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Abstract

Low-density parity-check (LDPC) codes are among the best performing error cor-

rection codes currently known.

For higher performing irregular LDPC codes, degree distributions have been found

which produce codes with optimum performance in the infiniteblock length case. Sig-

nificant performance degradation is seen at more practical short block lengths. A sig-

nificant focus in the search for practical LDPC codes is to finda construction method

which minimises this reduction in performance as codes approach short lengths.

In this work, a novel irregular LDPC code is proposed which makes use of the

SPA decoder at the design stage in order to make the best choice of edge placement

with respect to iterative decoding performance in the presence of noise. This method,

a modification of the progressive edge growth (PEG) algorithm for edge placement in

parity-check matrix (PCM) construction is named the DOPEG algorithm. The DOPEG

design algorithm is highly flexible in that the decoder optimisation stage may be ap-

plied to any modification or extension of the original PEG algorithm with relative ease.

To illustrate this fact, the decoder optimisation step was applied to the IPEG mod-

ification to the PEG algorithm, which produces codes with comparatively excellent

performance. This extension to the DOPEG is called the DOIPEG.

A spatially multiplexed coded iteratively detected and decoded multiple-input multiple-

output (MIMO) system is then considered. The MIMO system to be investigated is

developed through theory and a number of results are presented which illustrate its

performance characteristics. The novel DOPEG code is tested for the MIMO system

under consideration and a significant performance gain is achieved.



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Review of LDPC Codes 5

2.1 Linear Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 LDPC Coding System . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Graphical Representation . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Irregular Degree Distributions . . . . . . . . . . . . . . . . . 9

2.2.3 Iterative Decoding Procedure . . . . . . . . . . . . . . . . . . 10

2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Gallager and MacKay Construction Methods . . . . . . . . . 13

2.3.2 Density Evolution . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Approximate Cycle EMD . . . . . . . . . . . . . . . . . . . 17

2.3.4 Repeat Accumulate Class of Codes . . . . . . . . . . . . . . 18

2.3.5 Progressive Edge Growth Algorithm . . . . . . . . . . . . . . 21

2.3.6 Improved Progressive Edge Growth Algorithm . . . . . . . .29

2.3.7 ACE Spectrum and ACE Constrained PEG Design . . . . . . 32

2.4 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



3 Proposed Decoder-Optimised PEG Algorithm 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 DOPEG Detailed Description . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Metric Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Block Diagram and Pseudocode for the DOPEG Algorithm . . . .. . 38

3.5 Decoder Optimised Improved PEG Algorithm . . . . . . . . . . . .. 41

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.1 DOPEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.2 DOIPEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Iterative Detection and Decoding of MIMO Systems with LDPC Codes 51

4.1 An Introduction to MIMO Systems . . . . . . . . . . . . . . . . . . . 51

4.2 Detection Algorithms for MIMO Systems . . . . . . . . . . . . . . .53

4.2.1 Maximum Likelihood Detection . . . . . . . . . . . . . . . . 53

4.2.2 Linear Minimum Mean-Squared Error Detection . . . . . . .54

4.2.3 V-BLAST Detection . . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Other Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 The Iterative Detection and Decoding Principle for MIMOSystems . 57

4.3.1 Iterative Detection and Decoding Procedure . . . . . . . .. . 59

4.3.2 SISO MMSE Successive Interference Cancellation (SIC)

Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusions 72

ii



List of Tables

2.1 Pseudocode for the PEG Algorithm . . . . . . . . . . . . . . . . . . 26

2.2 Pseudocode for the IPEG Algorithm . . . . . . . . . . . . . . . . . . 31

3.1 Pseudocode for the DOPEG Algorithm . . . . . . . . . . . . . . . . . 40

3.2 Pseudocode for the DOIPEG Algorithm . . . . . . . . . . . . . . . . 44

iii



Acknowledgements

I would like to thank my supervisor, Dr Rodrigo de Lamare for all his help in complet-

ing my Msc. by Research. I would also like to thank my fellow postgraduate students

for their help and advice along the way.



Chapter 1

Introduction

1.1 Introduction

Wireless communications has been and continues to be one of the fastest growing sec-

tors of technology. With the ever increasing proliferationof smartphones, effectively

handheld computers capable of fully utilising internet connectivity with integrated mo-

bile phone functionality, and wireless local and personal area networks, the demand for

increasingly high data rate, the need for reliable transmission is constantly growing.

Error control coding is an integral element in any practicalcommunication system.

Low-density parity-check (LDPC) codes are among the best performing codes cur-

rently known.

LDPC codes are a class of capacity-approaching codes first introduced by Gallager

[1] which were largely ignored for decades due to the computational complexity of

their implementation. A notable exception being Tanner’s paper [2] in which he in-

troduced the useful graphical representation of the parity-check matrix which bear his

name, Tanner graphs. Luby et al. [3] extended the concept of LDPC codes to the

irregular case, showing that by allowing varied row and column weights an improve-

ment in performance may be seen. Richardson et al. [4], with Density Evolution (DE),

provided a method to derive optimal degree distributions for codes of infinite length,
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subject to certain conditions.

Given the analytically optimal degree distributions for the ideal infinite block length

case considered using DE, considerable effort has been invested in finding methods to

implement LDPC codes at more practical block lengths without sacrificing the excel-

lent performance characteristics of longer codes. With finite length codes, particularly

at short to medium lengths, the assumption in DE that the decoding neighbourhood of

a given variable node is tree-like [4] no longer holds. This means that we can no longer

assume full independence of messages passed in sum-product/belief propagation de-

coding. This manifests as cycles in the parity-check matrix/Tanner graph of the code.

A significant focus in the search for practical finite-lengthcodes is the mitigation of

the effects of these cycles which break down the independence assumption.

Of the cycles which exist in finite length codes, it has been noted that the length

of the shortest cycle of the code (the girth of the code) has a significant effect on its

performance. In fact, for iteratively decoded LDPC codes, the number of independent

iterations of the message passing algorithm used is proportional to the girth of the code

[1].

While algorithms exist which perform girth conditioning on constrained randomly

generated LDPC codes, among those codes capable of best performance at practi-

cal lengths are codes designed by the Progressive Edge Growth (PEG) algorithm [5],

along with modifications to this algorithm [6][7]. The PEG algorithm is a greedy edge

placement construction method for the parity-check matrixof an LDPC code which

places edges in the Tanner graph of the code such that when a cycle is created, that

cycle is of the maximum possible length under the current graph settings. This algo-

rithm produces LDPC codes with relatively large girth and with particularly large local

girth in the lower weight variable node subgraph of the parity-check matrix, leading to

improved performance.

Another approach to constructing good finite length LDPC codes is, rather than in-

creasing the girth of the code, to increase the connectivitybetween the cycles present

in the graph of the code. This higher connectivity allows greater transmission of ex-
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trinsic messages in iterative decoding with the sum-product algorithm, thus mitigating

the effect of the cycles involved on the performance of the code. This concept led to

the definition of the Extrinsic Message Degree (EMD) of a nodein the graph of a code,

and subsequently to the easily calculable Approximate CycleEMD (ACE) metric of

connectivity of a cycle [8].

The promising performance of both the PEG algorithm and the design method

presented by Tian et al. [8] naturally led to the combinationof both concepts, leading

to the improved PEG (IPEG) algorithm [6] among others [7].

In this thesis, a further improvement to the PEG algorithm based construction

methods is proposed. This modification is based on the application of the iterative

(SPA) decoder at a key stage before edge placement in the PEG algorithm in order

to identify which edge, from a number of candidates providedby the algorithm, will

produce the best performance under the current graph setting. This optimised selection

of edges for placement leads to significant improvement of performance over existing

methods in the short to medium length.

The code generated by this novel construction method is thenapplied to a multiple-

input multiple-output (MIMO) system. The MIMO system, withmultiple transmit

and receive antennas and introduced in the work by Foschini [9] and Telatar [10], can

provide significant increase in capactiy for a given wireless channel. This increase in

capacity results from the exploitation of spatial multiplexing and spatial diversity at

the transmit and receive antennas.

1.2 Goals

The objectives of this thesis are as follows:

• to provide an overview of regular and irregular LDPC codes ingeneral, detailing

their performance characteristics, along with a more detailed decription of some

high performance LDPC codes in particular, including codesconstructed by the

Progressive Edge Growth (PEG) and the improved PEG (IPEG) algorithms.
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• to present a novel construction method for irregular LDPC codes based on a

modification of the PEG algorithm, showing a significant improvement in per-

formance over existing methods.

• to demonstrate the performance gain achieved by the novel code presented herein

in the case of a MIMO system and its use in the design of iterative detection and

decoding algorithms for interference mitigation.

1.3 Contributions

The primary contribution of this thesis is the proposed design method for irregular

LDPC codes. Applying this design method, extra effort at thedesign stage provides

significant improvement in performance at no cost of increased complexity during

operation.

The second contribution presented in this thesis is an analysis of the above novel

code in operation in an iteratively detected and decoded spatially multiplexed MIMO

system.

1.4 Thesis Layout

The remainder of this thesis is organised as follows. In Chapter 2 LDPC codes are

briefly overviewed, with a general introduction to the LDPC coding system followed

by a review of the literature relevant to the discussion of the following chapters.

In Chapter 3 the novel construction method which is the main focus of this thesis

is described and results are presented and analysed.

In Chapter 4 a MIMO communication system is briefly described and the code

developed in the previous chapter is applied to the case of iterative detection and de-

coding of a MIMO system.

Chapter 5 provides the conclusions of this thesis.

4



Chapter 2

Review of LDPC Codes

In this chapter, we review LDPC codes. In Section 2.2 the LDPCcoding system is

introduced. The parity-check and generator matrices of thecode are defined along

with the notation used. The graphical interpretation of theparity-check matrix, the

Tanner graph, is then presented. The concept of degree distributions for describing

irregular LDPC codes is detailed before a short review of theiterative approach to

decoding LDPC codes.

In Section 2.3 a review of the literature of LDPC codes is carried out. A number

of explicit construction methods for the parity-check matrix are reviewed, along with

a number of concepts which form the basis of the original workpresented in Chapter

3.

