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Abstract

Error control coding is an essential part of modern communications systems. LDPC codes

have been demonstrated to offer performance near the fundamental limits of channels

corrupted by random noise. Optimal maximum likelihood decoding of LDPC codes is too

complex to be practically useful even at short block lengthsand so a graph-based message

passing decoder known as the belief propagation algorithm is used instead. In fact, on

graphs without closed paths known as cycles the iterative message passing decoding is

known to be optimal and may converge in a single iteration, although identifying the

message update schedule which allows single-iteration convergence is not trivial. At finite

block lengths graphs without cycles have poor minimum distance properties and perform

poorly even under optimal decoding. LDPC codes with large block length have been

demonstrated to offer performance close to that predicted for codes of infinite length, as

the cycles present in the graph are quite long. In this thesis, LDPC codes of shorter length

are considered as they offer advantages in terms of latency and complexity, at the cost

of performance degradation from the increased number of short cycles in the graph. For

these shorter LDPC codes, the problems considered are:

First, improved construction of structured and unstructured LDPC code graphs of short

length with a view to reducing the harmful effects of the cycles on error rate performance,

based on knowledge of the decoding process. Structured codegraphs are particularly

interesting as they allow benefits in encoding and decoding complexity and speed. Sec-

ondly, the design and construction of LDPC codes for the block fading channel, a par-

ticularly challenging scenario from the point of view of error control code design. Both

established and novel classes of codes for the channel are considered. Finally the de-

coding of LDPC codes by the belief propagation algorithm is considered, in particular

the scheduling of messages passed in the iterative decoder.A knowledge-aided approach

is developed based on message reliabilities and residuals to allow fast convergence and

significant improvements in error rate performance.
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Introduction
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1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Overview

Error control coding has developed from the seminal work of Claude Shannon [1] to

become an integral element of practical communications systems. Relatively recent ad-

vances, in particular the application of the Turbo principle [2] to the decoding of Turbo

codes [3] and LDPC codes [4], have allowed performance whichapproaches the funda-

mental limits of channel capacity derived by Shannon. The work in this thesis investigates

Low-density Parity-check (LDPC) codes, first introduced in the work of Gallager [4] [5]

and rediscovered by MacKay and Neal [6], with some importantwork carried out in the

intervening years [7]. Upon rediscovery, there has been much interest in these codes ow-

ing to the advances in computational capacity which make them practically viable. In

particular, this thesis proposes and studies LDPC code construction and decoding strate-

gies for short code block lengths.
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CHAPTER 1. INTRODUCTION 2

Early work on LDPC codes involved generalisations to cases with irregular parame-

ters [8] and explorations of asymptotic performance [9] [10]. Of great importance is the

work of Tanner [7] which provides a graphical representation of the LDPC code. The

graphical interpretation of the code allows the application of a broad class of message-

passing algorithms which have been independently discovered a number of times, allow-

ing the decoding problem to be framed as the computation of marginals in a distributed in-

ference problem and allowing the development of a set of rules to distribute the processing

to be carried out locally at the nodes of the graph which represents the code [11] [12] [13].

More recent developments in the literature have seen LDPC codes adopted in a number

of standards, including WiMAX [14], DVB-S2 [15], and satellite communications [16].

In [17], bounds on code parameters at finite block lengths arederived. In practical use,

LDPC codes are subject to the interrelated issues of complexity of the encoding process,

delay incurred in the decoding process and performance awayfrom the the Shannon limit

at shorter block lengths. Shorter block lengths may reduce the complexity of both encod-

ing and decoding processing and reduce latency incurred by the block-wise processing

of the bit stream by the decoder, but the performance of the LDPC codes under iterative

decoding suffers at shorter lengths, both in terms of achievable error rates and the time

taken for the decoder to converge. These issues detract fromthe practical usefulness of

LDPC codes, and form the motivation for the work on short-length LDPC codes presented

in this work.

1.2 Motivation

Early work on LDPC codes focused on establishing bounds on performance and on the

derivation of optimal parameters under asymptotic assumptions [9] [10]. However, there

are a number of problems with using LDPC codes in demanding high throughput, low

power consumption and low complexity scenarios. Firstly, while the graph-based itera-

tive decoding developed for LDPC codes provides low complexity decoding, encoding is

in the general case quite costly in terms of complexity when the dimensions of the code are

large [18]. Certain advantages may be achieved through the use of further constraints on

the structure of the code graph, in addition to those basic constraints inherent to the gen-

eral code class. These constraints lead to a number of specific code classes which allow,
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CHAPTER 1. INTRODUCTION 3

among other advantages, reduced complexity encoding and improved performance un-

der certain difficult transmission conditions while also introducing new challenges to the

code design and construction [19] [20] [21] [22] [23]. Theseadvantages and challenges

motivate an investigation of structured LDPC codes. Despite the benefits offered by the

structured LDPC codes classes, demanding complexity and throughput requirements of

modern communications systems often limit the practicallyallowable dimensions of the

code. This leads then to another issue found in implementingLDPC codes, that while the

codes of large block length provide performance close to that predicted under asymptotic

analysis, at shorter lengths there is significant degradation in performance. As will be

discussed, certain assumptions made concerning the graph no longer hold at these more

practical block lengths [10]. Another issue which affects performance and which may

make these codes less useful in practical scenarios is the relatively slow convergence of

the iterative decoding algorithms, incurring an unacceptable level of delay in the system

as a result of the high required number of iterations in the decoder.

These issues motivate the investigation of the performanceof LDPC codes under iter-

ative decoding at short to medium block lengths, with a focuson the effects that particular

realisations of the code graph at non-asymptotic dimensions have on the iterative decod-

ing process and on how this knowledge may be exploited in codeconstruction and in the

iterative decoding in order to improve performance at thesepractical code dimensions.

1.3 Contributions

The contributions presented in this thesis are summarised as follows:

• As briefly mentioned previously, the imposition of particular structural constraints

on the graph of the LDPC code allows numerous benefits. However, these con-

straints present new challenges in code construction in particular, where certain

established approaches lack the required flexibility or fail to achieve the desired

performance. The first contribution presented in this work applies to the problem

of graph construction for structured LDPC codes a method, developed by the au-

thor, for improving code graph construction by the use of theiterative decoder in the
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construction phase to test the effect certain graph settings have on the overall perfor-

mance of the code realisation. This method, known as decoderoptimisation (DO)

was seen to provide performance improvements for unstructured LDPC codes in the

critical low error rate region at no extra cost to the complexity of operation during

transmission [24]. The first contribution outlined in this document concerns the ap-

plication of this method to the useful code class of Quasi-cyclic LDPC (QC-LDPC)

codes, with a performance improvement of approximately 0.3dB observed for the

code constructed with the proposed method compared to the code constructed by

the standard QC-PEG algorithm.

• The block fading channel presents unique challenges from the channel coding point

of view, with the classic approach of large random LDPC code failing to provide

performance approaching the theoretical limit of the channel [25] [26] [27]. A

number of constrained LDPC code classes have been presentedin the literature in

order to mitigate the effects of the channel through connections in the graph be-

tween nodes affected by different fading coefficients. The construction of these

codes provides a particular challenge, towards which a number of contributions are

presented in the body of this work. In the first contribution in this area, an improved

construction technique for the Root-LDPC class of codes [23]which achieve the di-

versity of the channel is presented, providing a significantcoding gain over the prior

methods, with improvements of up to0.7dB observed. This technique is further ap-

plied to the construction of constrained Root-LDPC codes classes. In the second

contribution on the topic of coding for the block fading channel, the unstructured

LDPC codes for achieving the diversity of the block fading channel are considered.

These codes, presented for the special case of the channel with two independent

fadings, are then extended to the general case of codes with reduced structure with

respect to the Root-LDPC codes.

• In order to further improve the error rate performance of short block length codes,

novel candidate selection metric in code graph construction is developed based on

knowledge of harmful structures present in the graph of the code, which lead to a

loss of independence of message passed in the iterative decoding algorithm and thus

to performance degradation. In contrast to the previously discussed decoder-based

approach which required a large number of tests in order to indirectly generate a

meaningful metric for use in the graph construction, this method produces a metric
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directly based on the observed settings of the code graph. This metric allows for

the avoidance of the performance-degrading graph structures and a further improve-

ment in the low error rate region of operation of the code.

• The final contribution presented in this work concerns the iterative sum product

decoding of LDPC codes. As previously stated, the decoding rules for this algo-

rithm define the message updates applied to decoding based onthe connections of

the code graph, but do not specify the order in which these updates are made. The

standard schedule of updates involves, in each iteration ofthe algorithm, operating

on all nodes of one type in the bipartite graph of the code and then in a separate

phase of the iteration operating on the other type of nodes. This simple approach

however fails to propagate the most up-to-date messages through the graph. Re-

cent developments, termed informed dynamic scheduling (IDS) have demonstrated

great improvements in convergence of the decoder by using the current state of the

messages in the graph to select the next message to be updated[28] [29]. The work

presented on this topic allows for a significant reduction inthe complexity of the

dynamic scheduling by exploiting knowledge of the message passing update rules,

in order to provide similar performance at a much lower cost,and in some key sce-

narios also provides an improvement in the performance of the decoder, both in

terms of the error rate observed and the speed of convergenceof the decoder.

1.4 Thesis Outline

The rest of this thesis is organised as follows:

• In Chapter 2, a review of the literature is provided, coveringthe fundamentals of

LDPC codes and a number of key concepts which will be used throughout this the-

sis. The general coding system including channel models considered are introduced

and the specifics of LDPC codes including the properties of the code graph and its

use in decoding and graph construction are also introduced.Also considered here

are the code classes considered and the methods used to derive the code parameters.

• Chapter 3 presents work on the decoder-optimised construction method for the
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structured LDPC code classes, QC-LDPC codes and irregular repeat accumulate

(IRA) codes. In addition, the structured LDPC code classes capable of providing

performance approaching the theoretical limit of the blockfading channel are con-

sidered, and improved construction methods and novel code classes are developed

and demonstrated to provide performance approaching that limit. It should be noted

that the work presented in Chapter 3 on coding for the block fading channel was

developed through collaboration with A.G.D Uchoa. Specifically, the code con-

structions for Root-LDPC graphs were developed with the expertise of the author

on graph construction methods combining with the knowledgeof A.G.D Uchoa on

the specifics of the channel and the challenges involved. Thus, the work presented

on construction of Root-LDPC graphs constitutes the contribution of the author in

the collaborative effort.

• Chapter 4 presents the graph construction method for producing short to medium

block length code graphs with improved low error rate performance based on

knowledge and avoidance of harmful structures in the final graph of the code. The

performance of the proposed construction method is compared to that of the state

of the art, and is then extended to the construction of a number of the code classes

considered in Chapter 3.

• In Chapter 5, the improved reduced-complexity reliability-based scheduling

scheme based on the IDS approach for the SPA is presented. It is demonstrated

to provide performance improvements for both regular and irregular LDPC codes.

In addition, the scheduling scheme is extended to the beliefpropagation based Min

Sum approximation to the SPA in order to provide a lower complexity alternative.

• Chapter 6 summarises the contributions of the thesis, provides conclusions for each

of the topics considered and discusses related open problems with the potential for

future work.
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2.1 Introduction

This chapter provides an introduction to the key topics considered in this thesis, first pre-

senting the fundamentals of channel coding and of LDPC codesin particular, and then

providing a solid basis upon which to understand the following material. Code parameter

optimisation and code graph construction are discussed, with some of the key approaches

of each introduced. The effect of harmful structures in the code graph at short to medium

block lengths is discussed, and some of the graph construction approaches from the liter-

ature for improving performance at these lengths are described. This forms the basis for

the work on structured and unstructured LDPC graph construction proposed in Chapters

3 and 4.
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CHAPTER 2. LITERATURE REVIEW 8

The decoding of LDPC codes by iterative techniques is then considered. The belief

propagation algorithm is described in detail, along with some lower complexity and im-

proved performance variants of the algorithm. These descriptions provide the basis for

the contributions presented in Chapter 5, on scheduling for improved convergence and

performance of the iterative BP-based decoding.

2.2 Channel Coding

The goal of channel coding is to improve the reliability withwhich information may be

conveyed over a noisy medium, such as a wireless communications channel or an imper-

fect data storage system [30]. This is achieved through the introduction of redundancy,

derived from the information to be conveyed, prior to transmission over the noisy chan-

nel. At the receiver, this redundant portion of the transmitted message may be exploited

in combination with the original information message in order to correct the errors which

may have been introduced to the information message by the channel. An extra benefit of

certain error correcting codes is error detection, wherebyan error correction failure event

is detectable.

2.2.1 System Overview

G

Encoder
Channel

Decoder

H

m c r ĉ

Figure 2.1: A general LDPC coding system

Error control coding comprises the complimentary operations of encoding and de-

coding, where encoding is the process by which the code word is produced from the

information message. Encoding is performed prior to transmission over a channel which

introduces some form of random corruption to the transmitted wordc, where the precise

corruption is unknown at the receiver. The receiver may however have some degree of

knowledge of the channel conditions [30]. In Fig. 2.1 above,the corrupted version ofc

which is provided by the channel to the receiver isr. At the decoder the received wordr

is known, along with, in certain cases, the full knowledge ofthe error control code used

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 2. LITERATURE REVIEW 9

to encode the information messagem to producec. With this information, along with the

knowledge of the channel conditions, the objective of the decoder is to produce a good

estimate ofc, denoted̂c.

A number of useful channel models exist which reflect certainreal-world scenarios

and allow for evaluation of the various error control codingapproaches. The models

considered in this work are the binary additive white Gaussian noise (AWGN) channel

[31], which is widely used in the literature and thus readilyallows for a fair comparison

with prior work and the novel approaches presented in this thesis, and the block fading

channel which models scenarios involving slowly varying fading [25] [26] [27].

For the AWGN channel, the receiver inputr is

r = x+ n, (2.1)

wherex is the lengthN vector of binary phase shift keying (BPSK) symbols derived

from the code wordc as

xi = (−1)ci , (2.2)

andn is the lengthN vector of noise samples, with each elementni ∈ N (0, σ2) , i =

1, · · · , N , i.e., the noise samples are zero mean Gaussian random variables with variance

σ2.

For the block fading channel, the received vectorr is made up of the samples

ri = γixi + ni, , i = 1, · · · , N, (2.3)

where again thexi are BPSK channel input symbols andni are the Gaussian noise

samples. The transmitted word is also subjected toF independent attenuations, described

by the fading coefficientγi:
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γi = α1, i = 1, · · · , N
F

,

γi = α2, i =
N

F
+ 1, · · · , 2N

F
,

...

γi = αF , i = N − N

F
+ 1, · · · , N . (2.4)

Throughout the work on the block fading channel in this thesis, coherent detection is

assumed and so the receiver perfectly accounts for the phaseshift introduced in the chan-

nel, resulting in real-valued fading coefficientsαj, j = 1, · · · , F which are independent

and identically Rayleigh distributed,aj ∈ R
+.

The block fading channel model introduced here relates to a scenario where the phys-

ical conditions offered to the communications system are that of flat fading channel, i.e.,

the coherence bandwidth of the channel is larger than the bandwidth of the signal, but

where the communications system has access to some limited diversity, which may be

found in the time, frequency or spatial dimension. The code word may then be partitioned

and transmitted such that the received word is not subjectedto a single fading coefficient

but rather that each of theF subsets of the received word are subject toF independent

fading coefficients [25] [26].

Another simple and useful channel model is the binary erasure channel (BEC), where

each of the multiplicativeγi terms of (2.3) take only the values0 or ∞, and the additive

noise terms are zero. That is, in the BEC either the transmitted symbol is received with

absolute certainty or no information about the original value of the symbol is received,

an event which is termed an erasure. An erasure occurs for a symbol on the BEC with

erasure probabilityp.
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2.3 LDPC Codes

In general, an error control coding scheme involves a mapping from some information or

message word to a code word of greater length, where there exists a one-to-one relation-

ship between each information word and its corresponding code word. This relationship

is necessary in order that the information word is recoverable from the code word [30].

Following convention, the length of the information word istaken asK while the length

of the code word isN . Thus, the encoding process introduces redundancy, with

M = N −K (2.5)

extra elements transmitted in each code word. Throughout this thesis, binary codes are

considered, meaning that each element of the message and code words are either0 or 1.

In addition, the coding schemes considered are, unless otherwise stated, assumed to be

systematic. For systematic schemes, the message word is contained within the code word

as in

c = [m p], (2.6)

wherem is the lengthK message vector input to the encoder andp is the lengthM

vector of redundant bits produced by the encoder, known as the parity part of the code

word.

An important parameter of the error control code is the code rate, generally denoted

R. This gives an indication of the amount of redundancy introduced by the code and is

defined as

R =
K

N
=

N −M

N
(2.7)

LDPC codes are linear block codes which are fully described by the matrix known as
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the parity-check matrix of the code [4]. For the binary case,the codeC with parameters

(N,K) is formally defined as the K-dimensional subspace of the vector space of all N-

tuples over the binary Galois field. For a linear block code, the parity-check matrix is the

binaryM × N matrixH such thatC is the nullspace ofH. The linear block code code

may equally be described by the binaryK × N generator matrixG, the matrix whose

rowspace equalsC. From these definitions, it is clear that for everyc ∈ C:

c = mG, (2.8)

and

cHT = 0, (2.9)

where both operations are carried out under modulo-2 arithmetic. LDPC codes are

linear block codes characterised by sparse parity-check matrices, i.e. there is a low den-

sity of non-zero elements in the parity-check matrixH of the LDPC code relative to the

number of zero entries [32].

2.3.1 Parity Check Equations

For the LDPC code, the mapping from message word to code word defined byG and

(2.8) may also be expressed by the parity-check equations ofthe code. The equations

form a set of constraints on the code words of the code and are defined by the rows of

H, constraining certain subsets of the code word bits to sum tozero under modulo-2

arithmetic. The equations of (2.10) specify an example linear block code. The derivation

of the parity-check matrixH for the check equations is described in Section 2.3.2 and the

exampleH is given in (2.11).
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c1 : v1 ⊕ v2 ⊕ v4 ⊕ v6 = 0,

c2 : v2 ⊕ v3 ⊕ v4 ⊕ v8 = 0,

c3 : v4 ⊕ v5 ⊕ v6 ⊕ v7 = 0,

c4 : v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v8 = 0,

c5 : v1 ⊕ v2 ⊕ v8 = 0.

(2.10)

The elementsvi referred to in (2.10) are the elements of the code word, i.e.vi ∈ c, i =

1, · · · , N [32]. The character⊕ is shorthand for addition under modulo-2 arithmetic.

2.3.2 Representations of the LDPC Code

Matrix Representation

As previously stated, the LDPC code may be specified by the setof parity-check equations

for the code, or equivalently by the parity-check matrixH. The parity-check matrix must

satisfy (2.9) for each of the2K code words in the code which in turn must satisfy the

parity-check equations. A parity-check matrix for the example parity-check equations of

(2.10) is presented below. Note that when a code word bitvj participates in a parity-check

equationci, there is a1 in the i-th row andj-th column,Hi,j = 1. If a code word bitvj

does not participate in a certain parity-check equationci then there is a0 in the (i, j)

position of the parity-check matrix,Hi,j = 0 [30].

H =





















1 1 0 1 0 1 0 0

0 1 1 1 0 0 0 1

0 0 0 1 1 1 1 0

1 0 1 0 1 0 1 1

1 1 0 0 0 0 0 1





















, (2.11)
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Note that the parity-check matrix of (2.11), correspondingto the parity check equations

of (2.10), serves as an example and is useful for the purposesof defining code properties,

but as it is not sparse it describes a linear block code but notan LDPC code.

Graphical Representation

The Tanner graph [7] is a powerful tool allowing the use of iterative techniques for the

decoding of LDPC codes. The graph allows the development andapplication of previ-

ously known graph-based message passing algorithms which formulate the decoding as

a distributed inference problem [33] [34]. There is a one-to-one relationship between the

Tanner graph and the parity-check matrix of the code.

A note on nomenclature: In the literature, when referring to LDPC codes, the term

code may refer to the ensemble of all code realisationsH which have the same set of

parameters (matrix dimensions, row and column weights) or in other sources may refer

to the individual instances ofH. The majority of this work will focus on short block

length codes, and as such the ensemble performance as predicted by the asymptotic code

evaluation tools such as EXIT functions [9] and density evolution [10], while an impor-

tant indicator of code performance at lower SNRs, will not be the primary focus of the

work. As will be discussed in greater detail in Section 2.3.3, at short block lengths the

performance of a graph randomly selected from the ensemble may deviate significantly

from the ensemble average. For the sake of simplicity, any discussion of the ensemble

will be clearly and explicitly stated as such, while in general the terms code and code

graph throughout this work will refer to the particular instance or realisation of the graph

under consideration.

The Tanner graph is a bipartite graph, with the node classes representing code bits in

one case and parity-checks in the other. The node representing the code bit is referred

to as the variable node, while that representing the parity-check is called the check node.

From our definition ofH, there areN variable nodes andM check nodes. Thej-th

variable node is connected to thei-th check node by an edge if and only if there is a1

in the position(i, j) in H or, equivalently, thej-th code word bit participates in thei-th

parity-check equation. By the convention of the literature,the variable nodes are drawn
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as circles and the check nodes as squares [30]. As the parity-check matrix of the binary

LDPC code contains only1 or 0 entries and no position may have more than one entry,

a single edge only may connect any two nodes of the graph. Also, from the structure of

H, an edge may only connect two nodes of different type, i.e. a variable node may only

connect to check nodes, and a check node may only connect to variable nodes [30] [32].

The graph of the example code defined in both (2.10) and (2.11)is presented below in

Fig. 2.2

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

Figure 2.2: An example Tanner graph

An introductory discussion of the use of the code graph in theiterative message passing

decoding strategies will be provided in Section 2.5 and somefurther definitions related to

the code graph will be provided in Section 2.3.4.

2.3.3 LDPC Code Parameters

The iterative decoding strategies used for the decoding of LDPC codes exploit the sparsity

of the graph, i.e., the fact that there are relatively few edges connecting the nodes of the

graph, or equivalently that there are relatively few1 entries and many0 entries inH.

The parameters of the code (ensemble and realisation both) which have already been

introduced are the dimensions ofH which also, providedH is full rank, define the code

rateR (any number of additional rows may be added toH, which are linear combinations

of theM linearly independent rows and which will not affect the effective code rate).

