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Abstract

Low-density parity-check (LDPC) codes are among the besbpwring error cor-
rection codes currently known.

For higher performing irregular LDPC codes, degree distidns have been found
which produce codes with optimum performance in the infibieek length case. Sig-
nificant performance degradation is seen at more practicat block lengths. A sig-
nificant focus in the search for practical LDPC codes is to irmbnstruction method
which minimises this reduction in performance as codesaggbr short lengths.

In this work, a novel irregular LDPC code is proposed whichkesause of the
SPA decoder at the design stage in order to make the bestecbberge placement
with respect to iterative decoding performance in the pres®f noise. This method,
a modification of the progressive edge growth (PEG) algoritbr edge placement in
parity-check matrix (PCM) construction is named the DOPEfe@ihm. The DOPEG
design algorithm is highly flexible in that the decoder opgiation stage may be ap-
plied to any modification or extension of the original PEGaaithm with relative ease.
To illustrate this fact, the decoder optimisation step wagliad to the IPEG mod-
ification to the PEG algorithm, which produces codes with paratively excellent

performance. This extension to the DOPEG is called the DGIPE

A spatially multiplexed coded iteratively detected andatker] multiple-input multiple-

output (MIMO) system is then considered. The MIMO system earivestigated is
developed through theory and a number of results are pexbevttich illustrate its
performance characteristics. The novel DOPEG code isddéstdhe MIMO system

under consideration and a significant performance gainheaed.
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Chapter 1

Introduction

1.1 Introduction

Wireless communications has been and continues to be ohe tddtest growing sec-
tors of technology. With the ever increasing proliferatadrsmartphones, effectively
handheld computers capable of fully utilising internetmectivity with integrated mo-
bile phone functionality, and wireless local and persoredaetworks, the demand for
increasingly high data rate, the need for reliable transimisis constantly growing.
Error control coding is an integral element in any practim@nmunication system.
Low-density parity-check (LDPC) codes are among the bedbpeimg codes cur-
rently known.

LDPC codes are a class of capacity-approaching codes firstiuced by Gallager
[1] which were largely ignored for decades due to the contpmrtal complexity of
their implementation. A notable exception being Tannedpgy [2] in which he in-
troduced the useful graphical representation of the pahgck matrix which bear his
name, Tanner graphs. Luby et al. [3] extended the concepD&Q. codes to the
irregular case, showing that by allowing varied row and noluveights an improve-
ment in performance may be seen. Richardson et al. [4], wittsDeEvolution (DE),

provided a method to derive optimal degree distributiomsctmes of infinite length,



subject to certain conditions.

Given the analytically optimal degree distributions fa teal infinite block length
case considered using DE, considerable effort has beest@d/en finding methods to
implement LDPC codes at more practical block lengths wittsagrificing the excel-
lent performance characteristics of longer codes. Withfileingth codes, particularly
at short to medium lengths, the assumption in DE that thediegmeighbourhood of
a given variable node is tree-like [4] no longer holds. Thesams that we can no longer
assume full independence of messages passed in sum-phbadie¢tpropagation de-
coding. This manifests as cycles in the parity-check matamner graph of the code.
A significant focus in the search for practical finite-lengthdes is the mitigation of
the effects of these cycles which break down the indeperdassumption.

Of the cycles which exist in finite length codes, it has beetedhat the length
of the shortest cycle of the code (the girth of the code) hagrafieant effect on its
performance. In fact, for iteratively decoded LDPC codes,riumber of independent
iterations of the message passing algorithm used is pliopatto the girth of the code
[1].

While algorithms exist which perform girth conditioning oorstrained randomly
generated LDPC codes, among those codes capable of bestnpente at practi-
cal lengths are codes designed by the Progressive Edge IG{B&G) algorithm [5],
along with modifications to this algorithm [6][7]. The PE@atfithm is a greedy edge
placement construction method for the parity-check maifian LDPC code which
places edges in the Tanner graph of the code such that whetleaisycreated, that
cycle is of the maximum possible length under the currenplyissettings. This algo-
rithm produces LDPC codes with relatively large girth anthvpiarticularly large local
girth in the lower weight variable node subgraph of the pacheck matrix, leading to
improved performance.

Another approach to constructing good finite length LDPCesad, rather than in-
creasing the girth of the code, to increase the connectygtyeen the cycles present

in the graph of the code. This higher connectivity allowsagee transmission of ex-
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trinsic messages in iterative decoding with the sum-prodigorithm, thus mitigating
the effect of the cycles involved on the performance of theecdl his concept led to
the definition of the Extrinsic Message Degree (EMD) of a nedbe graph of a code,
and subsequently to the easily calculable Approximate Cygti® (ACE) metric of
connectivity of a cycle [8].

The promising performance of both the PEG algorithm and #mgth method
presented by Tian et al. [8] naturally led to the combinatbboth concepts, leading
to the improved PEG (IPEG) algorithm [6] among others [7].

In this thesis, a further improvement to the PEG algorithreeoaconstruction
methods is proposed. This modification is based on the atplic of the iterative
(SPA) decoder at a key stage before edge placement in the RgGtlam in order
to identify which edge, from a number of candidates providgdhe algorithm, will
produce the best performance under the current graphgetiimis optimised selection
of edges for placement leads to significant improvement dbpmance over existing
methods in the short to medium length.

The code generated by this novel construction method isgppled to a multiple-
input multiple-output (MIMO) system. The MIMO system, withultiple transmit
and receive antennas and introduced in the work by Foscimid Telatar [10], can
provide significant increase in capactiy for a given wirglesannel. This increase in
capacity results from the exploitation of spatial multiphey and spatial diversity at

the transmit and receive antennas.

1.2 Goals

The objectives of this thesis are as follows:

e to provide an overview of regular and irregular LDPC codegeneral, detailing
their performance characteristics, along with a more thetalecription of some
high performance LDPC codes in particular, including coot@sstructed by the
Progressive Edge Growth (PEG) and the improved PEG (IPES®yi#ims.
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e to present a novel construction method for irregular LDP@esobased on a
modification of the PEG algorithm, showing a significant ioy@ment in per-

formance over existing methods.

e to demonstrate the performance gain achieved by the nodelp@sented herein
in the case of a MIMO system and its use in the design of ite¥aetection and

decoding algorithms for interference mitigation.

1.3 Contributions

The primary contribution of this thesis is the proposed giesnethod for irregular
LDPC codes. Applying this design method, extra effort atdheign stage provides
significant improvement in performance at no cost of inadasomplexity during
operation.

The second contribution presented in this thesis is an sisabf the above novel
code in operation in an iteratively detected and decodetidganultiplexed MIMO

system.

1.4 Thesis Layout

The remainder of this thesis is organised as follows. In GhaptLDPC codes are
briefly overviewed, with a general introduction to the LDP&limg system followed
by a review of the literature relevant to the discussion efftillowing chapters.

In Chapter 3 the novel construction method which is the matudaf this thesis
is described and results are presented and analysed.

In Chapter 4 a MIMO communication system is briefly described the code
developed in the previous chapter is applied to the caseative detection and de-
coding of a MIMO system.

Chapter 5 provides the conclusions of this thesis.



Chapter 2

Review of LDPC Codes

In this chapter, we review LDPC codes. In Section 2.2 the LzBGing system is
introduced. The parity-check and generator matrices ofctite are defined along
with the notation used. The graphical interpretation of paety-check matrix, the
Tanner graph, is then presented. The concept of degredédigins for describing
irregular LDPC codes is detailed before a short review ofitheative approach to
decoding LDPC codes.

In Section 2.3 a review of the literature of LDPC codes isiedrout. A number
of explicit construction methods for the parity-check ma#re reviewed, along with
a number of concepts which form the basis of the original wivdsented in Chapter
3.

2.1 Linear Block Codes

In the binary field, ans(, k) block code is a set df* lengthn vectors, called code-
words, uniquely corresponding to tBe possible permutations of a lengkimessage
vector.

The block code is said to be linear if the mod@2leaum of any two codewords

produces a third codeword. Associated with every lineaclblmbde are the matrices



G, the generator matrix, and, the parity-check matrix, such that the codeword

related to the message vectorby the expression

c =mG, (2.1)

The generator matrix and parity-check matrix satisfy

GH =0, (2.2)

and

cH =0 (2.3)

An encoder is systematic if the codeword has the form

¢ = [p m] (2.4)

wherem is the message vector as indicated abovepisdhe vector of parity bits.

The systematic generator matrix may then be written in thafo

G = [P' ] (2.5)

wherely is the identity matrix of siz&k andP is an (-k)-by-k matrix. Then a

corresponding parity-check matrix may be determined as

H = I, PJ, (2.6)

2.2 LDPC Coding System

LDPC codes are linear block codes fully characterised byrilg-by-n sparse parity-

check matrixH.
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Figure 2.1: LDPC Coding System

As shown in Fig. 2.1 above, the codeward derived from the message vector
as in Egn. 2.1 for conventional block codes. The LDPC code timay be decoded by
the SPA algorithm which makes use of the structure of theypaheck matrix.

If the parity-check matrix is obtained in non-systemationipB, the systematic
generator and parity-check matrices may be found as foillows

Gaussian elimination (GE) with column pivoting is used teedmine the §-k)-by-

(n-k) matrix A" such that

H=A'A = [, « P] (2.7)

whereA is derived fromB simply by the rearrangement of columns required by

GE.G is constructed as per Eqn. 2.5 and so

HG =0= AHG = 0= AG' =0 (2.8)

Now we have the parity-check matrxin systematic form, and as will be become
clear from the introduction of the graphical representatb LDPC codes in the fol-
lowing section, along with the discussion of Section 2.2, required rearrangement
of columns will not affect code performance. It should beeddthatH in the form of
Eqgn. 2.7 is not necessarily sparse and is not in a form comedcidecoding by the

iterative message passing algorithm to be introduced itic3e2.2.3.