2.1 Linear Block Codes

In the binary field, an (n, k) block code is a set of2k length-n vectors, called code-

words, uniquely corresponding to the2k possible permutations of a length-k message

vector.

The block code is said to be linear if the modulo-2 sum of any two codewords

produces a third codeword. Associated with every linear block code are the matrices
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G, the generator matrix, andH, the parity-check matrix, such that the codewordc is

related to the message vectorm by the expression

c = mG, (2.1)

The generator matrix and parity-check matrix satisfy

GH′ = 0, (2.2)

and

cH′ = 0 (2.3)

An encoder is systematic if the codeword has the form

c = [p m] (2.4)

wherem is the message vector as indicated above andp is the vector of parity bits.

The systematic generator matrix may then be written in the form

G = [P′ Ik] (2.5)

whereIk is the identity matrix of sizek andP is an (n-k)-by-k matrix. Then a

corresponding parity-check matrix may be determined as

H = [In−k P], (2.6)

2.2 LDPC Coding System

LDPC codes are linear block codes fully characterised by the(n-k)-by-n sparse parity-

check matrix,H.
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Channel SPA Alg., H

m ĉ

G

Figure 2.1: LDPC Coding System

As shown in Fig. 2.1 above, the codewordc is derived from the message vectorm

as in Eqn. 2.1 for conventional block codes. The LDPC code maythen be decoded by

the SPA algorithm which makes use of the structure of the parity-check matrix.

If the parity-check matrix is obtained in non-systematic form, B, the systematic

generator and parity-check matrices may be found as follows:

Gaussian elimination (GE) with column pivoting is used to determine the (n-k)-by-

(n-k) matrixA−1
p such that

H = A−1
p A = [In−k P] (2.7)

whereA is derived fromB simply by the rearrangement of columns required by

GE.G is constructed as per Eqn. 2.5 and so

HG′ = 0 ⇒ ApHG′ = 0 ⇒ AG′ = 0 (2.8)

Now we have the parity-check matrixA in systematic form, and as will be become

clear from the introduction of the graphical representation of LDPC codes in the fol-

lowing section, along with the discussion of Section 2.3.2,the required rearrangement

of columns will not affect code performance. It should be noted thatH in the form of

Eqn. 2.7 is not necessarily sparse and is not in a form conducive to decoding by the

iterative message passing algorithm to be introduced in Section 2.2.3.

2.2.1 Graphical Representation

A graphical interpretation based on a bipartite graph, now referred to as a Tanner graph

was provided by Tanner [2]. The graph consists of two types ofnodes, variable nodes
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and check nodes, connected by edges. There aren variable nodes{vi; i = 1, . . . , n}

andm = n − k check nodes{cj; j = 1, . . . ,m}. An edge connects variable node

i to check nodej if there is a 1 in the position(j, i) of the parity-check matrix,H.

An example parity-check matrix (not sparse) and its corresponding Tanner graph are

shown in Fig. 2.2 below.

H =























1 0 0 1 0 1 0 0 1 1

0 0 1 1 0 0 1 0 1 0

0 1 0 0 1 0 1 0 1 0

0 1 1 0 0 1 0 1 0 1

1 0 0 0 1 0 0 1 0 1























(a)

c0 c1 c2 c3 c4

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

(b)

Figure 2.2: (a) Parity-check Matrix

(b) Corresponding Tanner Graph
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2.2.2 Irregular Degree Distributions

LDPC codes, as defined by Gallager [1], have parity-check matrices with fixed column

and row weights,dv anddc, respectively. Such an arrangement is now referred to as

a regular LDPC code. Subsequently Luby et al. [3] introducedirregular LDPC codes

with row and column weights which varied according to their degree distributions,

defined as:

λ(x) =
dv
∑

i=0

λix
i−1 (2.9)

ρ(x) =
dc
∑

j=0

ρjx
j−1 (2.10)

where:

• λi is the fraction of all edges connected to degree-i variable nodes,

0 ≤ λi ≤ 1, i ≥ 0,
dv
∑

i=0

λi = 1

and heredv is the maximum variable node degree.

• ρj is the fraction of all edges connected to degree-j check nodes,

0 ≤ ρj ≤ 1, j ≥ 0,
dc
∑

j=0

ρj = 1

anddc is the maximum check node degree.

In the previous example in Fig. 2.2, the given parity-check matrix has

λ(x) = 0.8x+ 0.2x2 (2.11)

ρ(x) = 0.6x3 + 0.4x4 (2.12)
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2.2.3 Iterative Decoding Procedure

LDPC codes are decoded using iterative decoding techniquesin which the two dif-

ferent types of nodes of the Tanner graph effectively behaveas two separate serially

concatenated decoders. At each iteration of the overall decoder, each constituent de-

coder sends extrinsic information to the other constituentdecoder, calculated using the

information received from the other constituent decoder inthe previous iteration as

intrinsic input information. By means of this message passing strategy and utilising

the dependencies between codeword bits introduced by the encoding procedure, errors

introduced by channel noise may be corrected as the decoder converges.

In practice, the message passing algorithm propagates log-likelihood ratios (LLRs)

in order to avoid computationally costly multiplications and to avoid numerical insta-

bility which may arise when computing iteratively with probabilities. The log-domain

sum-product algorithm (SPA) is used. The usefulness of the Tanner graph representa-

tion of LDPC codes now presents itself, as messages passed during each iteration of

the decoder may be viewed as being sent from a variable node toa check node and

from a check node to a variable node along the edges of the Tanner graph.

At one half iteration, the LLR sent from a variable node (VN)vi, {i = 1, ..., n}, to

a check node (CN)cj, {j = 1, ...dvi}, connected to it is:

Li→j = Lch,i +
∑

j′ 6=j

Lj′→i (2.13)

whereLj′→i is the LLR received from CNj′ to VN i in the previous iteration and,

for channel outputyi corresponding to transmitted coded bitxi ∈ {±1},

Lch,i = log

(

p(xi = +1|yi)

p(xi = −1|yi)

)

(2.14)

In the other half iteration, the LLR sent from CN j, j=1,...,m,to VN i, i=1,...,dcj ,

connected to it is:
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Lj→i = 2 tanh−1(
∏

i′ 6=i

tanh(Li′→j/2)) (2.15)

whereLi′→j is the LLR received from VNi′ to CN j in the previous iteration.

CNDVND

+

+

-

-

∏
−1

∏

hard decision

from channel

edge interleaver

edge interleaver

receiver output

Figure 2.3: Block Diagram of the Message Passing LDPC Decoding

vi

vi

cj cj

Li→j

Lj′→i

Lch,i

Lj→i

Li′→j

Figure 2.4: Diagram of the Messages Passed at Each Half-Iteration in SPA Decoding

In Fig. 2.3 the block diagram of the overall structure of the iterative LDPC decoder

is shown. As in the description above, decoding is viewed as aprocess of exchanging
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iteratively updated messages between two simple decoders,the variable node decoder

(VND) and the check node decoder (CND). The VND carries out theoperation of Eqn.

2.13 for each node. At the first iteration, assuming encoded bits are equally likely to

be “+1” and “-1”, the second term of Eqn. 2.13, thea priori LLRs, are 0 and so

the operation is carried out using information from the channel only. In subsequent

iterations thea priori information is utilised in computing the messages to be sentas

indicated. To ensure the VND and CND operations remain independent for as long

as possible, thea priori information is removed from thea posteriori LLRs before

sending them to the CND. Likewise after the CND operation intrinsic information is

removed, extrinsic information only is sent on for use in thenext iteration. The edge

interleavers represent the interconnections of the Tannergraph.

Fig. 2.4 shows the messages passed at each variable node and each check node in

the Tanner graph at each half iteration.
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2.3 Literature Review

In this section, the literature concerning construction ofthe LDPC matrix is reviewed.

First the regular construction methods of Gallager and Mackay are detailed. Following

this, a discussion of the challenges of constructing an irregular LDPC matrix which

provides improved performance is provided. A number of construction methods for

the regular and irregular cases are then reviewed.

2.3.1 Gallager and MacKay Construction Methods

Gallager Codes

In his original paper [1] Gallager proposed a construction method for regular (n, j, k)

codes, where n is block length, j is the regular column weightand k is the regular row

weight. The construction method is based on random column permutation of a base

matrixH1 with
n

k
rows and column weight 1 which has the following simple structure.

For i = 1, 2, · · · n
k

the i-th row ofH1 has all its 1’s in columns (i-1)k+1 to ik. That is

the first row has 1’s in positions1 · · · k, the second row has 1’s in positionsk+1 · · · 2k

and so on. The submatricesH2 to Hj are constructed simply by column permutations

of H1. The parity-check matrixH is then constructed as

H =



















H1

H2

...

Hj



















MacKay Codes

MacKay provided and analysed the performance of a number of constrained random

construction methods of increasing complexity with increasing constraints [11]. The

simplest construction method presented constrains block length, column weight and
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row weight as in Gallager codes and has the added condition that no two columns have

an overlap greater than 1. This is equivalent to the condition that there be no cycles of

length 4 in the graph of the code. MacKay extended this construction method to ex-

clude longer cycles and also to the case of irregular variable node degree distributions.

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Gallager
Mackay
Uncoded

Figure 2.5:Comparison of Performance of Gallager and Mackay codes for lengthn = 500

In Fig. 2.5 above, the performance of the codes constructed by the methods de-

scribed in Section 2.3.1 is shown and compared with the uncoded case in the additive

white Gaussian noise (AWGN) channel. BPSK modulation was usedalong with SPA

decoding in the case of the coded transmissions. The decoderwas operated to a maxi-

mum of 50 iterations and 100 block errors were gathered per SNR point.

14



2.3.2 Density Evolution

In Density Evolution (DE), Richardson and Urbanke [4] provided a method to compute

the optimal degree distributions for codes of infinite length under certain assumptions,

by means of analysing the evolution of error probability in the message passing de-

coder as it progresses through iterations. For a given pair of degree distributions the

threshold, i.e., the worst channel paramater such that the probability of error converges

to zero as the number of iterations tends to infinity, is computed. Using search meth-

ods, pairs of degree distributions(λ, ρ) were identified which maximised the threshold

value. This method has proved to be a valuable tool and for codes of very large block

length, the performance exhibited is very impressive.