The additional parameters of the code dictate the sparsity of the graph by specifying the

number of edges emanating from the nodes of the graph. Clearly, the total number of

edges emanating from all variable nodes must equal the totalnumber of edges emanating
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from all check nodes. The number of edges emanating from a node is termed the weight

or degree of that node. For a variable nodevj, the weight is the number of1’s in thej-th

column ofH, for the check nodeci the weight is the number of1’s in the i-th row of

H [30].

For a regular LDPC code, all variable nodes have the same weight dv and all check

nodes have the same weightdc, anddc is related todv by

dc = (1−R)dv = (1− K

N
)dv (2.12)

For an irregular LDPC code, the weight of the variable nodes and check nodes are

allowed to vary. In this case, the variable node and check node weight distributions are

useful descriptors of the weights of the nodes. The variablenode distribution is defined

as

λ(x) =

dvmax
∑

j=1

λjx
j−1, (2.13)

and the check node distribution is

ρ(x) =

dcmax
∑

i=1

ρix
i−1, (2.14)

wheredvmax anddcmax are the maximum variable node and check node weights, re-

spectively. The coefficientλj is the fraction of all edges emanating from variable nodes

of weight j andρi is the fraction of all edges emanating from check nodes of weight i.

Together the edge degree distribution pair(λ(x), ρ(x)) along with the code dimensionsN

andM specify the irregular code ensemble [8].

It follows from the definitions ofλj andρi that
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∑

j

λj =
∑

i

ρi = 1, (2.15)

and that

R = 1−
∑

i ρi/i
∑

j λj/j
= 1−

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

(2.16)

The node weights for regular codes and the degree distribution pairs for irregular codes

have a very great impact on the performance of the code under iterative decoding. By

convention, selection of the code parameters for the code istermed code design, and will

be discussed in the following section, while code construction deals with the production

of a particular instance of the code graph through edge placement in the graph and will

be introduced in Section 2.4.

For the example code of (2.10), (2.11) and Fig. 2.2, the edge degree distribution pair

is

λ(x) =
2

5
x1 +

3

5
x2, (2.17)

ρ(x) =
3

20
x2 +

12

20
x3 +

5

20
x4. (2.18)

For the regular rate1
2

LDPC code withdv = 3 anddc = 6, commonly referred to as

the(3, 6) regular code, the edge degree distribution pair is

λ(x) = x2, (2.19)

ρ(x) = x5. (2.20)
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Parameter Selection

As will be more thoroughly discussed in Section 2.5, the message passing decoder for

LDPC codes involves framing the problem of finding the most likely code word transmit-

ted given the received word as the generation and passing of messages which represent

some measure of belief of the value of the code word bit with which the message is

associated. Two distinct message generation rules are applied, one for messages origi-

nating at the variable nodes and one for messages originating at the check nodes. Thus

the message passing processing is sometimes considered as message exchange between

two simple decoders, a variable node decoder and a check nodedecoder. It is important

that the message sent to a node along a particular edge is not based on the information

received from that node on that edge, as that would lead to an interdependence of beliefs

passed by the algorithm and would degrade performance. Thuscare is taken to ensure the

outward messages on each edge are (mostly) independent of the inward messages on that

edge and are so called extrinsic messages. The provision in the previous sentence arises

from the fact that every graph of finite length contains closed paths which result in the

development of dependence among the messages passed after some number of iterations.

This breakdown of independence provides many of the challenges considered throughout

this work and will be further discussed throughout.

EXIT Chart Analysis

An approach for analysing the performance of the LDPC code ensemble is the tracking

of changes of mutual information of the messages exchanged as the iterative decoder

proceeds. This approach is less costly in terms of complexity and allows for a more

intuitive understanding of the decoding process through the production of a graphical

representation of the extrinsic information transfer (EXIT) at the so-called constituent

decoders at the check and variable nodes, where the extrinsic information output of each

constituent decoder is set as the input of the other. EXIT analysis may be used to identify

the threshold SNR where a low BER may be obtained for the ensemble and thus may be

used to optimise this characteristic in code design. In addition, the use of the EXIT chart

allows for further optimisation of the ensemble by providing an indication of speed of

convergence of the ensemble under consideration [9] [35] [36].
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Density Evolution

Density evolution is an approach whereby the assumption is made that the messages

passed in the graph are entirely independent, corresponding to the asymptotic case of

a graph in which each node has a tree-like neighbourhood. In this case, the changes in

the probability density functions of the messages passed under iterative decoding may

be approximated for a given code ensemble. As a consequence,the threshold value of

channel noise, the noise level above which the decoder failsto converge and below which

convergence is guaranteed, may be identified for the ensemble under consideration. Code

design by use of density evolution involves tuning of the ensemble degree distributions to

achieve an improved threshold [10] [37]. The degree distributions used for the irregular

codes throughout this thesis are derived by density evolution and are presented in [10].

2.3.4 Properties of the Code and Code Graph

The weight of a binary code word is the number of nonzero entries it contains. The

Hamming distance between two code words is the number of positions in which their

entries differ. The minimum distance of a linear block code is the smallest Hamming

distance between any two code words in the code, and is equally the minimum weight

of its nonzero code words [30]. It is an important property ofthe code which dictates

error rate performance achievable under optimal decoding.Small minimum distance re-

sults in greater probability of decoding to an incorrect code word and thus an error event

under maximum likelihood and other decoding schemes. For parallel concatenated turbo

codes, the minimum distance dictates the error floor [38]. However, for LDPC codes

under iterative decoding, while low weight code words do contribute to the error floor

as undetected errors, the error rate performance in this region is dominated by detected

errors due to the interrelated graph structures known variously as stopping sets [39], pseu-

docodewords [40], near code words [41] trapping sets [42], elementary trapping sets [43]

and absorbing sets [44] which have definitions involving relatively small sets of variable

nodes with induced graphs having a small number of odd-degree neighbours. These graph

structures lead to uncorrectable errors under iterative decoding when the belief associated

with one or more elements of the variable node set is large andincorrect while the beliefs
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associated with the other variable nodes in the set are smallin magnitude. This leads

to the propagation of errors through the induced graph whichcan not be corrected due

to the small number of well connected neighbours of the set. In an alternative to the

asymptotic threshold analysis approaches of DE and EXIT charts discussed previously,

the graph structures discussed in this section offer an analytical framework for prediction

and bounding of error rate performance of codes at finite block lengths under iterative

decoding, through importance sampling [45] [46] [47] and other techniques [48].

The graph structures discussed above which contribute to the error floor of LDPC code

graphs essentially arise when the graph is poorly connected. On the BEC, all error events

are characterised by stopping sets [39], to be formally defined below, which constitute

a worst-case scenario in terms of graph connectivity, i.e. the case when all check node

neighbours of a variable node set connect back to that set. Onthe BEC, if a stopping set

is erased it is unrecoverable irrespective of the number of iterations applied in the itera-

tive message-passing decoder. The methods introduced to improve graph connectivity in

order to avoid stopping sets [49] [50] have been observed to improve performance of the

constructed graph not only on the BEC but on other channels also, including the AWGN

channel, through positively influencing the distribution of the previously discussed struc-

tures in the graph. Some important definitions and graphicalexamples follow.

Definition 1: A cycle is a closed path in a Tanner graph with no repeated edges.[39]

The length of the shortest cycle in the graph is termed the girth of the graph and may

be used as a metric by which to improve performance under iterative decoding.

Definition 2: A stopping set is a set of variable nodes for whichevery check node

neighbour of any member of the set is connected to the set at least twice[39].

This structure leads to an uncorrectable error on the BEC and constitutes a worst-case

scenario in terms of independence of messages passed under iterative decoding in general.

Definition 3: The extrinsic message degree (EMD) of a set of variable nodes (or a

cycle) is the number of check node neighbours singly connected (extrinsic) to that set or

cycle[49].
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Clearly, the EMD of a stopping set is zero.

Definition 4: The approximate cycle EMD (ACE) of a cycle provides an approximate

measure of the EMD of a cycle by assuming that all check node neighbours which are not

directly involved in the cycle are connected to the cycle only once[49].

An example of a cycle of length 4 is highlighted in red in the graph from our example

parity-check matrix (2.11) and a cycle of length 6 is highlighted in blue. The length-4

cycle forms a closed path along the edgesv5− c3− v7− c4 with c4 connecting back tov5.

The length-6 cycle forms a closed path along the edgesv1 − c1 − v4 − c2 − v8 − c5 with

c5 connecting back tov1.

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

Figure 2.3: Cycles in the code graph

Also in Fig. 2.3, the set{v5, v7} forms a stopping set as the neighbours to this set,c3

andc4, connect to the nodes in the set twice. The set{v1, v4, v8} is not a stopping set as

it has a check node neighbour,c3, which is connected to the variable node set only once.

Note that for the cyclev1 − c1 − v4 − c2 − v8 − c5 associated with this set, the ACE is 3

as it is assumed that any variable node with weight 3 has an extrinsic connection, but that

the EMD for this cycle is 1 as the nodesv1 andv8 both connect toc4 and so those edges

are not extrinsic to the cycle.

The graph properties of Definitions 1-4 and Fig. 2.3 may also be observed in the parity-

check matrix of the code as it corresponds precisely to the code graph. A length-4 cycle

in the graph corresponds to an arrangement of four nonzero entries inH which align both

in row and column indices. A cycle of length 6 corresponds to apattern of six nonzero

entries in three rows and three columns, and so on.
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2.4 Construction Techniques for LDPC Codes

One particular instance or realisation of the LDPC code is selected from the ensemble

of all graphs with the prescribed parameters of degree distributions and graph dimen-

sions. This graph realisation is then used for decoding, with the encoding process also

derived specifically for that graph. Selection of a particular graph from the ensemble

may be viewed as the problem of code or graph construction. Aspreviously discussed, at

practical block lengths, certain graphs in the ensemble will outperform others due to the

presence and distribution of the graph structures defined inSection 2.3.4. Thus, the prob-

lem of code construction is that of selecting, from the set ofall possible graphs satisfying

the constraints of the ensemble, a graph instance which provides good performance under

iterative decoding on the channel of interest. In the literature, common approaches to the

solution to this problem attempt to produce a graph with, variously, larger girth, fewer

cycles, larger minimum ACE or EMD or fewer stopping sets. A number of important and

fundamental graph construction techniques from the literature are introduced in this sec-

tion. More recent improved construction techniques will befurther discussed in Chapters

3 and 4 in advance of the discussion of the contributions of those chapters.

In addition to graph construction according to the selectedparameters, the ensemble

of all graphs may be further limited to the graphs satisfyingcertain constraints on edge

placements, in order to allow for benefits in complexity of encoding or decoding, latency

or performance. Two particular constrained LDPC code classes are also introduced in this

section, and will be further considered throughout this work.

2.4.1 Pseudorandom Codes

Gallager Codes

In his founding work on LDPC codes [4], Gallager proposed a construction method for a

class of LDPC codes now known as Gallager codes, based on the stacking of pseudoran-

domly generated submatrices of column weight one and of appropriate row weight and

dimensions in order to produce the parity-check matrix withthe desired parameters:
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HGa =















H1

H2

...

Hγ















, (2.21)

where the regularHGa has column weightγ and row weight equal to the constant

row weight of the submatrices. The matricesH2,H3, · · · ,Hγ are formed by column

permutations of the randomly generatedH1 [30]. Generally, the constraint that no length

4 cycle exists inHGa is also placed on the pseudorandom generation of the submatrices.

Mackay Codes

Mackay codes [6] form another class of pseudorandomly generated codes where the

parity-check matrix is constructed column by column, with new columns of appropriate

weight randomly generated and added to the matrix until the prescribed row distribution

is met. In the case of the algorithm failing to produce a graphwith the correct row distri-

bution, the graph may be wholly or partially reset and the process restarted. An additional

constraint on the existence of short cycles may again be imposed, with a check for cycle

creation made at each column placement. This is trivial for the cycles of length4 and

rapidly increases in complexity as longer cycles are considered.

2.4.2 Random Codes

The previous two construction techniques have random elements with some constraints

or deviations from a fully random approach. The random code construction approach,

as presented in [51] and [52], involves setting an appropriate number of empty ‘sockets’

for each variable node and check node and generating a randominterleaver in order to

make the connections between the two types of sockets. A check is then performed to

ensure that the randomly generated graph satisfies the basicdesign rules of the LDPC code

graph, i.e. that there exist at most only single connectionsbetween any variable node and

check node pair. If this rule is not satisfied, the graph is reset and reconstructed. Again,
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further constraints may be placed on the existence of cycles. Alternative approaches exist

whereby the graph satisfying the design rules and parameters is produced first, and then a

graph conditioning algorithm is applied to this in order to improve the structural properties

and thus performance of the code.

2.4.3 Progressive Edge Growth Algorithm

Progressive edge growth (PEG) algorithm [53] is a graph construction algorithm which

places edges in the graph one by one, ensuring at each edge placement that either no cycle

is created or, if this is not possible, that the cycle createdhas the largest length possible

under the current graph setting. While this algorithm aims tomaximise the girth (shortest

cycle length) locally at each edge placement, it is suboptimal in that it does not consider at

the current edge placement the final girth of the graph or cycle creation at any subsequent

edge placement. Despite this fact, it has been demonstratedto produce code graphs which

exhibit excellent performance under iterative decoding.

The PEG algorithm operates from variable node to variable node. The first edge place-

ment at each variable node is made connecting that node to a check node selected ran-

domly from the set of check nodes with minimum weight under the current graph setting.

Subsequent connections to the variable node under consideration, up to the weight pre-

scribed by the code parameters, are made by the following procedure:

A tree is expanded from the variable node under consideration, known as the root

node. Added to the tree with connections to that root node, inthe first level of the tree,

are all check nodes with edges connecting to the root variable node. The second level of

the tree is populated first by all variable nodes connected tothose check nodes found in

the first level of the tree, excluding the (root) variable node already found in the tree. To

these variable nodes in the second level are connected all their check node neighbours,

excluding those check nodes currently present in the tree. Subsequent level expansions of

the tree follow a similar procedure, with variable node neighbours of check nodes in the

previous level first added, followed by the check node neighbours of those variable nodes

most recently added to the tree. At each step, if a node is already present in the tree it is

not added in the new level.The expansion process continues until one of two outcomes is
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observed: a level expansion is carried out but no new check nodes are added to the treeor

upon completion of a level expansion, all check nodes of the global graph are contained

in the tree. In the first case, the set of check node candidatesto which the edge placement

may be made is taken from set of check nodes not currently in the tree. In the second

case, the set of candidates is taken from the set of check nodes added to the tree in the

most recent level expansion. In both cases, the check node for edge placement is selected

randomly from the minimum weight check nodes in the candidate set. In the former

case, no cycle will be created by the edge placement, while inthe latter case a cycle will

be created, but that cycle will have the greatest length possible under the current graph

setting.

An example of the tree expansion operation of the PEG algorithm follows.

vj

ci1 ci2

vk1 vk2 vk3

cl1 cl2

Figure 2.4: Tree expansion process of the PEG algorithm

In the example tree expansion operation of the PEG algorithmdetailed in Figs. 2.4

and 2.5, the variable node of interest isvj. The submatrixHcurrent is a binary matrix

constructed by the PEG algorithm in its previous steps of operation. That is, the tree

expansion operation has been employeddv − 1 times previously for each of thej − 1

variable nodes. The first edge placement at each variable node is made randomly to a

check node among the set of minimum weight check nodes currently. This consistent

choice of the minimum weight check node at in the operation ofthe algorithm, both for

first placement and among check nodes of equal largest distance from the current variable
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Hcurrent

vj

H =

1

1

HcurrentH =

1

1

ci1

ci2

1

1 1

HcurrentH =

1

1

1

1 1

vk1 vk3

vk2

Figure 2.5: The process of the PEG tree expansion on the parity-check matrix

node, results in a graph which is approximately regular in degree.

The operation of the PEG tree expansion is as follows: first all check nodes connected

to the variable node of interest are identified, which in terms of the parity-check matrix

involves identifying all 1 elements in thej-th column. Each check node is added to the

tree, denotedci1 andci2 and highlighted in red in Fig. 2.4. Then for each of these check

nodes, all variable node neighbours are identified. This is equivalent in terms of the

parity-check matrix to identifying the non-zero elements of rows i1 andi2. For each of

these check nodes, all variable nodes which are not currently in the tree are then added,

connecting to the check node of origin. In this case, forci1 , non-zero entries are found in

thej andk1 positions. Asvj, the root variable node, is already in the tree it is not added

but vk1 is added to the tree. Likewise, forci2 the variable nodesvk2 andvk3 are added

to the tree. The variable nodesvk1 , vk2 andvk3 are highlighted in red in Fig. 2.4. Now,

for each of these variable nodes, the check node neighbours are identified, and those not

already in the tree are added,cl1 for vk1 andcl2 for vk2. vk3 has no neighbour nodes which

are not already found in the tree and so no check node is added for this variable node.
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This tree expansion continues until one of the termination criteria are met. A new edge is

then placed connecting the variable node of interest to one of the check nodes not found

in the expanded tree at the time of termination of expansion.

Trellis-based ACE Graph Construction

A trellis-based construction method was proposed [49] which involved the construction

of the parity-check matrix by means of random column generation, ACE property eval-

uation by trellis expansion for the graph incorporating thenewly generated column, and

comparison of the ACE property of the graph with a preset threshold value. If the ACE

property of the graph failed to exceed the threshold the new column is discarded, a new

random column generation is performed, and the trellis procedure is carried out again,

otherwise the column is kept and the algorithm moves on to thenext column. This pro-

cess continues until the graph of the appropriate dimensions, weights and ACE properties

is produced. However, convergence of the algorithm is not guaranteed for a given value of

the ACE threshold and set of code parameters. In addition, in focusing on ACE properties,

this algorithm does not produce a graph with the improved girth properties of the PEG

algorithm. As will be further discussed in Chapter 3, the ACE concept of this trellis-based

technique may be easily applied to the tree-based PEG algorithm to further improve the

performance of the codes produced [50].

2.4.4 Structured LDPC Codes

Quasi-cyclic LDPC Codes

Quasi-cyclic (QC-) LDPC codes are formed from tiled circulant permutation matrices,

row- and column-weight 1 matrices formed by shifting the identity matrix [19]. This

allows for greater parallelisation of the decoder and low-complexity encoding [54] [55],

with complexity linear in block length achievable when the shift register implementation

of the encoder is used. Storage requirements for the parity-check matrix are also reduced.

Classically the QC-LDPC codes have been constructed algebraically as in [56]- [58].
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QC-LDPC parity-check matrices (PCMs) are structured as

HQC =















A1,1 A1,2 · · · A1,t

A2,1 A2,2 · · · A2,t

...
...

. . .
...

Ac,1 Ac,2 · · · Ac,t















, (2.22)

eachAa,b is aQ × Q matrix, either a circulant permutation matrix or a null matrix.

The PEG algorithm may also be used for QC-LDPC graph construction. The tree ex-

pansion operation is carried out on everyQ-th column of the parity-check matrix. The

edge selection procedure is carried out as for the standard PEG algorithm, once the edge

is selected it defines the first edge placement in a circulant,with the other edges set by

cyclic shift [59]

Repeat Accumulate Codes

The Repeat Accumulate (RA) class of codes is described by the parity-check matrix of

the form

HIRA = [H1 H2], (2.23)

whereH2 is the dual-diagonal matrix with a single weight one column

H2 =





















1

1 1

1
. ..
. .. 1

1 1





















, (2.24)

andH1 is a low-density matrix with regular column weights corresponding to the

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 2. LITERATURE REVIEW 29

regular repetition code of the sequential encoder and row weight 1 [20] [22]. For the

Irregular Repeat Accumulate (IRA) class of codes, the irregular version of RA codes,

the column weights ofH1 vary and correspond to a variable repetition code, as do the

row weights which correspond to the combined inputs to the accumulator represented

by H2 [21]. In both cases, the positions of the entries inH1 define the interleaver in

the sequential view of the code. The column and row weights, and so the repetitionR

code and combinerC are defined by the density evolution or EXIT chart derived pair

λ(x), ρ(x). In the case of IRA codes, the construction of a particular realisation of the

graph is equivalent to the design of the interleaver. The sequential view of the systematic

IRA encoder is given in Fig. 2.6, where the blockR performs the bitwise repetition, the

block
∏

is the interleaver and the block denotedC combines the bits emerging from the

previous block with modulo-2 summation according to the rowweights of the matrixH1.

The final block in Fig. 2.6 represents a convolutional code with generator polynomial1
1+D

which simply outputs the modulo-2 sum of the current input with the previous output of

that block.

R C
1

1+DΠ

m
m

p

Figure 2.6: Sequential encoding of the IRA code

Constructions for and extensions to the repeat accumulate class of codes will be further

discussed in Chapters 3 and 4.

2.5 Decoding of LDPC Codes

For LDPC codes, optimal maximum likelihood (ML) decoding isfar too complex to be

implemented even at short block lengths [32]. As has been mentioned, the sparsity of the

Tanner graph of the LDPC code allows low-complexity decoding alternatives by iterative

means, first considered by Gallager in his seminal work on LDPC codes [4] [5]. These

algorithms, termed message-passing algorithms, distribute the processing of the decoder

to the nodes of the graph, with appropriate operations carried out at the two types of nodes

in the bipartite Tanner graph [7]. The message passing algorithm as used in the iterative
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decoding of LDPC codes is known as the sum-product algorithm(SPA) and was indepen-

dently discovered in a number of fields, as belief propagation (BP) used for distributed

inference on Bayesian networks [11] [13]. The SPA can also be related to certain rep-

resentations of the turbo decoding methods used in the decoding of concatenated codes,

and indeed the LDPC code may in turn be viewed as a class of concatenated code, with

two simple component codes, repetition and single parity check, connected through an in-

terleaver. This relationship is made explicitly clear for the case of the accumulator-based

codes [20] [21]. The SPA is known to return the ML solution when operating on a cycle-

free graph. In the case of graphs with cycles, as with finite-length LDPC code graphs, the

SPA is suboptimal but has been extensively demonstrated to provide near-optimal perfor-

mance in many cases, providing the near-Shannon limit performance which LDPC codes

are well-known for [6].

