
IEE
E P

ro
of

IEEE COMMUNICATIONS LETTERS 1

Rate-Compatible Polar Codes Based on Polarization-Driven Shortening
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Abstract— This letter presents a polarization-driven (PD)1

shortening technique for the design of rate-compatible polar2

codes. The proposed shortening strategy consists of reducing3

the generator matrix by relating its row index with the channel4

polarization index. We assume that the shortened bits are known5

by both the encoder and the decoder and employ successive6

cancellation for decoding the shortened codes constructed by the7

proposed PD technique. A performance analysis is then carried8

out based on the spectrum distance. Simulations show that the9

proposed PD-based shortened polar codes outperform existing10

shortened polar codes.11

Index Terms— Channel polarization, shortening, polar codes,12

5G systems, IoT networks.13

I. INTRODUTION14

POLAR codes, proposed by Arikan, are low-complexity15

capacity-achieving codes based on the phenomenon called16

channel polarization [1]. A typical construction of conven-17

tional polar codes is based on the Kronecker product, which18

is restricted to the lengths 2l (l = 1, 2, . . .). Polar codes with19

arbitrary lengths can be obtained by shortening or punctur-20

ing [3], which will be required for 5G scenarios, where code21

lengths ranging from 420 to 1920 bits with various rates will22

be adopted [4] and [5]. Shortened and punctured polar codes23

can be decoded in a similar way to conventional polar codes.24

Various shortening and puncturing methods for polar codes25

have been proposed in the literature [6]– [17] and evaluated26

with successive cancellation (SC) or belief propagation (BP)27

decoding. In [7]–[10] puncturing methods have been reported28

using BP decoding based on optimization techniques employ-29

ing retransmission schemes such as Hybrid Automatic Repeat30

reQuest (HARQ). Different properties of punctured codes have31

been explored: minimum distance, exponent binding, stop tree32

drilling, and the reduced generating matrix method [9]– [12].33

Schemes that depend on the analysis of density evolution were34

proposed in [13] and [14]. On the other hand, shortening35

methods have been studied with SC decoding. With shortening36

techniques, we freeze a bit channel that receives a fixed zero37

value. The decoder, however, uses a plus infinity log-likelihood38

ratio (LLR) for that code bit as it is often assumed that39

this value is known. The study in [16] proposed a search40

algorithm to jointly optimize the shortening patterns and the41

values of the shortened bits. The work in [17] devised a simple42

shortening method, reducing the generator matrix based on the43

weight of the columns (CW). In [6] the reversal quasi-uniform44

puncturing scheme (RQUP) for reducing the generator matrix45

has been proposed.46

Manuscript received July 9, 2018; accepted July 29, 2018. This work was
financially supported by CAPES, CNPq, Faperj and CGI, Brazil. The associate
editor coordinating the review of this paper and approving it for publication
was C. Feng. (Corresponding author: Rodrigo C. de Lamare.)

The authors are with the Centre for Telecommunications Studies, Pontifical
Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
(e-mail: rbtmota@gmail.com; delamare@cetuc.puc-rio.br).

Digital Object Identifier 10.1109/LCOMM.2018.2863375

Fig. 1. System model.