However, for codes of short to medium length, which are more practical in systems

where latency is an issue, the assumption of DE that the decoding neighbourhood of a

given VN is tree-like - valid for the case of codes of infinite length - no longer holds. In

this case cycles are present in the Tanner graph of the code. Acycle is a path through

the graph which originates and ends at the same node without traversing any single

edge twice. This is illustrated in Fig. 2.6 for both the parity-check matrix and the

Tanner graph of an example code.

Cycles in the graph of an LDPC code degrade performance - with cycles present

in the graph, after a number of iterations of the decoder, themessages passed will no

longer be fully independent. The length of the shortest cycle of an LDPC code is called

the girth of the code. Length 4 cycles, as seen in Fig. 2.6 (a) occurring between variable

nodesv0 andv1 and check nodesc0 andc1, the dashed set of edges in the Tanner graph

in Fig. 2.6 (b), are the shortest cycles possible and are alsothe most damaging in terms

of performance. It is usual for all codes designed to performsome girth conditioning

to remove cycles of length 4. Also shown, occurring between VNs v2 to v4 and CNs

c1 to c3 is a cycle of length 6, highlighted as the dotted set of lines in the Tanner graph

of Fig. 2.6 (b).
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H =

















1 1 0 0 0

1 1 1 0 1

0 0 1 1 0

0 0 0 1 1

















(a)

c0 c1 c2 c3

v0 v1 v2 v3 v4

(b)

Figure 2.6: (a) Parity-check matrix and

(b) Tanner graph illustrating cycles of length 4 and length 6

In addition to removal of length-4 cycles, another common deviation from the pre-

scribed optimal degree distribution pairs of DE when designing practical LDPC codes

is to limit the number of variable nodes of weight 2 to less than m, the number of check

nodes of the code. This constraint limits (and for the PEG algorithm described later

removes entirely) the possibility that cycles exist which are made up only of weight-2

VNs. Without this constraint, cycles made up of only weight-2 nodes will exist in the

graph [8]. This type of cycle is particularly damaging to performance as they have no

connection to the graph outside of the cycle, and so receive no extrinsic information

from the rest of the graph, leading to poor performance in theerror floor region.
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2.3.3 Approximate Cycle EMD

The concept of connectivity of cycles introduced above forms the central idea of the

Approximate Cycle EMD (ACE) metric defined by Tian et al. [8][12]. They state that

the connectivity of the cycles and not simply the length of the cycles present in the

graph of a code determine the performance of the code. The worst-case scenario in

terms of connectivity of a cycle is a stopping set. This is defined as a set of VNs for

which every CN connected to a VN in the set is connected to the set at least twice.

In practice this means either the cycle is either made up of only weight-2 VNs or is

comprised of a number of cycles connected together. Performance of LDPC codes

under iterative message-passing decoding is directly related to how the constituent

cycles of its graph connect to form stopping sets. This has been shown explicitly for

the binary erasure channel (BEC) [13]. The error performance of LDPC codes over

the BEC may be completely determined given the stopping sets of the Tanner graph

of the code and the erasure probability,ǫ. Stopping sets are further discussed in [14],

where is shown that their influence on performance translates to the additive white

Gaussian noise (AWGN) channel, with code bit LLRs with poor reliability considered

rather than erasures.

Tian et al. define the Extrinsic Message Degree (EMD) of a VN set as the number

of CNs singly connected to that set. For a cycle in which no two VNs share CNs

outside the cycle (ie. there exists no sub-cycle) the EMD of the cycle is
∑

i

(di − 2).

For convenience of calculation, this case in which the cyclein question is assumed to

have no sub-cycle is considered and the metric is labeled theApproximate Cycle EMD

(ACE).

The design method proposed in [8] was as follows: column by column generation

of the parity-check matrix, with each column generation followed by computation of

the ACE metric and a check to see that it meets or exceeds a prescribed minimum. If

it does, the column is retained and if not the column is discarded and random gener-

ation carried out again. This results in codes which outperformed codes generated by
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conventional constrained random generation followed by girth conditioning as shown

in [8]. However, codes generated by this construction method are themselves outper-

formed by the Progressive Edge Growth algorithm to be described later, as shown in

[15].

As a result, the construction method of [8] is not consideredfurther. However, the

ACE metric proves to be a useful measure of connectivity of cycles in a graph and the

ideas presented prove useful in understanding the effect ofcycles in the graph on the

performance of an LDPC code.

2.3.4 Repeat Accumulate Class of Codes

The iterative decoding procedures for LDPC codes describedin Section 2.2.3 , ben-

efitting from the sparseness of the parity-check matrix, provide high performance in

acceptable computational complexity, which is essentially linear with the block length

n. A considerable drawback of the LDPC coding system is the fact that the encoding

described by equation 2.3 involves the generator matrix,G, which is in general not

sparse. As a result encoding complexity is high.

A number of approaches have been presented which tackle thisissue by imposing

structure on the parity-check matrix, which then may be exploited for faster encoding.

Examples of this structure include upper/lower triangularforms [16][5] and cyclic and

quasi-cyclic codes [17][18]. These approaches generally involve a tradeoff between

performance and encoding complexity, with decoding complexity also increasing in

the finite geometry based quasi-cyclic case [19].

A class of codes was presented in [20] and expanded upon [21],repeat accumu-

late (RA) codes and their irregular counterparts known as irregular repeat accumulate

(IRA) codes. These codes may be viewed as both serial turbo codes and LDPC codes.

That is, they may be viewed in terms of an LDPC matrix and decoded accordingly by

means of the efficient iterative SPA decoder, and they may also be viewed in terms of

a pair of codes, outer repeat and inner accumulate codes separated by an interleaver,
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and thus can be encoded efficiently as such, with complexity increasing linearly with

the block length n.

The block diagram for the encoder of the RA and IRA codes is shownbelow, where

for the regular case, the matrix operation ofA is replaced by a simple repeat code. The

interleaver,
∏

, describes the connections in the Tanner graph of the code when SPA

decoding is employed. The final element of Fig. 2.7 is a simplerate-1 convolutional

code, called an accumulator. The block, T, is simply a delay element. The dashed line

indicates the systematic version of the IRA code, in which case the matrixA would

have dimensionsk-by-(n-k) and the output vector of the accumulatorw would be1-

by-(n-k).

A
∏

u

u

w

1 x n

k x n

+

Interleaver Accumulator

T

Figure 2.7: Encoder for the RA/IRA codes

Extended IRA Codes

In [22], Yang et al. explicitly show the low-density parity-check matrix interpretation

of the IRA code class. A discussion of the vulnerability of weight-2 variable nodes is

developed into the definition of a new subclass of codes, extended IRA or eIRA codes.

These codes are capable of efficient encoding as a result of their IRA basis and also

capable of excellent performance at high rates. A plot is provided showing the evo-

lution of expected LLR magnitudes of the code produced by theconstruction method

proposed in the paper. This plot provides a means of comparing the performance of

variable nodes of different weights over a number of iterations. As expected the low

weight variable nodes converge more slowly and to a lower magnitude as they receive

less information upon which to operate. As is discussed, lowweight VNs are required
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in order to allow for lower weight check nodes as is required by the optimal irregular

degree distributions of [4]. Low weight CNs are less likely toresult in a check opera-

tion failure. x The dual diagonal matrix, also shown in [8] tobe cycle free is utilised

with the inclusion of a single weight-1 column. This makes uppart of an LDPC matrix.

The other part is specified to be free of weight-2 columns, lowdensity and irregular

such that the overall distribution of the parity-check matrix is near-optimal. Then the

parity-check matrix has the form

H = [H1 H2] , (2.16)

whereH2 is the matrix of the above form, dual diagonal with appended weight-1

column. Now the generator matrix is shown to have the form

G = [I P] =
[

I HT
1H

−T
2

]

, (2.17)

whereH−T
2 is in upper triangular form and represents the accumulator of Fig. 2.7.

In fact LDPC encoding withG above may be carried precisely as in Fig. 2.7 except that

here the matrixA has the formHT
1Π

−1. This is a low density matrix and so encoding

has low complexity. In fact this code possesses the excellent encoding properties of

turbo codes and the decoding properties of LDPC codes.

Accumulate Repeat Accumulate (ARA) Codes

In [23], a class of codes is developed which is presented as anenhanced extension of

the RA class of codes, where precoding with another accumulator is carried out. This

serves to improve the input-output extrinsic SNR behaviourof the code in the high

extrinsic SNR region. These ARA codes are also presented in protograph structure, a

protograph being a graph with a relatively small number of nodes which defines the

code and from which the code is produced by a copy and permute operation. The

protograph approach to ARA codes is further developed in [24]and in [25] for low

rate codes.
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2.3.5 Progressive Edge Growth Algorithm

.

The PEG algorithm is a construction method for LDPC codes which, given a vari-

able node degree sequence, block length and code rate produces codes which are

among the best performing codes currently known. For irregular LDPC codes, the

degree sequences which are found to provide the best performance are those derived

from the density evolution optimisation procedure. The PEGalgorithm is a highly

flexible in that it may be used to generate codes of any block length, rate and for any

given variable node degree distribution.

From a graphical viewpoint, the algorithm progresses on an edge-by-edge basis, or

equivalently, the algorithm places the “1”s in the parity-check matrix of the code, one

entry at a time. Edge placements are made such that when a cycle is created, that cycle

is of maximum possible length under the current graph settings. This approach ensures

large overall girth for the code. Additionally, it ensures particularly large girth in the

left-hand sub-graph of the code. According to the algorithm, the input degree sequence

is arranged in non-decreasing order and the edge placementsare made in progression

from left to right in the graph/parity-check matrix. As suchthe low-weight variable

nodes, in the left-hand sub-graph, are imparted with particularly large girth. As pre-

viously discussed in Section 2.3.3, short cycles among low-weight variable nodes are

very damaging to performance. Combined with the large overall girth properties and

minimum distance bound greater than that of randomly generated codes, this is the

source of the excellent performance of PEG generated codes.