2.2.1 Graphical Representation

A graphical interpretation based on a bipartite graph, referred to as a Tanner graph

was provided by Tanner [2]. The graph consists of two typasooles, variable nodes



and check nodes, connected by edges. There asgiable nodegv;;i = 1,...,n}
andm = n — k check nodegc¢;;j = 1,...,m}. An edge connects variable node
i to check nodg if there is a 1 in the positiofij, i) of the parity-check matrixH.
An example parity-check matrix (not sparse) and its comadmg Tanner graph are

shown in Fig. 2.2 below.

(100101001 1]
00110010710
H=l01001010T10
0110010101
(1000100101

Co C1 Co C3 Cy

(b)

Figure 2.2: (a) Parity-check Matrix
(b) Corresponding Tanner Graph



2.2.2 lrregular Degree Distributions

LDPC codes, as defined by Gallager [1], have parity-checkicestwith fixed column
and row weights¢, andd,, respectively. Such an arrangement is now referred to as
a regular LDPC code. Subsequently Luby et al. [3] introducesdjular LDPC codes

with row and column weights which varied according to theagke distributions,

defined as:

dv

NOEDIPT (2.9)
=0
de A

p(x) = pja’~! (2.10)
=0

where:

e ), is the fraction of all edges connected to degree-i variabties,

dv
0<MN<1, i>0, S h=1
=0
and herel, is the maximum variable node degree.

e p; is the fraction of all edges connected to degree-j checksiode

de
j:

andd.. is the maximum check node degree.

In the previous example in Fig. 2.2, the given parity-cheekrir has
Az) = 0.87 + 0.227 (2.11)

p(x) = 0.62° + 0.4z (2.12)



2.2.3 lterative Decoding Procedure

LDPC codes are decoded using iterative decoding techniguesich the two dif-
ferent types of nodes of the Tanner graph effectively bela@vevo separate serially
concatenated decoders. At each iteration of the overatldbrceach constituent de-
coder sends extrinsic information to the other constitdexbder, calculated using the
information received from the other constituent decodeth@ previous iteration as
intrinsic input information. By means of this message pagstnategy and utilising
the dependencies between codeword bits introduced by twelany procedure, errors
introduced by channel noise may be corrected as the decodegrges.

In practice, the message passing algorithm propagatdikddrood ratios (LLRS)
in order to avoid computationally costly multiplicationsdato avoid numerical insta-
bility which may arise when computing iteratively with padtilities. The log-domain
sum-product algorithm (SPA) is used. The usefulness of #mmdr graph representa-
tion of LDPC codes now presents itself, as messages passed each iteration of
the decoder may be viewed as being sent from a variable nodeheck node and
from a check node to a variable node along the edges of thesTanaph.

At one half iteration, the LLR sent from a variable node (M\){i =1, ...,n}, to

a check node (CNy;, {j =1, ...d,, }, connected to it is:

Liyj = Len; + Z Lj_; (2.13)
j'#3
whereL,_,; is the LLR received from CN’ to VN i in the previous iteration and,

for channel outpuy; corresponding to transmitted coded bjte {+1},

i = +1y;
Len; = log (M) (2.14)
p(z; = —1ly;)

In the other half iteration, the LLR sent from CN j, j=1,...,to,VN i, i=1,...d.,,

connected to it is:
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Lj; = 2tanh™ (] ] tanh(Ly—,;/2)) (2.15)
i i
whereL;_,; is the LLR received from VN’ to CN j in the previous iteration.

4’@—‘ H_l

edge interleaver

hard decision
receiver output

from channel

» VND CND

edge interleaver -
I1 4—@47

Figure 2.3: Block Diagram of the Message Passing LDPC Degodin

Lj !—i

Lj*)i

Ly

Figure 2.4: Diagram of the Messages Passed at Each Hadtitiriin SPA Decoding

In Fig. 2.3 the block diagram of the overall structure of tfeeative LDPC decoder

is shown. As in the description above, decoding is viewed@®eess of exchanging
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iteratively updated messages between two simple decdtiersariable node decoder
(VND) and the check node decoder (CND). The VND carries oubgiexation of Eqgn.
2.13 for each node. At the first iteration, assuming encodksdabe equally likely to
be “+1” and “-1”, the second term of Egn. 2.13, thepriori LLRs, are 0 and so
the operation is carried out using information from the atedronly. In subsequent
iterations thea priori information is utilised in computing the messages to be asnt
indicated. To ensure the VND and CND operations remain inaleéget for as long
as possible, tha priori information is removed from tha posteriori LLRs before
sending them to the CND. Likewise after the CND operationmsid information is
removed, extrinsic information only is sent on for use in tlegt iteration. The edge
interleavers represent the interconnections of the Tagnagh.

Fig. 2.4 shows the messages passed at each variable nodacincheck node in

the Tanner graph at each half iteration.
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2.3 Literature Review

In this section, the literature concerning constructiothefLDPC matrix is reviewed.
First the regular construction methods of Gallager and Mwgelke detailed. Following
this, a discussion of the challenges of constructing agules LDPC matrix which
provides improved performance is provided. A number of tmiesion methods for

the regular and irregular cases are then reviewed.

2.3.1 Gallager and MacKay Construction Methods
Gallager Codes

In his original paper [1] Gallager proposed a constructiathmad for regular (n, j, k)
codes, where n is block length, j is the regular column wedgtat k is the regular row
weight. The construction method is based on random colummugation of a base
matrix H; with % rows and column weight 1 which has the following simple sinue.
Fori =1,2,.-- 7 thei-th row of H; has all its 1's in columnsi{1)k+1 toik. That is
the first row has 1's in positions- - - £, the second row has 1's in positiohs-1 - - - 2k
and so on. The submatriceék, to H; are constructed simply by column permutations

of H;. The parity-check matri¥ is then constructed as

H,

H,

MacKay Codes

MacKay provided and analysed the performance of a numbeorgtained random
construction methods of increasing complexity with insieg constraints [11]. The

simplest construction method presented constrains blemgith, column weight and
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row weight as in Gallager codes and has the added condi@métwo columns have
an overlap greater than 1. This is equivalent to the condttiat there be no cycles of
length 4 in the graph of the code. MacKay extended this coastm method to ex-

clude longer cycles and also to the case of irregular vagiabte degree distributions.

1072 y
T
w 10 3 3 E
m E
- —— Gallager
i —&— Mackay
10 Uncoded |
10°F 5
X
D
10_6 I I i I I I
0 0.5 1 15 2 2.5 3 3.5

SNR (dB)

Figure 2.5:Comparison of Performance of Gallager and Mackay codes for lengtt%00

In Fig. 2.5 above, the performance of the codes constructatidomethods de-
scribed in Section 2.3.1 is shown and compared with the watodse in the additive
white Gaussian noise (AWGN) channel. BPSK modulation was akety with SPA
decoding in the case of the coded transmissions. The dew@deoperated to a maxi-

mum of 50 iterations and 100 block errors were gathered pé&t Sdint.
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2.3.2 Density Evolution

In Density Evolution (DE), Richardson and Urbanke [4] praddx method to compute
the optimal degree distributions for codes of infinite léngihder certain assumptions,
by means of analysing the evolution of error probability e imessage passing de-
coder as it progresses through iterations. For a given palegree distributions the
threshold, i.e., the worst channel paramater such thatrtieapility of error converges
to zero as the number of iterations tends to infinity, is coeguUsing search meth-
ods, pairs of degree distributiofis, p) were identified which maximised the threshold
value. This method has proved to be a valuable tool and faesoélvery large block
length, the performance exhibited is very impressive.

However, for codes of short to medium length, which are moaetal in systems
where latency is an issue, the assumption of DE that the degoeéighbourhood of a
given VN is tree-like - valid for the case of codes of infinkagth - no longer holds. In
this case cycles are present in the Tanner graph of the codgcléis a path through
the graph which originates and ends at the same node witheugrsing any single
edge twice. This is illustrated in Fig. 2.6 for both the pagheck matrix and the
Tanner graph of an example code.

Cycles in the graph of an LDPC code degrade performance - wdle€ present
in the graph, after a number of iterations of the decoderntessages passed will no
longer be fully independent. The length of the shortesteegén LDPC code is called
the girth of the code. Length 4 cycles, as seen in Fig. 2.6q@)ming between variable
nodesy, andv; and check nodes andc;, the dashed set of edges in the Tanner graph
in Fig. 2.6 (b), are the shortest cycles possible and ardlasmost damaging in terms
of performance. It is usual for all codes designed to perfsome girth conditioning
to remove cycles of length 4. Also shown, occurring betwed&is ¥, to v, and CNs
c1 to ¢z is a cycle of length 6, highlighted as the dotted set of limethe Tanner graph
of Fig. 2.6 (b).
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Figure 2.6: (a) Parity-check matrix and
(b) Tanner graph illustrating cycles of length 4 and length 6

In addition to removal of length-4 cycles, another commoviateon from the pre-
scribed optimal degree distribution pairs of DE when desigipractical LDPC codes
is to limit the number of variable nodes of weight 2 to lessitmathe number of check
nodes of the code. This constraint limits (and for the PE@ratlgm described later
removes entirely) the possibility that cycles exist whicé made up only of weight-2
VNs. Without this constraint, cycles made up of only weightedes will exist in the
graph [8]. This type of cycle is particularly damaging tofpemance as they have no
connection to the graph outside of the cycle, and so recaivextrinsic information

from the rest of the graph, leading to poor performance irether floor region.
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2.3.3 Approximate Cycle EMD

The concept of connectivity of cycles introduced above ®the central idea of the
Approximate Cycle EMD (ACE) metric defined by Tian et al. [8]][1Zhey state that
the connectivity of the cycles and not simply the length & dycles present in the
graph of a code determine the performance of the code. Thstywase scenario in
terms of connectivity of a cycle is a stopping set. This isrtefias a set of VNs for
which every CN connected to a VN in the set is connected to thatdeast twice.
In practice this means either the cycle is either made up bf weight-2 VNs or is
comprised of a number of cycles connected together. Peafocen of LDPC codes
under iterative message-passing decoding is directlyeelto how the constituent
cycles of its graph connect to form stopping sets. This has lséown explicitly for
the binary erasure channel (BEC) [13]. The error performamd€d®C codes over
the BEC may be completely determined given the stopping $dtecranner graph
of the code and the erasure probabilityStopping sets are further discussed in [14],
where is shown that their influence on performance trarshaehe additive white
Gaussian noise (AWGN) channel, with code bit LLRs with poaatslity considered
rather than erasures.