In this letter, we propose a polarization-driven (PD) shorten- 47

ing technique based on the Gaussian Approximation (GA) [2], 48

where the channel polarization index determines the channel 49

shortening patterns. In particular, we describe the design of 50

rate-compatible polar codes using the PD method and its 51

application to fifth generation (5G) wireless system scenarios. 52

We also carry out an analysis of the proposed PD method using 53

the Spectrum Distance (SD) [6] and assess the performance 54

of design examples via simulations. 55

II. SYSTEM MODEL AND PROBLEM STATEMENT 56

Fig.1 shows a block diagram of the polar coding system 57

considered in this letter. 58

In this system, m is the binary message with k bits that 59

is transmitted. The n × n generator matrix G encodes the 60

message m and produces the codeword c with n bits. With 61

an appropriate shortening technique, the codeword c has its 62

length reduced to n�, resulting in the shortened codeword c’, 63

where 2l−1 < n� < 2l, where l is an integer that defines 64

the levels in the polarization tree, l = log2 n. The shortened 65

codeword c’ is then transmitted over a channel with additive 66

white Gaussian noise (AWGN), resulting in the received vector 67

r = c’ + w, where w is the vector corresponding to the noise. 68

In the decoding step, the decoding algorithm observes r in 69

order to estimate m. We call it an estimated message m̂, and 70

if m = m̂ we say that the message has been fully recovered. 71

The problem we are interested in solving is how to design 72

shortened codes with the best performance. 73

III. POLAR CODING SYSTEM 74

Let W : X → Y denote a binary discrete memoryless 75

channel (B-DMC), with input alphabet X = {0, 1}, output 76

alphabet Y , and the channel transition probability W (y|x), 77

x ∈ X , y ∈ Y . The mutual information of the channel with 78

equiprobable inputs, or symmetric capacity, is defined by [1] 79

I(W ) =
�

y∈Y

�

x∈X

1
2
W (y|x)log

W (y|x)
1
2W (y|0) + 1

2W (y|1)
(1) 80

and the corresponding reliability metric, the Bhattacharyya 81

parameter, is described by [1] 82

Z(W ) = Z0 =
�

y∈Y

�
W (y|0)W (y|1) (2) 83

Applying the channel polarization transform for n independent 84

uses of W we obtain after channel combining and splitting 85

operations the group of polarized channels W
(i)
n : X → Y × 86

X i−1, i = 1, 2, . . . , n. The channel polarization index Z(Wn) 87
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over AWGN channels is calculated using the GA method [2]88

with the following recursions:89

�
Z(W (2i−1)

n ) = φ−1(1− (1− φ(Z(W (i)
n/2)))

2)

Z(W (2i)
n ) = 2Z(W (i)

n/2),
(3)90

where91

φ(x) �
�

exp(−0.4527x(0.86) + 0.0218) if 0 < x ≤ 10�
π
x (1− 10

7x ) exp(−x
4 ) if x > 10

92

(4)93

In general, we use in the notation an
1 to designate a vector94

(a1, a2, . . . , an) and |an
1 | to refer to its cardinality. The channel95

polarization theorem [1] states that I(W (i)
n ) converges to96

either 0 (completely noisy channels) or 1 (noiseless channels)97

as n → ∞ and the fraction of noiseless channel tends to98

I(W ), while polarized channels converge to either Z(W (i)
n ) =99

1 or Z(W (i)
n ) = 0. The vector c = (uA, uAc), where m = uA,100

for some A ⊂ {1, . . . , n} denotes the set of information101

bits and Ac ⊂ {1, . . . , n} denotes the set of frozen bits.102

We select the |m| channels to transmit information bits such103

that Z(W (i)
n ) ≤ Z(W (j)

n ). For encoding, a codeword is104

generated by c = cn
1 = mBnG⊗l

2 , where m is the information105

sequence, Bn is the bit-reversal permutation matrix, ⊗l is106

the l-th Kronecker power and G2 =
�

1 0
1 1

�
is the kernel107

matrix. We adopt the SC decoder to estimate the information108

bits as [1]109

ûi = arg max
ui∈{0,1}

W (i)
n (yn

1 , ui−1
1 |ui), i ∈ A (5)110

IV. PROPOSED POLARIZATION-DRIVEN SHORTENING111

In this section, we detail the proposed PD shortening112

technique and show how to calculate the polarization channels.113

Polar codes are nonuniversal [1], i.e., different polar codes are114

generated depending on the specified value of the signal-to-115

noise ratio (SNR), known as design-SNR. The design-SNR116

choice is critical for ensuring good performance in all SNRs117

of interest and in this work we adopt the design-SNR equal118

to zero.119

The purpose of shortening is to reduce the size of the120

generator matrix Gn from n×n to n�×n�, such that n� < n.121

In particular, the size reduction is obtained by eliminating rows122

and columns of the matrix Gn. Consider the shortened vector123

p which contains the indexes of the rows of the matrix Gn124

to be shortened, where |p| = n − n� indicates its number125

of elements. Consider the set Gr
n of all shortened matrices,126

r = (1, . . . ,
�

n
n′

�
). We define127

G∗
n = arg min

Gr
BER, (6)128

where the bit error rate (BER) is adopted. Many works129

resort to exhaustive searches with an optimization method130

to determine G∗
n, its the optimal shortened generator matrix.131

In contrast to prior work, we propose the PD shortening132

technique for computing p, where the channels with the lowest133

polarization indexes are eliminated.134

TABLE I

POLARIZATION VECTOR b FOR n = 8

Using the notation in [1], for n = 8 we have l stages of 135

polarization (3) are 136

• stage 1: 137

Z(W+) and Z(W−) 138

• stage 2: 139

Z(W++), Z(W−+), Z(W+−) and Z(W−−) 140

• stage 3: 141

Z(W+++), Z(W−++), Z(W+−+), Z(W−−+), 142

Z(W++−), Z(W−+−), Z(W+−−) and Z(W−−−). 143

The channels (W+++, W−++, W+−+, W−−+, W++−, 144

W−+−, W+−−, W−−−) can be written with (W0, W1, W2, 145

W3, W4, W5, W6, W7). We define the polarization vector as 146

b �
	
Z(W0); Z(W1); . . . ; Z(Wn−1)