Definitions and Notations

• n - block length of the parity-check matrix to be generated.

• Ds - Variable node degree sequence, the weight of the columns ofthe parity-

check matrix to be generated, in non-decreasing order. Thisis related toλ(x)

defined in Section 2.2.2 by
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Ds = [dmin...da...dmax], (2.18)

where

da = n
λa

a
∫ 1

0
λ(x)dx

(2.19)

• vj - variable node j,j = 1, ..., n

• ci - check node i,i = 1, ...,m

• N l
vj

- the neighbourhood of nodevj to depthl. This is defined as the set of check

nodes which may be reached by a subtree starting from nodevj and expanding

for l levels, where each level consists of variables nodes at equal distance from

vj and all the check nodes connected to them. This is illustrated in Fig. 2.8.

• N l
vj

- the set of all check nodes excluding those in the neighbourhood of nodevj

to depthl, N l
vj

.
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vj

Figure 2.8: Neighbourhood ofvj to depthl [5]
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PEG Construction

The graph is initialised with n variable nodes, m check nodesand no edges. Placements

are made edge by edge, and progressing through columns from left to right, according

to the following procedure.

For the first edge emanating from a variable node, the edge is placed connecting

the variable node to the lowest weight check node under the current graph setting. If

more than one such lowest weight check node exists, the candidate is chosen at random

from the set.

For each subsequent edge to be placed, a subtree (see Fig. 2.8) is expanded from

the variable node in question up to the depth that either:

(a) the tree expands further but fails to include any extra check nodes.

(b) the next step in the tree expansion will include all checknodes in the tree.

In the case of (a), the set of nodes not currently in the tree cannot be reached from

the current variable node, and as such when a placement is made connecting the current

variable node to one of the check nodes in the setN l
vj

, those check nodes not currently

in the tree, no cycle is created. For the PEG algorithm a further restriction on choice

of placement is made. The set of nodes inN l
vj

with minimum weight is referred to as

the set of candidate check nodes. The edge is placed connecting the current variable

node of interest to a check node in the candidate check node set. If there is more than

one node in this set, a candidate is chosen at random.

In the case of (b), all nodes in the graph can be reached from the variable node of

interest, and when an edge is placed, a cycle will be created.However, as the candidate

set is taken as the minimum weight check nodes of the CNs not currently in the tree at

the point at which one more level-expansion will result in the tree including all CNs,

the cycle created will be of maximum length possible, which is length 2*(l+2). As

above if there is more than one check node in the set of candidates the choice is made

at random from the set.
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The pseudocode for the PEG algorithm is presented in Table 2.1.

A Note on CN Degree Distribution

The optimal degree distributions produced by density evolution, as introduced in Sec-

tion 2.2.1 consist of the pairsλ(x), ρ(x), defining the variable node and check node

degree distributions respectively. However, as stated above, of these pairs, the PEG

algorithm takes as an input only the variable node degree sequence derived from the

VN degree distribution by expressions (2.18) and (2.19). The check node degree distri-

bution of the code generated by the PEG algorithm, by virtue of the “minimum weight

check node” condition applied at every choice among candidates, is as uniform as

possible. This tends to result in a CN degree distribution of,or very close to the form

ρ(x) = sxt + (s− 1)xt+1 (2.20)

for somet ≥ 2 and0 ≤ s ≤ 1

As stated by [5], evidence exists to suggest that this concentrated degree sequence for

check nodes is optimum.
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Table 2.1: Pseudocode for the PEG Algorithm

For j = 1 to n

For k = 1 toDs(j)

If k == 0

place edge between current VNvj and CNci such thatci ∈ (the set of CNs with minimum

weight under the current graph setting).

Else

expand tree to depthl under current setting s.t. the cardinality ofN l
vj

stops increasing but

is less than mor

N l
vj

6= ∅ butN l+1
vj = ∅

Then place edge between current VNvj and CNci s.t. ci ∈ N l
vj

with lowest CN degree.

If a number of CN candidates meet this requirement, choose one at random.

End If

End For

End For
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Figure 2.9:Comparison of performance of regular PEG and MacKay generated codes of

lengthn = 500

In Fig. 2.9 above, a comparison of the performance of lengthn = 500 rate 1
2

(3,6)-

regular codes constructed by both the Gallager method described in Section 2.3.1 and

the PEG algorithm is presented. BPSK modulation was used and the codewords were

decoded by the SPA algorithm under the presence of additive white Gaussian noise.

The regular PEG generated code outperforms the Gallager code. However, as will be

seen in the following Fig. 2.10, the PEG code with optimal irregular degree distribution

outperforms both the (3,6) regular PEG and Gallager codes.
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lengthn = 500
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2.3.6 Improved Progressive Edge Growth Algorithm

The Improved Progressive Edge Growth (IPEG) algorithm [6] is an extension to the

PEG algorithm which incorporates the ACE metric, introducedby Tian et al [8] and

discussed in Section 2.3.3, in the edge selection procedureof the PEG algorithm. By

utilising the ACE metric to aid in selection of the edge to be placed at each step of the

algorithm, the candidate chosen has the greatest connectivity to the rest of the graph.

As stated in [8], greater connectivity among subgraphs of the graph of an irregular

LDPC code leads to lower error floors in the bit error rate (BER) curve of the code.

This improvement is clearly demonstrated in the comparisonof BER plots for codes

generated by the PEG and IPEG construction methods, with identical variable node

degree sequences and rate, as shown in Fig. 2.11. The system is as described for

previous results, namely BPSK modulation, AWGN channel and SPA decoding in the

receiver.

ACE Metric Calculation

The ACE metric measures connectivity of a cycle to the rest of the graph. In the case of

the IPEG algorithm, the connectivity of each cycle which would be created by placing

each candidate check node is compared, and the cycle which has greatest connectivity

is chosen. As with the original PEG algorithm which maximises the length of the

cycle which must be created under the current graph setting,the IPEG algorithm uses

the ACE metric to choose the candidate which will create the least damaging cycle

possible. Connectivity of the cycle is measured by counting the number of edges by

which the cycle is connected to the rest of the graph through its variable nodes [6].

Each variable node is represented by a column of the parity-check matrix, and so this

count is carried out by summing the weights of the columns which represent the VNs

involved in the cycle of interest. That is
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∑

vp

(wvp − 2), (2.21)

wherewvp is the weight of the columnvp and the summation is taken over all

the variable nodes involved in the cycle. This is precisely the approximate cycle EMD

(ACE) metric of [8], where EMD stands for extrinsic message degree. The ACE metric

is approximate because, for ease of calculation, the case ofa single check node being

shared by more than one variable node in the cycle is neglected.

In the IPEG algorithm, the ACE metric calculation is carried out for each candidate

check node in the event that the candidate will create a cyclewhen the edge is placed.

That is for the case when the subtree expansion has been terminated by the condition

N l
vj
6= ∅ but N l+1

vj
= ∅ (2.22)

being met. Then the candidate with the highest ACE metric for its associated cycle

is chosen. In the case that more than one cycle has this maximum ACE metric, a

candidate is chosen at random among this set.

The pseudocode for the IPEG algorithm is provided in Table 2.2.
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Table 2.2: Pseudocode for the IPEG Algorithm

For j = 1 to n

For k = 1 toDs(j)

If k == 0

place edge between current VNvj and CNci such thatci ∈ (the set of CNs with minimum

weight under the current graph setting).

Else

expand tree to depthl under current setting s.t. either:

(1) the cardinality ofN l
vj

stops increasing but is less than m

(2)N l
vj

6= ∅ butN l+1
vj = ∅

In the case of (1), place edge between current VNvj and CNci s.t. ci ∈ N l
vj

with lowest CN

degree. If a number of CN candidates meet this requirement, choose one at random.

In the case of (2), the set of minimum weight CNs ofN l
vj

isΩl
vj

If the cardinality ofΩl
vj

== 1

the check nodeΩl
vj

is connected tovj

Else

For each CNcq ∈ Ωl
vj

calculateACEcq =
∑

vp

(wvp − 2) where the summation is taken over all VNsvp in the

cycle created by placement of edge connectingcq to vj .

End For

choose CNci s.t.ACEci ≥ ACEcq for all cq ∈ Ωl
vj

. If more than one CN meets this

requirement, choose at random among the CNs which meet it.

End If

End If

End For

End For
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Figure 2.11:Comparison of Performance of IPEG and PEG generated codes

2.3.7 ACE Spectrum and ACE Constrained PEG Design

In [15] and [7] another approach to utilising the ACE concept of [8] is taken. As in

the case of the IPEG, the motivation is that since stopping sets dictate the performance

of LDPC codes in the error floor region, and since stopping sets are formed of one or

more cycles, code performance can be improved by manipulating the cycles contained

in the graph of the code. Again, as not all cycles are equally harmful, not only length

but interconnectivity of cycles is considered.

In [15] a new metric based on ACE is introduced, the ACE spectrumof a graph

η (G(H)) = [η2, η4, · · · , η2dmax
] , (2.23)

whereηi is the minimum ACE of any cycle of lengthi in the graph. A construction

method based on this graph metric is then proposed, whereby the paramatersdmax

andηACE are set such that for any cycle of length less than or equal todmax the ACE is
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greater than or equal toηACE. This construction method produced codes which perform

well, particularly when combined with the PEG algorithm in asimilar approach to the

IPEG modification of the PEG. It should be noted that there arelimits for practical

codes on the sizes ofdmax andηACE, initially due to computational complexity and as

they are increased it eventually becomes impossible to find graphs which comply.

In [7] in an extension of the work of [6] on the IPEG, the ACE spectrum as defined

in [15] is used to identify a progression of culling of check node candidates as provided

by the PEG algorithm. The minimum weight CN criterion is abandoned in favour of

an ACE focused set of criteria. These are in order of sequence applied:

• select survivor with the largest minimum path ACE metric

• select survivor with the smallest number of minimum ACE shortest paths

• select survivor with the smallest total number of shortest paths

• select minimum degree survivor

2.4 Chapter Conclusions

In this chapter, a general introduction to the area of LDPC codes was provided. The

coding system was presented and the iterative decoding procedure most commonly

used was detailed. Along with these concepts, a number of more recent developements

in the field were presented in the Literature Review section. This section provided an

indication of the challenges faced in producing practical high performance codes and

some of the approaches taken in meeting these challenges. Additionally, this section

introduced a number of concepts, such as the PEG algorithm for PCM construction,

which are key to the description of the proposed algorithm provided in the following

chapter.