In this section, the general message-passing approach is first introduced and its opera-

tion on the graph of the code is detailed. The specific SPA update rules used at the nodes

of the Tanner graph are then provided. Following this, the schedule of updates carried

out in the graph is discussed, with the most common schedulesdescribed and a number

of more recent strategies for scheduling introduced. Reweighting as a technique for ac-

counting for the loss of independence of messages passed in the graph is briefly described

and a number of reduced-complexity approximations to the SPA are presented to provide

the grounds for the discussions and proposed work of Chapter 5.

2.5.1 Message Passing

The common theme of message-passing algorithms is that the processing load of the de-

coding process is distributed to the nodes of the graph in order to avoid a more complex

global optimisation. The most basic rule of the message-passing algorithms is that only

extrinsic information may be passed, that the message passed along an edge to a node is

not based on the information received from that node. In the language of belief propaga-

tion, the belief (message) that a node delivers to a node should not be based on the belief

received from that node.

The messages passed in the Tanner graph are labeled as depicted in Fig. 2.7.
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µ(k)
ci→vℓ

µ(k)
vj1→ci

µ(k)
vjdc−1

→ci

µ(k+1)
vj→ci

µ(k)
ch1

→vj
µ(k)
chdv−1

→vj

ci vj

(a) (b)

Figure 2.7: The messages passed in the Tanner graph of the code.

The precise nature of the messages passed will be discussed in the next section. In Fig.

2.7 the message from the check nodeci to the variable nodevℓ is labeledµci→vℓ while the

message from the variable nodesvj to ci is labeledµvj→ci. The superscript indices(k)

and(k+1) denote the discrete message update time in the decoder, generally the iteration

number. In the most common implementation of the message passing decoder for LDPC

codes, one iteration is taken to be one update of all messagesoriginating at check nodes

followed by one update of all messages originating at variable nodes. Thus the input and

output messages of the check node are both indexed at iteration (k) in Fig. 2.7(a) while

the input messages to the variable node in Fig. 2.7(b) are indexed at(k) while the output

message from the variable node is indexed at(k + 1).

For the check node message update of Fig. 2.7(a), the messageis dependent on ex-

trinsic information only, meaning it is computed based on the information arriving at the

check node along all edges excluding the edge upon which the the message is passed, that

is:

µci→vℓ = f (µvj→ci), j ∈ N (ci) \ ℓ, (2.25)

wheref (·) is some function, to be defined in the following section, andN (nx) is the

set of nodes connected to the check nodenx by an edge, i.e.N (ci) = vℓ, vj1 , · · · , vjdc−1

in Fig. 2.7(a). Equation (2.25) specifies the message computation for a single message

emanating from a check node. The update of the the whole checknode involves the
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computation of all messages emanating from it.

For the variable node update of Fig. 2.7(b), a message updateis again based on the

incoming messages excluding that message arriving on the edge considered, i.e.:

µvj→ci = g(µch→vj), h ∈ N (vj) \ i, (2.26)

where the notation is similar to (2.25), andg(·) denotes another function to be defined

in the following section. Again, the equation (2.26) concerns a single message update,

and full update of the variable node involves the message computation and passing for all

edges emanating from the node.

2.5.2 The SPA Update Rules

In the SPA for decoding LDPC codes, messages introduced in the previous section,µci→vj

andµvj→ci, can take the form of probabilities, the ratio of these probabilities termed the

likelihood ratio (LR) or the log of the LR, the LLR, with the natural log arbitrarily taken.

The LLR is generally considered for reasons of numerical stability and computational

complexity and will thus be solely considered in the following discussions. In any case,

the messages passed from and to a variable nodevj represent a belief concerning the value

of the code word element associated with that node.

In the SPA decoder presented by Gallager [4] [5], the check node update operation is

based on the maximum a posteriori (MAP) decoder for the single parity check which the

node represents, while the variable node update operation is based on the MAP decoder

for the repetition code.

The decoder takes as its input the LLRs for the a posteriori message probabilities based

on the received word from the channel,

Lj = log

(

Pr(vj = 0|yj)
Pr(vj = 1|yj)

)

. (2.27)
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The equations for the update operations are as follows:

µ(k)
ci→vj

= 2tanh−1





∏

j′∈N (ci)\j

tanh

(

µ
(k)
vj′→ci

2

)



 , (2.28)

µ(k+1)
vj→ci

= Lj +
∑

i′∈N (vj)\i

µ(k)
ci′→vj

. (2.29)

The equations (2.28) and (2.29) provide the computation forthe extrinsic information

to be passed from each type of node. The final belief concerning the value of the nodevj

is then based on all messages arriving at the node, along withthe channel LLR,Li:

M
(k+1)
j = Lj +

∑

i∈N (vj)

µ(k)
ci→vj

. (2.30)

As previously stated, the SPA operates iteratively, with the order in which message

updates are performed termed the schedule of the algorithm.The common schedule pre-

viously introduced where one iteration consists of an update of all check nodes, followed

by an update of all variable nodes is called the flooding schedule. Alternative schedules

will be considered in Section 2.5.3. The algorithm applies the update rules in the order

specified by the schedule until some stopping criterion or set of stopping criteria are met.

The common stopping criteria are maximum number of iterations reached or all parity

checks satisfied. To perform the parity check, the estimatedcode wordĉ is taken to be

the vector:

ĉj =







1 : M
(k+1)
j ≤ 0

0 : M
(k+1)
j > 0

(2.31)

for j = 0, · · · , N − 1. The the parity checks are all satisfied if

ĉ HT = 0. (2.32)

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 2. LITERATURE REVIEW 34

2.5.3 Scheduling

Flooding Schedule

The standard implementation of the SPA uses, as previously discussed, the flooding

schedule. This schedule is described graphically in Fig. 2.8.

(a)

(b)

Figure 2.8: The flooding schedule on a simple example graph.

In Fig. 2.8 the nodes shaded in blue are the nodes updated. In the first half-iteration

shown in Fig. 2.8(a) all the check nodes are updated, in the second half-iteration of Fig.

2.8(b) all the variable nodes are updated.

Layered Schedule

The layered BP (LBP) [60] schedule for the SPA, also known as shuffled BP [61] and other

names, updates the nodes in a sequential fashion, ensuring that the incoming messages

used for each update make use of the new information available in the graph. That is,

rather than updating all nodes of one type followed by all nodes of the other type, a
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single node or subsets of all nodes of one type are updated, and then a single or some

subset of the nodes of the other type are updated. The alternating or shuffling continues

until all nodes of one type, typically the check nodes, have been updated. This is called

one iteration of the LBP. The use of the most current information in the graph allows

faster convergence for this schedule compared to the flooding schedule. In the example

provided below, check nodes are updated sequentially in onehalf-step and in the second

half-step all variable nodes in the neighbourhood of the most recently updated check node

are updated. These steps are carried out until all check nodes have been updated.

(a)

(b)

(c)

Figure 2.9: The layered schedule on a simple example graph.

Fig. 2.9 shows, in each part (a), (b) and (c) the two half-steps, the first half-step

is shaded in blue while the second half-step is shaded in green. From this figure, it is
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clear that while this layered schedule involves the same number of check node update

operations, there is a cost in an increased numberdcM > N of variable node updates.

However, as may be observed from equations (2.28) and (2.29), the check node update

operation dominates the complexity of the SPA and so this increased cost is not excessive.

In addition, by its serial nature, the LBP does not allow for the level of parallelisation of

the flooding schedule.

Informed Dynamic Scheduling Strategies

The informed dynamic scheduling (IDS) strategies make use of the state of the messages

currently being passed in the graph to determine the next message to update, choosing that

message update which will bring the greatest improvement inbelief. The concept was

developed for general message passing algorithms [28] before being applied specifically

to the problem of decoding LDPC codes [29] [62] [63] and is termed residual belief

propagation (RBP). The residual refers to the absolute value of the difference between the

message most recently passed between two nodes and the message which would be passed

if the update for those two nodes was performed. The message update associated with

the largest residual is performed. As such, the computationof the residuals upon which

the schedule choices are made involves significant additional cost in terms of algorithm

complexity, as many message update computations are performed for each actual message

update. Nevertheless, this algorithm demonstrates exceptional convergence speed when

compared to the flooding and layered schedules. This conceptwas also generalised in [29]

to the check node sequential IDS scheme, known as node-wise BP(NS-BP), where the

check node associated with the largest residual is updated,sacrificing convergence speed

somewhat in exchange for improved error rate. Much interestand many variations of

these IDS schemes have appeared in the literature [64] [65] [66] [67] [68].

The residual for a given message is computed as

r(µ(k)
na→nb

) = ||µ(k)
na→nb

− µ(k−1)
na→nb

||, (2.33)

wherena is a node of arbitrary type andnb is a node of the other type in the bipartite
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graph. The messagesµna→nb
are LLRs and so are contained on the real line, thus the

norm of equation (2.33) reduces to the absolute value.

(a)

(b)

(c)

Figure 2.10: The informed dynamic schedule of the RBP algorithm on a simple example
graph.

For the RBP, the residuals are taken for the check to variable messages, and the al-

gorithm proceeds as depicted in Fig. 2.10. In Fig. 2.10, the lines highlighted in blue

indicate residual calculations and the lines in red indicate message updates. Fig 2.10(a)

depicts the residual initialisation, where residuals mustbe computed for all edges. Fig

2.10(b) shows in red the actual message update, where the message updated is that which

is associated with the largest residual, while Fig. 2.10(c)shows the second half-step of the

RBP update, where the messages emanating from the activated variable node, that node
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which has an updated message incident on it, are in turn updated, as shown highlighted

in red. Following this update, new residuals must be computed for the affected edges, as

shown in blue in Fig. 2.10(c). The NS-BP algorithm is initialised in the same way as the

RBP algorithm, as in Fig. 2.10(a).

(a)

(b)

Figure 2.11: The informed dynamic schedule of the NSBP algorithm on a simple example
graph.

Fig. 2.11 then shows the process by which the NS-BP algorithm proceeds. Again,

the edge with the largest residual is identified, as highlighted in Fig. 2.11(a). The check

node associated with this edge is then updated, depicted by its shading and the green

highlight of its associated edges. These operations constitute the first half-step. In the

second half-step of the NS-BP, those variable nodes which have received updated mes-

sages are themselves updated, excluding the edges upon which the incoming messages

were received. The updated variable to check messages are indicated in red and blue

dashed lines. Now, the new residuals are computed for those outgoing messages from

checks which have been affected by the variable to check message updates. These checks

are shaded in blue. The edges for which residuals are computed are indicated in blue and

in red and blue dashed lines.

Note After initialisation, the RBP algorithm iterates from steps (b) to (c) in Fig. 2.10
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while NS-BP iterates through steps (a) and (b) in Fig. 2.11. These algorithms do not

adhere to iterations beyond these steps, an edge in the case of RBP, or a check node in

the case of NS-BP, may be revisited before some other edge/node has its message(s) up-

dated. As such, there is no natural point in the processing ofthese algorithms at which

an iteration has passed, as there is with both flooding and layered schedules. For the

purposes of performance comparisons, the artificial iteration measure is taken in the liter-

ature to be the point in operation of each algorithm when the number of check to variable

message updates equals that of the flooding and layered schedules. As will be further dis-

cussed in Chapter 5, this may be an overly optimistic choice for comparison, considering

the number of additional message computations each IDS algorithm performs in residual

calculation.

2.5.4 Reweighting Strategies

Reweighting strategies for message-passing decoding of LDPC codes have been proposed

as an application of tree-reweighted BP [69] (TRBP), a technique for general inference on

graphs, to the decoding problem. The TRBP approach was valid only for graphs limited to

pairwise connections. In applying it to the decoding problem, the algorithm was reduced

to a single reweighting factor applied to the LLR message updates to account for the loss

of independence of messages passed in the graph through the presence of cycles [70] [71].

The initial work of Wymeersch et al. was appropriate for graphs with regular distributions

only, a different strategy to reweight the LLR message updates was developed in [72]

and [73] that can deal with irregular graphs.

2.5.5 Low-complexity Approximations to the BP Algorithm

Another area of great interest is the class of decoders basedon the SPA which take advan-

tage of the properties of the check node message update to produce a lower complexity

approximation [74] [75] [76]. The tanh-based check node update rule for two LLRs,L1

andL2, may be restated exactly through the use of the Jacobian logarithm as
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f(L1, L2) = sign(L1)sign(L2)min(|L1|, |L2|)

+ log(1 + e−|L1+L2|)− log(1 + e−|L1−L2|) (2.34)

andf(L1, L2) may be implemented for a node with more than 2 incoming messages

with the forward-backward algorithm [76]. To reduce complexity the additive terms of

(2.34) may be implemented by look-up table. In addition to offering a form of the check

node update operation which lends itself to hardware implementation, a number of ap-

proximations to the precise check node update are derived from (2.34). The most basic

approximation, termed the Min Sum algorithm, replaces the full check node update by

observing that the additive terms of (2.34) are quite small so that the update may be ap-

proximated by the first term, which simply involves finding the smallest absolute value of

the inputs and applying to this value the product of the signsof the inputs. While the Min

Sum approximate BP-based algorithms exhibits relatively poor performance compared

to the full SPA, some approximations are capable of performance very close to the full

algorithm, particularly the Offset and Normalised BP-basedalgorithms [77] [78].

The Min Sum algorithm replaces (2.28) or (2.34) with

µ(k)
ci→vj

=





∏

j′∈N (ci)\j

sign
(

µ(k)
vj′→ci

)





(

min
j′∈N (ci)\j

(|µ(k)
vj′→ci

|)
)

, (2.35)

while equations (2.29) and (2.30) remain the same.

This check to variable message update is altered for the Offset-BP algorithm as

µ(k)
ci→vj

=





∏

j′∈N (ci)\j

sign
(

µ(k)
vj′→ci

)





(

max( min
j′∈N (ci)\j

(|µ(k)
vj′→ci

|) − β, 0)

)

, (2.36)

whereβ is a positive offset constant that may be optimised prior to transmission.
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The related Normalised-BP algorithm is defined by the check tovariable message

update

µ(k)
ci→vj

=





∏

j′∈N (ci)\j

sign
(

µ(k)
vj′→ci

)





(

minj′∈N (ci)\j(|µ(k)
vj′→ci |)

α

)

, (2.37)

whereα is a normalisation constant greater than one. For both Offset- and Normalised-

BP, equations (2.29) and (2.30) remain as for the standard SPA.
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3.1 Introduction

This chapter presents the work carried out on the construction of structured LDPC codes,

particularly the construction of short block length codes through modifications to the PEG

algorithm including the use of the decoder to improve the placement choices made in that

algorithm. The code classes considered are QC-LDPC codes [19], accumulator-based

codes such as the IRA class of codes which may be considered a class of LDPC codes and
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decoded as such [20] [21], and those codes related to the Root-LDPC class of codes [23]

which were proposed for use on the block fading channel [25].Quasi-cyclic (QC) LDPC

codes allow reduced complexity of encoding [19], as the generator and parity-check ma-

trices have an imposed structure which may be exploited suchthat encoding may be

performed with shift registers [55]. The QC structure also allows the decoding by SPA

decoder to be further parallelised, which offers benefits inspeed of decoding. The pro-

gressive edge growth (PEG) algorithm may be applied to the construction of QC-LDPC

codes to improve the girth of the graph [59]. The RA-based codes allow encoding in com-

plexity which grows linearly with block length and decodingby the SPA algorithm [22]

through the dual-diagonal accumulator structure in the parity-check matrix of the graph

and the irregular version, the IRA codes, provide improved performance in the lower SNR

region of operation [21]. The block fading channel is a useful channel model for the rep-

resentation of a variety of realistic scenarios which involve slowly-varying fading. This

model which consists of a number of blocks subject to independent fading coefficients in

addition to additive noise is particularly challenging from the point of view of the error

control code design. One set of solutions to the problem of code design for the block

fading channel is based around the Root-LDPC code class [23],where the structure of the

parity-check matrix is constrained to ensure that the variable nodes associated with the

systematic information bits of the code word achieve the limited diversity of the channel

and thus approach the theoretical limit of the channel in terms of error-rate performance.

The contributions of this chapter are as follows:

• An improved construction method for QC codes comprising thenew work carried

out on an extension to the prior work of the author [79]. This approach is based on

the use of the SPA decoder at certain points during graph construction by the PEG

algorithm to choose edges which offer improved performance, will first be detailed

briefly. The application of this decoder-based approach will then be made to the

construction of the structured code classes for use on the AWGN channel.

• The proposed code constructions for the Root-LDPC based codeclass will be pre-

sented. The PEG algorithm is employed to construct code graphs which adhere to

the class constraints while possessing improved girth and thus offer performance

closer to the theoretical channel limit.
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• Upon introduction of the proposed PEG-based construction for Root-LDPC codes,

the novel constructions for further constrained code classes are then considered.

First the construction of the previously known QC-Root-LDPC codes is considered,

the code class which offers the diversity-achieving properties of the Root-LDPC

codes in combination with the complexity reductions of the QC codes.

• Finally the novel accumulator-based Root-LDPC code class and its construction

by means of the PEG algorithm is proposed and detailed, taking advantage of the

benefits of the RA and IRA codes while achieving the diversity ofthe block fading

channel.

• The performance of the proposed code constructions for the channels under consid-

eration will be evaluated through a detailed simulation study.

The rest of this chapter is laid out as follows: In Section 3.2the decoder-based con-

struction metric previously developed for use on unstructured graphs is described in detail.

Section 3.3 describes the use of this metric in a PEG-based construction for the QC-LDPC

code graph and an algorithmic description of the graph construction is also provided. Sec-

tion 3.4 discusses the challenges of coding for the block fading channel and introduces

from the literature the Root-LDPC class of codes for approaching the outage limit of the

channel. In Section 3.5 the proposed constructions for Root-LDPC code graphs by use of

the PEG algorithm are introduced. Section 3.6 proposes a novel code class for the block

fading channel which makes use of the root-check node and of the accumulator graph

structure to offer both outage approaching performance andlow encoding complexity.

Section 3.7 provides the simulation study with results to support the contributions of the

chapter and Section 3.8 summarises the contributions made in the chapter.

3.2 Decoder-Optimised Progressive Edge Growth

This section introduces the work of author first developed in[79] and presented in [80]

on the PEG-based LDPC graph construction algorithm with improved performance in the

error floor region [42], named the decoder optimised (DO) PEGalgorithm. The DO-PEG
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algorithm operates on the set of check node candidates produced by the PEG tree ex-

pansion operation for connection to a variable node of interest in the progressive edge

placement procedure which constructs the graph. The central concept of the DO-PEG

algorithm is to use a small sample run of the decoder with eachpotential edge placement

in place in order to identify that edge which will have the best (or perhaps least detrimen-

tal) effect on the performance of the message passing algorithm on the final constructed

graph. The block diagram of the DO-PEG algorithm is presented in Fig. 3.1 and the

blocks of the diagram relate to the algorithm as follows:

• The algorithm operates on a graph with an appropriate numberof check nodes and,

during the processing of the algorithm, partially connected and currently uncon-

nected variable nodes. A desired vector of variable node weights called the degree

sequence is also known, while as in the PEG algorithm the check node degree dis-

tribution of the graph produced will be near-regular.

• From this graph, a subset of the M check nodes is derived as candidates for con-

nection to the variable node under consideration. While the block in the diagram

allows flexibility in choosing the set selection procedure,in the DO-PEG algorithm

this block represents the PEG tree expansion operation which returns the set of min-

imum weight check nodes at greatest distance in the graph from the variable node

of interest, each of which will produce the largest cycle possible under the current

graph settings.

• In the case when the set returned by the set selection block contains more than one

check node, the DO operation is used to select a survivor check node. For each

candidate check nodecb a candidate code, with corresponding generator and parity-

check matrices, is derived. Given that the variable nodeva is under consideration,

the candidate graph for candidate check nodecb is derived by taking the graph under

the current setting and placing the edge(cb, va). The matricesGtest andHtest are

derived as outlined in Chapter 2. Simulated transmission in the presence of AWGN

is performed and the iterative SPA decoder is used to producesoft-output LLRs. A

number, which by necessity of the complexity of the optimisation operation must

be quite small, of SNR points and noise/message vectors are used. The SNR points

are chosen to fall in the low error rate region of operation ofthe code under con-

sideration. For each candidate, the DO metric is computed, the candidate with the
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largest metric is selected as the survivor and the connection is made from that check

node to the variable nodeva.

H

Length

Rate

Dv

Gtest Channel SPA, Htest

Decoder Optimisation Operation

DOPEG
metric

cDO

Candidate CN
set selection
procedure

Max(·)

Figure 3.1: Block diagram of the decoder-based constructionalgorithm

3.2.1 Computation of the DOPEG Metric

For each candidate code, the soft-output bit LLRs of the SPA decoder are given by

Pj = Lj +
∑

i∈N (vj)

µci→vj , j = 1, · · · , Ntest, (3.1)

whereNtest is the number of variable nodes in the test parity-check matrix and cor-

responds to the index of the variable node under consideration. In order to compute the

DO metric associated with each candidate check node, an aggregate sum of the weighted

LLR magnitudes is taken across the multiple received word instances decoder at each

SNR point, with the weighting factor taking account of whether the convergence at a

certain variable node was toward the correct value or away from it:

mβ
ci
=

Y
∑

t=1

N
∑

j=1

wβ
j,t |P β

j,t|, (3.2)

where

wβ
j,t =







1 if sgn(Pβ
j,t) = sβj,t

−1 else
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andsβj,t is the encoded bit value at indicesj, t andβ, wheret indexes theY instances

of received and decoded words per SNR point andβ is the index for theZ SNR points

considered. The noise vectors are generated randomly with the appropriate variance.

For each of the|N ℓ
vj
| candidate check nodes the above computation produces a set of Z

real numbers,mβ
ci

, β = 1, · · · , Z, the set of vectorsqβ =

[

mβ
ci1
,mβ

ci2
, · · ·mβ

c
i|N

ℓ
vj

|

]

for

β = 1, · · · , Z.

If the sample mean value of eachqβ is qβ, the normalised vector of convergence mea-

sures at each SNR pointβ considered is

uβ =
qβ

qβ
, (3.3)

and so each entry inuβ indicates whether a particular check node placement offered

performance above, at or below the average for test scenarioat SNRβ. Then the final

convergence metric for each check node is

zci =
Z
∑

β=1

uci,β, i ∈ {1, · · · , |N ℓ
vj
|. (3.4)

The check nodecDO with the largestzcDO
is selected and the edge{cDO, vj} is placed.

Table 3.1: Code generation times, in seconds, for the algorithms presented.