Tian et al. define the Extrinsic Message Degree (EMD) of a ViNas¢he number
of CNs singly connected to that set. For a cycle in which no twWds\share CNs
outside the cycle (ie. there exists no sub-cycle) the EMDhefdycle isZ(dl- —2).
For convenience of calculation, this case in which the cyclguestion islassumed to
have no sub-cycle is considered and the metric is labelefghbeoximate Cycle EMD
(ACE).

The design method proposed in [8] was as follows: column liyron generation
of the parity-check matrix, with each column generatiomokeed by computation of
the ACE metric and a check to see that it meets or exceeds aipsgsminimum. If
it does, the column is retained and if not the column is didedrand random gener-

ation carried out again. This results in codes which outperéd codes generated by
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conventional constrained random generation followed b gionditioning as shown
in [8]. However, codes generated by this construction neetire themselves outper-
formed by the Progressive Edge Growth algorithm to be desdriater, as shown in
[15].

As a result, the construction method of [8] is not considduether. However, the
ACE metric proves to be a useful measure of connectivity ofesym a graph and the
ideas presented prove useful in understanding the effestabés in the graph on the

performance of an LDPC code.

2.3.4 Repeat Accumulate Class of Codes

The iterative decoding procedures for LDPC codes desciiib&ection 2.2.3 , ben-
efitting from the sparseness of the parity-check matrixyiple high performance in
acceptable computational complexity, which is essegtiadear with the block length
n. A considerable drawback of the LDPC coding system is thetfet the encoding
described by equation 2.3 involves the generator ma@ixwhich is in general not
sparse. As a result encoding complexity is high.

A number of approaches have been presented which tacklesshis by imposing
structure on the parity-check matrix, which then may be @xpdl for faster encoding.
Examples of this structure include upper/lower triangédams [16][5] and cyclic and
guasi-cyclic codes [17][18]. These approaches genenaliglve a tradeoff between
performance and encoding complexity, with decoding coriplealso increasing in
the finite geometry based quasi-cyclic case [19].

A class of codes was presented in [20] and expanded uponrgigat accumu-
late (RA) codes and their irregular counterparts known agutar repeat accumulate
(IRA) codes. These codes may be viewed as both serial turtEsa LDPC codes.
That is, they may be viewed in terms of an LDPC matrix and dedatcordingly by
means of the efficient iterative SPA decoder, and they maylassviewed in terms of

a pair of codes, outer repeat and inner accumulate codesasegpdy an interleaver,
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and thus can be encoded efficiently as such, with complexdseasing linearly with
the block length n.

The block diagram for the encoder of the RA and IRA codes is shmiow, where
for the regular case, the matrix operationfois replaced by a simple repeat code. The
interleaver,[ [, describes the connections in the Tanner graph of the coéa SRA
decoding is employed. The final element of Fig. 2.7 is a simgle-1 convolutional
code, called an accumulator. The block, T, is simply a deleynent. The dashed line
indicates the systematic version of the IRA code, in whicledag matrixA would
have dimensiong&-by-(n-k) and the output vector of the accumulatemwould bel-
by-(n-k).

_________________________________________________ > U
: Interleaver Accumulator
u .
1xn
kxn T

Figure 2.7: Encoder for the RA/IRA codes

Extended IRA Codes

In [22], Yang et al. explicitly show the low-density parithreck matrix interpretation
of the IRA code class. A discussion of the vulnerability of giei2 variable nodes is
developed into the definition of a new subclass of codesneeid IRA or eIRA codes.
These codes are capable of efficient encoding as a resuleiofl A basis and also
capable of excellent performance at high rates. A plot ivigem showing the evo-
lution of expected LLR magnitudes of the code produced byctrestruction method
proposed in the paper. This plot provides a means of congénm performance of
variable nodes of different weights over a number of iteradi As expected the low
weight variable nodes converge more slowly and to a lowemitade as they receive

less information upon which to operate. As is discussedweight VNs are required
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in order to allow for lower weight check nodes as is requirgdha optimal irregular
degree distributions of [4]. Low weight CNs are less likelyrésult in a check opera-
tion failure. x The dual diagonal matrix, also shown in [8]a® cycle free is utilised
with the inclusion of a single weight-1 column. This makegpap of an LDPC matrix.
The other part is specified to be free of weight-2 columns, density and irregular
such that the overall distribution of the parity-check mxais near-optimal. Then the

parity-check matrix has the form

H = [H, H,), (2.16)

whereHs is the matrix of the above form, dual diagonal with appendedyir-1

column. Now the generator matrix is shown to have the form

G=[P]=[IHTH,"], (2.17)

whereH; T is in upper triangular form and represents the accumuldtbigp 2.7.
In fact LDPC encoding witlc above may be carried precisely as in Fig. 2.7 except that
here the matriXA has the fornHII~ 1. This is a low density matrix and so encoding
has low complexity. In fact this code possesses the excadleroding properties of

turbo codes and the decoding properties of LDPC codes.

Accumulate Repeat Accumulate (ARA) Codes

In [23], a class of codes is developed which is presented amlanced extension of
the RA class of codes, where precoding with another accuorukatarried out. This
serves to improve the input-output extrinsic SNR behaviafuthe code in the high
extrinsic SNR region. These ARA codes are also presentedingmaph structure, a
protograph being a graph with a relatively small number afesowhich defines the
code and from which the code is produced by a copy and pernpgsaton. The
protograph approach to ARA codes is further developed in &% in [25] for low

rate codes.
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2.3.5 Progressive Edge Growth Algorithm

The PEG algorithm is a construction method for LDPC codestgiven a vari-
able node degree sequence, block length and code rate psdodes which are
among the best performing codes currently known. For ileeguDPC codes, the
degree sequences which are found to provide the best permficerare those derived
from the density evolution optimisation procedure. The P&E@orithm is a highly
flexible in that it may be used to generate codes of any blaugtke rate and for any
given variable node degree distribution.

From a graphical viewpoint, the algorithm progresses ordaeéy-edge basis, or
equivalently, the algorithm places the “1”s in the parityeck matrix of the code, one
entry at a time. Edge placements are made such that whenesigyteated, that cycle
is of maximum possible length under the current graph sstihis approach ensures
large overall girth for the code. Additionally, it ensuresrfocularly large girth in the
left-hand sub-graph of the code. According to the algorjttiva input degree sequence
is arranged in non-decreasing order and the edge placearentsade in progression
from left to right in the graph/parity-check matrix. As suttte low-weight variable
nodes, in the left-hand sub-graph, are imparted with pderty large girth. As pre-
viously discussed in Section 2.3.3, short cycles amongv@ight variable nodes are
very damaging to performance. Combined with the large ovgndh properties and
minimum distance bound greater than that of randomly gée@reodes, this is the

source of the excellent performance of PEG generated codes.

Definitions and Notations

e n - block length of the parity-check matrix to be generated.

e D, - Variable node degree sequence, the weight of the columtisegbarity-
check matrix to be generated, in non-decreasing order. i$hidated to)\(z)
defined in Section 2.2.2 by
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Dy = [dmin...da...dmaz), (2.18)

where

dy =n——0 — (2.19)

e v; -variablenode jj =1,...,n
e ¢;-checknodeij=1,....m

e N} -the neighbourhood of nods to depthl. This is defined as the set of check
nodes which may be reached by a subtree starting from noded expanding
for | levels, where each level consists of variables nodes at dgiance from

v; and all the check nodes connected to them. This is illustriat&ig. 2.8.

. N_jjj - the set of all check nodes excluding those in the neightmadiof nodey;
to depthl, N .
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PEG Construction

The graph is initialised with n variable nodes, m check n@thebno edges. Placements
are made edge by edge, and progressing through columnsdfota tight, according
to the following procedure.

For the first edge emanating from a variable node, the edgecgg connecting
the variable node to the lowest weight check node under themugraph setting. If
more than one such lowest weight check node exists, thedateds chosen at random
from the set.

For each subsequent edge to be placed, a subtree (see Fig. &panded from

the variable node in question up to the depth that either:

(a) the tree expands further but fails to include any exteckmodes.

(b) the next step in the tree expansion will include all chec#les in the tree.

In the case of (a), the set of nodes not currently in the treaatebe reached from
the current variable node, and as such when a placement sseoadecting the current
variable node to one of the check nodes in thd@t those check nodes not currently
in the tree, no cycle is created. For the PEG algorithm a énntestriction on choice
of placement is made. The set of node% with minimum weight is referred to as
the set of candidate check nodes. The edge is placed compé¢let current variable
node of interest to a check node in the candidate check nad# geere is more than
one node in this set, a candidate is chosen at random.