33



Plots of BER against SNR were provided for a number of the code design methods

covered in order to give an appreciation of the performance achievable with LDPC

codes at practical lengths.
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Chapter 3

Proposed Decoder-Optimised PEG

Algorithm

3.1 Introduction

As discussed when introducing the PEG algorithm for LDPC code construction, given

a degree sequence derived from an optimal degree distribution and code paramaters,

block lengthn and rateR, the PEG algorithm produces codes which exhibit excellent

performance due to their girth characteristics. As demonstrated by the development

of the IPEG construction method however, there is room for improvement of the PEG

algorithm. In particular, it is noted in [6] that it regularly occurs that the PEG algo-

rithm provides a number of candidate check nodes which are equivalent in terms of

the length of the cycle which will be created if an edge is placed between them and

the variable node of interest. The improvements in performance of the IPEG over

the PEG algorithm results from calculating a metric, based on the approximate cycle

EMD (ACE) of [8] for each candidate and by this means choosing the candidate with

the greatest connectivity with the rest of the graph. This method was successful in

producing codes with improved performance when compared with the original PEG

algorithm.
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An alternative approach is considered here, the decoder optimised PEG (DOPEG),

which applies the SPA decoder at the design stage in an effortto produce an LDPC

code with improved performance. By use of the decoder, a metric of comparison for

candidate nodes is produced and the candidate is chosen based on this metric. As the

results show, this approach leads to significant performance gains, particularly in the

short to medium block length.

3.2 DOPEG Detailed Description

As in the PEG algorithm, placements are made edge-by-edge. Initialisation is identical

to the PEG algorithm. For a variable nodevj the first edge is placed at random among

the minimum weight check nodes of the graph. As in the PEG algorithm, a subtree

is expanded from the variable node of interest to depthl, where the tree expanded to

depthl+1 either (a) contains no more nodes than the tree to depthl or (b) contains all

m check nodes of the graph. This implies that the nodes not included in the subtree at

depthl are either unreachable from the variable nodevj or are at the greatest distance

possible from this node. Up to this point the algorithm has been identical to the original

PEG algorithm, as described in Section 2.3.5.

Now, if for the current variable node of interestvj, the index j is less than the

number of check nodes m, the candidate is chosen at random from the minimum weight

check nodes not currently in the subtree i.e. the choice is made as in the original PEG

algorithm. If the index is greater than the number of check nodes, in the case where

there is more than one check node not currently in the subtree(in the case where there

is only one node not in the subtree, this node is chosen and thealgorithm moves on to

the next edge to be placed) i.e. the cardinality ofN l
vj

is greater than 1, the elements

of N l
vj

are the candidate check nodes. Note that this differs from the PEG algorithm

where the candidate check nodes are the minimum weight checknodes in the setN l
vj

of nodes not in the tree to depthl.

Now for each candidate check node, a candidate code is constructed according to
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the equations

H = [In−k P] (3.1)

G = [P′ Ik] (3.2)

by Gaussian elimination, the method is discussed in Section2.2.

For each candidate code, the LDPC coding system of Fig. 2.1 isoperated over a

range of signal-to-noise ratios (SNRs), for a number of inputmessage vectors and in

the presence of additive white Gaussian noise (AWGN) in the channel. The range of

SNRs and number of instances of input message vectors are input parameters of the

DOPEG algorithm.

For each candidate code the system consisting of encoding, transmission in the

presence of AWGN, and soft-input soft-output SPA decoding isoperated. The level of

correct and incorrect convergence of the log-likelihood ratios (LLRs) of each bit in the

soft output of the SPA decoder is measured.

This is then used to compute a single metric, as described in the section [3.3] to

follow, for each candidate check node. The candidate producing the code with the

highest metric, that is the candidate code which performs best under SPA decoding, is

chosen as the candidate to connect to the current variable node of interest,vj.

3.3 Metric Calculation

As described in the pseudocode of Table 3.1, for each candidate check node, encod-

ing and soft-input/soft-output decoding is performed in the presence of additive white

Gaussian noise over a range of SNR values and for a number of instances of mes-

sage/noise vectors.

For each decoder soft-output vector, the magnitude of each bit log-likelihood ratio

(LLR) is taken, and if the LLR is converging to the correct value, this magnitude is
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multiplied by +1, otherwise it is multiplied by -1. The entries of this new vector are

then summed, and these sums are accumulated over the chosen number of instances of

message/noise vectors.

This process is repeated at each SNR value for each candidateCN, resulting in a

matrix of metric vectors for the CN candidates over the SNR range chosen. These

metric vectors give an indication of how each candidate CN would affect the overall

performance of the code. Rather than comparing the average ofthese metric vectors,

which would fail to account for the greater convergence in SPA decoding at higher

channel SNRs, the final metric for comparison is computed as follows: Taking the

mean of the metrics at each SNR value over the different candidates, dividing each

of the metrics at this SNR value by this mean value results in anormalised metric.

This maintains the relationship of performance between different candidates at each

SNR value of interest while removing the bias towards higherSNR values. These

normalised metrics are then simply summed for each candidate, the largest value indi-

cating the candidate with the best performance over the range of SNR values chosen.

3.4 Block Diagram and Pseudocode for the DOPEG

Algorithm

Presented in Fig. 3.1 is a block diagram representation of the PEG and DOPEG al-

gorithms for ease of comparison. In Table 3.1 the pseudocodefor the DOPEG is

presented.
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Figure 3.1: Block Diagram of PEG and DOPEG
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Table 3.1: Pseudocode for the DOPEG Algorithm

For j = 1 to n

For k = 1 toDs(j)

If k == 0

choose candidate at random from minimum weight CNs of the Tanner graphunder the

current graph setting.

Else

expand tree under current setting s.t. the cardinality ofN l
vj

stops increasing but is less

than mor N l
vj

6= ∅ butN l+1
vj = ∅

Then

If j < m+ 1

choose candidate at random from minimum weight CNs amongN l
vj

Else

For p = 1 to length(N l
vj

)

1. Form matrixHtest which is the constructedH matrix under the current graph setting

up to columnvj , the current column of interest, with a 1 in the position [N l
vj

(p),vj ].

2. UseHtest to encode a message and decode in the presence of noise over a range of

SNR values using soft-input soft-output log-domain SPA decoding.

3. Compute metric, described in Section (3.3), from the soft-output vectorsof the SPA

decoder.

End For

Choose the candidate with the highest metric, place edge in this position.

End If

End If

End For

End For
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3.5 Decoder Optimised Improved PEG Algorithm

In an analogous fashion to the IPEG extension of the PEG algorithm, the DOIPEG

combines the ACE metric concept as applied to the IPEG with thedecoder optimisation

step of the DOPEG algorithm. The set of check node candidatesas presented by

the PEG algorithm,N l
vj

, omitting the minimum weight check node stipulation as in

the DOPEG, is pruned according to the ACE metric as defined for the IPEG. As a

result, the surviving check node candidates have equal maximum graph connectivity

as defined by the ACE metric of [8][6]. In the event that more than one check node

remains in the set, the decoder optimisation procedure is carried out as in the DOPEG

algorithm in order to provide a metric by which to choose the check node candidate

which provides the best performance. This construction method is then called the

Decoder Optimised Improved PEG (DOIPEG) algorithm. As the simulation results

show, this leads to significant improvement in performance.

As in the DOPEG algorithm, the minimum check node requirement of the original

PEG and IPEG algorithms is omitted. As such the resulting code will not have the

concentrated check node degree distribution form of (2.12). Experimental results show

that the removal of this stage of pruning of check node candidates leads to greater

improvement in performance over the IPEG algorithm.

For the case where placement of an edge does not create a new cycle, i.e. either the

first edge placed at a variable node or in the initial phase of graph construction when

not all check nodes are reachable from the variable node of interest, the algorithm

proceeds exactly as in the PEG algorithm.

For the case where a cycle will be created with edge placement, a series of pruning

operations are carried out on the set of check node candidates in order to identify the

candidate which will provide best performance. The first pruning operation is that of

the subtree expansion of the PEG algorithm which ensures that the cycle created will

be of greatest length possible under the current graph settings. The second pruning

operation is that of the IPEG algorithm, where the ACE metric is applied to ensure
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that the survivnig check node candidates produce cycles of equal maximum graph

connectivity. Finally, the decoder optimisation procedure described in sections (3.2)

and (3.3) is carried out to identify which candidate will provide the best performance

under encoding and SPA decoding.

As the simulation results show, the DOIPEG algorithm provides significant im-

provement in performance over the IPEG algorithm, which generates among the best

performing codes currently known given an input degree sequence and rate.

A block diagram illustrating the approach of the DOIPEG algorithm is presented in

Fig. 3.2. The block diagram for the IPEG algorithm is presented also for ease of com-

parison. The block diagrams of the PEG and DOPEG algorithms in Fig. 3.1 of Section

3.4 may also be useful for comparison between DOPEG and DOIPEG extensions of

PEG and IPEG algorithms respectively. The pseudocode for the DOIPEG algorithm is

provided in Table 3.2
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∑
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Figure 3.2: Block Diagram of IPEG and DOIPEG

43



Table 3.2: Pseudocode for the DOIPEG Algorithm

For j = 1 to n

For k = 1 toDs(j)

If k == 0

place edge between current VNvj and CNci such thatci ∈ (the set of CNs with minimum weight

under the current graph setting).

Else

expand tree to depthl under current setting s.t. either:

(1) the cardinality ofN l
vj

stops increasing but is less than m

(2)N l
vj

6= ∅ butN l+1
vj = ∅

In the case of (1), place edge between current VNvj and CNci s.t. ci ∈ N l
vj

with lowest CN

degree. If a number of CN candidates meet this requirement, choose one at random.