N 250 500 1000

PEG 28 182 1287

DOPEG 5319 45183 252210

Table 3.1 shows that the computation of the DO metric incurs aconsiderable increase

in complexity for the PEG-based construction of unstructured LDPC codes. As the block

length of the code to be constructed increases, the proposedDO-PEG algorithm will be-

come inviable sooner than the PEG algorithm. However, this is not considered to be a par-

ticular issue as the improved construction methods are usedprimarily to construct codes

with shorter block lengths, at larger block lengths the cycles present in the graph do not
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influence the error rate performance as greatly. At the shorter block lengths considered,

this approach offers a clear benefit in error rate performance. Moreover, the increased

complexity occurs only in during the graph construction phase which will be completed

offline and thus the choice of construction algorithm does not affect complexity of use of

the constructed graph, provided the code parameters are thesame.

3.2.2 Justification of the DO Approach

The DO-PEG algorithm has been demonstrated to produce a graph with improved per-

formance with respect to the base PEG construction. Intuitively, the achieved result may

be understood by the fact that the graph of the chosen candidate code forms a subgraph

of the final code. At each point when the DO metric is produced,the candidate code

graphs differ in only one edge placement and the shortest cycle each of those edges par-

ticipates in is of equal length. Thus, the difference in performance which the DO metric

identifies is related to the connections of the cycles created to the existing cycles in the

graph, the number of shortest-length cycles created and thedistribution of greater-than-

shortest-length cycles created by the edge placement. Choosing at each placement in

the progressive edge construction the edge with the best subgraph according to the DO

metric leads to a final graph with better overall performance. This is corroborated by sim-

ulation results of Fig. 3.2 which were presented previouslyin [79] [80]. For the DOPEG

construction of Fig. 3.2, five distinct noise and message vectors were generated at each

SNR point tested, the SNR range operated over was1dB−2dB in steps of0.05 and the

decoder was operated to a maximum of 50 iterations, at which point the soft-output bit

LLRs of (3.1) were used to compute the DO metric of (3.2) to (3.4). Table 3.2 gives the

numbers of short cycles found in the graphs constructed by PEG and DOPEG algorithms,

used to produce the results of Fig. 3.2. The DOPEG algorithm produces a graph with

fewer shortest-length cycles and this contributes to the improved error rate performance

observed in Fig. 3.2.
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Table 3.2: Numbers of short cycles found in the code graphs for the PEG and DOPEG
graph constructions.

girth = 6 PEG DOPEG
No. 6 Cycles 1562 1395
No. 8 Cycles 24057 23154
No. 10 Cycles 352803 355602
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Figure 3.2: Error rate performance for the unstructured codes constructed by the DO-
PEG and PEG algorithms, with block lengthN = 250 and irregular variable node degree
distribution with largest weight 8.
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Algorithm 1 DOPEG Algorithm

for j = 1 to n do

for k = 1 toDv(j) do

if k == 0 then

Place edge(cmin, vj), cmin chosen randomly from the minimum weight check

nodes of the current graph.

else

Expand tree fromvj until the cardinality ofN l
vj

stops increasing but is less than

m or N l
vj
6= ∅ butN l+1

vj
= ∅.

if j < m+ 1 then

Place edge(cmin, vj), cmin chosen randomly from the minimum weight CNs

of N l
vj

.

else

for p = 1 to Length(N l
vj

) do

PCM Htest formed fromH under current graph setting up to columnvj,

with edge in position(N l
vj
(p), vj)

UseHtest to decode in the presence of AWGN over the selected SNR range

using the log-domain SPA decoder with soft output.

Compute convergence metrics as described in (3.4).

Identify CN cDO : zcDO
= arg max

ci
zci .

Place edge in position(cDO, vj)

end for

end if

end if

end for

end for
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3.3 DO-PEG for the QC-LDPC code class

The performance improvements offered by the decoder optimisation approach over the

base construction algorithm motivated its use in the construction of LDPC codes with

quasi-cyclic (QC) structure, which as previously stated maybe exploited to allow reduc-

tions in encoding complexity and benefits through parallelisation of the decoding opera-

tions. In [59] the PEG construction algorithm was applied tothe construction of graphs

with QC structure, termed the QC-PEG algorithm in the following discussion. The QC-

PEG algorithm selects through the use of the PEG tree expansion the placement positions

of the non-zero tiled sub-matrices in the code graph and the position of the first entry in

each sub-matrix, with subsequent entries made according toa cyclic shift. The QC-PEG

constructed QC-LDPC codes exhibit improved performance over the QC-LDPC codes

constructed by random permutation due to increased girth. The extension of the decoder

optimisation operation to the QC class of LDPC codes is termed QC-DO-PEG and uses

the decoder to test potential candidate codes as in the approach outlined in Section 3.2 to

produce final graphs with improved performance in the error floor region of operation.

3.3.1 Proposed Code Construction

In those cases when the cardinality of the set of minimum weight nodes in|N ℓ
vj
| is greater

than one, which is observed to occur with high regularity at short block lengths, the QC-

PEG algorithm selects from those nodes a check node at randomand places a QC sub-

matrix accordingly. The decoder optimisation operation outlined in Section 3.2 may be

used in this case to select the candidate QC sub-matrix whichwill offer the best perfor-

mance in the test case under the current graph settings. Thisbest-performing candidate

code becomes a sub-graph of the final graph and so improved performance at the inter-

mediate stages in construction leads to improvements in performance of the final graph.

The intermediate test codes of the QC-DO-PEG code construction algorithm are

formed from the graph under the current setting with a circulant permutation matrix in

the position and with the cyclic shift dictated by the check nodes of the set provided by

the PEG tree expansion. The candidate code for some check node cg is defined in terms
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of columns ofQ×Q QC sub-matrices as

Htest =
[

Bcurr.
1 ,Bcurr.

2 , · · ·Bcurr.
j−1 ,Bcand.

]

(3.5)

where each matrixBcurr.
k , k = 1, · · · , j − 1 has dimensionsQc × Q andv , M

Q
and

the dimensionsM andQ are constrained to ensure thatv is an integer value. TheBcurr.
k

matrices are the columns of QC sub-matrices which have been previously constructed by

the QC-DO-PEG algorithm. The candidate column matrix is thenconstructed as

Bcand. =



























A1,j

A2,j

...

Acircposg,j

...

Av,j



























. (3.6)

The QC sub-matricesAa,j, a ∈ {1, · · · , v}\circposg are the sub-matrices of the col-

umn of interest under the current graph setting. The sub-matrix Acircposg,j is specified

by the check node candidatecg. It has a non-zero entry in the shift positionhg in its

first column and zeros in all other positions in that column. The subsequent columns of

Acircposg,j are produced by progressive downward cyclic shifts of the first column. The

indicescircposg andhg are given by:

circposg = ⌈ g
Q
⌉, (3.7)

hg = ((g − (circposg − 1) ·Q− 1) mod Q) + 1. (3.8)

The candidate graphs are used in the decoding in the presenceof AWGN and the

metric calculation is carried out in exactly the same way as for the DO-PEG construction
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algorithm of Section 3.2. The pseudocode of the QC-DO-PEG is provided in Alg. 2.

Algorithm 2 QC-DO-PEG

1. for j = 1 : t do
2. for k = 1 : Dv(j) do
3. if k == 0 & j > N

2
then

4. Choose candidatecind at random from the setNmw,l
vj .

5. for m = 0 : Q− 1 do
6. circpos = ⌈ind/Q⌉
7. shift = ((ind− (circpos− 1) ·Q+m− 1) mod Q) + 1
8. Place edge in the position(c((circpos−1)·Q)+shift, vj·Q+m)
9. end for

10. else
11. Expand the tree from the VNvj to depthl s.t.N l

vj
stops expandingor N l

vj
6= 0

butN l
vj
= 0.

12. if j < c+ 1 then
13. Choose candidatecind at random from the setNmw,l

vj .
14. for m = 0 : Q− 1 do
15. circpos = ⌈ind/Q⌉
16. shift = ((ind− (circpos− 1) ·Q+m− 1) mod Q) + 1
17. Place edge in the position(c((circpos−1)·Q)+shift, vj·Q+m)
18. end for
19. else
20. for p = 1 : Length(Nmw,l

vj ) do
21. Form the PCMHcand. as H under the current graph setting with a

circulant permutation matrix in the position defined by its first entry

(ccand., vj·Q+1) whereccand. = Nmw,l
vj (p).

22. Use Hcand. to encode, decode in the presence of AWGN using log-
domain SPA decoder with soft output.

23. Compute convergence metricszci as described in Section 3.2.1.
24. Identify CN cind : zcind = arg max

ci
zci.

25. for m = 0 : Q− 1 do
26. circpos = ⌈ind/Q⌉
27. shift = (1 + (ind− (circpos− 1) ·Q+m− 1) mod Q) + 1
28. Place edge in the position(c((circpos−1)·Q)+shift, vj·Q+m)
29. end for
30. end for
31. end if
32. end if
33. end for
34. end for
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3.4 The Block Fading Channel and Root-LDPC Codes

This section introduces the coding strategies which have been designed for use on the

block fading channel. The work on the Root-LDPC code class is introduced and sum-

marised [23]. This code class was designed to achieve the diversity of the block fading

channel illustrated in Fig. 3.3.

γ1 γ2 γF

N
F

N
F

N
F

Figure 3.3: Diagram illustrating the block fading channel

The lengthN code word is subjected toF independent fading coefficients, represented

in the figure above asγ1, γ2, · · · , γF in addition to additive noise. The fading coefficients

γi are independent and identically Rayleigh distributed. The maximum diversity order

achievable on the channel is given by the slope of the outage limit plotted on a log-log

scale, where the outage limit is the fundamental limit on theerror rate performance possi-

ble on the channel corresponding to the irreducible probability, the outage probability, that

transmission of data at a given rate is not supported. The diversity orderdmax achievable

for a linear binary code on this channel is

d ≤ 1 + ⌊F (1−R)⌋. (3.9)

Thus the highest code rate which achieves maximum diversityd = F of the channel is

R = 1
F

[81]. The outage probability is given by

Pout = P (I < R) , (3.10)

whereP (·) denotes the probability of an event andI is the mutual information be-

tween the input and the output of the channel. The mutual informationIG for real Gaus-

sian inputs is [82] [83]
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IG =
1

F

F
∑

f=1

1

2
log2(1 + 2R

Eb

N0

γ2
f ) (3.11)

while for BPSK inputs the mutual information is [82] [83]

IBPSK =
1

F

F
∑

f=1

1

2

(

(g(

√

2R
Eb

N0

γ2
f )) + (g(−

√

2R
Eb

N0

γ2
f ))

)

, (3.12)

with

g(τ) =

∫ ∞

−∞

1√
2π

e−
(ω−τ)2

2 log2

(

2

1 + e−2ωτ

)

dω (3.13)

which does not have a closed form solution. The value ofg(τ) can be computed using

the Gauss-Hermite quadrature method. The above expressions for the mutual information

are semi-analytic in that they must be applied for realisations of the fading coefficients

γf . The outage probability usingIG is taken as the standard for comparison in the results

provided for the block fading channel throughout this thesis, while examples of the outage

probability usingIBPSK are also provided.

In order to achieve satisfactory performance on the block fading channel, the error

control code must achieve the maximum diversity of the channel and must also offer

reasonable coding gain which, for a full diversity code, refers to the separation between

the error rate achieved as plotted on a log-log scale and the plot of the outage limit of the

channel.

The requirement for an iteratively decoded code to achieve the diversity of the channel

is equivalent to the requirement that the systematic bit nodes are recoverable on the block

binary erasure channel when any single fading coefficient isnonzero [23]. The block

binary erasure channel has the same form as that illustratedin Fig. 3.3 but the fading

coefficients may take only the valuesγi ∈ {0,∞}. Codes which meet this requirement

are termed Maximum Distance Separable (MDS) codes. As a result of the standard un-

structured LDPC code failing to meet this requirement, theytend to achieve relatively
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poor performance on the block fading channel. The Root-LDPC code class was devel-

oped [23] as a class of MDS codes which allow full recovery of the systematic bit nodes on

the block binary erasure channel through the use of special root-check nodes. These nodes

ensure that each systematic bit subject to some fading coefficientγi is provided with in-

formation from blocks associated with all other fading blocksγj, j ∈ {1, · · · , F}\i. The

Root-LDPC structure is presented for theF = 2 case below both graphically in Fig. 3.4

and through its parity-check matrix in Fig. 3.5.

1i 1p 2i 2p

1c2 2c1

Figure 3.4: Simple Tanner graph of the Root-LDPC code for the block fading channel
with F = 2

In Fig. 3.4 the node1i represents theN
4

systematic bit nodes subjected toα1 while

the node2i represents theN
4

systematic bit nodes subjected toα2. The nodes1p and2p

represent theN
4

parity bits subjected toα1 andα2, respectively.

I

I

0

0

Ha Hb

HbHa

HF2 =

1i 1p 2i 2p

1c2

2c1

Figure 3.5: Parity-check matrix of the Root-LDPC code for theblock fading channel with
F = 2

In Fig. 3.5I is an identity matrix of sizeN
4

and0 is a null matrix of sizeN
4

. The blocks

Ha andHb are low density sub-graphs of sizeN
4
× N

4
with column and row weights

appropriate to satisfy the degree distribution of the code.For example, for the(3, 6)

regular Root-LDPC code,Ha has column weight2 andHb has column weight3, and

their combined row weight is5.

The Root-LDPC code graph generalises to the block fading channel with greater num-
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bers of fades through the repetition of the above structure of identities and nulls for each

fading block. The rate1
3

code graph for theF = 3 channel is given is Fig. 3.6. Note that

for this graph, half of the root check connections for a givenset of systematic bits con-

nect to one of the other fading blocks and the other half connect to the remaining fading

block. This ensures recovery of all systematic bits in the event of two very small fading

coefficients (or erasures).

I

0I

I

I

I

I

0

0

0

0

0Ha

Ha

Ha

Ha

Ha

Ha

0

0

0

0

0

0

0

0

0

0

0

0

Hb

Hb

Hb

Hb

Hb

Hb

1i 2i 3i 1p 2p 3p

HF3 =

1c2

1c3

2c1

2c3

3c1

3c2

Figure 3.6: Parity-check matrix of the Root-LDPC code for theblock fading channel with
F = 3

The work on Root-LDPC codes for use on the block fading channelfound in the lit-

erature includes the papers of Boutros et al. [23] [84] introducing the class and further

expanding the analysis [85] [86], the extension to the QC code structure for the Root-

LDPC code [87] and further analysis on the outage threshold [88]. The work presented in

this chapter focuses first on the construction of moderate-length Root-LDPC code graphs

which offer improved error rate performance. Following this, a novel modification to the

code class is presented to allow the dual-diagonal accumulator code structure to be used

while maintaining the Root-LDPC structure and the diversity-achieving property it allows

on the block fading channel.

It should be noted that in addition to the Root-LDPC class a construction, termed

random but requiring the imposition of certain constraintson the graph, has been proposed

in the literature for achieving the diversity of the particular block fading channel with

F = 2. This approach requires a cycle-free sub-graph associatedwith the systematic

nodes of the code, which may be achieved through use of the PEGalgorithm along with

certain constraints on allowable code dimensions and node degrees. This approach will

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 3. CONSTRUCTION OF STRUCTURED LDPC CODES 58

be considered in greater detail in Chapter 4.

3.5 PEG Construction of the Root-LDPC Codes

The Root-LDPC structure of [23] introduced in the previous section guarantees full di-

versity on the block fading channel but the coding gain of thecode is still affected by

the cycles present in the graph, and so a gap remains between the performance of the

Root-LDPC codes and the performance allowed by the outage probability. This moti-

vates the consideration of alternatives to the random constructions used previously for the

Root-LDPC and QC-Root-LDPC codes.

3.5.1 Standard Root-LDPC Codes

The use of the PEG algorithm to construct the Root-LDPC code allows the construction

of a graph with improved girth with respect to the pseudo-random construction and thus

achieves a coding gain. In order to use the tree expansion method of the PEG algorithm

to construct the Root-LDPC graph, the graph must first be initialised to contain the root-

check connections in the appropriate positions and the edgeplacements following tree

expansion must be restricted to those positions allowed inHa andHb of Fig. 3.5. In the

original work on the PEG algorithm [53], for the implementation of the tree expansion

it was suggested to use a binary indicator vector with entries indicating whether or not

each check node has appeared in the tree at any level. The indicator vector contains a1

in them-th position if check nodecm has not yet been encountered in the expanded tree

and contains a0 in that position ifcm is already contained in the expanded tree to the

current level. In order to ensure no edge placement to the check nodes with some range

of indices, the indicator vector need only be initialised to0 in that range before the PEG

tree expansion is carried out. Thus it is useful to define, forthe rate1
2

Root-LDPC code

the indicator vectorsi1 andi2 as

i1 =
[

01×N
4
11×N

4

]

, (3.14)
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i2 =
[

11×N
4
01×N

4

]

, (3.15)

which may be used to ensure that placements are made only in the Ha andHb sub-

matrices. The vectori1 is used when the progressive edge construction is operatingon the

variable nodes in1i and1p while the vectori1 is used when the algorithm is operating on

the variable nodes in2i and2p. Two further changes are required to ensure the constructed

graph possesses the Root-LDPC code graph structure. First, the degree sequenceDs to

be used in the construction must be derived from the desired degree sequenceDv by

accounting for the identity matrices ofi1 andi2 as

Ds =
[

(Dv1 − 1), (Dv2 − 1), · · · , (DvN
2

− 1), DvN
2 +1

, · · · , DvN

]

. (3.16)

Finally, the presence of the identity matrices in the graph prior to beginning construc-

tion precludes the random edge placement which the PEG algorithm makes initially at a

variable node with no current connections, and through which the tree expansion process

may begin. The pseudo-code for the proposed construction algorithm for the rate1
2

code

for theF = 2 channel is provided in the following in Alg. 3. Note that the sub-graph

associated with the systematic nodes is constructed first toensure that the longest cycles

possible are associated with those nodes.

The PEG construction of theF = 3 Root-LDPC code graph specified by the parity-

check matrix of Fig. 3.6 is also achieved by the use of the indicator vector to constrain

edge placements to the allowable sub-matrices,Ha in the systematic parts of the graph

associated with1i, 2i and3i, andHb in the parity parts of the graph associated with1p,

2p and3p. Thus for the nodes in1i and1p the indicator vector will become

i1 =
[

01× 2N
9
11×N

9
01×N

9
11×N

9
01×N

9

]

, (3.17)

while
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Algorithm 3 PEG Construction of theF = 2 Root-LDPC Graph

for j = 1 to n do

for k = 1 toDs(j) do

if (j ≤ N
4
)||(N

2
< j ≤ 3N

4
) then

iconstr. = i1

else

iconstr. = i2

end if

if (k == 1) & (j > N
2
) then

Place edge(cmin, vj), cmin chosen randomly from the minimum weight check

nodes of the current graph.

else

Expand the tree fromvj. As check nodes are added to the tree, the correspond-

ing entries oficonstr. are set to0. The tree expansion continues until the cardi-

nality ofN l
vj

stops increasing but is less than Mor N l
vj
6= ∅ butN l+1

vj
= ∅.

Place edge(cmin, vj), cmin chosen randomly from the minimum weight CNs of

N l
vj

, the set indicated byiconstr..

end if

end for

end for
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i2 =
[

11×N
9
01× 4N

9
11×N

9

]

, (3.18)

and

i3 =
[

01×N
9
11×N

9
01×N

9
11×N

9
01× 2N

9

]

. (3.19)

Use of the PEG algorithm with these indicator vectors will produce a Root-LDPC

graph for theF = 3 channel with improved girth with respect to the random construction.

3.5.2 QC-Root-LDPC Codes

This section outlines the use of the PEG algorithm to construct Root-LDPC code graphs

having the QC sub-matrix structure. The random QC-Root-LDPC code graph was previ-

ously presented in the literature [87]. The proposed construction applies the previously

discussed QC-PEG construction approach [59] in combinationwith the novel use of the

indicator vector in PEG construction to impose the desired graph structure constraints,

and will be demonstrated in the simulation study to follow inSection 3.7.2 to provide

improved performance compared to the random QC-Root-LDPC graphs. Further work

on QC-Root-LDPC code graphs is presented in [89].

The QC-Root-LDPC code graph for theF = 2 block fading channel may be repre-

sented by the parity-check matrix of (3.20)

HF2qc =

1i 2i 1p 2p
[ ]

I Haqc 0 Hbqc

Haqc I Hbqc 0

(3.20)

This parity-check matrix differs from that of Fig. 3.5 only in that the sub-matrices

Haqc andHbqc are formed from tiled circulant permutation matrices as shown in (3.21)
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Hqc =















A1,1 A1,2 · · · A1,c

A2,1 A2,2 · · · A2,c

...
...

.. .
...

Ac,1 Ac,2 · · · Ac,c















, (3.21)

where for this case

c =
M

2Q
, (3.22)

because the dimensions of eachHaqc andHbqc are M
2
× M

2
. As before the matrices

Ai,j have dimensionsQ × Q and are either null matrices or circulant permutation matri-

ces. Clearly,Q and M
2Q

must be integer values. Additionally, the dimensionsM and M
2Q

constrain the maximum allowable node weights as each non-null Ai,j can have at most

weight one rows and columns, the maximum weight of eachHaqc andHbqc in both row

and column isc.

Graph construction proceeds as for the QC-PEG algorithm previously described,

which selects the non-nullAi,j positions in columnj and rowi and the position of the first

entry inAi,j. Each subsequent entry inAi,j is determined by right cyclic shift. As in the

PEG construction of the standard Root-LDPC graph, the indicator vector constraint ofi1

andi2 in (3.14) and (3.15) is applied at each level of the expanded tree, with an additional

modification to ensure that at most one set of entries is made in eachAi,j. The indicator

vector for a given column of sub-matrices is updated following each sub-matrix place-

ment to exclude multiple placements in a particular range ofQ check node indices. The

indicator vector is reset to its initial value when each new column is considered, taking its

values fromi1 andi2 as appropriate.