T
. (7) 147

As an example for stage 3 with normalized values, we have 148

b = [0.992, 0.882, 0.915, 0.578, 0.938, 0.639, 0.715, 0.000]T . 149

The key idea of the proposed PD method is to remove in the 150

generator matrix Gn the rows that correspond to the channels 151

with smallest values of polarization. 152

These channels can be obtained by sorting the polarization 153

vector b. The goal of sorting is to determine a permutation 154

k(1)k(2) . . . k(n) of the indexes {1, 2, . . . , n} that will orga- 155

nize the entries of the polarization vector b in increasing 156

order [18]: 157

Z(Wk(1)) ≤ Z(Wk(2)) ≤ . . . ≤ Z(Wk(n)) (8) 158

Consider the sort function [a, k] = sort(b) which imple- 159

ments (8), where a lists the sorted b and k contains the 160

corresponding indexes of a. Table 1 shows an example of the 161

polarization vector b for n = 8, sorting vector a and the new 162

index k. 163

The vector k = [8, 4, 6, 7, 2, 3, 5, 1] contains the indexes of 164

the polarization values of the channels in increasing order, 165

which are used to obtain the shortening vector p of the 166

proposed PD method: 167

p = [k(1), . . . , k(n− n�)], (9) 168

with n − n� being the shortening length. In Algorithm 1 we 169

have included a pseudo-code of the proposed PD method with 170

details of the size reduction of the generator matrix Gn and the 171

shortening of the channels with the lowest polarization values. 172

We consider now an example with shortened polar codes 173

with length n� = 5. For the shortening of G8 to G5, the 174

channels with the lowest polarization rank values are W8, W4 175

and W6, the shortening vector is p = (8, 4, 6) and |p| = 3. 176

The 1st element of p is 8, which results in the deletion of 177

the 8th column and the 8th row of G8. The 2nd element of p 178

is 4, which requires the elimination of the 4th column and the 179

4th row. At last, the 3rd element of the p is 6, which requires 180

the deletion of the 6th column and the 6th row. The matrix G8 181
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Algorithm 1 Proposed PD algorithm

1: Given a shortened codeword with length n�

2: Use Gn as the base matrix
3: Index each column by {1, 2, . . . , n}
4: Index each row by {1, 2, . . . , n}
5: Calculate the polarization channel vector b for n
6: Calculate [a, k] = sort(b)
7: Calculate the shortening vector p = [k(1), . . . , k(n− n�)]
8: for y = 1 to |p| do
9: rmin ← p(y)

10: Delete row from Gn with index rmin

11: Delete column from Gn with index rmin

12: end for

with the indication of the deletions and the resulting generator182

matrix G5 are given by183

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 1 1 1

⎞

⎟⎟⎟⎟⎠
184

As the code has been shortened, the reliability of the bit185

channels changes and the information set should change186

accordingly. The Z(W ) parameters of the polarized channels187

shortened are smaller than those of the original polarized188

channels, we consider in this letter that the order of channel189

polarization given by (8) does not change after shortening.190

The shortened codeword c’ generated with Gn′ , which con-191

tains the bits of the binary message m = uA such that192

Z(W (i)
n′ ) ≤ Z(W (j)

n′ ) for all i ∈ A, j ∈ Ac and uAc =193

(ui : i ∈ Ac|ui = 0) is then transmitted over a channel. The194

PD shortening method assumes that the channels remaining195

after shortening keep their polarization ordering. Therefore,196

any rate for the shortening of the polar code can be arbitrarily197

chosen as in conventional polar codes, where the channels198

with the smallest polarization indexes are chosen for the199

information bits.200

V. ANALYSIS201

The work in [19] examined maximum likelihood (ML)202

decoding for polar codes and demonstrated that systematic203

coding yields better BER performance than non-systematic204

coding with the same FER performance for both encoding205

schemes. However, ML decoding is quite costly since it206

compares all possible codewords for a given polar code using207

the Hamming distance.208

We employ the SD that has been studied in [6] for analysis209

due to its lower computational cost than ML decoding [19],210

and its suitability to compare the performance of the proposed211

PD and existing techniques. This metric is based on the212

channel polarization tree and the number of paths on the213

tree with the same number of zeros or ones, respectively.214

The channel polarization tree is obtained by the recursive215

process of polarization channel construction [1]. The branch 216

of the tree obtained by Z(W (2i−1)
n ) in (3) is labeled 1 and 217

the branch obtained by Z(W (2i)
n ) in (3) is labeled 0. Each 218

tree path refers to a polarized channel Wi and to a row of the 219

generator matrix Gn. 220

The SD for path weight for the 1s is given by [6] 221

d =
l�

(k=0)

P1(l, k, Q)k =
l�

(k=0)