In the case of (2), the candidate CN set is nowN l
vj

.

If the cardinaltiy ofN l
vj

== 1

the check nodeN l
vj

is connected tovj
Else

For each CNcq ∈ N l
vj

calculateACEcq =
∑

vp

(wvp − 2) where the summation is taken over all VNsvp in the cycle

created placement of edge connectingcq to vj .

End For

then the setΦvj is the set of CNscm s.t.ACEcm ≥ ACEcq for all cq ∈ N l
vj

If the cardinaltiy ofΦvj == 1

the check nodeΦvj is connected tovj
Else

For p = 1 to length(Φvj )

[1] Form matrixHtest which is the constructedH matrix under the current graph setting up

to columnvj , the current column of interest, with a 1 in the position [Φvj (p),vj ].

[2] UseHtest to encode, decode over SNR range with SISO SPA decoder.

[3] Compute metric, described below, from the soft-output vectors of the SPA decoder.

End For

End If

End If

End If

End For

End For
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3.6 Simulation Results

The simulation results consist of plots of BER vs signal-to-noise ratio (SNR) for codes

generated by the PEG and DOPEG algorithms. In each case, codes of the same length

have identical degree sequences,Ds, based on the variable node degree distribution

λ1(x) = .30013x+ .28395x2 + .41592x7 (3.3)

The degree sequence was altered such that the number of weight-2 variable nodes

is less than the number of check nodes. For PEG-based algorithms, this ensures that

no cycles occur among only weight-2 variable nodes. The variable node degree distri-

bution of (3.3) is density evolution optimised and was presented in [4] [Table I]. The

codes are rate 1/2. For each plot, additional information isgiven below, in particu-

lar this specifies the parameters of SNR range, SPA decoder maximum iterations and

number of message vectors generated, for which the Decoder Optimisation step was

performed in the DOPEG algorithm.

For each of the plots in this section, BPSK modulation was usedin the simulation,

the transmitted symbols were subjected to AWGN and the SPA decoder was used in the

receiver. In simulating the coding system, for lengthn = 250 codes the SPA decoder

was operated to a maximum of 40 iterations and 100 block errors were gathered for

each point in the BER curves. Forn = 500 codes the SPA decoder was operated to a

maximum of 10 iterations and 100 block errors were gathered for each point.
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3.6.1 DOPEG
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Figure 3.3:Comparison of Performance of DOPEG and PEG generated codes for length

n = 250

In Fig. 3.3 above, the BER curves of the PEG algorithm and the DOPEG algorithm

constructed codes are compared. For the DOPEG, the decoder optimisation was car-

ried out over the SNR range [1:0.05:2], with 5 instances of message vectors generated

and the SPA decoder was operated to the maximum number of 50 decoder iterations.
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Figure 3.4:Comparison of Performance of DOPEG and PEG generated codes for length

n = 500

The results above were found for the DOPEG generated code with block length

500, rate1
2

and variable node degree distribution described by Eqn. 3.3with maximum

variable node degree 8. The parity-check matrix for the DOPEG code was generated

for the decoder optimisation procedure operating over the SNR range [1:0.05:3] and

with 60 instances of message vectors generated for each candidate check node. The

decoder in the DO stage was operated at 50 decoder iterations.
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Figure 3.5:BER vs SNR lengthn = 500 DOPEG and IPEG constructed LDPC codes

In Fig. 3.5 above, the performance of the lengthn = 500 rate 1/2 irregular DOPEG

constructed code with maximum variable node degree distribution 8 is compared to

that of the IPEG constructed code with identical length and degree distribution. The

decoder optimisation step was carried out for the SNR range [1:0.05:3] and 60 in-

stances of message vectors where generated for each candidate CN. The decoder in

the DO stage was operated at 50 iterations.
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3.6.2 DOIPEG
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Figure 3.6:Comparison of Performance of DOIPEG, IPEG and PEG generated codes for

lengthn = 250

The results above were found for the DOIPEG generated code with block length

250, rate1
2

and variable node degree distribution from [4] Table I with maximum

variable node degree distribution 8. The parity-check matrix was generated by the

DOIPEG with the decoder optimisation step operating over the SNR range [1:0.05:2]

and with 5 instances of message vectors generated for each candidate check node.

The gain exhibited by the DOIPEG over the IPEG is less dramatic than that of

the DOPEG over the PEG codes of Fig. 3.3. This is due to the factthat much of

the benefit of the DOPEG over the PEG is shared with the IPEG. That is, a candidate

edge which is optimal in terms of the ACE metric, and thereforeis chosen by the
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IPEG algorithm is more likely to result is better performance under SPA decoding in

the decoder optimisation (DO) step and vice versa. However,as graph connectivity as

measured by the ACE metric (itself an approximation to the EMDof a node) alone does

not wholly dictate performance of an LDPC code in the AWGN channel improvement

upon the IPEG code is possible, given a large enough set of message vectors in the DO

step. This is the reason for the large number of message vectors used in this example

compared to that of Fig. 3.3.

3.7 Chapter Conclusions

In this chapter, the proposed algorithm for LDPC parity-check matrix construction,

which forms the core of the contributions made in this thesis, was described and its

performance was analysed. The approach taken was describedin detail and a block di-

agram was included which provides an overview of the steps taken by the construction

method and which details how it differs from the original PEGalgorithm. Pseudocode

was also provided to give a more detailed view of the algorithm.

The DOIPEG extension of the DOPEG algorithm was then presented. This exten-

sion is analogous to the IPEG extension to the original PEG algorithm. LDPC codes

with optimum degree distribution as found by density evolution and constructed using

the IPEG algorithm are among the best performing codes currently available and so

improvement upon their performance is noteworthy.

In Section 3.6 the performance of the proposed codes was investigated and com-

pared to the performance of the PEG and IPEG generated codes.As discussed, the

performance results achieved are particularly significantgiven that all extra effort in

terms of computation is exacted at the design stage and during transmission the gener-

ated codes are equivalent to PEG and IPEG generated codes in encoding and decoding

complexity.
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Chapter 4

Iterative Detection and Decoding of

MIMO Systems with LDPC Codes

In this chapter we review MIMO systems. Following a general introduction, a num-

ber of detection algorithms are described. An LDPC coded iteratively detected and

decoded spatially multiplexed MIMO system is then reviewedand a soft-in soft-out

(SISO) detector for use in this system is detailed.

Through simulation results, the operation and performanceof this system is shown.

Then the DOPEG developed in Chapter 3 is applied to the system and its performance

is compared to that of the turbo (iterative) detected and decoded MIMO system with

PEG coding.

4.1 An Introduction to MIMO Systems

A multiple-input multiple-output (MIMO) system, as shown in Fig. 4.1, hasNt trans-

mit antennas andNr receive antennas [26][27]. We are interested here in a spatial

multiplexing configuration, where independent signals aretransmitted from each of

theNt transmit antennas leading to a multiplexing gain ofNt over the single-input

sinlge-output system [26]. Transmission in the system is then described by the equa-
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tion

r = Hs+ n, (4.1)

wheres is the (1×Nt) vector of information symbols to be transmitted andr is the

(1 × Nr) vector of received symbols. The (1 × Nr) vectorn is the noise vector.H is,

for the case of a flat fading channel, the (Nr × Nt) matrix which describes the paths

between each transmit and receive antenna, as shown below

H =













h11 h12 · · · h1Nt

h21 h22 · · · h2Nt

...
...

.. .
...

hNr1 hNr2 · · · hNrNt













(4.2)

wherehij is the complex zero-mean Gaussian channel-fading coefficient for the

path from thejth transmit antenna to theith receive antenna. Then the signal received

at theith receive antenna is described by the equation

ri =
Nt
∑

j=1

hijsj + ni (4.3)

Tx Rx

T1

T2

TNt
RNr

R2

R1

Figure 4.1: Block Diagram of a General MIMO System
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4.2 Detection Algorithms for MIMO Systems

In a spatial multiplexing system, the data stream to be transmitted is demultiplexed,

modulated and transmitted overNt transmit antennas in parallel [26]. The signals are

transmitted in the same frequency band and so at each receiveantenna the superpo-

sition of all transmit signals, degraded according to the path from each transmit to

receive antenna, is received. TheseNr receive signals are subject to AWGN at each

receive antenna also. The challenge of MIMO detection is to separate out and recover

each signal which was transmitted, mitigating the effects of the co-channel interference

and noise.

The optimum maximum likelihood (ML) receiver accomplishesthis by exhaustive

search over all possible transmitted signals [27]. Howeverthis is in general far too

complex an approach for practical use [28]. Consequently lower complexity detec-

tion schemes have been developed which result in some sacrifice in performance with

respect to ML detection. An so the goal, ultimately, is to findan acceptable tradeoff

between computational complexity and performance.

4.2.1 Maximum Likelihood Detection

The optimum receiver for a MIMO system uses the Maximum Likelihood Detector

(MLD) which performs an exhaustive search over all possibletransmitted symbols in

order to minimise the probability of error. The MLD solves

ŝ = argmin
s

‖r−Hs‖2 (4.4)

whereŝ is the estimated symbol vector. The complexity of the MLD grows expo-

nentially with the number of transmit antennas and the number of points in the signal

constellation, and as such is too complex for practical implementation. However, algo-

rithms have been developed which approach the performance of the MLD with reduced

complexity, one such detector is called the Sphere Decoder [29][30]. The Sphere De-
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coder provides a tradeoff between complexity and performance, with both being highly

sensitive to the choice of the sphere radius. The Sphere Decoder is attractive for small

systems, however, its complexity scales in an exponential form with the number of

data streams [31].

4.2.2 Linear Minimum Mean-Squared Error Detection

The linear minimun mean square error (MMSE) detector minimises the overall error

due to the combined factors of noise and mutual interferenceof co-channel signals.