3.6 Accumulator-based Root-LDPC Codes

The Root-LDPC structured codes offer the diversity of the block fading channel and with

the use of the PEG construction developed in Section 3.5, improved coding gain brings the
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performance of the code class closer to the limit possible onthe channel. The iteratively

decoded Root-LDPC codes take advantage of the relatively lowcomplexity of the SPA

decoder which exploits the sparsity of the parity-check matrix and on the block fading

channel achieves faster convergence to better error rates when compared to other LDPC

code graphs. However, the generator matrix for these codes will generally be dense and

thus the encoding operation has a high computational cost associated with it, particularly

with increasing block length. The accumulator-based classof codes introduced in Chapter

2 posses the dual diagonal sub-matrix in the parity-check matrix which allows encoding

by back substitution, resulting in encoding complexity which grows linearly with block

length. This section outlines a modification to the Root-LDPCcode class which incor-

porates the dual-diagonal accumulator structure and is thus termed the repeat-accumulate

Root-LDPC (RA-Root-LDPC) code class.

3.6.1 RA-Root-LDPC Codes

The rate1
2

RA-Root-LDPC code graph for use on theF = 2 channel will first be devel-

oped, followed by the extension to the rate1
3

graph for theF = 3 block fading channel.

From this progression, the generalisation to higher numbers of fading coefficients will be-

come clear. Referring to Fig. 3.5 of Section 3.4, the parity-check matrix may be rewritten

as shown in (3.23) with no change to the essential structure of the graph.

HF2qc =

1i 2i 2p 1p
[ ]

I Ha Hb 0 1c2

Ha I 0 Hb 2c1

(3.23)

In this form it is clear that the part of the graph associated with the parity bits may be

very nearly assigned the dual diagonal structure of the accumulator, labeledHp in (3.24)

below.
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Hp =



























1

1 1

1 1
. .. . ..

1

1 1



























. (3.24)

In fact, rather than a singleHp matrix of sizeN
2
× N

2
which would require a single

non-zero entry in the upper-right corner of the null matrix of 2p and thus would violate

the Root-LDPC structure, eachHb of (3.23) is replaced with aN
4
× N

4
Hp matrix and the

resulting graph is called the RA-Root-LDPC code. The only effect of this change on the

coding system is that the two sets of parity bits1p and2p are not dependent on each other

and therefore the encoding of each set may be done independently. In common with all

Root-LDPC codes, the placement of the null matrices in the parity part of the graph allows

the encoding of1p and2p to be carried out independently, as the values of the parity bits

in 1p rely solely on the values of1i, 2i and other values in1p, and not on any of the bits

in 2p. The same stands for the parity bits in2p. Thus the RA-Root-LDPC graph structure

effectively allows the use of linear-complexity accumulator-based encoding for the two

sets of parity bits at an effective block length ofN
2

.

The generalisation of this approach to channels with highernumbers of fades and thus

codes with lower rate will be illustrated first for the example of the code with rate1
3

for

theF = 3 block fading channel. The Root-LDPC code for this channel condition may be

arranged as in Fig. 3.7.

Each sub-matrix in the systematic part of the graph (1i, 2i, 3i) is sizeN
9
× N

9
while

every block in the parity part of the graph (1p, 2p, 3p) is sizeN
9
× 2N

9
. Now it is clear that

the parity bits of1p rely only on the systematic bits of1i, 2i and3i, and on themselves.

Likewise for the parity bits in2p and3p. Thus the dual-diagonal sub-matrix of the accu-

mulator may be used to replace each of the blocks in Fig. 3.8 with a matrixHp of size
2N
9
× 2N

9
.

This produces a code which may be encoded linearly as three separate RA or IRA

codes. However, the performance of this code suffers due to the fact that the sub-matrices
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1i 2i 3i 1p 2p 3p

HF3 =

0I Ha 0 0 Hb1,3
1c3

I0 Ha 0 0 Hb2,3
2c3

I0 Ha 0 0Hb1,2
3c2

I 0Ha 0 0Hb2,2
1c2

I 0Ha 0 0Hb1,1
2c1

I0Ha 0 0Hb2,1
3c1

Figure 3.7: Parity-check matrix of the Root-LDPC code for theblock fading channel with
F = 3

xp

Hb1,x

Hb2,x

Figure 3.8: Parity sub-matrix forx = 1, 2, 3

Hb1,x andHb2,x take the form

Hb1,x = [Hp 0] , (3.25)

and

Hb2,x = [H1 Hp] , (3.26)

whereH1 is the matrix with a single non-zero entry in the upper-rightcorner and zeros

everywhere else. The size ofHp, 0 andH1 in (3.25) and (3.26) isN
9
× N

9
. Consider the

systematic bits1i in a situation where the first fading coefficient is very small(i.e. in

practical terms close to an erasure). The arguments to follow apply equally to2i and3i

through the symmetry of the parity-check matrix structure.In order to recover the bits in

1i in this case, information is needed from2p and3p through the root-check connections
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of the identity matrices. In contrast to the standard Root-LDPC codes at rate1
3
, the sys-

tematic bits of the proposed code receive information from only one half of2p and one

half of 3p. This leads to a loss in coding gain with respect to the standard Root-LDPC

codes. In an effort to ameliorate this performance cost for achieving lower encoding

complexity through use of the accumulator, the work of [90] was referenced. That is,

the lower encoding complexity of the RA code relies on a code structure with all zeros

above the main diagonal in a modifiedHp, additional diagonal non-zero entries below

the dual-diagonal are permitted. This produces a generalised accumulator with transfer

function 1
1+D+Dg for a separation of g spaces between the dual-diagonal entries and the

new diagonal. Additional diagonals correspond to additional terms in the denominator of

the transfer function. The transfer function 1
1+D+DN/9 proved most useful in this case and

when this accumulator was substituted forHb1,x andHb2,x , Hb1,x remains the same and

Hb2,x takes the new form

Hb2,x = [HD Hp] , (3.27)

whereHD is theN
9
× N

9
matrix with non-zero entries on the main diagonal and in the

upper-rightmost entry only as illustrated by

HD =















1 1

1
.. .

1















. (3.28)

The inclusion of the additional diagonal may reduce the girth of the graph, as described

in [90], however the benefits in the quality of messages passed due to the additional con-

nections from the parity parts of the graph to the root check nodes account for the gains

observed in Section 3.7.2 over the graph without the additional diagonal. One final change

was made with respect to the graph introduced in the above forthe IRA-Root-LDPC code

for F = 3 to produce the proposed IR3A-Root-LDPC code forF = 3, that is to re-

verse the assignment of the accumulator blocks for the checknodes in rows3c2 and1c2

associated with2p, i.e.
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Hb1,2 = [HD Hp] , (3.29)

and

Hb2,2 = [Hp 0] . (3.30)

This change ensures symmetry in the parity-check matrix in terms of the information

received through the root-check node at each set of systematic bits.

To generalise to lower code rate RA-Root-LDPC codes and highernumbers of fades,

the accumulator is split over(F−1) sub-matrices and includesF−2 additional diagonals

evenly spaced to provide the greatest connections possibleto the systematic bits through

the root-check nodes.

3.6.2 Construction of RA-Root-LDPC Codes

The construction of the RA-Root-LDPC and R3A-Root-LDPC graphs involves initialis-

ing all of the parity parts of the graph to the predetermined accumulator structures de-

fined in Section 3.6.1 and intitialising the root-check identity matrices in the necessary

positions. The construction degree sequence must be derived from the desired degree

sequence by subtracting the weight of the initialised systematic graph from the desired

degree sequence (i.e. for theF = 2 graph the degrees are reduced by1, for theF = 3

graph the degrees are reduced by2 and so on.). Following this, the PEG algorithm is

constrained to run as for the PEG construction of the standard Root-LDPC graphs by the

use of the indicator vector to make placements only in those sub-matrices denoted byHa

in (3.23) and 3.7.
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3.7 Simulation Study

In this section, the construction schemes and novel code class for the structured LDPC

codes proposed in this chapter are supported by the results of simulations on the relevant

channels. For the decoder-based construction of QC-LDPC codes, the channel considered

is simply the AWGN channel while the performance of the Root-LDPC codes is evaluated

on the appropriate block fading channels. BPSK modulation isused in both cases. The

specifics of the simulation parameters for each code type areprovided in Sections 3.7.1

and 3.7.2, respectively.

3.7.1 DO-PEG construction of the QC-LDPC code graphs.

The constructed codes considered are irregular with rate1
2

and maximum variable node

degree8. The irregular degree distribution is derived according tothe requirements of

the QC class from the density evolution optimal distribution with maximum weight con-

strained to8. The distribution of the final graph is constrained by the QC structure such

that there are multiples of Q, the sub-matrix size, nodes of each weight. The distribution

is further altered to have fewer weight2 variable nodes than the total number of check

nodes in the graph in order to avoid cycles composed entirelyof weight2 variable nodes,

which would form unavoidable stopping and harm performanceirrespective of the con-

struction algorithm used [22]. This modification to the ensemble constitutes a trade-off in

performance in the waterfall region for performance in the low error rate rate region of the

error rate curve. Thus the variable node degree distribution provided to the construction

algorithms considered is

λ(x) = 0.4688x1 + 0.3438x2 + 0.1874x7, (3.31)

for each of Figs. 3.9 and 3.10. For both of those plots the AWGN channel the decoder

was operated to a maximum of 40 iterations, the BER is taken forthe whole code word

and a minimum of 80 block errors were observed for each point in the error rate plot.

The BER is considered as is standard in the literature, to allow for ease of comparison of
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the considered schemes. The error rate for the whole code word is generally considered

rather than that of the systematic block only to reflect the fact that the syndrome check

for errors in the decoded word is taken for the whole code word. For the QC-Random

plot included for comparison in both Figs. 3.9 and 3.10 the random irregular construction

was used to produce a graph with the same design parameters asthe QC-PEG and QC-

DOPEG graphs, followed by a simple girth conditioning algorithm to remove the cycles

of length 4 from the graph.

In Fig. 3.9 the error rate performance of the length256 code with QC submatrix size

Q = 8 is presented for the QC-PEG and QC-DO-PEG graph construction algorithms. In

Fig. 3.10 the error rate performance of the length512 code with QC submatrix sizeQ =

16 is presented for those construction algorithms. For both plots, a graph was selected

by random construction method from the ensemble with the same parameters as those

constructed by QC-PEG and QC-DOPEG algorithms and a simple graph conditioning

algorithm was used to remove cycles of length 4. Figs. 3.9 and3.10 demonstrate the

significant performance improvements in the low error rate region of the curve known as

the error floor which are achieved by the use of the QC-DO-PEG construction algorithm

compared to the standard QC-PEG construction algorithm.

The choice of the QC parameterQ for both scenarios considered above is made to al-

low the PEG-based construction a reasonable degree of freedom through which improved

performance with respect to the random construction may be achieved. The values chosen

reflect those chosen in [59] in terms of the ratioQ

N
. AsQ decreases, the greater freedom

of the PEG node selection procedure is found to provide improved performance, with

the limiting case ofQ = 1 constituting the unstructured code. Clearly, asQ decreases

the benefits available from the QC structure in terms of complexity and parallelisation

diminish also.
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Figure 3.9: Error rate performance for the QC codes constructed by the DO-PEG and PEG
algorithms, with block lengthN = 256 and sub-matrix sizeQ = 8. The Shannon limit
for the continuous-output AWGN channel when BPSK is used is0.188dB atR = 1
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Figure 3.10: Error rate performance for the QC codes constructed by the DO-PEG and
PEG algorithms, with block lengthN = 512 and sub-matrix sizeQ = 16. The Shannon
limit for the continuous-output AWGN channel when BPSK is usedis 0.188dB atR = 1
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3.7.2 Results for the Root-LDPC codes considered

This section presents the results for each of the contributions made on the construction

of Root-LDPC code graphs for use on the block fading channel. First the results for

the PEG construction of the standard Root-LDPC codes will be presented and discussed,

then the results for the PEG construction of QC-Root-LDPC codes will be provided and

finally the plots supporting the novel accumulator-based Root-LDPC code class will be

provided. For all plots in this section, the maximum allowednumber of iterations in the

decoder is 20, as is standard in the literature on the Root-LDPC codes, reflecting the fast

convergence offered due to the diversity of the channel. Forthe general Root-LDPC codes

on the block fading channel the parity bits do not converge tothe correct values and so

the FERs presented in the plots of Figs. 3.11 to 3.16 are taken for the block of systematic

nodes only.

PEG Construction of Root-LDPC Graphs

In Fig. 3.11 the frame error rate (FER) of the systematic nodesis plotted for a range of

values ofEb

N0
for the proposed PEG construction along with the established graph con-

struction techniques from the literature. Systematic FER is considered as the Root-LDPC

code class does not offer outage-approaching error rate performance for the parity nodes

of the Root-LDPC code. The standard Root-LDPC graphs have the structure of Fig. 3.5

and the codes are thus rate1
2
, the block length of all codes is1200. The PEG construction

in red is observed to outperform the randomly constructed standard and QC code graphs

across the full range of values considered. The performanceof the standard unstructured

PEG constructed LDPC code graph on this channel is also provided for comparison. Fig.

3.12 compares the performance of the shorter length graphs constructed by the proposed

strategy compared to that of the established random construction for the QC-Root-LDPC

class. Again, the graphs constructed by the proposed PEG-based approach achieve better

performance across the full range of noise variances considered. The final plot for the

standard PEG-Root-LDPC construction is provided in Fig. 3.14, the code graphs have

the structure of Fig. 3.6 which has rate1
3

and with block lengthN = 540. For this

case the PEG-based construction is again observed to outperform the established random

construction across the range of noise variances considered.
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PEG Construction of QC-Root-LDPC Graphs

Fig. 3.14 shows the performance of the proposed constrainedPEG-based construction

of the QC-Root-LDPC code graph for the block fading channel with F = 3 with block

lengthN = 378. As expected, the improved cycle properties of the graph which result

from the use of the PEG algorithm in construction allow the QC-PEG-Root-LDPC code

graph to outperform the graph selected by random construction across the range ofEb

N0

values considered.

Proposed Accumulator-based Root-LDPC Code Sub-class

The proposed code sub-class of Section 3.6.1, the IRA-Root-LDPC graphs with PEG con-

struction, are evaluated in this section. Fig. 3.15 demonstrates that the IRA-based graph

designed for theF = 2 channel achieves the performance of the PEG-Root-LDPC graph

with no observable loss in performance. This result is significant as it shows that the linear

complexity in encoding allowed by the presence of dual diagonal structure in the graph is

achieved without a sacrifice in performance for this channelcondition. Fig. 3.16 however

demonstrates that, as expected, for channels withF > 2 the linear complexity encoding

allowed by incorporating the accumulator structure in the parity part of the graph incurs

a cost in degraded performance. The plot for the IRA-Root-LDPCgraph suffers a consis-

tent loss with respect to the PEG-Root-LDPC graph of more than0.8dB. The proposed

use of the higher weight accumulator, which corresponds to an additional non-zero di-

agonal in the parity sub-matrices, ameliorates the performance degradation to less than

0.3dB compared to the PEG-Root-LDPC graph across the range of values considered.

This improved code class maintains the benefits of the accumulator-based codes in terms

of encoding complexity by keeping the null upper-triangular structure above the main di-

agonal of the parity sub-matrices. Thus, in certain operational scenarios the performance

degradation which is suffered by the proposed IRAw3-Root-LDPC code sub-class may

be acceptable in exchange for the complexity reduction offered in encoding.
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Figure 3.11: Error rate performance for the PEG constructedRoot-LDPC code for the
block fading channel withF = 2 compared to the classic random constructions.
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code on the block fading channel withF = 2 compared for shorter block lengths with the
performance of the randomly constructed QC-Root-LDPC code.
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Figure 3.13: The performance of the proposed PEG construction for the Root-LDPC
code on the block fading channel withF = 3 compared to the randomly constructed
Root-LDPC code. Both graphs are irregular with block lengthN = 540
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code on the block fading channel withF = 3 compared for to the randomly constructed
QC-Root-LDPC code.
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Figure 3.15: The performance of the proposed PEG constructed IRA-Root-LDPC code
compared to that of the PEG constructed Root-LDPC code graph of Section 3.5.
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IRAw3-Root-LDPC code graphs compared to that of the PEG constructed Root-LDPC
code graph of Section 3.5.
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Average Convergence of the Considered Root-LDPC Graphs

Fig. 3.17 plots the average number of iterations required inthe SPA decoder against SNR

for theF = 2 channel and the Root-LDPC constructions considered. It demonstrates that

decoding on the Root-LDPC graphs converges considerably more quickly than on the un-

structured graph. This is unsurprising as the unstructuredgraph does not effectively share

the available information from the code bits affected by different fading coefficients. In

addition, there is a small improvement apparent in the PEG-constructed graphs over those

selected randomly. At higher SNRs, the Root-LDPC graphs converge on average in close

to one iteration. This result is again unsurprising, as the Root-LDPC graph is designed to

provide perfect recovery of the systematic bits in a single iteration on the block binary era-

sure channel, a channel which resembles the block fading channel with very large SNR. It

should be noted that the average number of iterations is plotted, and that if the decoder is

constrained to a single iteration that the error rate performance would suffer greatly, as the

relatively rare error events which require a higher number of iterations would contribute

significantly to the error rate in this lower error rate region of operation.

3.8 Summary

In this chapter, the construction of short to medium length LDPC code graphs with dif-

ferent structures was considered. First, building on the prior work of the author, the im-

proved code construction algorithm based on the use of the SPA decoder to improve edge

placements at certain points in the PEG algorithm was developed for the construction of

QC-LDPC code graphs. This was demonstrated to offer significant performance improve-

ments in the low error rate region of operation of the error control coding scheme, where

shorter-length LDPC codes generally suffer from a reduction in error rate improvement

for improving channel conditions, known as the error floor phenomenon.

In the second part of this chapter, a number of construction problems for the Root-

LDPC code class were considered. The PEG algorithm was first applied to the construc-

tion of standard Root-LDPC graphs in order to improve the girth of the graph compared

to the randomly constructed Root-LDPC graph. This proposed construction was then
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combined with the QC-PEG algorithm found in the literature toallow construction of

QC-Root-LDPC code graphs which also have improved girth. Following this, a novel

sub-class of the Root-LDPC class making use of the repeat-accumulate approach was

developed to offer the code graph with the error rate performance properties of the Root-

LDPC codes on the block fading channel along with the reductions in encoding complex-

ity allowed through the presence of the accumulator structure in the sub-graph associated

with the parity bit nodes.

The contributions outlined in this chapter were supported by a detailed simulation

study presenting results for the channel scenarios, graph structures and constructions dis-

cussed. Performance improvements through the use of the proposed construction methods

were observed, while the IRA-Root-LDPC code sub-class was demonstrated to offer the

same performance as the standard Root-LDPC codes when the PEGconstruction is used.
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Figure 3.17: The figure showing the average number of iterations required for conver-
gence on the block fading channel withF = 2.
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Multipath EMD Construction of LDPC
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4.1 Introduction

In contrast to the work on graph construction of Chapter 3, which tested candidate sub-

graphs using the decoder directly, much of the prior work in the literature on graph con-

struction involves pseudorandom approaches constrained by the use of knowledge of cer-

tain structures in the graph which are known to harm the performance of the decoder.

These structures were introduced previously in the literature review of Chapter 2, and

include short cycles, cycles with few external connectionsto the rest of the graph and

combinations of cycles with poor graph connectivity. The previously discussed PEG algo-
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rithm makes girth the metric of interest and produces graphswith excellent performance.

The ACE based schemes use an approximate measure of the numberof ‘good’ connec-

tions emanating from cycles, i.e., connections which do notconnect back to the cycle

through a single node, and make edge placement choices basedon this measure. The

EMD measure is the exact measure which the ACE metric approximates. A cycle with

zero EMD is a stopping set, which is defined in Chapter 2 and is known to correspond to

an uncorrectable error on the binary erasure channel (BEC). Stopping sets are also known

to harm the performance of the message-passing decoder on other channels. When two

cycles with low EMD are connected together by all of their respective extrinsic edges, a

stopping set is also formed.

In this chapter we propose a multipath EMD strategy for PEG-based graph construc-

tion of LDPC codes which leads to improved error floor performance in the constructed

code realisation. The proposed method is flexible in rate, irregular node degree distri-

butions and the class of constructed code. It is implementedas a progression of decision

metrics which are used to prune a set of candidate placements, with the decisions based on

an indirect measure of the impact of each placement on the graph as a whole. The goal is

to reduce the effects of the unavoidable graph structures present at finite block lengths on

the iterative LDPC decoding process. Following the presentation of the proposed metric,

a novel class of codes capable of approaching the outage limit on block fading channels

with different numbers of fading coefficients is introduced. These codes are demonstrated

to perform excellently at short block lengths, but require arelatively large number of de-

coder iterations to achieve the desired performance. The proposed multipath EMD con-

struction is demonstrated to provide considerable gains interms of decoder convergence.

A detailed justification for each of the main contributions of the chapter, namely the pro-

posed novel graph construction approach and the proposed diversity-achieving class of

codes, is provided for each of the main contributions of the chapter. A simulation study

of the proposed construction along with the existing state-of-the-art is provided, showing

the gains achievable for a number of structured code classeson the AWGN channel and

for the proposed novel reduced structure diversity-achieving codes on the block fading

channel.

In summary, this chapter has the following contributions:
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• Detailed description of the proposed graph construction strategy, including a pseu-

docode for clarity.

• Proposed code class design to operate on a block fading channel with an arbitrary

number of fading coefficients.

• Mathematical analysis of the proposed multipath EMD designand the block fading

structures.

• Simulation study of the proposed and previous state-of-the-art methods.

The rest of this chapter is laid out as follows: In Section 4.2the proposed multipath

metric progression is detailed, including a discussion of the previous approaches, and a

mathematical and algorithmic description of the proposed approach. Section 4.3 provides

analysis of the proposed metric progression. In section 4.4, the novel code class for use

on the block fading channel is described, a discussion of prior work for the channel with

two fading coefficients motivates the expansion first to the channel with three fading co-

efficients and then to the general case. A note on the versatile use of these codes on

channels with varying numbers of fading coefficients through the use of a simple punc-

turing scheme is also provided. In Section 4.5, a detailed simulation study is provided for

the work proposed in this chapter. Section 4.6 provides a brief summary to the chapter.

4.2 Proposed Multipath EMD Metric Progression

In this section, the basis for the proposed construction algorithm, the novel multipath

EMD metric progression, is introduced and discussed in detail. An overview of previous

construction metrics motivates the approach considered inthis chapter. The new metric

progression is then outlined in detail, and the pseudocode for the proposed construction

is provided, explicitly describing the proposed multipathEMD construction algorithm.