In the case of (b), all nodes in the graph can be reached fremahable node of
interest, and when an edge is placed, a cycle will be crebatedever, as the candidate
set is taken as the minimum weight check nodes of the CNs naardily in the tree at
the point at which one more level-expansion will result ia thee including all CNs,
the cycle created will be of maximum length possible, whighength 2*(+2). As
above if there is more than one check node in the set of cateditlae choice is made

at random from the set.
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The pseudocode for the PEG algorithm is presented in Table 2.

A Note on CN Degree Distribution

The optimal degree distributions produced by density eimiyas introduced in Sec-
tion 2.2.1 consist of the pairs(z), p(z), defining the variable node and check node
degree distributions respectively. However, as statedegghaf these pairs, the PEG
algorithm takes as an input only the variable node degreeeseg derived from the
VN degree distribution by expressions (2.18) and (2.19% ditreck node degree distri-
bution of the code generated by the PEG algorithm, by virfube“minimum weight
check node” condition applied at every choice among camelédas as uniform as

possible. This tends to result in a CN degree distributiomofery close to the form

p(x) = sz’ + (s — 1)z'™! (2.20)
forsomet > 2and0 < s <1

As stated by [5], evidence exists to suggest that this cdretex degree sequence for

check nodes is optimum.
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Table 2.1: Pseudocode for the PEG Algorithm

Forj=1ton
For k = 1to Dy(j)
If k==0

place edge between current M and CNc; such that; € (the set of CNs with minimum
weight under the current graph setting).
Else
expand tree to depthunder current setting s.t. the cardinality]lvfjj stops increasing but
is less than nor
NI #0but NG =9
Then place edge between current ¥Nand CNg; s.t.c; € NT)J with lowest CN degree.
If a number of CN candidates meet this requirement, choose one at random.
End If
End For
End For
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Figure 2.9:Comparison of performance of regular PEG and MacKay generatexs afd
lengthn = 500

In Fig. 2.9 above, a comparison of the performance of length500 rate% (3,6)-
regular codes constructed by both the Gallager methodiledan Section 2.3.1 and
the PEG algorithm is presented. BPSK modulation was usednencbidewords were
decoded by the SPA algorithm under the presence of additineWsaussian noise.
The regular PEG generated code outperforms the Gallager ¢talvever, as will be
seen in the following Fig. 2.10, the PEG code with optimagular degree distribution
outperforms both the (3,6) regular PEG and Gallager codes.
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Figure 2.10:Comparison of performance of regular and irregular PEG generatkss of
lengthn = 500
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2.3.6 Improved Progressive Edge Growth Algorithm

The Improved Progressive Edge Growth (IPEG) algorithm $6gm extension to the
PEG algorithm which incorporates the ACE metric, introdubgdrian et al [8] and
discussed in Section 2.3.3, in the edge selection proceduhe PEG algorithm. By
utilising the ACE metric to aid in selection of the edge to bacpld at each step of the
algorithm, the candidate chosen has the greatest conitgtbithe rest of the graph.
As stated in [8], greater connectivity among subgraphsefjtaph of an irregular
LDPC code leads to lower error floors in the bit error rate (BE&RYye of the code.
This improvement is clearly demonstrated in the compar&dBER plots for codes
generated by the PEG and IPEG construction methods, wittticdé variable node
degree sequences and rate, as shown in Fig. 2.11. The syst@sdescribed for
previous results, namely BPSK modulation, AWGN channel anl @&®oding in the

receiver.

ACE Metric Calculation

The ACE metric measures connectivity of a cycle to the rest@fraph. In the case of
the IPEG algorithm, the connectivity of each cycle which \ddee created by placing
each candidate check node is compared, and the cycle wisajréatest connectivity
is chosen. As with the original PEG algorithm which maximsigke length of the

cycle which must be created under the current graph sethiedPEG algorithm uses
the ACE metric to choose the candidate which will create tlstlédamaging cycle
possible. Connectivity of the cycle is measured by countiggrtumber of edges by
which the cycle is connected to the rest of the graph throtgykariable nodes [6].

Each variable node is represented by a column of the panggicmatrix, and so this
count is carried out by summing the weights of the columnstvinepresent the VNs

involved in the cycle of interest. That is
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> (w,, —2), (2.21)

wherew,, is the weight of the columm, and the summation is taken over all
the variable nodes involved in the cycle. This is precisle#/dpproximate cycle EMD
(ACE) metric of [8], where EMD stands for extrinsic messaggrde. The ACE metric
is approximate because, for ease of calculation, the casasiofjle check node being
shared by more than one variable node in the cycle is neglecte

In the IPEG algorithm, the ACE metric calculation is carried for each candidate
check node in the event that the candidate will create a eyletn the edge is placed.

That is for the case when the subtree expansion has beemé&teahiby the condition

NI #0 but NF =9 (2.22)

being met. Then the candidate with the highest ACE metrid$associated cycle
is chosen. In the case that more than one cycle has this maxiACE metric, a
candidate is chosen at random among this set.

The pseudocode for the IPEG algorithm is provided in Talite 2.
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Table 2.2: Pseudocode for the IPEG Algorithm

Forj=1ton
For k = 1to Dy(j)
If k==

place edge between current M and CNc; such that; < (the set of CNs with minimum
weight under the current graph setting).
Else
expand tree to depthunder current setting s.t. either:
(1) the cardinality o’er}j stops increasing but is less than m
(2) NI #0but Ny =0

In the case of (1), place edge between currentdyldnd CNg; S.t.¢; € Nif)jwith lowest CN
degree. If a number of CN candidates meet this requirement, choosé ramelem.
In the case of (2), the set of minimum weight CNs\éff is €2},
If the cardinality of2), ==
the check nodélﬁ,]_ is connected to;
Else
For each CN¢, € ),

calculateACE., = ) (w,, — 2) where the summation is taken over all Visin the

Up
cycle created by placement of edge connectijtyp v;.
End For
choose CN; s.t. ACE,, > ACE,, forall ¢, € Q{}J If more than one CN meets this
requirement, choose at random among the CNs which meet it.
End If
End If
End For
End For
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Figure 2.11:Comparison of Performance of IPEG and PEG generated codes

2.3.7 ACE Spectrum and ACE Constrained PEG Design

In [15] and [7] another approach to utilising the ACE conceipfi8d is taken. As in
the case of the IPEG, the motivation is that since stoppitgydietate the performance
of LDPC codes in the error floor region, and since stopping aet formed of one or
more cycles, code performance can be improved by manipgl#ie cycles contained
in the graph of the code. Again, as not all cycles are equallynful, not only length
but interconnectivity of cycles is considered.

In [15] a new metric based on ACE is introduced, the ACE spectrtiangraph

n(G(H)) = [02,14, -+, Mdunas] (2.23)

wherer; is the minimum ACE of any cycle of lengthn the graph. A construction
method based on this graph metric is then proposed, whehsbparamaterg,,,..

andncg are set such that for any cycle of length less than or equél tothe ACE is
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greater than or equal ip,cg. This construction method produced codes which perform
well, particularly when combined with the PEG algorithm isimilar approach to the
IPEG modification of the PEG. It should be noted that thereliaris for practical
codes on the sizes df,., andnacg, initially due to computational complexity and as
they are increased it eventually becomes impossible to fiaplg which comply.

In [7] in an extension of the work of [6] on the IPEG, the ACE dpem as defined
in [15] is used to identify a progression of culling of chedde candidates as provided
by the PEG algorithm. The minimum weight CN criterion is abametl in favour of

an ACE focused set of criteria. These are in order of sequepue=d:

e select survivor with the largest minimum path ACE metric
e select survivor with the smallest number of minimum ACE skstrpaths
e select survivor with the smallest total number of shorteshg

e select minimum degree survivor

2.4 Chapter Conclusions

In this chapter, a general introduction to the area of LDP@esowas provided. The
coding system was presented and the iterative decodingguoe most commonly
used was detailed. Along with these concepts, a number af negent developements
in the field were presented in the Literature Review sectidns $ection provided an
indication of the challenges faced in producing practicghtperformance codes and
some of the approaches taken in meeting these challengestiohally, this section
introduced a number of concepts, such as the PEG algorithiaRGd construction,
which are key to the description of the proposed algorithovigled in the following

chapter.
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Plots of BER against SNR were provided for a number of the cedegd methods
covered in order to give an appreciation of the performaruteesable with LDPC

codes at practical lengths.
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Chapter 3

Proposed Decoder-Optimised PEG
Algorithm

3.1 Introduction

As discussed when introducing the PEG algorithm for LDPGeammhstruction, given
a degree sequence derived from an optimal degree distibatid code paramaters,
block lengthn and rateR, the PEG algorithm produces codes which exhibit excellent
performance due to their girth characteristics. As demratest by the development
of the IPEG construction method however, there is room f@rowement of the PEG
algorithm. In particular, it is noted in [6] that it regulgrbccurs that the PEG algo-
rithm provides a number of candidate check nodes which anevagnt in terms of
the length of the cycle which will be created if an edge is pthbetween them and
the variable node of interest. The improvements in perfoceaof the IPEG over
the PEG algorithm results from calculating a metric, basethe approximate cycle
EMD (ACE) of [8] for each candidate and by this means choodmegcandidate with
the greatest connectivity with the rest of the graph. Thisho@ was successful in
producing codes with improved performance when comparéhl the original PEG

algorithm.
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An alternative approach is considered here, the decodienigptl PEG (DOPEG),
which applies the SPA decoder at the design stage in an éfgmtoduce an LDPC
code with improved performance. By use of the decoder, a enetcomparison for
candidate nodes is produced and the candidate is chosesh drasigis metric. As the
results show, this approach leads to significant perforegains, particularly in the

short to medium block length.