H
(k)
n

n
k, (10) 222

where P1(l, k, Q) = H(k)
n

n is the probability of path weight k 223

with Q = |p| bits shortening and l refers to the levels in the 224

polarization tree. 225

The SD for path weight for the 0s is given by [6] 226

λ =
l�

(r=0)

P0(l, r, Q)r =
l�

(r=0)

C
(r)
n

n
r, (11) 227

where P0(l, k, Q) = C(r)
n

n , where C
(r)
l =

�
l
r

�
is the probability 228

of path weight r with Q = |p| bits shortening and l refers to 229

the levels in the polarization tree. The SD for path weight for 230

the 0s used as the main metric to evaluate the performance of 231

the proposed and existing shortening techniques. 232

The term C(X) =
�l

(r=0) C
(r)
l Xr describes the number of 233

paths with a given number of zeros, or alternatively C(X) = 234�
(i=1:n) XPbi , Pb is the number of zeros of each path. As an 235

example, for a G16, we have C(X) = X0 + 4X1 + 6X2 + 236

4X3 + X4, one path with no zero, four paths with 1 zero, 237

six paths with 2 zeros, 4 paths with 3 zeros and one path 238

with 4 zeros, the λ = 1·0+4·1+6·2+4·3+1·4
16 = 2. 239

Given a shortening procedure, the C(X) is updated by 240

removing the paths cut by shortening, each path corresponds to 241

a channel, which in turn corresponds to a row (and column) 242

in the generator matrix G. For G12 with p = (14, 15, 16), 243

updating C(X) = 2X1 + 5X2 + 4X3 + 1X4 and new 244

λ = 2·1+5·2+4·3+1·4
16 = 1.75, always less than the previous 245

value λ. 246

The set of shortened paths have different weights for each 247

shortening method, existing shortening (pep) such that pPD 	= 248

pep, |pPD| = |pep| = y > 0, ∃ y we have 249

y�

i=1

CPD(i)(X) ≤
y�

i=1

CCW(i)(X), (12) 250

with CPD(i)(X) for PD technique and CCW(i)(X) for CW 251

technique. We remark that there is a value of y from which 252

the shortened channels will be different. Expanding the above 253

equation and assuming that one chosen path of the PD set is 254

different from that of the CW set, we have 255

y−1�

i=1

CPD(i)(X) + αXy <

y−1�

i=1

CCW(i)(X) + βXy, (13) 256

where α and β are integer numbers. For small values of y, 257

where the channels shortened by either method will be the 258

same, we have the equality in (12). We then exploit the fact 259

that α < β, which yields 260

αXy < βXy, (14) 261

proving the inequality in (12). 262
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Fig. 2. BER and FER performaces of rate-compatible polar Code n′=480
k=256.

Fig. 3. BER and FER performaces of rate-compatible polar Code n′=1920
k=1600.

VI. SIMULATIONS263

In this section, we present simulations of rate-compatible264

polar codes with shortening and a system equipped with the265

SC decoder, as described for the Internet of Things (IoT)266

and the Enhanced Mobile Broadband (eMBB) 5G scenar-267

ios [3] and [5], which require the use of short to moderate268

block lengths. We measure the BER and the frame error269

rate (FER) against the SNR, defined as the ratio of the bit270

energy, Eb, and the power spectral density, N0, in dB. In the271

first example, we consider an IoT scenario with n = 512,272

n� = 480 and k = 256. In particular, we have reduced the G512273

matrix to the G480 matrix using the proposed PD shortening274

technique. For comparison purposes, we have also included the275

curves associated with the best performing existing methods276

CW and RQUP, as can be observed in Fig. 2. The results277

in Fig. 2 show that the proposed PD technique outperforms the278

RQUP and the CW techniques by up to 0.25 dB for the same279

BER and FER performances, and approaches the performance280

of the mother code (MC) with n = 512 and k = 256.281

In the second example, for eMBB scenario with n = 2048,282

n� = 1920 and k = 1600. The results in Fig. 3 show that283

the proposed PD technique outperforms the RQUP and the284

CW techniques by up to 0.20 dB for the same BER and FER285

performances, and approaches the performance of the mother286

code (MC) with n = 2048 and k = 1600.287

TABLE II

SPECTRUM DISTANCE FOR FIGS. 2 AND 3

In the Table II we compare for each simulation the SD 288

values obtained for each curve. Note that the SD of the 289

proposed model PD has a higher value than the CW and RQUP 290

techniques. 291

VII. CONCLUSION 292

We have proposed the PD shortening method, which is 293

based on the channel polarization index, and can bring a 294

performance improvement in shortened polar codes as com- 295

pared to existing shortening methods in the literature. The 296

use of the spectrum distance as a benchmark for performance 297

comparison has been shown as a valuable tool to indicate the 298

best shortening strategy, while requiring a low computational 299

complexity. 300
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