This is achieved by minimising the mean square error

MSE = E
[

‖s−WHr‖2
]

(4.5)

Practically, linear MMSE detection is achieved by multiplying the received vector

r by the complex conjugate of theNr ×Nt weighting matrixW to find the estimate of

the transmitted vector as

ŝ = WHr (4.6)

where the weighting matrixW is

W =

(

1

SNR
INr

+HHH

)−1

HH (4.7)

and the superscript H denotes the complex conjugate transpose. The computational

complexity of the MMSE detector grows as a cubic function ofNr for the matrix in-

version required in Eqn. 4.7 and as a function ofNr timesNt for the filtering operation

in Eqn. 4.6.

4.2.3 V-BLAST Detection

The Vertical Bell Labs Layered Space Time (V-BLAST) detector employs successive

interference cancellation (SIC) to yield improved performance at the cost of increased
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complexity over the linear detector [9][32]. This detection algorithm operates in an it-

erative fashion, first detecting the strongest substream ofthe received signals and then

proceeding to the weaker substreams, which are then easier to detect as the stronger

signals are subtracted and no longer provide a source of interference. The V-BLAST

algorithm carries out nulling, slicing and cancellation steps according to a chosen or-

dering. In the literature [32] it has been reported that an ordering which starts with

the strongest signal and proceeds to the weakest signal provides the best performance.

The algorithm may be summarised as follows:

Given the initial received vector

r1 = Hs+ n (4.8)

Step 1: Use the vectorwk1
, the nulling vector to produce an estimate of the

strongest transmitted signal by nulling out the weaker transmit signals

yk1 = wT
k1
r1 (4.9)

Step 2: Slice this transmit signal estimate according to the appropriate operation

for the constellation used in order to produce an estimate ofthe symbol transmitted

ŝk1 = Q(yk1) (4.10)

Step 3: This estimate of the symbol transmitted is applied to the channel in order

to estimate its contribution to the received vector. This isthen cancelled from the

received vector, thus removing the interference provided by this transmit substream.

This is carried out as

r2 = r1 − (H)k1
ŝk1

(4.11)

where(H)k1
is thek1-th column ofH.

These steps are repeated in an iterative fashion until each of theNt transmit sub-

streams have been detected. The specifics of the nulling step, that is the criterion for
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choosing the nulling vectorswki provides some flexibility. The most common choices

for this criterion are MMSE and zero forcing (ZF) [26]. An example of MMSE-SIC

detection may be found in [33].

4.2.4 Other Detectors

A number of other detection schemes exist which attempt to provide acceptable ap-

proximations to the optimal performance offered by the maximum likelihood detector

while offering more practical levels of complexity.

Decision Feedback

The MMSE decision feedback equiliser was originally developed for the single-input

single-output system to tackle inter-symbol interference(ISI) by using previously de-

tected symbols to cancel their interference contribution to the received signal at the

current time. This approach was applied to the case of a MIMO system and combined

with successive interference cancellation [34][35]

Parallel Interference Cancellation

In parallel interference cancellation detection, after initial conventional detection the

individual streams are detected in parallel. For each stream of interest, the interfering

signals due to all other streams are reconstructed using thechannel matrix and sub-

tracted from the received signal. [36]. This has also been combined with decision

feedback [37].

Lattice Reduction Aided Techniques

In contrast to the previous schemes which employ techniquesto progressively improve

the detected symbol and which result in high complexity whencompared to LMMSE

detection, the approach taken in lattice reduction is to perform a single computation-

ally costly operation at the start of a frame, followed by simple low-complexity de-
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tection. This detection may be, for example, linear MMSE or SIC detection. This is

accomplished by transforming the system model into an equivalent with a better con-

ditioned channel matrix, then employing the lower-complexity detector. This results

in improved performance over a system using the same detector in the presence of an

ill-conditioned channel matrix [38].

4.3 The Iterative Detection and Decoding Principle for

MIMO Systems

The Turbo Principle of decoding a serially concatenated encoded bit stream by soft

inner and outer decoders exchanging iteratively updated extrinsic information in order

to increase performance was first introduced by Berrou et al. [39]. It may be applied

to the problem of detection and decoding of a MIMO system. In the work by Wang

and Poor [28], the turbo principle was applied to the case of coded CDMA. In [40] this

strategy is applied to a MIMO system with LDPC coding and a number of reduced

complexity detectors are presented. When the turbo principle is applied to a MIMO

system the channel decoder, here the SPA decoder for decoding an LDPC code, is

viewed as the outer code, while the soft-input soft-output (SISO) MIMO detector is

viewed as the inner code.

The block diagram of the LDPC-coded iteratively detected anddecoded MIMO

system is presented in Fig. 4.2. The information bits are first encoded by the LDPC

encoder, as in Eqn. 2.1, then the encoded bits are interleaved, demultiplexed intoNt

bit streams, each stream is modulated using the appropriatemodulation scheme and

then transmitted over its corresponding transmit antenna.

At the receiver, the signal is received at each of theNr receive antennas. The

SISO detector, operating in an iterative fashion, exchanging extrinsic information with

the SISO SPA decoder and incorporating the information provided into the detection

scheme used in order to improve its performance. A number of detection schemes exist
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which provide capacity-approaching performance with varying degrees of complexity,

for example the optimal but complex MAP detector, the MMSE Successive Interfer-

ence Cancellation (MMSE-SIC) detector and the MMSE Hard Interference Cancella-

tion (MMSE-SIC) detector.

LDPC ENC

LDPC DEC

Π

Π

Π
−1

Σ

+
−

soft-in
soft-out
MIMO
Det

DEMUX
and
MOD

info bits

λ1[bi] λ1[bk]

Λ2[bk]

λ2[bk]λ2[bi]

Figure 4.2: Iteratively Detected and Decoded MIMO System
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4.3.1 Iterative Detection and Decoding Procedure

First Half-Iteration

Based on the iterative (turbo) multiuser receiver structureof Wang and Poor [28], the

receiver structure used treats the signals transmitted from each transmit antenna as

separate users at the detection stage. It follows then from [28] that the soft-input soft-

output (SISO) detector computes thea posteriori log-likelihood ratio (LLR) of each

of the transmitted coded bits, giving a measure of the probability that each bit was

transmitted as a “+1” or a “-1”. That is

Λ1[b(i)] = log
p(b(i) = +1|r)

p(b(i) = −1|r)
, (4.12)

for eachi = 1, · · · , n

Where n is the block length of the LDPC code.

By Bayes’ Rule, this is rewritten as

Λ1[b(i)] = log
p(r|b(i) = +1)

p(r|b(i) = −1)
+ log

P [b(i) = +1]

P [b(i) = −1]
, (4.13)

where the first term is taken to be

λ1[b(i)] = log
p(r|b(i) = +1)

p(r|b(i) = −1)
(4.14)

and the second term is taken to be

λp
2[b(i)] = log

P [b(i) = +1]

P [b(i) = −1]
. (4.15)

The quantityλ1[b(i)] is the extrinsic information which is to be passed to the chan-

nel decoder, here the SPA decoder, for use in the second half-iteration of the turbo

detection/decoding procedure. The termλp
2[b(i)] is thea priori LLR of the coded bit

b(i), received from the channel decoder in the previous iteration, as is indicated by the
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p superscript. Thisa priori LLR is subtracted from thea posteriori LLR in order to

maintain independence of the messages passed. At the first iteration, from the assump-

tion that the coded bits are equally likely to be “+1” and “-1”thea priori LLR is set to

zero.

Second Half-Iteration

The extrinsic LLRλ1[b(i)] is deinterleaved before being fed into the SPA decoder as

a priori information. The SPA decoder operates precisely as in Section 2.2.3 in Fig.

2.3, iteratively operating on the graph structure of the code to produce the soft-output

a posteriori LLR of each coded bit:

Λ2[b(k)] = log
p(b(k) = +1|λp

1[b(l)]
n−1
l=1 ,H)

p(b(k) = −1|λp
1[b(l)]

n−1
l=1 ,H)

(4.16)

for k = 1, · · · , n− 1

Now

Λ2[b(k)] = λ2[b(k)] + λp
1[b(k)] (4.17)

Again, thea priori probability, nowλp
1[b(k)] from the first half-iteration, is sub-

tracted from thea posteriori LLR to produce the extrinsic informationλ2[b(k)]. This

will be interleaved and fed back into the SISO detector for use in the next iteration.

In Fig. 4.2 the structure of the turbo detector and receiver is shown and the mes-

sages passed are indicated. As above the lower case letters indicate extrinsic informa-

tion while the upper case indicates a posteriori information.

4.3.2 SISO MMSE Successive Interference Cancellation (SIC)

Detector

The minimum mean square error successive interference cancellation (MMSE-SIC)

detector for turbo detection and estimation was presented in [28] as a SISO multiuser
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detector for use in a coded CDMA (code division multiple access) system. The de-

tector here is presented for the case of a flat fading channel and so intersymbol inter-

ference (ISI) is not an issue. The challenge of detection in this scenario is to mitigate

the effects of interference between the antennas of the system. This is the scenario

which was considered for the system analysed with LDPC coding in this thesis. A

more general approach is taken in [41] where a frequency-selective channel model

is considered. As such both ISI and self-interference are encountered. The MMSE-

SIC detector is developed in the absence of self-interference in [42], i.e., for a system

with a single transmit antenna, for a frequency selective channel. Of particular inter-

est considering the system of interest here is the work by Wesel et al. [40] where the

frequency-nonselective channel is assumed and a number of detectors are developed

for use in an iterative (turbo) detected and decoded MIMO system with LDPC coding.

Using thea priori LLRs of all coded bits provided by the channel decoder as extrin-

sic information, the MMSE detector forms soft symbol estimates of the bits transmitted

from thepth transmit antenna as

b̃p(i) = tanh

[

λ2[bp(i)]

2

]

(4.18)

for p = 1, · · · , Nt

These estimates are then assembled into a replica,s̃ and used to perform soft inter-

ference cancellation of the interference between antennas.