3.2 DOPEG Detailed Description

As in the PEG algorithm, placements are made edge-by-ed@lisation is identical
to the PEG algorithm. For a variable nodgthe first edge is placed at random among
the minimum weight check nodes of the graph. As in the PEGrdlkgo, a subtree
is expanded from the variable node of interest to dépthere the tree expanded to
depthl+1 either (a) contains no more nodes than the tree to deptfb) contains all
m check nodes of the graph. This implies that the nodes nhtded in the subtree at
depthl are either unreachable from the variable nogder are at the greatest distance
possible from this node. Up to this point the algorithm hastidentical to the original
PEG algorithm, as described in Section 2.3.5.

Now, if for the current variable node of interest, the index j is less than the
number of check nodes m, the candidate is chosen at randamthisominimum weight
check nodes not currently in the subtree i.e. the choice éemaa in the original PEG
algorithm. If the index is greater than the number of checltesp in the case where
there is more than one check node not currently in the sulitrélee case where there
is only one node not in the subtree, this node is chosen aralgbaethm moves on to
the next edge to be placed) i.e. the cardinality@ is greater than 1, the elements
of N_gj are the candidate check nodes. Note that this differs fraP8BG algorithm
where the candidate check nodes are the minimum weight aiebds in the seN_j})
of nodes not in the tree to depth

Now for each candidate check node, a candidate code is notesfraccording to
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the equations

H = [T, « P] (3.1)

G = [P' I, (3.2)

by Gaussian elimination, the method is discussed in Se2t@n

For each candidate code, the LDPC coding system of Fig. 2feasated over a
range of signal-to-noise ratios (SNRs), for a number of inpassage vectors and in
the presence of additive white Gaussian noise (AWGN) in tlachl. The range of
SNRs and number of instances of input message vectors arepa@meters of the
DOPEG algorithm.

For each candidate code the system consisting of encodamggnhission in the
presence of AWGN, and soft-input soft-output SPA decodiraperated. The level of
correct and incorrect convergence of the log-likelihodtsa(LLRS) of each bit in the
soft output of the SPA decoder is measured.

This is then used to compute a single metric, as describdukeisdction [3.3] to
follow, for each candidate check node. The candidate piadubhe code with the
highest metric, that is the candidate code which performssloeder SPA decoding, is

chosen as the candidate to connect to the current variabieafanteresty;.

3.3 Metric Calculation

As described in the pseudocode of Table 3.1, for each caedalfeeck node, encod-
ing and soft-input/soft-output decoding is performed ia pinesence of additive white
Gaussian noise over a range of SNR values and for a numbestainces of mes-
sage/noise vectors.

For each decoder soft-output vector, the magnitude of esdbgslikelihood ratio

(LLR) is taken, and if the LLR is converging to the correct \glthis magnitude is
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multiplied by +1, otherwise it is multiplied by -1. The emsi of this new vector are
then summed, and these sums are accumulated over the chusbkarrof instances of
message/noise vectors.

This process is repeated at each SNR value for each canditiateesulting in a
matrix of metric vectors for the CN candidates over the SNRyeachosen. These
metric vectors give an indication of how each candidate CNlgvatfect the overall
performance of the code. Rather than comparing the averathpesé metric vectors,
which would fail to account for the greater convergence i 8Bcoding at higher
channel SNRs, the final metric for comparison is computed beas. Taking the
mean of the metrics at each SNR value over the different dates, dividing each
of the metrics at this SNR value by this mean value results moranalised metric.
This maintains the relationship of performance betweefemint candidates at each
SNR value of interest while removing the bias towards highRR values. These
normalised metrics are then simply summed for each carejitte largest value indi-

cating the candidate with the best performance over theerah§NR values chosen.

3.4 Block Diagram and Pseudocode for the DOPEG
Algorithm

Presented in Fig. 3.1 is a block diagram representationeoPtEG and DOPEG al-
gorithms for ease of comparison. In Table 3.1 the pseudotmdthe DOPEG is

presented.
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Subtree to Depth [

Decoder Optimisation Operation

Length —» NI

J DOPE
Rate —+ H Giest P Channel [ SPA, Hygt [ II(I)CtI'i(,‘G
Dy —>

C;
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Figure 3.1: Block Diagram of PEG and DOPEG
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Table 3.1: Pseudocode for the DOPEG Algorithm

Forj=1ton
For k = 1to Ds(j)
If £ ==

choose candidate at random from minimum weight CNs of the Tanner graggr the

current graph setting.

Else
expand tree under current setting s.t. the cardinaliW@fstops increasing but is less

than mg]\Tl}j £ 0 butﬁjrl =0
Then
Ifj<m+1
choose candidate at random from minimum weight CNs am?g}g

Else

Forp=1to IengthQ\/’,ﬁj)

1. Form matrixHest Which is the constructeld matrix under the current graph setting

up to columnu;, the current column of interest, with a 1 in the positi@(p),vj].

2. UseH,.t to encode a message and decode in the presence of noise over afrange o

SNR values using soft-input soft-output log-domain SPA decoding.

3. Compute metric, described in Section (3.3), from the soft-output veatdihe SPA

decoder.

End For
Choose the candidate with the highest metric, place edge in this position.
End If
End If
End For
End For
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3.5 Decoder Optimised Improved PEG Algorithm

In an analogous fashion to the IPEG extension of the PEG itligor the DOIPEG
combines the ACE metric concept as applied to the IPEG witbdélseder optimisation
step of the DOPEG algorithm. The set of check node candidetgzresented by
the PEG aIgoritth_j)j, omitting the minimum weight check node stipulation as in
the DOPEG, is pruned according to the ACE metric as definedhiRPEG. As a
result, the surviving check node candidates have equalmamrigraph connectivity
as defined by the ACE metric of [8][6]. In the event that morentbae check node
remains in the set, the decoder optimisation procedureigdaut as in the DOPEG
algorithm in order to provide a metric by which to choose theak node candidate
which provides the best performance. This constructiorhotets then called the
Decoder Optimised Improved PEG (DOIPEG) algorithm. As tineutation results
show, this leads to significant improvement in performance.

As in the DOPEG algorithm, the minimum check node requireroéthe original
PEG and IPEG algorithms is omitted. As such the resultingeocadl not have the
concentrated check node degree distribution form of (2 EZperimental results show
that the removal of this stage of pruning of check node catd&lleads to greater
improvement in performance over the IPEG algorithm.

For the case where placement of an edge does not create aciewiey either the
first edge placed at a variable node or in the initial phase&bly construction when
not all check nodes are reachable from the variable nodetefest, the algorithm
proceeds exactly as in the PEG algorithm.

For the case where a cycle will be created with edge placemeeties of pruning
operations are carried out on the set of check node candidateder to identify the
candidate which will provide best performance. The firstngng operation is that of
the subtree expansion of the PEG algorithm which ensureésht@aycle created will
be of greatest length possible under the current grapmgsttiThe second pruning

operation is that of the IPEG algorithm, where the ACE mesiapplied to ensure
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that the survivnig check node candidates produce cyclegjodlemaximum graph
connectivity. Finally, the decoder optimisation proceddescribed in sections (3.2)
and (3.3) is carried out to identify which candidate will picte the best performance
under encoding and SPA decoding.

As the simulation results show, the DOIPEG algorithm presigignificant im-
provement in performance over the IPEG algorithm, whichegates among the best
performing codes currently known given an input degree sece and rate.

A block diagram illustrating the approach of the DOIPEG aiifpon is presented in
Fig. 3.2. The block diagram for the IPEG algorithm is presdralso for ease of com-
parison. The block diagrams of the PEG and DOPEG algorithrigy. 3.1 of Section
3.4 may also be useful for comparison between DOPEG and DO @&ensions of
PEG and IPEG algorithms respectively. The pseudocode édd@IPEG algorithm is
provided in Table 3.2
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Figure 3.2: Block Diagram of IPEG and DOIPEG
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Table 3.2: Pseudocode for the DOIPEG Algorithm

Forj=1ton
For k = 1to Ds(5)
If £ ==

place edge between current M\ and CNc; such that; € (the set of CNs with minimum weight
under the current graph setting).
Else
expand tree to depthunder current setting s.t. either:
(1) the cardinality oﬂ\f,f}j stops increasing but is less than m
@) N #0 but NS =0
In the case of (1), place edge between currentdyldnd CNg; S.t.¢; € Nf,j with lowest CN
degree. If a number of CN candidates meet this requirement, choosé ramelem.
In the case of (2), the candidate CN set is nNTg\]/
If the cardinaltiy ofV}, ==
the check nodéV} is connected te;
Else
For each CNc, € N,
calculateACE,, = ) (w,, — 2) where the summation is taken over all ViNsin the cycle

Up
created placement of edge connectipgo v;.
End For
then the se®,, is the set of CNsg,,, s.t. ACE,,, > ACE,, forallc, € J\Tl}]
If the cardinaltiy of®,, == 1
the check nod@,, is connected ta;
Else
For p = 1to length@®,,)
[1] Form matrixHest Which is the constructed matrix under the current graph setting up
to columnu;, the current column of interest, with a 1 in the positidn [(p),v;].
[2] Use Hiest to encode, decode over SNR range with SISO SPA decoder.
[3] Compute metric, described below, from the soft-output vectors of Bfed&coder.
End For
End If
End If
End If
End For
End For
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3.6 Simulation Results

The simulation results consist of plots of BER vs signal-tisa ratio (SNR) for codes
generated by the PEG and DOPEG algorithms. In each cases obtlee same length

have identical degree sequencBs, based on the variable node degree distribution

Ai(z) = .30013z + 2839527 + 4159227 (3.3)

The degree sequence was altered such that the number ofts2eighiable nodes
is less than the number of check nodes. For PEG-based algstithis ensures that
no cycles occur among only weight-2 variable nodes. Thebéinode degree distri-
bution of (3.3) is density evolution optimised and was pnésé in [4] [Table I]. The
codes are rate 1/2. For each plot, additional informatiogiven below, in particu-
lar this specifies the parameters of SNR range, SPA decodemmua iterations and
number of message vectors generated, for which the Decqaéni®ation step was
performed in the DOPEG algorithm.

