[wo[i]ε
H [i]], PS,opt[i] =

[wH
o [i]RSwo[i]] and PI,opt[i] = E[wH

o [i]RIwo[i]]. From (29)
it is clear that we need to pursue expressions for K[i] and G[i]
to reach an analytical interpretation of the bidirectional scheme.

Substituting the filter error weight vector into the filter update
expression of (13) yields a recursive expression for ε[i]

ε[i]= ε[i− 1]
+
[
I + µr[i]b[i− 1]rH [i− 1]b∗[i]− µr[i]b[i− 1]rH [n]b∗[i− 1]

+µr[i]b[i− 2]rH [i− 2]b∗[i]− µr[i]b[i− 2]rH [n]b∗[i− 2]
+µr[i− 1]b[i− 2]rH [i− 2]b∗[i− 1]
− µr[i− 1]b[i− 2]rH [i− 1]b∗[i− 2]

]
ε[i− 1]

+µr[i]b[i− 1]e∗o,1[i] + µr[i]b[i− 2]e∗o,2[i]
+µr[i− 1]b[i− 2]e∗o,3[i]

,

(30)



where the terms eo,1, eo,2 and eo,3 are the error terms of (12)
when the optimum filter wo is used. Using the direct averaging
approach of Kushner [14], the solution to the stochastic differ-
ence equation of (30) can be approximated by the solution to a
second equation [2], such that

E
[
I + µr[i]b[i− 1]rH [i− 1]b∗[i]− µr[i]b[i− 1]rH [n]b∗[i− 1]
+µr[i]b[i− 2]rH [i− 2]b∗[i]− µr[i]b[i− 2]rH [n]b∗[i− 2]
+µr[i− 1]b[i− 2]rH [i− 2]b∗[i− 1]
− µr[i− 1]b[i− 2]rH [i− 1]b∗[i− 2]

]
= I + µF 1 − µR1 + µF 2 − µR2 + µF 3 − µR3

,

(31)
where F and R are correlations matrices. Specifically, R1, R2

and R3 are autocorrelation matrices given by

R1 = E
[
µr[i]b∗[i− 1]rH [i]b∗[i− 1]

]
R2 = E

[
µr[i]b∗[i− 2]rH [i]b∗[i− 2]

]
R3 = E

[
µr[i− 1]b∗[i− 2]rH [i− 1]b∗[i− 1]

] (32)

and F 1, F 2 and F 3 cross-time-instant correlation matrices,
given by

F 1 = E
[
µr[i]b∗[i− 1]rH [i− 1]b∗[i]

]
F 2 = E

[
µr[i]b∗[i− 2]rH [i− 2]b∗[i]

]
F 3 = E

[
µr[i− 1]b∗[i− 2]rH [i− 2]b∗[i− 1]

]
.

(33)

Using (31) and the independence assumptions of E [eo,n[i]ε[i]] =
0 for n = 1, 2, 3, E

[
rH [i]r[i− 1]

]
= 0 and E [bk[i]bk[i− 1]] =

0, we arrive at an expression for K[i]

K[i] = [I + µF 1 − µR1 + µF 2 − µR2 + µF 3 − µR3]K[i− 1]
[I + µF 1 − µR1 + µF 2 − µR2 + µF 3 − µR3]
+µ2R1Jmin,1[i] + µ2R2Jmin,2[i] + µ2R1Jmin,3[i]

(34)
where Jmin,j [i] = |eo,j |2. Following a similar method, an ex-
pression for G[i] can also be reached

G[i] = G[i− 1] [µF 1 − µR1 + µF 2 − µR2 + µF 3 − µR3] .
(35)

At this point we study the derived expression to gain an in-
sight into the operation of the bidirectional algorithm and
the origins of its advantages over the conventional differen-
tial scheme. Equivalent expressions for the existing differential
NLMS scheme are given by

K[i] = [I + µF 1 − µR1]K[i− 1] [I + µF 1 − µR1]
+µ2R1Jmin,1[i]

G[i] = G[i− 1] [µF 1 − µR1] .
(36)

The bidirectional scheme has a number of additional correlation
terms compared to the existing scheme. Evaluating the cross-
time-instant matrices with regards to the independence assump-
tions yields

F 1 = |a1|2c1cH1 E [h[i]h∗[i− 1]]︸ ︷︷ ︸
f1[i]

, F 2 = |a1|2c1cH1 E [h[i]h∗[i− 2]]︸ ︷︷ ︸
f2[i]

,

and F 3 = |a1|2c1cH1 E [h[i− 1]h∗[i− 2]]︸ ︷︷ ︸
f3[i]

.

(37)
From the expression above it is clear that the underlying fac-

tor that governs the SINR performance of the algorithms is the
correlation between the considered time instants, f1, f2, and f3,

and similarity between data-reuse and the use of f1 and f2. Ac-
cordingly, it is the additional correlation factors of the bidirec-
tional algorithm that enhance its performance compared to the
conventional techniques, confirming the initial motivation be-
hind the proposition of the bidirectional approach. Lastly, the
f1, f2, and f3 expressions of (37) can be seen as the factors that
influence the number of considered time instants.