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 4. MULTIPATH EMD CONSTRUCTION OF LDPC CODES 83

4.2.1 Metric

As previously discussed in detail in Chapter 3, the PEG-basedgraph construction algo-

rithm follows a columnwise and edgewise progressive construction where, for each edge

to be connected to the variable under consideration, the setof all check nodes in the graph

is pruned according to the path length metric derived from the tree expanded from that

variable node. The set of check nodes surviving this selection process would if connected

to the variable node result in the creation of cycles with thesame largest length possible

under the current setting of the graph. Following this, the set of surviving check node

candidates is further pruned to the set containing only those check nodes with equal min-

imum current weight. This imposes a near-regular distribution on the check nodes of the

graph. The approach outlined in [50], termed the improved PEG or IPEG algorithm, ap-

plies the ACE concept to the PEG construction through the use of the path ACE metric

after the above path length and check node weight metrics have been applied. As outlined

in [49], the ACE measure approximates the degree to which a cycle connects externally

to the rest of the graph and so provides an indication of the likelihood of stopping set cre-

ation. The performance of the graphs constructed by the IPEGalgorithm demonstrate the

effectiveness of avoiding stopping sets for improving performance even on the AWGN

channel. Another work in the literature attempts to accountfor the approximate nature of

the ACE metric by applying an exact EMD measure to the set of candidate check nodes

which survive the metric progression of the IPEG algorithm (i.e. path length, check node

weight and path ACE metrics) [91]. In this previous algorithm, all variable nodes in the

tree expanded from the variable node of interest and terminating in the candidate check

node are identified, and the EMD of this set of variable nodes is taken as the metric by

which to choose a survivor check node for edge placement. Forthe case when there is

a single path from variable node of interest to each check node candidate, this measure

gives an indication of the likelihood that these paths will participate in a stopping set.

However, for the case where there are multiple paths betweenthe variable node of in-

terest and the candidate check nodes, this metric does not reflect the likelihood that the

individual cycles created will participate in a stopping set but rather the likelihood that all

those cycles combined will form or participate in a stoppingset. Clearly, when multiple

paths exist the set of variables which appear in the local tree of all paths will be larger

than (and will contain) the sets of variables for each path. Each of these relatively smaller
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sets of variable nodes for each path will potentially participate in smaller and hence more

damaging stopping sets than the set of all variable nodes in the local graph and the EMD

measure. Furthermore, the EMD measure for the whole local graph set of variable nodes

does not give a clear indication of the connectivity of the individual paths contained in the

local graph.

Motivated by this observation, a new progression of metricsis proposed for choosing

a survivor check node from a set of candidates. First, the PEGtree expansion is carried

out to find the set of check nodes at equal maximum distance from the variable node

of interest. This reduces the set of check nodes to be considered greatly and has been

demonstrated as one of the best approaches currently known.From this set the minimum

weight candidates survive, forcing the final check node distribution to near-regular and

further reducing the set of check nodes which must be considered. For each of these sur-

vivors, in an operation to be outlined in the following section, for each candidate check

node each distinct path from root variable node to candidatecheck node is identified and

the precise EMD of each path is computed. From the current candidate check node set,

those check nodes with fewest paths from variable node to check node are selected to sur-

vive. This step in the selection process is justified by the fact that the small stopping sets

found in the final graph will be formed primarily from multiple cycles joined together by

their only respective extrinsic edges and that choosing theedge placement which creates

fewer short cycles reduces the likelihood of small stoppingset creation. Finally, for the

remaining check nodes which have equal maximum distance, minimum weight and the

same minimum number of shortest paths from the variable nodeof interest, the average

EMD of the shortest paths is computed and the candidate with the largest value is chosen

for edge placement. This choice of average EMD across all paths rather than the EMD of

the path with worst connection is again made to reduce the overall likelihood of stopping

set creation in the graph construction. The results presented in Section 4.5.1 demonstrate

the efficacy of avoiding stopping set creation throughout the graph in this manner, with

a gain of approximately0.5dB observed for the QC-LDPC graph and of approximately

0.25dB for the IRA graph.
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4.2.2 Computation of the Metric

As the metric progression detailed in the following makes use of the notation introduced

in [53], a brief review is useful. The PEG algorithm involvesa tree expansion from the

root variable nodevj, with each level added to the tree including an additional subset of

check and variable nodes, up to the levell at which all check nodes are included in the

tree, or further expansion adds no new check nodes. The set ofcheck nodes reached at

level l is denotedN l
vj

while those not yet included are denotedN l
vj

. We also define the

set of variable nodes included in the tree from nodeni to m levels asMm
ni

. Note that, for

variable nodes,M0
vj

contains onlyvj while for check nodesM0
ci

contains the immediate

variable node neighbours ofci. We denoteC the set of all M check nodes.

Once the initial stage of graph construction is complete, the PEG algorithm first returns

the subset

A = {N l−1
vj

: N l
vj
= ∅}, (4.1)

and from this set the minimum weight candidates are selectedas

B = {ci : |M0
ci
| = min

cx∈A
|M0

cx
|}. (4.2)

Then for the node pair{vj, ci} with ci ∈ B andL levels betweenvj andci, such that

N L
vj

= ∅, the set of variable nodes found at the levelsa in all paths between the nodes in

this pair is

Da = Ma
vj
∩ML−a

ci
(4.3)

The setsDa must be found for each of theL levels in the graph betweenvj andci.

There exists a path between two variable nodes in adjacent levelsa anda+ 1 if
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N 0
vx
∩ N 0

vy
6= ∅ , vx ∈ Da , vy ∈ Da+1. (4.4)

In order to produce the distinct path number and path EMD metrics, it is necessary to

find the set of distinct path variable node sets. These sets are expanded level by level and

intialised for the connections from root node to each node inD1 as

s1 = {vj, vu1}, s2 = {vj, vu2}, · · · , s|D1| = {vj, vu|D1|
}, (4.5)

because there is an edge connecting the root nodevj to each node in the first level. The

number of distinct paths at the first level isP1 = |D1|, while the number of distinct paths

up to levela is denotedPa. For each path and path variable node setsv to levela with

v ∈ {1, · · · , Pa}, with variable nodeva = sv ∩ Da the node insv which was found at the

current level, there will be|va ∩ Da+1| distinct paths after expanding the set of distinct

path sets to level(a+ 1). The new sets produced from the paths sets to levela and those

nodes in level(a+ 1) are produced according to:

sx = {sv ∪ vwy : N 0
sv∩Da

∩N 0
vwy

6= ∅}, ∀sv, v ∈ {1, · · · , Pa}, ∀vwy ∈ Da+1. (4.6)

Thus a distinct path set for the next level is created for eachcombination of the path set

to the current levelsv and a node inDa+1 if there is a path between the node insv at the

current level and the node inDa+1. When this process has been carried outL − 1 times

for the check nodeci then the set of all distinct path setsSci = {sp,ci}, p ∈ {1, · · ·PL} to

levelL is found. The number of distinct paths fromvj to ci, denotedPci, is the cardinality

of the set of all distinct path sets,Pci = |Sci | = PL. The above process must be carried

out for each check node inB. The number of distinct paths for each check node is the

first element of the proposed metric progression used to prune the set of candidate check

nodes:
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C = {ci : Pci = min
cy∈B

Pcy}. (4.7)

In the event that there is a single entry inC the check node selection procedure termi-

nates and that check node is chosen as the survivor node and the edge{vj, C} is placed. If,

however, there is more than one element inC, the path EMD of each set inSci is computed

for ci ∈ C. The EMD for the path corresponding to the setsp,ci is

Ep,ci = |{ck : ck ∈ N 0
vb
, ck 6∈ N 0

vc∈sp,ci\vb
}|, ∀vb ∈ sp,ci . (4.8)

The EMDEp,ci for each path can be computed simply by taking the sum of the columns

of the parity-check matrix corresponding to the nodes insp,ci and counting the number of

1s in the resulting vector. For each check node inC, the EMD of (4.8) is computed for all

paths inSci and then the final metric used is computed as the mean of these path EMD

values:

γci =
1

Pci

∑

p=1:Pci

Ep,ci . (4.9)

The successful candidate is then the check node with the largest mean path EMD value:

cplace = ci ∈ C : γci = max
cz∈C

γcz (4.10)

Fig. 4.1 gives the graphical representation of (4.3)-(4.6), for a particular variable node

v0 and two check node candidates labeledce andcf , respectively. The tree is expanded

to depth two and the nodes at each level for all paths are identified by applying (4.3) for

levels 1 and 2. So, from the downward tree fromv0, the variable nodes in the first level

of the downward tree areM1
v0

= {v1 , v2, v3} while from the first upward tree fromce,

it is clear that the nodes reached at levelL − 1 = 1 areM1
ce

= {v2 , v3, v5, v6}, so

the nodes which are found at that level in both trees are the nodes present in the graph

connectingv0 andce, D1 = {v2, v3}. The same observation givesM2
v0

= {v4 , v5, v6}
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andM0
ce

= {v4} so it is clear thatv4 alone appears in the graph fromv0 andce at this

level,D2 = {v4}. For the graph betweenv0 andcf , it is observed that there is a single

path only, asD1 = {v2} andD2 = {v5}. In this simple example two paths are identified

betweenv0 andce while a single path is identified betweenv0 andcf , and according to the

metric progression outlined,cf would be chosen for the edge placement. In this simple

example the EMD calculation and pruning of (4.8)-(4.10) would not be needed as there is

already a single superior check node candidate.

v0

ce cf

v2

v4

ce

v4

v0

Downward Tree Upward Tree 1 Upward Tree 2

v1 v3

v5 v6

ca cb

cc cd cc cd

v2 v3v5 v6

cb

v0

v5

cf

cc

v2 v4

cb

Figure 4.1: The path identification process described by (4.3)-(4.6) as implemented by a
comparison of a downward PEG-like tree from the root variable node and an upward tree
from each of the candidate check nodes. For a given candidate, any node found at the
same level in both the downward and upward tree is contained in the graph between the
root variable nodev0 and that candidate check node. By (4.5)-(4.6) the unique paths are
identified.

The pseudocode of Algorithm 4 explicitly describes the algorithm and shows where

equations (4.1)-(4.10) appear in the structure of the proposed design algorithm.
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Algorithm 4 Proposed Multipath EMD-Driven PEG Design

1. for j = 1:N do
2. for k= 1:Ds(j) do
3. if k==1 then
4. Place edgevj, ci with the check node chosen randomly from the minimum

weight check node set{c} : |M0
ci∈{c}

| = min
m=1:M

|M0
cm
|.

5. else
6. Expand a tree fromvj to depthℓ such thateitherN ℓ

vj
= N ℓ−1

vj
6= ∅ or N ℓ

vj
= ∅.

7. FromA, the check nodes at greatest distance fromvj select the set of check
nodesB with minimum weight:

8. A = {N l−1
vj

: N l
vj
= ∅}

9. B = {ci : |M0
ci
| = min

cx∈A
|M0

cx
|}

10. For each check node inB, find all distinct paths from the root variable node
by the following procedure:

11. First find all nodes at each level as:
12. Da = Ma

vj
∩ML−a

ci

13. Intialise the path sets as:
14. sq = {vj, vuq}, q ∈ {1, · · · ,D1}
15. and expand through levels2, · · · , L according to:
16. sx = {sv ∪ vwy : N 0

sv∩Da
∩ N 0

vwy
6= ∅}, ∀sv, v ∈ {1, · · · , Pa}, ∀vwy ∈ Da+1

17. Prune the setB according to the number of distinct paths, giving setC:
18. C = {ci : Pci = min

cy∈B
Pcy}

19. Compute the mean path EMD metrics for each surviving check node candidate
as follows:

20. Ep,ci = |{ck}| : ck ∈ N 0
s(b)p,ci

, ck 6∈ N 0
s(d 6=b)p,ci

∀b, d ∈ 1, · · · , ℓ
21. γci =

1

Pci

∑

p=1:Pci

Ep,ci

22. Choose the check node which has the best graph connectivity according to the
multipath EMD-based metric as:

23. cplace = ci ∈ C : γci = max
cz∈C

γcz

24. end if
25. end for
26. end for
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4.3 Analysis of the Multipath EMD Metric Progression

In a PEG-based construction, any cycles created by placement of the edge(xi, vj) will

contain that edge, including the shortest-length cycles created. One or many cycles are

created when, in Step 6 of Algorithm 1,N ℓ
vj
= ∅.

In review, the PEG algorithm selects from the setA = {N l−1
vj

: N l
vj

= ∅} the set of

nodes with minimum weight,B = {ci : |M0
ci
| = min

cx∈A
|M0

cx
|}. In that algorithm, the

nodes in this set were considered to be equivalent in terms oftheir effect on the perfor-

mance under iterative decoding as they are at equal maximum distance fromvj, and so a

node was selected from this set at random. In the following, ajustification for the decision

metric progression employed in the proposed construction algorithm is provided.

Denote the number of shortest-length paths from check nodecy ∈ B to the current

variable nodevj asPcy and recall that the setC = {ci : Pci = min
cy∈B

Pcy}. Thus a placement

involving any element ofC would create the same minimum number of shortest cycles,

Pci . The proposed algorithm selects a node fromC based on the extrinsic connections of

thosePci cycles.

At any particular edge placement in the progressive construction, the original PEG

algorithm would createPcy cycles of length2l+2, with cy ∈ B while the multipath EMD

approach of this paper createsPci cycles of the same length. By design:

Pci ≤ Pcy , ci ∈ C, cy ∈ B. (4.11)

In the above expression, the equality is satisfied in only twocases, when

Pcy = P ∀ cy ∈ B, (4.12)

whereP is some constant, or when
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|B| = 1. (4.13)

In both of these cases,C = B. Thus, at worst the proposed metric reduces to that of

the original PEG algorithm.

Consider the construction of two code graphs, where all but the final edge placement is

made using the same original PEG algorithm. For each placement, the number of shortest

cycles created, similarly to the notation used above,Pz,L(PEG) with z indexing the edge

placement andL denoting cycle length. Thus the total number of length-4 cycles in the

PEG constructed graph is
∑

z=1:E

Pz,L(PEG), whereE is the total number of edges in the

graph. The same applies for cycles of lengthL = 6, 8, · · · .

Now, the first graph in our hypothetical situation is constructed entirely by the PEG

algorithm, while for the second graph the final placement is made by the proposed mul-

tipath EMD algorithm. In both cases, cycles of lengthL = 2l + 2 are created. The total

number of cycles of length2l + 2 in each graph is

∑

z=1:E

Pz,2l+2(PEG), (4.14)

and

∑

z=1:E−1

Pz,2l+2(PEG) + PE,2l+2(MEMD), (4.15)

respectively.

We wish to show that

∑

z=1:E−1

Pz,2l+2(PEG) + PE,2l+2(MEMD) ≤
∑

z=1:E

Pz,2l+2(PEG), (4.16)
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Expanding the above equation, we obtain

∑

z=1:E−1

Pz,2l+2(PEG) + PE,2l+2(MEMD) ≤
∑

z=1:E−1

Pz,2l+2(PEG) + PE,2l+2(PEG).
(4.17)

From above, if we assume thatC 6= B,

PE,2l+2(PEG)− PE,2l+2(MEMD) = ǫ, (4.18)

whereǫ is some positive integer, while ifC = B,

PE,2l+2(PEG)− PE,2l+2(MEMD) = 0, (4.19)

proving that (4.16) holds.

Due to the suboptimal nature of PEG-based constructions, where some choice in edge

placement at an earlier stage of the graph, though locally optimal, may negatively impact

on available choices for edge placement at a later stage of construction, the corresponding

proof may not be constructed for earlier edge placements,z ≤ E. However, the pro-

posed algorithm follows the tractable locally optimal approach of the PEG algorithm and

has been demonstrated through simulation to produce graphscapable of excellent perfor-

mance. As further support for the assertion that reduces thenumber of shortest length

cycles throughout the graph, Table 4.1 provides the total number of cycles of length 6, 8

and 10 in a number of the code graphs used in Figs. 4.7 and 4.9, with the cycles counted

by means of the algorithm of [92]. Note that the proposed algorithm produces the graph

with the fewest number of cycles of length 6 among the constructions considered.
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Table 4.1: Numbers of cycles of each length found in the code graphs for the graph
constructions considered.

girth = 6 QC-PEG QC-M.-EMD-PEG QC-PEG-ACE-EMD
No. 6 Cycles 1560 1392 1488
No. 8 Cycles 29000 30608 28888
No. 10 Cycles 462312 481320 465744

4.4 Full Diversity Codes with Reduced Structure

In this section a class of codes with fewer constraints on thegraph structure than the

Root-LDPC graph, termed reduced structure, which are capable of achieving the diversity

of the block fading channel is introduced. A multipath EMD design extension for the

codes with reduced structure for block fading channels is also presented. The diversity-

achieving code class developed in this section comprises a generalisation of the previously

presented code which achieves the diversity of the channel with F = 2 only [93]. In that

paper, two results from the literature were employed:

For a code to achieve full diversity on the block fading channel, the systematic nodes

must be fully recoverable on the block binary erasure channel, i.e. the channel where the

fading coefficients take only the valuesβj ∈ [0,∞] [84].

and the well-known and previously discussed result concerning stopping sets:

Under iterative SPA decoding, each uncorrectable error on the binary erasure channel

is associated with a stopping set, stopping sets fully characterise the error events on that

channel.[39].

The rest of this section proceeds as follows: In part 4.4.1, the previously presented

code for theF = 2 case is outlined. Part 4.4.2 presents the extension of this approach

to theF = 3 case, while part 4.4.3 indicates the procedure for constructing a code for

a block fading channel with any number of fading coefficients. Part 4.4.4 discusses the

coding gain of the proposed codes.

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 4. MULTIPATH EMD CONSTRUCTION OF LDPC CODES 94

4.4.1 F = 2 Case

The work in [93] presented unstructured codes which achievefull diversity on the block

fading channel withF = 2 provided certain constraints on rate, distribution and cy-

cle properties are met. In order to meet the above requirement that the systematic

nodes be recoverable on the block binary erasure channel, which is similar to the block

fading channel subject toF independent fading coefficients but with each coefficient

βf ∈ [0,∞], f = 1, · · · , F , the fact that stopping sets fully characterise error on the

binary erasure channel and thus also account for the errors on the block erasure channel

is used to produce a new sufficient condition for achieving the diversity of the channel:

A systematic node is not recovered if it is a member of a stopping set and if that

stopping set is erased

We term a stopping set containing a systematic variable nodea systematic stopping set.

In theF = 2 case, an uncorrectable error occurs when all nodes in a systematic stopping

set are affected by the same fading coefficientβf .

V1 V2

β1 β2

Figure 4.2: The rate≤ 1
2

code for the block fading channel withF = 2

The general parity-check matrix for the code on theF = 2 channel is presented in Fig.

4.2. DenoteV1 as the set of variable nodes affected byβ1 andV2 as the set of variable

nodes affected byβ2. Assume that all the systematic nodes,Vsyst, are contained within

V1 and that protection of these nodes is the goal. From the work in the literature, stated

above, the requirement that the code achieves full diversity on theF = 2 channel is

exactly the requirement that there exists no subsetS ⊆ Vsyst such thatS is a stopping set.

In the notation previously introduced, this may be stated as:
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∃vj ∈ S : ∃ci, ci ∈ N 0
vj
, ci /∈ N 0

vk∈S\vj
(4.20)

This means that for each subset of the systematic node set,Vsyst, there exists some

variable node with at least one extrinsic connection with respect to that subset. If this

is the case, there is no stopping set contained withinVsyst and by the previously stated

results of the literature, each node is recoverable on the block binary erasure channel [39],

implying that the code achieves full diversity [84]. Thus, the full diversity requirement of

the code has been stated as a constraint on the nature of the code graph.

For the code of [93], in order to achieve the requirement of (4.20), the property of the

PEG construction that for some number of nodes in the initialphase of construction, no

cycles are created. As all stopping sets are formed from individual of multiple connected

cycles, this portion of the graph is free of stopping sets. Inthe original formulation of the

PEG algorithm, the order of parity-check matrix construction is left to right and the graph

associated with the firstj columns of the parity-check matrix is referred to as the left-hand

subgraph of thej-th variable node. For weight2 variable nodes, it was demonstrated [49]

that no cycle is created up to the variable nodev(M−1) whereM is the number of check

nodes of the graph. As such, when the PEG construction is usedand the systematic

variable nodes are assigned to the firstK variable nodes, the code can be guaranteed to

achieve diversity if those systematic nodes have weight 2 and:

K <
N

2
< (M − 1). (4.21)

Under these conditions, the variable node subset affected by β1 will be cycle free and

so will also be free of stopping sets.

4.4.2 F = 3 Case

In this subsection, the novel extension of the approach for block fading channels with

F > 2 is presented. First the channel withF = 3 will be considered, and a solution will be

developed for this scenario. Following this the generalisation to the block fading channel
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with any number of fading coefficients will be made. Certain structural constraints will

be necessary, as will become clear in the following. As such,this extended class of codes

will be termedreduced structure full diversity codes for the block fadingchannel, as the

structural requirements are reduced compared to the previously presented Root-LDPC

codes [84].

V1 V2

β1 β2

V3

β3

Figure 4.3: The rate≤ 1
3

code for the block fading channel withF = 3

For this case, the general parity-check matrix is represented in Fig. 4.3. Again assum-

ing that the systematic variable,Vsyst nodes are contained withinV1, the requirement for

full diversity again relies on stopping sets. However, in this case, it is necessary that the el-

ements ofVsyst be recoverable on the block binary erasure channel observation where any

one of the fading coefficients may be non-zero, or any pair maybe non-zero. If all three

coefficients are zero (β1 = β2 = β3 = 0) the systematic nodes are entirely unrecoverable,

and ifβ1 = ∞ the systematic nodes will be fully recovered from the channel irrespective

of β2 andβ3. In the case that, if for example,β3 is non-zero whileβ1 = β2 = 0, then any

stopping setS ⊆ V1 ∪ V2 would be unrecoverable [39] and likewise for the other single

non-zero fading coefficient scenario. Considering only the error rate of the systematic

nodes, the necessity thatS is not a stopping set is again as expressed in (4.20), but the

subsets of nodes for which this requirement must hold has expanded to every set where:

S ∩ Vsyst 6= ∅ : S ⊆ V1 ∪ V2 , S ⊆ V1 ∪ V3. (4.22)

Once again, the full diversity requirement for the code has been stated as a constraint

on the graphical structure of the code realisation. For theF = 3 case, the requirement

is more difficult to achieve, as there are more configurationsof the block erasures which

must be considered. However, once a graph is constructed which satisfies (4.20) and

(4.22), it is guaranteed to achieve full diversity on the block fading channel withF = 3,
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by the results of [39] and [84].