For each of the plots in this section, BPSK modulation was uséte simulation,
the transmitted symbols were subjected to AWGN and the SPaddzavas used in the
receiver. In simulating the coding system, for length- 250 codes the SPA decoder
was operated to a maximum of 40 iterations and 100 block €ke@re gathered for
each point in the BER curves. Far= 500 codes the SPA decoder was operated to a

maximum of 10 iterations and 100 block errors were gatheveddch point.
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Figure 3.3:Comparison of Performance of DOPEG and PEG generated codesdt len
n = 250

In Fig. 3.3 above, the BER curves of the PEG algorithm and theBG@algorithm
constructed codes are compared. For the DOPEG, the decpil®isation was car-
ried out over the SNR range [1:0.05:2], with 5 instances afsage vectors generated

and the SPA decoder was operated to the maximum number ofcodeleiterations.

46



- | —=—DOPEG
‘ . ‘ | ——PEG
o ‘ : ‘ ‘
L

m .
v ]
e
1 1 1 1 1 1 1 ]
0.5 1 15 2 2.5 3 35 4

SNR (dB)

Figure 3.4:Comparison of Performance of DOPEG and PEG generated codesdtn len
n = 500

The results above were found for the DOPEG generated codiebhatk length
500, rate% and variable node degree distribution described by EqnyvBtBmaximum
variable node degree 8. The parity-check matrix for the DGREde was generated
for the decoder optimisation procedure operating over thR $ange [1:0.05:3] and
with 60 instances of message vectors generated for eaclidesm@heck node. The

decoder in the DO stage was operated at 50 decoder iterations
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Figure 3.5:BER vs SNR lengtm = 500 DOPEG and IPEG constructed LDPC codes

In Fig. 3.5 above, the performance of the lengtk 500 rate 1/2 irregular DOPEG
constructed code with maximum variable node degree digioib 8 is compared to
that of the IPEG constructed code with identical length aegrele distribution. The
decoder optimisation step was carried out for the SNR rafdg®(d5:3] and 60 in-
stances of message vectors where generated for each dan@idaThe decoder in

the DO stage was operated at 50 iterations.
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3.6.2 DOIPEG

—©— DOIPEG

—x— |IPEG

—v— PEG
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Figure 3.6:Comparison of Performance of DOIPEG, IPEG and PEG generated tade
lengthn = 250

The results above were found for the DOIPEG generated cottteblack length
250, rate; and variable node degree distribution from [4] Table | witlximum
variable node degree distribution 8. The parity-check matas generated by the
DOIPEG with the decoder optimisation step operating overSNR range [1:0.05:2]
and with 5 instances of message vectors generated for eadluate check node.

The gain exhibited by the DOIPEG over the IPEG is less dranthtin that of
the DOPEG over the PEG codes of Fig. 3.3. This is due to thetfiattmuch of
the benefit of the DOPEG over the PEG is shared with the IPEGt iSha candidate

edge which is optimal in terms of the ACE metric, and thereisrehosen by the
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IPEG algorithm is more likely to result is better performanmder SPA decoding in
the decoder optimisation (DO) step and vice versa. Howegegraph connectivity as
measured by the ACE metric (itself an approximation to the EM®node) alone does
not wholly dictate performance of an LDPC code in the AWGN ctediimprovement

upon the IPEG code is possible, given a large enough set afagewyectors in the DO
step. This is the reason for the large number of messagersacted in this example

compared to that of Fig. 3.3.

3.7 Chapter Conclusions

In this chapter, the proposed algorithm for LDPC parityathenatrix construction,
which forms the core of the contributions made in this thesess described and its
performance was analysed. The approach taken was desurithethil and a block di-
agram was included which provides an overview of the stdgnthy the construction
method and which details how it differs from the original P&IGorithm. Pseudocode
was also provided to give a more detailed view of the algorith

The DOIPEG extension of the DOPEG algorithm was then presgenthis exten-
sion is analogous to the IPEG extension to the original PE@Grahm. LDPC codes
with optimum degree distribution as found by density evoluand constructed using
the IPEG algorithm are among the best performing codes milyravailable and so
improvement upon their performance is noteworthy.

In Section 3.6 the performance of the proposed codes wastigaged and com-
pared to the performance of the PEG and IPEG generated cédediscussed, the
performance results achieved are particularly significaveen that all extra effort in
terms of computation is exacted at the design stage andgiwansmission the gener-
ated codes are equivalent to PEG and IPEG generated codesoidiieg and decoding

complexity.
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Chapter 4

Iterative Detection and Decoding of
MIMO Systems with LDPC Codes

In this chapter we review MIMO systems. Following a genenaddaduction, a num-
ber of detection algorithms are described. An LDPC codewtiteely detected and
decoded spatially multiplexed MIMO system is then reviewed a soft-in soft-out
(SISO) detector for use in this system is detailed.

Through simulation results, the operation and performahtas system is shown.
Then the DOPEG developed in Chapter 3 is applied to the systdriisaperformance
is compared to that of the turbo (iterative) detected anadded MIMO system with
PEG coding.

4.1 An Introduction to MIMO Systems

A multiple-input multiple-output (MIMO) system, as shownkig. 4.1, hasV, trans-
mit antennas anaV, receive antennas [26][27]. We are interested here in aapati
multiplexing configuration, where independent signalsteaasmitted from each of
the N, transmit antennas leading to a multiplexing gainNgfover the single-input

sinlge-output system [26]. Transmission in the systemes itlescribed by the equa-
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tion

r = Hs + n, (4.1)

wheresis the (L x N;) vector of information symbols to be transmitted arid the
(1 x N,) vector of received symbols. Theé & N,) vectorn is the noise vector is,
for the case of a flat fading channel, th€.(x N;) matrix which describes the paths

between each transmit and receive antenna, as shown below

hll h12 e h’th
h h oo han,

H: .21 .22 . .2N (42)
thl hNTZ te hNTNt

whereh;; is the complex zero-mean Gaussian channel-fading coeffiie the
path from thgth transmit antenna to théh receive antenna. Then the signal received

at theith receive antenna is described by the equation

Ny
r, = Z hiij +n; (43)
j=1

Y e Y
j§1

Figure 4.1: Block Diagram of a General MIMO System
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4.2 Detection Algorithms for MIMO Systems

In a spatial multiplexing system, the data stream to be ingttesd is demultiplexed,
modulated and transmitted ova¥ transmit antennas in parallel [26]. The signals are
transmitted in the same frequency band and so at each reaai®ena the superpo-
sition of all transmit signals, degraded according to thé fieom each transmit to
receive antenna, is received. Thesereceive signals are subject to AWGN at each
receive antenna also. The challenge of MIMO detection igpasate out and recover
each signal which was transmitted, mitigating the effette@co-channel interference
and noise.

The optimum maximum likelihood (ML) receiver accomplistieis by exhaustive
search over all possible transmitted signals [27]. Howékiris in general far too
complex an approach for practical use [28]. Consequentletavemplexity detec-
tion schemes have been developed which result in some sagnfperformance with
respect to ML detection. An so the goal, ultimately, is to faxdacceptable tradeoff

between computational complexity and performance.

4.2.1 Maximum Likelihood Detection

The optimum receiver for a MIMO system uses the Maximum likebd Detector
(MLD) which performs an exhaustive search over all posdit@iasmitted symbols in

order to minimise the probability of error. The MLD solves

§ = arg min||r — Hs||? (4.4)

wheres is the estimated symbol vector. The complexity of the MLDvgg@xpo-
nentially with the number of transmit antennas and the nurabpoints in the signal
constellation, and as such is too complex for practical emq@ntation. However, algo-
rithms have been developed which approach the performdmice MLD with reduced

complexity, one such detector is called the Sphere Dec@$330]. The Sphere De-
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coder provides a tradeoff between complexity and perfooaanith both being highly
sensitive to the choice of the sphere radius. The Sphered@ecoattractive for small
systems, however, its complexity scales in an exponerdgiah fwith the number of

data streams [31].

4.2.2 Linear Minimum Mean-Squared Error Detection

The linear minimun mean square error (MMSE) detector mis@wsithe overall error
due to the combined factors of noise and mutual interferef@®-channel signals.

This is achieved by minimising the mean square error

MSE = E [[|ls — W"r|]?] (4.5)

Practically, linear MMSE detection is achieved by multiply the received vector
r by the complex conjugate of th€,. x N; weighting matriXW to find the estimate of

the transmitted vector as

§=Wlr (4.6)
where the weighting matri¥V is
1 —1
_ H H
W = (—SNRIN" +HH ) H 4.7)

and the superscript H denotes the complex conjugate traasptie computational
complexity of the MMSE detector grows as a cubic function\pffor the matrix in-
version required in Egn. 4.7 and as a functiod\pftimes NV, for the filtering operation
in Egqn. 4.6.