ŝ = r−H s̃ (4.19)

At this point, ŝ is our estimate of the transmitted signal. However, as our soft

symbol estimates are not completely accurate, interference residuals exist. In order

to mitigate their effect, adaptive filtering is carried out to suppress the residuals. The

filter wp is chosen to minimise the mean square error (MSE) between thetransmitted

bit bp(i) and the filter outputzp(i). That is
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wp(i) = argmin
wp(i)

E
[

‖bp(i)− wH
p (i)ŝ(i)‖

2
]

(4.20)

The result of this minimisation is shown to be [28]

wp(i) =
[

σ2Inr
+H Λp HH

]−1
hp (4.21)

wherehp is the p-th column ofH and the matrixΛp is the covariance matrix

Λp = diag
[

(1 − b̃1(i)) · · · 0 · · · (1 − ˜bNt
(i))

]

(4.22)

Where the zero is in thepth position. Now the filter output is

zp(i) = wH
p ŝ (4.23)

Approximating the soft filter output as a Gaussian process

zp(i) = µp(i)bp(i) + νp(i) (4.24)

as in [28] the information to be delivered to the channel decoder can be found as

λ1[bp(i)] =
4 Re[zp(i)]

1 − µp(i)
(4.25)

Note

Two particular modes of operation of the MMSE-SIC detector are noteworthy

• No Cancellation: This occurs at the first iteration when no information is avail-

able from the decoder. The MMSE-SIC filter in this case reduces to the form of

the linear MMSE filter of Eqn. 4.7 withwp rather thanW.

• Perfect Cancellation: the MMSE-SIC filter reduces to the form

wp =

(

1

SNR
+ hH

p hp

)−1

hp (4.26)
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MMSE Hard Interference Cancellation Detector

Also presented in [40] is the MMSE hard interference cancellation (MMSE-HIC) de-

tector which sacrifices performance for lower complexity. Here, after a prescribed

number of iterations to ensure reliability of the information available, a hard decision

is made about the value of the bits before the interference cancellation operation is car-

ried out. This hard decision is made based on information available from the channel

decoder.
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4.4 Simulation Results

For the simulation results presented, BPSK modulation was employed. The trans-

mitted signals were subjected to flat Rayleigh fading in the channel and corrupted by

AWGN with zero mean and varianceσ2
n. For each plot which follows, an accompany-

ing section of text provides information necessary in orderto make useful comparisons

of performance of the system under the prescribed settings.These settings include de-

tector used and for the iterative detected and decoded system include the number of

outer (detector) iterations and inner (decoder) iterations carried out and the LDPC code

used. Following this, an analysis of each result is made.

A Note on SNR Calculation for the MIMO System Model Used

The noise variance of the AWGN of Eqn. 4.1 is calculated according to, for the un-

coded system

SNR = Nt

σ2
s

σ2
n

, (4.27)

whereσ2
s is signal variance per transmit antenna andσ2

n is the vector noise variance.

For the coded system this becomes

SNR = NtRc

σ2
s

σ2
n

, (4.28)

whereRc is the code rate.
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Figure 4.3:BER vs SNR comparison of different detectors for an uncoded 4x4 MIMO

system

In the plot in Fig. 4.3 the performance of a number of detectors for a 4x4 uncoded

spatially multiplexed MIMO system is shown. The detectors used were Sphere De-

coder (SD), minimum mean square error successive interference cancellation (MMSE-

SIC) and a linear MMSE detector. As expected from the theory the sphere decoder

provides the best performance as it approximates the optimal maximum likelihood

detector, while the linear MMSE detector provides the worstperformance.
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Figure 4.4:BER vs SNR comparison of different detectors for an uncoded 6x6 MIMO

system

Fig. 4.4 provides a similar comparison to that of Fig. 4.3 butfor the case of a 6x6

uncoded spatially multiplexed MIMO system. As expected, the results are similar.
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Figure 4.5:Comparison of BER performance of coded turbo 8x8 MIMO system with PEG

codes of lengthn = 504 andn = 1024

The turbo (iterative) detector and decoder were operated for 5 iterations in the

outer loop and the channel decoder was operated for 50 iterations. 100 block errors

were accumulated per point of the plot. As is expected, as thelength of the LDPC

code used is increased performance increases. The codes used are PEG constructed

and as such, the minimum distance of the code grows linearly with number of checks

and code performance is highly dependent on the minimum distance of the code. The

precise bound on minimum distance for PEG codes may be found in [5].
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Figure 4.6:BER vs SNR for lengthn = 1024 irregular LDPC code operating over an 8x8

MIMO system showing the improvement in performance as iterations proceed

For Fig. 4.6 the turbo detector was operated for the same parameters as for the

previous Fig. 4.5. This plot demonstrates the performance improvements as the joint

detector and decoder move through the outer loop iterations. As ecpected, the per-

formance improvement gained per extra iteration diminishes as the iteration number

increases.
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Figure 4.7:BER vs iteration number comparison of DOPEG and PEG generated codes for

lengthn = 248 operating over an 8x8 MIMO system at Eb/N0 of -3dB

The DOPEG generated code which was tested here for comparison with the PEG

constructed code was optimised over the range[2 : 0.05 : 3] with 30 instances of

message vectors transmitted. The decoder was operated to a maximum of 50 iterations

in the optimisation stage of the DOPEG algorithm. This plot demonstrates that the

benefits afforded by the DOPEG code when compared to the PEG code are consistent

as the outer (detector) iteration number increases.
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Figure 4.8:BER vs SNR lengthn = 498 DOPEG and PEG codes operating over an 6x6

MIMO system

Fig. 4.8 provides the BER curve for both PEG and DOPEG coded 8x8iteratively

detected and decoded MIMO systems. The outer (detector) loop was run for 5 itera-

tions while the inner loop (SPA decoder) was run to a maximum of 10 iterations. As

expected, some performance improvement is seen at the higher end of the SNR range

examined. The gain is not as impressive as that seen in the sinple-input single-output

(SISO) system with AWGN as seen in Fig. 3.3. It is possible thatgreater gain would

be seen in the error floor region of the BER curve for this system.

The degradation in performance gain may be explained by the fact that the decoder

optimisation of the code tested was carried out for the AWGN channel. Alteration

of the DO operation for the flat Rayleigh fading channel model used may result in

gains comparable to those seen for the SISO system and this provides a possible line

of further investigation.
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4.5 Chapter Conclusions

In this chapter, following the introduction of the system model for a spatially multi-

plexed MIMO system and a discussion of a number of different detection methods,

an iteratively detected and decoded system with LDPC codingwas described. This

system was used to test the performance of the novel code presented in the Chapter

3. A number of other configurations of the system were also examined to provide a

point of reference when examining the results. These included an uncoded spatially

multiplexed MIMO system with a number of different sub-optimal detectors and the

iterative (turbo) system on which the novel code is tested with PEG-LDPC codes of

differing block lengths.

The simulation results, both BER against SNR and BER against iteration number

plots, demonstrate that the novel codes of Chapter 3 provide performance improve-

ments in the coded MIMO system under investigation.
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Chapter 5

Conclusions

In this thesis a novel irregular LDPC code construction method was presented. This

code was developed based on a number of key concepts in the area of LDPC codes

and codes based on graphs in general. The goal in completing this thesis was to de-

velop a clear understanding of the current state of the art inLDPC codes and to use

this knowledge gained to design a novel LDPC code. The aim wasto develop a con-

struction method which can produce codes of practical blocklength with performance

as close as possible to that of the ideal infinite block lengthcode which exhibits a

cycle-free decoding neighbourhood.

Among the best-performing codes currently available are those constructed by the

PEG algorithm or its modifications. From an in-depth analysis of this algorithm, scope

for a possible contribution was identified. The PEG edge placement algorithm effec-

tively identifies the set of check nodes which will result in the creation of the cycle with

greatest possible length when an edge is placed. The modifications [6][7] are based

on finding a metric or metrics by which to compare the surviving candidates and then

determining what order to apply these metrics in the pruningof the candidate check

node set in order to find the survivor which will provide the best code performance.

A metric was developed which involved testing the operationof the code under the

current graph setting with each candidate node in place and identifying the node which
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provided the best performance. This metric was applied to the PEG algorithm and a

significant improvement in performance was observed in short block length codes.

At longer lengths, the rewards in terms of performance improvements, while still ob-

served, are not quite as good for the parameters of the Decoder Optimisation (DO)

procedure tested. However, as the gains observed are found in the error floor region of

the BER curve, it is likely that further time intensive simulations would reveal greater

gains at lower BERs. A possible source of further improvementsover the base code

construction method is to increase the number of instances of message and noise vec-

tors generated for each candidate CN when performing the DO operation. This would

increase the likelihood that the chosen CN is the one which provides the best overall

performance. This also increases the complexity of the construction method.

The DO modification was then applied to the IPEG algorithm. The IPEG applies

an extra pruning stage to the check node candidates of the original PEG in order to

improve performance in the error floor area. The performanceimprovements seen

from the DOIPEG over the IPEG were not as great as those observed when comparing

DOPEG and PEG constructed codes. This is not unexpected as a candidate check node

which is optimal according to the ACE metric is, naturally, more likely to produce bet-

ter performance under SPA decoding and likewise the candidate with the highest DO

metric is likely to have a high degree of connectivity to the rest of the graph. This

large degree of graph connectivity explains why less of an improvement is noted in

comparing DOIPEG and IPEG. In fact it can be seen that the DOPEG and IPEG algo-

rithms produce codes with a similar level of improvement over those constructed by the

PEG. This provided motivation to apply the DO operation to the IPEG extension to the

algorithm. It is then seen that the resulting DOIPEG construction method provides im-

provement in performance over the IPEG algorithm. This is anencouraging result, as

the IPEG construction method is among the best currently available for LDPC codes.

Additionally, as was noted for the DOPEG case, a higher resolution of SNR points for

Decoder Optimisation at a fixed SNR range is likely to producegreater performance

improvements. Again, with extra effort at the design stage this modified algorithm can
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produce worthwhile performance improvements at no extra cost of complexity during

transmission and decoding.

Finally, we have considered the application of the proposedDOPEG designed code

to MIMO systems. A spatially multiplexed MIMO system was overviewed and the

iterative (turbo) detection scheme for joint detection anddecoding was described. This

system has been designed with minimum mean square error successive interference

cancellation (MMSE-SIC) detection and LDPC channel coding and was tested for a

number of different LDPC codes. The novel irregular DOPEG code was tested and

some improvement in performance was noted.
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