The equations (4.20) and (4.22) together impose the limit that no systematic stopping

set exists solely among the variable nodes inV1, among the nodes[V1 V2] and among

the variable nodes[V1 V3]. In the Root-LDPC code approach, stopping sets are avoided

by the imposition of the root-check structure. However, in order to avoid this structural

requirement, an alternative solution is presented in Fig. 4.4. Each of the two subgraphs

[Hβ1,1 Hβ2 ] and[Hβ1,2 Hβ3 ] are constructed to achieve full diversity on theF = 2 chan-

nel. As such, the subgraphHβ1,1 is cycle free, as isHβ1,2. Combined, they may have many

cycles, however the placement of the null matrices ensures that extrinsic connections exist,

to Hβ3 with respect toβ1, β2 and toHβ2 with respect toβ1, β3. Thus the systematic vari-

able nodes are recoverable under bothβ1 = β2 = 0, β3 = ∞ andβ1 = β3 = 0, β2 = ∞.

Additionally, underβ1 = 0, β2 = β3 = ∞ the extrinsic connections ensure no systematic

stopping sets among the subset of variable nodes affected byβ1 only. This code therefore

completely recovers the systematic bits on the block erasure channel and so achieves full

diversity on the block fading channel.

Hβ1,1 Hβ2 0

Hβ1,2 0 Hβ3

HBF 3
=

β1 β2 β3

Figure 4.4: Full diversity parity check matrix for theF = 3 channel

4.4.3 Cases withF > 3

V1 V2

β1 β2

VF

βF

Figure 4.5: The rate≤ 1
F

code for the general block fading channel
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In the general case withF fading coefficients, to recover the systematic nodes con-

tained inV1, the stopping set requirement generalises to involve all subsets including ele-

ments ofV1 and excluding all elements of one or more other fade-affected sets of nodes.

Now (4.20) must hold for all the subsets described by:

S ∩ Vsyst 6= ∅, (4.23)

where

S ⊆ V1 ∪ Vk1 ∪ Vk2 · · · ∪ Vkm : {k1 · · · km} ⊂ {2, · · · , F}. (4.24)

The constraints on the code graph described by Eqns. (4.20),(4.23) and (4.24) provide

a graphical interpretation of the requirements to achieve full diversity on the block fading

channel with generalF .

The full diversity code for theF = 4 channel is provided in Fig. 4.6. Diversity-

achieving codes for block fading channels with a greater number of fading channels are

constructed in a similar progression as that from theF = 3 code to theF = 4 code.

Hβ1,1

Hβ1,2

Hβ1,3

Hβ2

Hβ3

Hβ4

0

0 0

0

0 0

HBF 4
=

β1 β2 β3 β4

Figure 4.6: Full diversity parity check matrix for theF = 4 channel
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4.4.4 Pseudocode and Coding Gain of Proposed Codes

The pseudocode for construction of the proposed diversity-achieving codes with an arbi-

trary number of fades,F , is provided in Algorithm 5, demonstrating clearly the separate

construction of the submatrices by the PEG- based construction.

The imposed parity subgraph of the proposed codes ensures full diversity. Coding gain,

and thus the distance to the outage limit of the channel is dictated by both the threshold

performance of the code and the distribution of cycles within [Hβ1,x Hβx ]. While the

degree distribution optimisation for the proposed code class and block fading channels

with F > 2 remains as an open problem, the simulation results will demonstrate that

these codes perform reasonably well when constructed with an irregular variable node

degree distribution optimised for the AWGN channel. However, as is the case for the

F = 2 codes, decoding convergence is slow. In order to deal with this issue, the multipath

EMD based PEG construction is applied to the construction ofthe proposed codes, along

with theF = 2 codes of [93] in order to improve the decoding convergence speed and

improve the coding gain.

4.4.5 Rate and Fade Compatible Puncturing

From the code graph structures in Figs. 4.4 and 4.6 for diversity achieving codes on block

fading channels withF = 3 andF = 4, respectively, we can see that the graph for

theF − 1 channel is effectively nested within the graph for the channel with F fading

coefficients. In addition, the graphs are designed to recover from the worst-case scenario

of αi = 0, i ∈ {1, · · · , F}. This allows the use of the graph designed for the channel with

F fading coefficients on theF−1 channel by means of the elementary puncturing scheme

wherein the bits ofVF are punctured. In this case, only the bits[V1,V2, · · · ,VF−1] are

transmitted over the block fading channel withF − 1 fading coefficients. At the input

to the decoder, the LLRs associated with the variable nodes inVF are set to zero, and

iterative decoding is carried out on the full graph for theF -channel code. As this is

equivalent to an erasure, the properties of the graph ensurethat this does not affect the

diversity achieving capabilities, with respect to the error rate of the systematic bits.

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 4. MULTIPATH EMD CONSTRUCTION OF LDPC CODES 100

Algorithm 5 Proposed Diversity-Achieving LDPC Codes

1. Initialise with λsub(x) derived from the desired finalλ(x), Rsub < 1
2

andNsub =
K + M

F
.

2. for x = 1:Fdo
3. Call Algorithm 4 to carry out the multipath EMD PEG construction for each sub-

matrix [Hβ1,1Hβ2 ], [Hβ1,2Hβ3 ], · · · [Hβ1,F−1HβF
].

4. end for
5. Construct the final code from the submatrices as in Figs. 4.4 and 4.6, stacking the

Hβ1,x−1 submatrices vertically in the systematic part of the parity-check matrix and
placing theHβx submatrices along the diagonal of theM ×M parity part of the final
parity-check matrix.
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4.5 Simulation Results

The simulation study in this section is presented in two parts. In the first, the performance

results for the structured code classes on the AWGN and erasure channels are given, in

the form of decoded code word bit error rate (BER) as the SNR of the channel varies. In

the second part of this section, part 4.5.2, the reduced structure diversity-achieving codes

are evaluated on the block fading channel. In this case, the results are provided as the

variation of the frame error rate (FER) of the systematic partof the decoded code word as

the channel SNR varies. This is due to the challenging natureof the channel, the parity

part of the code word is generally not corrected and so this part of the decoded code word

is not used for the purposes of performance comparison. Thisis in contrast to the results

provided for the AWGN and erasure channels, where the error rate is computed for the

whole code word. This decision was made because in general, the syndrome check is

used as a stopping criterion for the decoder and the error rate of the whole code word will

impact performance in practical systems.

4.5.1 QC-LDPC and IRA Codes

In this section we present results demonstrating the gain achieved through the use of the

proposed novel construction algorithm, comparing the short block length performance of

a number of classes of codes to those codes constructed by previous methods, the original

PEG algorithm [53] and the ACE-based IPEG improvement [50], along with an algebraic

construction for the QC-LDPC codes [58]. For both QC-LDPC codes and IRA codes,

the irregular degree distribution was the density evolution optimised maximum degree 8

variable node distribution available in the literature [10], Table II:

λ(x) = .30013x+ .28395x2 + .41592x7 (4.25)

For all codes constructed, the check node distribution was not specified in the con-

struction algorithm, but rather was forced to have near-regular concentrated form:
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ρ(x) = axb + (1− a)xb−1. (4.26)

The QC-LDPC codes were constructed as in [59], with the construction algorithm

choosing tile placements and first entry positions within the tiles, and each subsequent

entry specified by cyclic shifts. The final distribution of the QC-LDPC codes was thus

altered slightly from (4.25) in order to achieve the necessary structure. Following the

approach of [59], the tile size of the codes produced was constrained to be relatively

small compared to the final graph size. This results in improved performance for the PEG

constructed QC-LDPC codes at the cost of a sacrifice in the benefits of the quasi-cyclic

structure. This amounts to a performance/complexity/memory trade-off, and in this case

the convention of [59] was followed. An algebraic construction based on Sidon sequences

was also included in the comparison, in order to provide a point of reference for the per-

formance achieved by the codes constructed. Note that this algebraic construction uses

larger tile sizes and therefore achieves greater complexity reduction and possible paral-

lelisation. However, this construction lacks the flexibility of the PEG-based construction

algorithm.

The IRA codes were constructed by the PEG-based algorithms directly, with the only

necessary alteration being the initialisation of the graphassociated with the parity bits of

the code word to the pre-determined dual diagonal structureof the accumulator.

For both QC-LDPC and IRA codes and following [22], the variablenode degree distri-

bution was also constrained to ensure that the number of weight-2 variable nodes was less

than the number of check nodes, thus ensuring no stopping sets were formed of weight-

2 variable nodes alone, a particularly harmful case. As thisrequirement was applied to

all the codes constructed, it does not affect the comparisonof construction algorithms

presented.

For both the QC-LDPC and IRA codes, transmission was simulatedon the AWGN

channel. The decoder was operated to a maximum of 40 iterations and 100 block errors

were gathered for each point in the plots. Improved performance is seen in the error floor

region for both the QC-LDPC and IRA codes constructed by the proposed multipath EMD

PEG-based algorithm compared with both the IPEG-based constructions using the ACE
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metric [50] and the original PEG-based constructions [53].

Fig. 4.7 presents the error rate plot for the QC-LDPC codes, with the original PEG

[53], the modified IPEG [50] and the proposed multipath EMD constructions all used

to construct the constrained QC-LDPC irregular code graph [59] with block length256

and submatrix sizeQ = 8. The plot for the algebraically constructed Sidon sequence-

based construction [58] is also included for comparison purposes. Due to the constraints

of that construction, the block length of graph constructedusing Sidon sequences is 258

and the QC submatrix isQ = 43 and the graph is(3, 6) regular. It is clear from Fig.

4.7 that the PEG-based designs provide significant performance improvements over the

algebraic construction across the range of SNRs considered,while the IPEG design offers

modest improvements over the original PEG construction in the error floor region. The

proposed multipath EMD strategy achieves a gain of0.4dB over the PEG construction

and 0.3dB over the IPEG construction at an error rate below10−7. Also included in

Fig. 4.7 is the plot for the QC-LDPC graph constructed by the QC-DOPEG algorithm

introduced in Chapter 3, demonstrating that although that graph construction offers better

performance than the considered constructions from the literature, the method proposed

in this chapter offers best performance overall, with a gainobserved of approximately

0.2dB over the QC-DOPEG constructed graph. This may be accountedfor by the fact

that the decoder optimisation (DO) operation is applied fora limited number of frames

and iterations due to complexity constraints, and that the selection of the noise parameter

for testing in the DO operation may be imperfect. Fig. 4.8 provides the error rate plot for

the IRA code class, with the modified IPEG design [50] and the proposed multipath EMD

strategy included on the plot. The graphs constructed have block length250 and rate1
2
.

The proposed strategy achieves a gain of0.25dB over the existing strategy at an error rate

below10−7. Fig. 4.9 includes results for the previously presented alteration to the IPEG

algorithm which makes use of a precise EMD value after the ACE-based decision has

been made. It is clear that the strategy presented in this chapter outperforms that design

in the error floor region.

Figs. 4.10 and 4.11 show the performance of graphs constructed by the construction

algorithms considered in Section 4.2 on the BEC. As previouslystated, for this simple

channel the error events are precisely erasures of stoppingsets and so these results di-

rectly demonstrate the relative presence of harmful stopping sets in the respective graphs.
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Fig. 4.10 plots the performance of the standard PEG constructed graph and the graph

constructed by the algorithm of [91], along with a construction which follows the pro-

posed metric progression but makes a random choice after theminimum path number

criterion is applied, i.e., at each placement in the graph construction a connection is made

randomly from the setC in (4.7). Thus Fig. 4.10 demonstrates the effect of reducingthe

number of shortest paths between the root variable node and the chosen check node for

each placement. While the construction of [91] outperforms this prematurely terminated

version of the proposed algorithm, the result is interesting as it demonstrates the gain

achievable through a metric which is distinct from those used previously in [53], [50]

and [91]. Fig. 4.11 demonstrates the performance of the graph constructed using the full

proposed Multipath EMD metric progression, demonstratingperformance improvements

in the error floor region.
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Figure 4.7: Performance of QC-LDPC codes of different constructions with rateR = 1
2

and block lengthN = 256.
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Figure 4.8: Performance of IRA codes of different constructions with rateR = 1
2

and
block lengthN = 250.
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and block lengthN = 256.
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Figure 4.10: Plot showing the performance on the BEC of the graph constructed with the
first stage of the proposed metric progression only, compared to the codes constructed by
the standard PEG algorithm and the construction which uses the ACE and local tree EMD
metrics.
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Figure 4.11: Plot showing the performance on the BEC of the graph constructed with the
full proposed multipath EMD metric progression, compared to the codes constructed by
the standard PEG algorithm and the construction which uses the ACE and local tree EMD
metrics.
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4.5.2 Results for the Block Fading Channel

Simulation results for the block fading channel are presented in Figs. 4.12 and 4.13. All

codes are irregular, with distributions derived by densityevolution for the AWGN channel,

as optimisation [93] remains an open problem for block fading channels withF > 2. It is

sufficient however to use suboptimal distributions to show that the proposed codes achieve

full diversity and are capable of performance close to the Root-LDPC codes with the same

distributions. It should be noted that the proposed codes when constructed by the PEG

algorithm require a greater number of iterations to performas well as the Root-LDPC

codes, as shown in the plots. Analysis of the convergence behaviour of the proposed code

class on the block fading channel also remains an open problem which may be considered

with, for example, the use of the EXIT characteristics of thecode [9]. However, this

greater computational requirement may be worthwhile when the added freedom of graph

construction is taken into account, along with the flexibility to use the proposed codes

on varied block fading channels, as shown in Fig. 4.12 for theF = 4 designed code

punctured for use on theF = 3 channel, with only a small sacrifice in performance. In

addition to the computational requirements of the proposedcodes, a small rate reduction

is imposed in order to meet the requirements of (4.21) for achieving full diversity. For the

F = 3 channel, the rate is reduced from1
3

to 0.3248 while for theF = 4 code of Fig.

4.13 the rate of the proposed code is0.2468 rather than1
4
.

The proposed multipath EMD construction was applied to the unstructured codes for

the block fading channel in order to reduce the required number of iterations under itera-

tive decoding to achieve the diversity of the channel. It canbe seen clearly in Fig. 4.14

that the improved distribution of cycles in the code graph resulting from the use of the

multipath EMD PEG construction allows a significantly improved speed of convergence,

which justifies the increased complexity burden of this construction compared to the PEG

algorithm, particularly as the construction phase is carried out off-line and does not lead

to an extra burden of complexity during transmission. The code considered for use on the

F = 2 channel is the rate0.48 code of [93] labeledCode 3in that paper, with block length

248. Fig. 4.14 shows the performance of bothF = 2 andF = 3 codes at a fixed SNRs

over a range of maximum allowed iterations, while Fig. 4.15 shows the performance of

theF = 2 code at a fixed maximum number of iterations of20 for a range of SNR values.
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From Fig. 4.14, we see that the use of the proposed strategy significantly reduces the

number of iterations required for the decoder to converge toa near-outage-limit error rate,

reducing the number of iterations required from 30 to 20. This is important in practical

applications, where latency and computational limits require fewer iterations in decoding.

For 20 decoder iterations, Fig. 4.15 then shows the variation of systematic frame error

rate with SNR, demonstrating that the gains achieved by use ofthe proposed strategy are

significant.
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Figure 4.12: Results for the proposed unstructured code for the block fading channel with
F = 3 compared to the Root-LDPC code for that channel. The plot for the unstructured
code designed for theF = 4 channel and punctured for use on theF = 3 channel is also
included.
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Figure 4.13: Results for the proposed unstructured code for the block fading channel with
F = 4 compared to the Root-LDPC code for that channel.
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Figure 4.14: Plot of performance of the unstructured diversity-achieving codes for the BF
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4.6 Summary

In this chapter, a graph-based construction algorithm was proposed which improves the

connection properties of the final graph, providing performance gains in the error floor

region of operation. The proposed algorithm, called multipath EMD PEG construction,

is demonstrated to provide significant performance improvements for a number of useful

structured code classes. In addition, a new class of codes for achieving full diversity on

general block fading channels is presented and is demonstrated to perform competitively

compared to the previously presented code class for this channel. The novel multipath

EMD construction algorithm is then applied to the construction of this code class, with

improvements in decoder convergence speed observed as a result.
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5.1 Introduction

As discussed in the literature review of Chapter 2, the message-passing decoding of LDPC

codes by the SPA performs excellently for large block lengths whereas it suffers due to

the presence of cycles at shorter lengths. The approaches discussed in Chapters 3 and

4 may be used to ameliorate the effects of cycles in the graph and improve the low er-

ror rate performance of the LDPC codes by altering the graph upon which the decoding
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algorithm operates, but they do not change the operation of the SPA algorithm itself. An-

other problem faced in the use of message-passing decoding for LDPC codes in situations

with stringent demands on latency and allowable power consumption, as in many modern

scenarios, is the relatively slow convergence of the SPA decoder. The computational bur-

den of the decoding process may be reduced by the use of approximations to the update

rules of the SPA as in the Min Sum algorithm [74] [75], at the cost of performance sac-

rifices. The Min Sum based approach may be improved by the use of correction factors

in the check node update approximation, through a multiplicative normalisation update

factor [78] or an additive offset update factor [77]. In bothcases, these factors account

for the overestimation of message magnitude resulting fromthe approximation in the up-

date calculation. In these cases, the complexity per iteration is reduced but the number

of iterations required for the decoder to converge is unaffected. In a similar approach,

reweighting factors may be applied to the full check node update of the SPA to amelio-

rate the overconfidence introduced to messages passed by thepresence of cycles, offering

performance improvements [69] [70] [72]. As discussed in Chapters 3 and 4, the struc-

ture of some code classes, such as QC-LDPC and protograph-based codes [94], allow

for increased parallelisation of processing in the decoderto reduce latency. However,

there are practical limits on the parallelisation possibledue to the constraints imposed

on the code graph. Linear programming (LP) decoding was proposed as an alternative

to the message-passing approaches, reframing the decodingproblem as a relaxation of

the maximum likelihood (ML) decoding problem which retainsthe ML certificate [95].

This approach is interesting and novel but suffers from impractically high complexity

barring its use in many practical scenarios. An alternativeapproach will be considered

in this chapter, exploiting the potential of the message update order, the schedule of the

message-passing decoder, to influence the convergence and error rate it provides.

As discussed in Chapter 2, the introduction of the sequentialLayered Belief Propa-

gation (LBP) [60], whereby the message updates use the most up-to-date information in

the graph by performing updates in a serial rather than parallel manner, and the perfor-

mance gains it offers for relatively small increases in complexity raised significant interest

in scheduling as a means to improve the performance of the decoder. The informed dy-

namic scheduling (IDS) schemes [28] [29] also introduced inChapter 2 offer dramatically

improved performance both in terms of convergence speed with respect to effective itera-

tions and in terms of error rate upon convergence, at the costof much greater complexity
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due to the additional computations required in calculatingthe residual, many of which

are discarded and recomputed when the state of the messages in the graph change (i.e.,

when a message is updated, the residuals of the messages which are affected in the next

iteration must be recomputed). Owing to the success of the RBP algorithm in improving

the convergence speed of the BP decoder, a good deal of work hasbeen done on residual-

based BP decoding [64] [65] [66] [67] [68]. In this chapter, the RBP algorithm will first

be introduced in greater detail, and a detailed discussion of the computational burden of

the residual calculation, supported by simulation results, will provide motivation for the

work in this chapter on alternative dynamic scheduling schemes.

In the proposed work, a dynamic schedule for BP-based message-passing decoding

algorithms where poor reliability of messages incident on anode is taken as a metric to

identify those message updates which will have a greater impact on decoder convergence.

Reliability in the log-domain BP decoder for binary LDPC codesis simply taken to be the

magnitude of the LLR. From this reduced list of potential message updates, a message is

then selected for update by computation and comparison of the residuals as in the RBP

and NWBP schemes. This approach has the dual benefits, in the first instance of limiting

the use of the residual and thus greatly decreasing the complexity of the algorithm as

a whole and in the second instance of prioritising the updateof those messages with

lower incoming reliability, where the term incoming denotes that the reliability is taken

for the messages arriving at the node in the current iteration and which will affect the

residual calculation if carried out for the message emanating from that node in the next

iteration. By prioritising the outgoing messages with low-reliability incoming messages,

the proposed approach effectively prioritises the provision of updated information to those

portions of the graph which have not yet converged. In the purely residual-based approach

the updates are selected according to the level of change they will induce in the messages

passed from one update to the next while in the proposed reliability- and residual-based

approach the choice of update is weighted on both level of change induced and magnitude

of belief at the node receiving the update, and so both schemes are intuitively satisfying.

The proposed approach has the desirable property that message updates which produce a

large change in LLR (i.e. have a large residual) at nodes which have already converged

to a strong belief will be avoided in favour of smaller changes at more uncertain nodes.

Simulation results will show that this approach offers significant improvements in the

convergence speed of the decoder, as measured by effective decoder iterations, while
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further analysis will demonstrate that the reductions in complexity make this approach far

more practical than previous IDS schemes. The proposed schemes also exhibit improved

error rates upon convergence with respect to RBP and NWBP in certain cases.

In summary, the main contributions of this chapter are:

• a novel knowledge-based message passing algorithm that exploits the reliability

measure of the messages in the graph to reduce the number of message residuals

which must be computed in order to produce a scheduling orderfor the decoding of

LDPC codes.

• new low-complexity algorithms based on the Min Sum and offset BP algorithms

that exploit the reliability of the messages to produce the decoding schedule at a

lower cost.

• an alternative approach to measuring the number of effective iterations which pro-

vides insight into the computational cost and effectiveness of the algorithms con-

sidered.

• detailed analyses of the computational complexity and fundamental advantages of

the proposed and existing algorithms.

• a comprehensive simulation study of the proposed and existing algorithms.