4.2.3 V-BLAST Detection

The Vertical Bell Labs Layered Space Time (V-BLAST) detectmpéoys successive

interference cancellation (SIC) to yield improved perfonteat the cost of increased
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complexity over the linear detector [9][32]. This detentagorithm operates in an it-
erative fashion, first detecting the strongest substreatmeofeceived signals and then
proceeding to the weaker substreams, which are then eadiletect as the stronger
signals are subtracted and no longer provide a source oféréace. The V-BLAST
algorithm carries out nulling, slicing and cancellatioaps according to a chosen or-
dering. In the literature [32] it has been reported that ateong which starts with
the strongest signal and proceeds to the weakest signatipsothe best performance.
The algorithm may be summarised as follows:

Given the initial received vector

ri =Hs+n (4.8)

Step I Use the vectomw,,, the nulling vector to produce an estimate of the

strongest transmitted signal by nulling out the weakergmaihsignals

Yk, = WEI ry (4.9)

Step 2 Slice this transmit signal estimate according to the appate operation

for the constellation used in order to produce an estimatikeo§ymbol transmitted

§k1 = Q(ykl) (410)

Step 3 This estimate of the symbol transmitted is applied to thenckel in order
to estimate its contribution to the received vector. Thishisn cancelled from the
received vector, thus removing the interference providethis transmit substream.

This is carried out as

o =TI1 — (H)klgkl (411)

where(H)y, is thek;-th column ofH.
These steps are repeated in an iterative fashion until efitie dv; transmit sub-

streams have been detected. The specifics of the nullingtsi#gas the criterion for
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choosing the nulling vectons,; provides some flexibility. The most common choices
for this criterion are MMSE and zero forcing (ZF) [26]. An emple of MMSE-SIC

detection may be found in [33].

4.2.4 Other Detectors

A number of other detection schemes exist which attempt dwige acceptable ap-
proximations to the optimal performance offered by the mmn likelihood detector

while offering more practical levels of complexity.

Decision Feedback

The MMSE decision feedback equiliser was originally depelbfor the single-input
single-output system to tackle inter-symbol interfere(i&t) by using previously de-
tected symbols to cancel their interference contributmithe received signal at the
current time. This approach was applied to the case of a MIy&desn and combined

with successive interference cancellation [34][35]

Parallel Interference Cancellation

In parallel interference cancellation detection, aftétiahconventional detection the
individual streams are detected in parallel. For each strafanterest, the interfering
signals due to all other streams are reconstructed usinghiuenel matrix and sub-
tracted from the received signal. [36]. This has also beenbawed with decision

feedback [37].

Lattice Reduction Aided Techniques

In contrast to the previous schemes which employ technitgueogressively improve
the detected symbol and which result in high complexity wbempared to LMMSE
detection, the approach taken in lattice reduction is téoper a single computation-

ally costly operation at the start of a frame, followed by gienlow-complexity de-
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tection. This detection may be, for example, linear MMSE & 8etection. This is
accomplished by transforming the system model into an edgrv with a better con-
ditioned channel matrix, then employing the lower-comjtlegetector. This results
in improved performance over a system using the same defadtwe presence of an

ill-conditioned channel matrix [38].

4.3 The Iterative Detection and Decoding Principle for

MIMO Systems

The Turbo Principle of decoding a serially concatenatedeéed bit stream by soft
inner and outer decoders exchanging iteratively updat&thsic information in order
to increase performance was first introduced by Berrou eB8l. [It may be applied
to the problem of detection and decoding of a MIMO system.hkawork by Wang

and Poor [28], the turbo principle was applied to the cas@déd CDMA. In [40] this

strategy is applied to a MIMO system with LDPC coding and a benof reduced
complexity detectors are presented. When the turbo prmdgpapplied to a MIMO

system the channel decoder, here the SPA decoder for dgcadihDPC code, is
viewed as the outer code, while the soft-input soft-out@ISQ©) MIMO detector is
viewed as the inner code.

The block diagram of the LDPC-coded iteratively detected déacbded MIMO
system is presented in Fig. 4.2. The information bits aré éincoded by the LDPC
encoder, as in Eqn. 2.1, then the encoded bits are intededeenultiplexed intaV,
bit streams, each stream is modulated using the appropniatiilation scheme and
then transmitted over its corresponding transmit antenna.

At the receiver, the signal is received at each of Mjereceive antennas. The
SISO detector, operating in an iterative fashion, exchamgktrinsic information with
the SISO SPA decoder and incorporating the informationidea/into the detection

scheme used in order to improve its performance. A numbegteiotion schemes exist
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which provide capacity-approaching performance with wayylegrees of complexity,
for example the optimal but complex MAP detector, the MMSE&ssive Interfer-
ence Cancellation (MMSE-SIC) detector and the MMSE Hard fetence Cancella-
tion (MMSE-SIC) detector.

info bits DEMUX
——» LDPC ENC » ] » and
MOD

L

z Al[bz’] Al[bk] >
-1
' — [] | LDPC DEC
soft-in A [by]

z‘ soft-out +

U MIMO N

* Det

? < 1] |=

| A2 [bs] A2 [b]

Figure 4.2: Iteratively Detected and Decoded MIMO System
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4.3.1 Iterative Detection and Decoding Procedure
First Half-Iteration

Based on the iterative (turbo) multiuser receiver structdird/ang and Poor [28], the
receiver structure used treats the signals transmitted frach transmit antenna as
separate users at the detection stage. It follows then fé&@jthat the soft-input soft-
output (SISO) detector computes thgosteriori log-likelihood ratio (LLR) of each
of the transmitted coded bits, giving a measure of the prdibhathat each bit was

transmitted as a “+1" or a “-1". That is

Aafb(i)] = logg EZS; - jig (4.12)
foreachi=1,--- ,n

Where n is the block length of the LDPC code.

By Bayes’ Rule, this is rewritten as

A 1o PO =41 Plb() = +1]
MP@]=log e o — 1y H o8 =1 (4.13)
where the first term is taken to be
1 1o 2T = +1)
Mlb()] = log e ——) (4.14)
and the second term is taken to be
b)) = log 2D = +1) (4.15)

Plbi) = —1]
The quantity);[b(¢)] is the extrinsic information which is to be passed to the ehan

nel decoder, here the SPA decoder, for use in the secondtéralfion of the turbo

detection/decoding procedure. The tekkfib(i)] is thea priori LLR of the coded bit

b(7), received from the channel decoder in the previous itarats is indicated by the
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p superscript. Thig priori LLR is subtracted from the posteriori LLR in order to
maintain independence of the messages passed. At thediegton, from the assump-
tion that the coded bits are equally likely to be “+1” and “th&a priori LLR is set to

Zero.

Second Half-Iteration

The extrinsic LLRA; [b(¢)] is deinterleaved before being fed into the SPA decoder as
a priori information. The SPA decoder operates precisely as in @eet2.3 in Fig.

2.3, iteratively operating on the graph structure of theectwdproduce the soft-output

a posteriori LLR of each coded bit:

p(b(k) = +1M[b()];=), H)

Mol =log 4 o) = 1)) 1) (4.16)
fork=1,--- ,n—1
Now
Ag[b(kz)] = /\Q[b(k)] + /\If[b(k‘)] (4.17)

Again, thea priori probability, nowA;[b(k)] from the first half-iteration, is sub-
tracted from thea posteriori LLR to produce the extrinsic informatiok, [b(k)]. This
will be interleaved and fed back into the SISO detector f@ inghe next iteration.

In Fig. 4.2 the structure of the turbo detector and receiwashown and the mes-
sages passed are indicated. As above the lower case latlerate extrinsic informa-

tion while the upper case indicates a posteriori infornmatio

4.3.2 SISO MMSE Successive Interference Cancellation (SIC)

Detector

The minimum mean square error successive interferencesltainan (MMSE-SIC)

detector for turbo detection and estimation was presentgZBj as a SISO multiuser
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detector for use in a coded CDMA (code division multiple asgasystem. The de-
tector here is presented for the case of a flat fading chamgesa intersymbol inter-
ference (I1SI) is not an issue. The challenge of detectiohigidcenario is to mitigate
the effects of interference between the antennas of thersysthis is the scenario
which was considered for the system analysed with LDPC c¢pitirthis thesis. A
more general approach is taken in [41] where a frequen®ctet channel model
is considered. As such both ISI and self-interference acewnered. The MMSE-
SIC detector is developed in the absence of self-interter@m[42], i.e., for a system
with a single transmit antenna, for a frequency selectivanaokl. Of particular inter-
est considering the system of interest here is the work bye\sgsal. [40] where the
frequency-nonselective channel is assumed and a numbetexdtdrs are developed
for use in an iterative (turbo) detected and decoded MIM@esysvith LDPC coding.
Using thea priori LLRs of all coded bits provided by the channel decoder asrextri
sic information, the MMSE detector forms soft symbol estiesaf the bits transmitted

from thepth transmit antenna as

b,(i) = tanh {)\2 [bg(m] (4.18)
forp=1,---, NV

These estimates are then assembled into a replarag used to perform soft inter-

ference cancellation of the interference between antennas

5—r—HS3 (4.19)

At this point, § is our estimate of the transmitted signal. However, as oftr so
symbol estimates are not completely accurate, interfereesiduals exist. In order
to mitigate their effect, adaptive filtering is carried oatsuppress the residuals. The
filter w,, is chosen to minimise the mean square error (MSE) betweenahsmitted

bit b,(7) and the filter output,(:). That is
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wp (i) = argmin E [[|b,(i) — wp! (4)5(i) ||] (4.20)

wp (4)
The result of this minimisation is shown to be [28]
wp(i) = [0Tn, + H A, H'] 'y, (4.21)

whereh,, is the p-th column oH and the matrixA, is the covariance matrix

A, = diag [(1 — b)) 0 (1 — ijt(z'))} (4.22)

Where the zero is in thgth position. Now the filter output is

2p(1) = WE § (4.23)