Central to the performance of the bidirectional schemes are
the correlation factors f1−3 and the related assumption of
h1[i] ≈ h1[i − 1]. Examining the effect of the fading rate on
the value of f1−3 shows that f1 ≈ f2 ≈ f3 at fading rates of
up to Tsfd = 0.01, where Tsfd is the normalized fading param-
eter. Consequently, after a large number of received symbols
with high total receive power

3 [I + µF 1 − µR1] ≈ [I + µF 1 − µR1 + µF 2 − µR2 + µF 3 − µR3] ,
(38)

due to the decreasing significance of the identity matrix. This
indicates that the expected value of the SINR of the bidirectional
scheme, once f1 ≈ f2 ≈ f3 have stabilized, should be simi-
lar to the differential scheme. A second implication is that the
bidirectional scheme should converge towards the MMSE level
due to the equivalence between the bidirectional scheme and the
MMSE solution. Fig. 1 illustrates the analytical performance
using the above expressions.
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Fig. 1. Bidirectional analytical SINR performance.

The correlation matrices are calculated via ensemble averages
prior to commencement of the algorithm and G[0] = K[0] = I .
In Fig. 1 one can see the convergence of the simulated schemes
to the analytical and MMSE plots, validating the analysis. Due
to the highly dynamic nature of the channel, using the expected
values of the correlation matrix alone cannot capture the true
transient performance of the algorithms. However, the conver-
gence period of the analytical plots within the first 200 iterations
can be considered to be within the coherence time and therefore
give an indication of the transient performance relative to other
analytical plots. Using this justification and the aforementioned
analysis, it is clear that the advantages brought by the bidirec-
tional scheme are predominantly in the transient phase due to
the additional correlation information supplied by F 2 and F 3

and their analogy with data reuse algorithms. This observation
is supported by the similar forms of the analytical and simu-
lated results and their subsequent convergence. Note that these
advantages are also verified for least-squares-based algorithms.



VI. SIMULATIONS

We apply the proposed bidirectional adaptive algorithms to
interference suppression in the uplink of the DS-CDMA sys-
tem described in Section II. The simulations employ multipath
fading channels with L = 3 paths with relative powers equal
to 0, −3 and −6 dB, Clarke’s model [6] and are averaged over
Np packets and the parameters are specified in each plot. Con-
ventional schemes use BPSK modulation and the differential
schemes employ differential phase shift keying where the se-
quence of data symbols to be transmitted by user k are given by
bk[i] = ak[i]bk[i− 1] where ak[i] is the unmodulated data.
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Fig. 2. BER performance comparison of proposed schemes during training.

The BER performance of existing and bidirectional schemes
is illustrated in Fig. 2. The existing RLS and proposed CG algo-
rithms converge to near the MMSE level with the bidirectional
scheme providing a clear performance advantage. However, the
NLMS schemes have a slower convergence performance due to
their reduced adaptation rate compared to the CG algorithms.
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Fig. 3. SINR performance versus fading rate of the proposed CG schemes after
200 training symbols.

Fig. 3 illustrates the performance of the proposed CG and
existing RLS algorithms as the fading rate is increased, where
the SINR is normalized by the instantaneous SNR. The conven-
tional schemes are unable to cope with fading rates in excess
of Tsfd = 0.005 and begin to diverge at the completion of the

training sequence. The bidirectional scheme outperforms the
differential schemes but the performance begins to decline once
fading rates above fdTs = 0.01 are reached. The increase in
performance of the bidirectional scheme can be accounted for
by the increased correlation information supplied by the matri-
ces F 2 and F 3 and effective data reuse. A second benefit of the
bidirectional scheme is the improved performance at low fad-
ing rate. The introduction of the mixing factors into the bidi-
rectional algorithm improves performance further, especially at
higher fading rates. An explanation for this can be established
by referring back to the observations on the correlation factors
f1, f2 and f3. Although fading rates of 0.01 may be fast, the
assumption h[i − 2] ≈ h[i − 1] ≈ h[i] is still valid. Conse-
quently, f1 ≈ f2 ≈ f3 and equal weighting is optimum. How-
ever, as the fading rate increases beyond Tsfd = 0.01 this as-
sumption breaks down and the correlation information requires
unequal weighting for optimum performance, a task fulfilled by
the adaptive mixing factors.

VII. CONCLUSIONS

We have presented bidirectional MMSE-based parameter es-
timation algorithms that exploit the time correlation of rapidly
varying fading channels. The ratio between successive received
vectors is tracked using correlation information gathered at ad-
jacent time instants to avoid tracking of the faded or unfaded
symbols. The results show that the proposed algorithms applied
to interference suppression in DS-CDMA systems significantly
outperform existing algorithms.
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