Approximating the soft filter output as a Gaussian process

(1) = pp(0)bp(2) + 13 (i) (4.24)

as in [28] the information to be delivered to the channel decean be found as

4 Re[zy(i)]

T w0 @29

A [bp(7)]

Note

Two particular modes of operation of the MMSE-SIC detecterraoteworthy

e No Cancellation: This occurs at the first iteration when noiimfation is avail-
able from the decoder. The MMSE-SIC filter in this case reduoghe form of
the linear MMSE filter of Eqn. 4.7 withkwv, rather tharw.

e Perfect Cancellation: the MMSE-SIC filter reduces to the form

1 -1
wp = (m + hghp> h,, (4.26)
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MMSE Hard Interference Cancellation Detector

Also presented in [40] is the MMSE hard interference caatieth (MMSE-HIC) de-
tector which sacrifices performance for lower complexityeré] after a prescribed
number of iterations to ensure reliability of the infornaatiavailable, a hard decision
is made about the value of the bits before the interferenceatiation operation is car-
ried out. This hard decision is made based on informatioiiala from the channel

decoder.
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4.4 Simulation Results

For the simulation results presented, BPSK modulation wasl®md. The trans-
mitted signals were subjected to flat Rayleigh fading in thenckel and corrupted by
AWGN with zero mean and varianeg. For each plot which follows, an accompany-
ing section of text provides information necessary in otdenake useful comparisons
of performance of the system under the prescribed settifgsse settings include de-
tector used and for the iterative detected and decodednsystdude the number of
outer (detector) iterations and inner (decoder) iteratmarried out and the LDPC code

used. Following this, an analysis of each result is made.

A Note on SNR Calculation for the MIMO System Model Used

The noise variance of the AWGN of Eqn. 4.1 is calculated adngrtb, for the un-
coded system

2

SNR = N, 22, (4.27)
Un

wherec? is signal variance per transmit antenna afids the vector noise variance.
For the coded system this becomes
o;

SNR = N,R.—=, (4.28)

2
On

whereR,. is the code rate.
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Figure 4.3:BER vs SNR comparison of different detectors for an uncoded 4x4®IM

system

In the plot in Fig. 4.3 the performance of a number of detector a 4x4 uncoded
spatially multiplexed MIMO system is shown. The detectassdiwere Sphere De-
coder (SD), minimum mean square error successive intaeidereancellation (MMSE-
SIC) and a linear MMSE detector. As expected from the theoeysihhere decoder
provides the best performance as it approximates the optimaimum likelihood

detector, while the linear MMSE detector provides the wpesformance.
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Figure 4.4:BER vs SNR comparison of different detectors for an uncoded 6x6 ™IM

system

Fig. 4.4 provides a similar comparison to that of Fig. 4.3fouthe case of a 6x6

uncoded spatially multiplexed MIMO system. As expected,résults are similar.
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Figure 4.5:Comparison of BER performance of coded turbo 8x8 MIMO system with PEG
codes of lengtm = 504 andn = 1024

The turbo (iterative) detector and decoder were operate® fiterations in the
outer loop and the channel decoder was operated for 50iaesat100 block errors
were accumulated per point of the plot. As is expected, asetigth of the LDPC
code used is increased performance increases. The codkanesBEG constructed
and as such, the minimum distance of the code grows lineathyrmumber of checks
and code performance is highly dependent on the minimurartistof the code. The

precise bound on minimum distance for PEG codes may be fouftd.i
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Figure 4.6:BER vs SNR for lengthn = 1024 irregular LDPC code operating over an 8x8

MIMO system showing the improvement in performance as iterations proceed

For Fig. 4.6 the turbo detector was operated for the samenadeas as for the
previous Fig. 4.5. This plot demonstrates the performamgavements as the joint
detector and decoder move through the outer loop iteratidssecpected, the per-

formance improvement gained per extra iteration dimirssh® the iteration number

increases.
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Iteration Number

Figure 4.7:BER vs iteration number comparison of DOPEG and PEG generated cades fo

lengthn = 248 operating over an 8x8 MIMO system at Eb/NO of -3dB

The DOPEG generated code which was tested here for compavio the PEG
constructed code was optimised over the rajige 0.05 : 3] with 30 instances of
message vectors transmitted. The decoder was operatedaximom of 50 iterations
in the optimisation stage of the DOPEG algorithm. This pletndnstrates that the
benefits afforded by the DOPEG code when compared to the PE&are consistent

as the outer (detector) iteration number increases.
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Figure 4.8:BER vs SNR lengtn = 498 DOPEG and PEG codes operating over an 6x6
MIMO system

Fig. 4.8 provides the BER curve for both PEG and DOPEG codedt8xa&ively
detected and decoded MIMO systems. The outer (detectgr)i@s run for 5 itera-
tions while the inner loop (SPA decoder) was run to a maxim@itOaterations. As
expected, some performance improvement is seen at therldgeof the SNR range
examined. The gain is not as impressive as that seen in tplesiput single-output
(SISO) system with AWGN as seen in Fig. 3.3. It is possible ¢naater gain would
be seen in the error floor region of the BER curve for this system

The degradation in performance gain may be explained byattidtiat the decoder
optimisation of the code tested was carried out for the AWGHENck!l. Alteration
of the DO operation for the flat Rayleigh fading channel modsddumay result in
gains comparable to those seen for the SISO system and thviglps a possible line

of further investigation.
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4.5 Chapter Conclusions

In this chapter, following the introduction of the systemdabfor a spatially multi-
plexed MIMO system and a discussion of a number of differetéction methods,
an iteratively detected and decoded system with LDPC codiaig described. This
system was used to test the performance of the novel codenteesin the Chapter
3. A number of other configurations of the system were alsonéxad to provide a
point of reference when examining the results. These imdugh uncoded spatially
multiplexed MIMO system with a number of different sub-opail detectors and the
iterative (turbo) system on which the novel code is testeti WREG-LDPC codes of
differing block lengths.

The simulation results, both BER against SNR and BER aga#rsttibon number
plots, demonstrate that the novel codes of Chapter 3 prowed®enmance improve-

ments in the coded MIMO system under investigation.
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Chapter 5

Conclusions

In this thesis a novel irregular LDPC code construction roétivas presented. This
code was developed based on a number of key concepts in the@k®PC codes
and codes based on graphs in general. The goal in compl&ismghesis was to de-
velop a clear understanding of the current state of the dtDiRC codes and to use
this knowledge gained to design a novel LDPC code. The aimtavdsvelop a con-
struction method which can produce codes of practical blecgth with performance
as close as possible to that of the ideal infinite block leragitie which exhibits a
cycle-free decoding neighbourhood.

Among the best-performing codes currently available ansetconstructed by the
PEG algorithm or its modifications. From an in-depth analg$ithis algorithm, scope
for a possible contribution was identified. The PEG edgeetaant algorithm effec-
tively identifies the set of check nodes which will resulthie treation of the cycle with
greatest possible length when an edge is placed. The mauifisg6][7] are based
on finding a metric or metrics by which to compare the sungwiandidates and then
determining what order to apply these metrics in the pruwihthe candidate check
node set in order to find the survivor which will provide thesbeode performance.

A metric was developed which involved testing the operatibiine code under the

current graph setting with each candidate node in placedenifying the node which
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provided the best performance. This metric was applieded?BG algorithm and a
significant improvement in performance was observed intghiock length codes.
At longer lengths, the rewards in terms of performance imgnaents, while still ob-
served, are not quite as good for the parameters of the De&yutemisation (DO)
procedure tested. However, as the gains observed are fouine error floor region of
the BER curve, it is likely that further time intensive simiidas would reveal greater
gains at lower BERs. A possible source of further improvemewm¢s the base code
construction method is to increase the number of instance®ssage and noise vec-
tors generated for each candidate CN when performing the @@atpn. This would
increase the likelihood that the chosen CN is the one whichighes the best overall
performance. This also increases the complexity of thetoarton method.

The DO modification was then applied to the IPEG algorithme TPEG applies
an extra pruning stage to the check node candidates of tgmalriPEG in order to
improve performance in the error floor area. The performamg@ovements seen
from the DOIPEG over the IPEG were not as great as those aabseriven comparing
DOPEG and PEG constructed codes. This is not unexpectedchasli@ate check node
which is optimal according to the ACE metric is, naturally,nmbkely to produce bet-
ter performance under SPA decoding and likewise the catedidizh the highest DO
metric is likely to have a high degree of connectivity to tlestrof the graph. This
large degree of graph connectivity explains why less of goravement is noted in
comparing DOIPEG and IPEG. In fact it can be seen that the B®&ftl IPEG algo-
rithms produce codes with a similar level of improvementrakiese constructed by the
PEG. This provided motivation to apply the DO operation ®PEG extension to the
algorithm. Itis then seen that the resulting DOIPEG cormsiton method provides im-
provement in performance over the IPEG algorithm. This is@eouraging result, as
the IPEG construction method is among the best currentlyadnka for LDPC codes.
Additionally, as was noted for the DOPEG case, a higher véisol of SNR points for
Decoder Optimisation at a fixed SNR range is likely to prodgieater performance

improvements. Again, with extra effort at the design stégermodified algorithm can

73



produce worthwhile performance improvements at no extsa @bcomplexity during
transmission and decoding.

Finally, we have considered the application of the prop@@&EG designed code
to MIMO systems. A spatially multiplexed MIMO system was oxiewed and the
iterative (turbo) detection scheme for joint detection dadoding was described. This
system has been designed with minimum mean square errogssive interference
cancellation (MMSE-SIC) detection and LDPC channel codind was tested for a
number of different LDPC codes. The novel irregular DOPE@ecwas tested and

some improvement in performance was noted.
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