The rest of this chapter is laid out as follows: In Section 5.2the RBP and NS-BP

algorithms are described in detail to provide a solid base upon which to understand the

work to follow. In Section 5.3 a proposed alternative measure of the iterations of the IDS

scheme is introduced and its effects are discussed in detail. In Section 5.4 the proposed

reliability-based IDS scheme is introduced and described.Section 5.5 provides analy-

sis of the operation of the proposed algorithm and the computational complexity which

it requires. In Section 5.6 the simulation results for the proposed decoding algorithms

are presented and discussed, and Section 5.7 briefly summarises the contributions of the

chapter.
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5.2 Residual-based Belief Propagation Algorithms

This section provides a detailed introduction and discussion of the RBP, NS-BP and

their reduced-complexity approximate versions. This material provides motivation for

the novel algorithms outlined in this chapter and informs the work to be introduced in the

following sections through the notation and the concepts introduced.

5.2.1 Residual Belief Propagation

As previously discussed, the RBP algorithm uses exactly the same update rules as the

standard implementations of the BP algorithm, with the message update order not prede-

termined but instead dynamically selected before each update based on the current setting

of the messages in the graph. This allows for the selection ofmessages to update based

on the impact they will have on convergence, as indicated by the residual defined after the

(k)-th message update for the message from check nodem to variable noden as

r(k+1)
cm→vn

= |µ(k+1)
cm→vn

− µ(k)
cm→vn

|, (5.1)

wherer(k+1)
cm→vn is the residual for the messageµ(k+1)

cm→vn from check nodecm to variable

nodevn and the superscripts indicate the message update index. Themessageµ(k)
cm→vn

is that which is passed fromcm to vn after thek-th update. This means that in order to

compute the residual upon which the choice of the(k + 1)-th message update is based,

eachµ(k+1)
cm→vn

check node message update must be computed. This, as will be discussed

further, incurs a considerable computational penalty and may require more memory to

store previous values. However, convergence of the RBP algorithm, when these additional

updates are treated as an increase in computational cost, isdemonstrated to be excellent.

After the(k)-th check node message update, the RBP algorithm proceeds as follows:

• Update the check node message with the largest residual, identified as
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µ(k+1)
ca→vb

: r(k+1)
ca→vb

= max
m,n

r(k+1)
cm→vn

. (5.2)

• Update the APP LLR for nodeb and all variable node messages from nodeb as

µ(k+1)
vb→ci

= Lb +
∑

i′∈N (vb)\i

µ(k+1)
ci′→vj

, (5.3)

and

M
(k+1)
j = Lb +

∑

i∈N (vb)

µ(k+1)
ci→vb

. (5.4)

whereLb is the channel LLR for the variable nodevb and the superscripts differ from
those in the message passing rules of Eqns. (2.28) and (2.29)of Chapter 2 only because
the update index is arbitrarily taken to change only when a check node update is per-
formed, for clarity in representing the residual calculation.

• Compute the new residuals for each affected check nodeci, i ∈ N (vb), where
N (ni) is the neighbourhood of the nodeni as defined previously in this work, as

r(k+2)
cc→vd

= |µ(k+2)
cc→vd

− µ(k+1)
cc→vd

|, cc ∈ N(vb)\a, vd ∈ N(cc). (5.5)

• Finally, the residual selected for the message update is setto zero to ensure the same
message is not erroneously selected for update multiple times

r(k+2)
ca→vb

= 0. (5.6)

Clearly, the residual calculations introduce a significant computational load to the al-

gorithm, with(d̄v − 1)(d̄c − 1) additional check node message updates required for each

effective update. This is the minimum additional complexity incurred in the RBP scheme,

resulting from the necessity to keep the residuals up to dateas new information propagates

through the graph, and is seen as the cost of the scheduling scheme. In order to avoid re-

computation of many messages, additional storage is also required by the RBP algorithm,

both for the messages computed but not propagated and for theresiduals which are based

on those messages.
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The pseudocode for the RBP algorithm is presented in Algorithm6 to provide a clear

algorithmic view of the process involved and to allow for ease of comparison with the

algorithms to be introduced in the following.

Algorithm 6 RBP

Initialise µcm → vn = 0

Initialise µvn→cm = Ln

Compute all residualsr(1)cm→vn

while stopping rule is not satisfieddo

After update (k), identify and updateµ(k+1)
ca→vb

such thatr(k+1)
ca→vb

= max
m,n

r(k+1)
cm→vn

Setr(k+1)
ca→vb = 0

Update eachµ(k+1)
vb→cc , c ∈ N(b)\a andM (k+1)

b according to (5.3) and (5.4) respec-

tively.

for eachd ∈ N(c) \ b do

Compute the new residualsr(k+2)
cc→vd according to (5.5)

end for

if the iteration count incrementsthen

Stopping rule: perform parity-checks and stop if all checksare satisfied or if the

maximum iteration count has been reached.

end if

end while

As the RBP and the understanding of each of the steps involved isvital to the discus-

sions that follow, and as reference will be made to these steps throughout the chapter, Fig.

5.1 provides a block diagram of the steps involved to ensure clarity and to allow for ease

of reference at a later stage. In Fig. 5.1, Step 1 of the RBP corresponds to (5.2), Step 2 to

(5.3) and Step 3 to (5.5).
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Step 1: µ(k+1)
ca→vb

with the largest r(k+1)
ca→vb

is updated.

vb

ca

µ(k+1)
ca→vb

Step 2: M (k+1)
vb

, µ(k+1)
vb→cc

, c ∈ N(b) \ a are updated.

vb

c1 c2 c3 cdv

Step 3: For each c ∈ N(b) \ a, calculate µ(k+2)
cc→vd

, d ∈ N(c) \ b

µ(k+1)
vb→cc

and from these calculate the residuals r(k+2)
cc→vd

c1 c2 cdv

M (k+1)
vb

Figure 5.1: Diagram outlining the steps of the RBP algorithm
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5.2.2 Node-wise Residual Belief Propagation

Also included in [29] was an alternative residual-based message-passing schedule which

allowed for some improvements over the RBP in the converged-upon error rate at the cost

of reducing the convergence speed. The idea behind this altered schedule was to avoid

non-ML errors from which the RBP suffers by means of updating all edges emanating

from the node associated with the largest residual as apposed to the single largest-residual

message only. The block diagram for the algorithm with this schedule, known as the

node-wise or NS-BP algorithm is given in Fig. 5.2.

5.2.3 Approximate Residual-based Belief Propagation Schemes

In an attempt to reduce the very high computational load associated with the dynamic

schedule of the RBP, a reduced complexity incarnation of the two IDS algorithms which

have been introduced was also presented in [29]. In these altered schemes, the residual

calculation of (5.1) is replaced with

r̃(k+1)
cm→vn

= |µ̃(k+1)
cm→vn

− µ̃(k)
cm→vn

|, (5.7)

where the messagesµ̃c→v represent the message updates as calculated by the Min Sum

check node update operation of (2.35) in Chapter 2. Once the largest residual is identified,

the full SPA update rule of (2.28) is applied to produce the message to be propagated in

the graph. This alteration significantly reduces the computational cost of the residual

calculation, at the cost of increased storage for the approximate message versions of the

propagated messages, which must be stored and kept up to datefor use in the approximate

residual calculation. It was demonstrated that the use of approximate residuals does not

harm the performance of the IDS schemes under discussion [29].
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Step 1: µ(k+1)
ca→vb

with the largest r(k+1)
ca→vb

is identifed and all

vb3

ca

µ(k+1)
ca→vb

Step2: Update all M (k+1)
vb

, µ(k+1)
vb→ce

, e ∈ N(b) \ a for all vb

vb1

ce1 cedv

Step3: For each c ∈ N(b) \ a, calculate µ(k+2)
cc→vd

, d ∈ N(c) \ b

µ(k+1)
vb1

→cc

and from these calculate the residuals r(k+2)
cc→vd

c1 c2 c(dc−1)(dv)

M (k+1)
vb1

vb1 vb2 vbdc

vbdc

ce(dc−2)(dv)+1
ce(dc−1)(dv)

µ(k+1)
vb1

→cc
M (k+1)

vb1

with b ∈ N(a).

µ(k+1)
ca→vx

, x ∈ N(ca) are updated.

Figure 5.2: Diagram outlining the steps of the NS-BP algorithm
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5.2.4 Convergence Performance of the Considered Algorithms
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Figure 5.3: Plot of the convergence of the established schedules for the SPA decoder
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Figure 5.4: Plot of the convergence of the established schedules for the SPA decoder

Figs. 5.3 and 5.4 demonstrate the convergence performance of the standard flooding
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and layered BP schedules and those of the IDS schemes from the literature which are

discussed in this chapter, RBP and NS-BP in the moderate SNR region of operation.

Note that the RBP schedule offers very fast initial convergence in both cases but for the

irregular code is outperformed by the NS-BP schedule at higher iteration numbers. This is

due to the very local nature of the RBP schedule, which may introduce error propagation

if a poor message is selected by its residual at an early stageof the processing. Note also

that the error rate is given for classic iteration number. This labeling is deliberate and is

in reference to the following section, in which a discussionis provided on the choice of

the point in the algorithms processing at which to compare the performance of the IDS

schemes to the classic schemes.

5.3 Proposed Alternative Measurement of Decoding Iter-

ations

As was noted in Chapter 2, and as will now be apparent from the algorithm outline of the

previous section, the calculation of the residual for both RBPand NS-BP schemes incurs

a quite significant cost in terms of additional computation when compared to the flooding

and layered schedules. As the IDS schemes do not impose the requirement to update all

message of one kind or another before revisiting some node with a large current resid-

ual, they do not follow a flooding/layered style of iteration, rather the algorithms iterate

the message updates. The argument presented in favour of theIDS schemes established

in [29] treats the computation of the residual as an additional complexity of the algorithm

induced by the informed schedule, as distinct from the message-update computation. As

a result, the error performance of the IDS schemes was evaluated at the point in their op-

eration when the number of check-to-variable messages updated in the graph was equal

to that of the flooding/layered schedules (i.e. afterMd̂c check-to-variable messages have

been passed). It is true that some choice must be made about the point in the IDS algo-

rithm at which to evaluate performance and to compare to the deterministic scheduling

schemes. However, as the residuals must be computed based onthe most up-to-date in-

formation passed in the graph, and the residual must be recomputed at each node which

has had its incoming message state changed by a message update in its neighbourhood

to depth 1, the message updates used for residual computation are effectively indistin-
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guishable from those used for the messages actually passed (in fact, the algorithm calls

for the residual message updates to be stored and used, rather than recomputed for each

message actually passed by the IDS scheme). In addition, while the residual calculations

may be parallelised to some degree in the same way that the standard schedules may al-

low, many real-world scenarios impose limits on processingand interconnection capacity

in the decoder.

It is instructive to define an alternative measure of the iteration of the IDS scheme

to be the point in the operation of the algorithm at which the total number of check-to-

variable message updates (both passed messages and those used only for residual cal-

culation) equals that of the flooding/layered schedules. This amounts to the case where

the processing of message updates is entirely sequential and serves to illustrate the cost

of residual calculation. The error rate of the IDS schemes under this iteration measure,

which we term a modified iteration, in combination with theirperformance under the clas-

sic iteration measure give a clearer picture of the performance of the schemes and the cost

of their operation.

As demonstrated by Figs. 5.5 and 5.6, the choice of iterationmeasurement point has a

great effect on the apparent performance of IDS schemes. In particular, these plots suggest

that in terms of error rate measured against computation required, the RBP and NS-BP

schemes are not as attractive as the results of Figs. 5.3 and 5.4 would indicate. This ob-

servation forms the motivation for the work of this chapter.A point to note from Figs. 5.5

and 5.6 is the fact that the error performance for the floodingand layered schedules is the

same as in Figs. 5.3 and 5.4, the modified iteration measure for these schemes is precisely

the same as the classic iteration measure as they incur no additional processing for sched-

ule determination. In addition, while the NS-BP algorithm appears to be very competitive

under the classic iteration measure, offering a trade-off between the fast convergence of

the RBP and good error performance at higher iteration numbers, the plots of Figs. 5.5

and 5.6 illustrate that the scheme may not be as attractive asthe results under classic it-

eration measure would indicate, as convergence under the modified iteration measure is

very slow. More precisely, given that the number of check-to-variable message updates

in the flooding and layered schedules in one iteration is equal to the number of edges in

the graph,Mdc, we provide the following definitions of the classic and modified iteration

measures:
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Definition A classic iteration of the IDS scheme is defined to be the integer value,

initialised to zero, which increments each time in the iterative processing of the algorithm

when the number of check-to-variable messagespassedin the graph is an integer multiple

of the number of edges in the graph,Mdc.

Definition A modified iteration is defined to be the integer value, initialised to zero,

which increments each time in the IDS BP operation that the total number of check-to-

variable messagescomputed is an integer multiple of the number of edges in the graph,

Mdc, with the total counting both messages passed and messages computed only for

residual computation.

Thus the classic iteration index, denotedx is defined in terms of the notation of Algo-

rithm 6 of this chapter as

x =

⌈

k

Mdc

⌉

, (5.8)

where⌈a⌉ denotes the smallest integer larger thana.

As k increments for each message passed, the modified iteration measure may be de-

fined in terms ofk provided it is scaled by the number of check-to-variable message

computations required for each message passed in the graph.Referring to Fig. 5.1 show-

ing the steps of the RBP algorithm, the updated message provides new information to a

single variable node, and the processing at this node delivers new information to(dv − 1)

check nodes. At each of these check nodes,(dc − 1) message updates must be performed

in order to produce the up to date residuals. The modified iteration measure for the RBP

is thus

χ =

⌈

k(dc − 1)(dv − 1)

Mdc

⌉

. (5.9)

For the NS-BP, refer to Fig. 5.2. The full check node update passesdc messages,

and at each variable node receiving updated information there at(dv − 1) new outgoing

messages produced. At each of the receiving check nodes,(dc − 1) updates are required

for the residual calculations. That is, fordc messages passed,dc(dv − 1)(dc − 1) message
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updates must be performed and thus the modified iteration measure will be (5.9), which

is the same as that of the RBP algorithm.

Note that the modified iteration measures described here assume that the messages

updated for use in the residual calculation can be stored andused as the messages passed

in the graph once the largest residual is identified. Also note that the variablesdv anddc

are parameters of the regular LDPC code, but the above equations and their derivations

stand for the irregular case with the substitution of the average node degreeŝdv andd̂c.

As is evident from equations (5.8) and (5.9) the use of the modified iteration measure

will not affect the messages passed in the graph of the IDS scheme but will rather affect

the time in the decoder processing at which the stopping rulecheck is performed and

thus the point in processing at which the performance is evaluated. This explains the

large difference in performance between Figs. 5.3 - 5.4 and Figs. 5.5 - 5.6 shown in this

section.
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Figure 5.5: Plot of the convergence of the established schedules for the SPA decoder with
the proposed modified iteration measure
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Figure 5.6: Plot of the convergence of the established schedules for the SPA decoder with
the proposed modified iteration measure
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5.4 Reliability-based Schemes for Informed Dynamic

Scheduling

In this section, the proposed IDS belief propagation schemebased on the combined use

of the incoming message reliability and the previously discussed message residuals is

detailed. The proposed scheduling scheme is then applied for the nodewise scheme. Fol-

lowing this, the approximate versions of these schemes are developed which use the Min

Sum approximation to the check node update rule in the residual calculation in order to

lower the computational complexity of the dynamic scheduling.

5.4.1 Reliability-Residual Belief Propagation

While the convergence capabilities of the RBP algorithm and itsextension the node-wise

RBP (NS-BP) algorithm are quite impressive, the computationalcost of the IDS schemes

presents a significant issue. In order to mitigate this cost and further improve the perfor-

mance, an alternative method to identify the message with largest residual was sought.

It was noted that in the initial stages of operation, when thecurrent outgoing messages

at the check node are zero (µ
(k)
cm→vn = 0), the residuals for each message are simply the

absolute values of the outgoing messages to be computed. Further, the largest residual

is always in this case associated with the edge with smallestabsolute value of incoming

message (µ(k)
vj→cm). Thus in this initial stage, in order to compute the residual, one must

simply compute the outgoing message on the edge with smallest incoming message at

each check node.

In fact, the absolute value of the LLR message incoming to thecheck node, termed

the reliability, is a useful measure of the confidence of an estimate of the value which

that variable node would be decoded to if the iterative algorithm was stopped at that point

of its processing. As stated above, in the initial stages of operation the RBP algorithm

selects exactly the edge associated with the smallest reliability. Upon investigation of a

number of test cases of the RBP algorithm, after the initial phase of operation the edge

with the largest residual was found to be associated with theedge with minimum current

reliability more than with any other edge, while it was associated with one of the two
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edges with smallest reliability messages very often. This motivates the use of the relia-

bility to reduce the number of residuals computed and thus the overall complexity of the

decoding scheme. Another motivating factor in the use of themessage reliabilities is the

poor performance of the RBP algorithm at higher SNR when compared to both the NS-BP

and to the LBP algorithms. This poor performance has been ascribed to the highly local

nature of the edge-serial processing of the RBP algorithm [29]and the fact that a poor

choice early in the processing of the RBP algorithm resulting from a largest-residual mes-

sage taking the decoder further from convergence to the correct code word and the error

propagation that follows. Using the message reliability along with its residual to select

the message to be updated has the benefit of focusing the dynamic schedule on sections

of the graph which have not yet converged and then propagating the messages which lead

to the greatest increase in belief.

The Rel.-RBP message updates are selected according to the following procedure for

each check node: For the check nodecm, identify the two incoming messages with small-

est absolute value, i.e., the two smallest-reliability incoming messages

µ(k+1)
vn1→cm

: |µ(k+1)
vn1→cm

| = min
n∈N(cm)

|µ(k+1)
vn→cm

|, (5.10)

and

µ(k+1)
vn2→cm

: |µ(k+1)
vn2→cm

| = min
n∈N(cm)\n1

|µ(k+1)
vn→cm

|. (5.11)

For the variable nodesvn1 andvn2, calculate the residual

r(k+1)
cm→vn

= |µ(k+1)
cm→vn

− µ(k)
cm→vn

| , n ∈ {n1, n2}. (5.12)

Now calculate the check-node-residual as
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cm

µ
(k+1)
vn1

→cm µ
(k+1)
vn2

→cm

(a)

cm

µ
(k+1)
cm→vn1 µ

(k+1)
cm→vn2

(b)

cm

[R
(k+1)
cm , vn2

, µ
(k+1)
cm→vn2

]

(c)

Figure 5.7: Steps involved in computing the reliability-based check node residual

R(k+1)
cm

= r(k+1)
cm→vx

: r(k+1)
cm→vn

= max
n∈{n1,n2}

r(k+1)
cm→vn

, (5.13)

and record the variable nodevx and the associated updated messageµ
(k+1)
cm→vx .

This process is repeated for eachm = 1, · · ·M . Then, the message update which is

assigned is selected by finding the largest check-node-residual

R(k+1)
ca

= max
m∈{1,···M}

R(k+1)
cm

(5.14)

Once the check nodeca is identified, the associated messageµ
(k+1)
ca→vn is assigned, where

bothn andµ(k+1)
ca→vn are stored values forca computed in (5.12) and (5.13) above. The steps

involved in the computation of the check node residual are illustrated graphically in Fig.

5.7, with 5.7a showing the identification of the two minimum reliability messages in blue,

5.7b showing the computation of the outgoing messages on those two identified edges and

5.7c showing the stored triple for that check node,[R(k+1)
cm , vn2 , µ

(k+1)
cm→vn2

].

Care must be taken to ensure that the same message is not selected for multiple up-

date assignations. In standard residual-based schemes, retransmission of any message is

avoided by setting the residual for the updated message to zero after each assignment,

ensuring in those schemes that the message on some edge will not be passed again until

an updated message arrives at its source node. In the proposed Rel.-RBP algorithm, by

design, residuals for each message are not stored but ratherthe check-node-residual de-

fined in (5.13) is maintained for each check node in the graph and used to select the next

message to be updated. After a message is assigned for a particular check node a new
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check-node-residual must be computed. In order to avoid selecting and passing the same

message multiple times before new information arrives at the check node, an indicator

vector is defined and updated for each check node in the following way. The vectorim

is a binary vector of length|M0
cm
| with each entry corresponding to an edge emanating

from the check nodecm. The vector is initialised to contain all ones. When the message

selected for update assignment is the message passed on thed-th edge emanating from

cm, thed-th entry inim is set to zero. When a new message arrives at a check nodecm

on its e-th edge, thee-th entry in im is set to one. Prior to the use of (5.10)-(5.14) at

each check node, a check is made on the contents ofim. If im contains only zero entries,

no new information has arrived atcm and no new messages fromcm may be computed

which have not already been passed. In this case,R(k+1)
cm is set to zero. Ifim contains only

one nonzero entry, for example in the position corresponding to the edge connectingcm

to some variable nodevp, then the sets over which the two minimum values are found in

(5.10) and (5.11) is amended toN(cm)\vp andN(cm)\{n1, vp}, respectively. Otherwise

(5.10) and (5.11) are applied unchanged because for each edge emanating fromcm there

is some new incoming message contributing to the updated outgoing message calculated

using the check node update equation.

5.4.2 Reliability-based Node-wise BP Algorithm

In a parallel to the development from the RBP to the NS-BP algorithm, the Rel.-NS-BP

was developed as an extension to that scheme which updates all edges emanating from

the check node associated with the largest check node residual, thereby avoiding some of

the errors encountered by the Rel.-RBP scheme due to its local focus in passing messages

in the graph.

At each check node, the check node residuals are calculated in exactly the same manner

as for the Rel.-RBP, with the only change being that a greater number of updates and

residual calculations are performed in each step of the algorithm.
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5.4.3 Approximate Reliability-based IDS Schemes

Following the progression from the RBP and NS-BP to the approximate versions of those

algorithms [29] as outlined in Section 5.2.3, lower complexity versions of both the Rel.-

RBP and Rel.-NS-BP schemes were developed with the use of the Min Sum check node

update rule of (2.35). As was the case for the ARBP and the ANS-BP the residuals, in this

case the check-node residuals, are computed using the Min Sum update operation while

the message updates assigned in the graph are computed usingthe full hyperbolictan

update rule. Similarly to the case for the ARBP/ANS-BP, the use of this approximation in

residual calculation does not cause any significant harm to the performance of the decoder,

as will be shown in Section 5.6. The change to the Rel.-RBP updaterules (5.10) to (5.14)

only manifests in the replacing of (5.12) with

r̃(k+1)
cm→vn

= |µ̃(k+1)
cm→vn

− µ̃(k)
cm→vn

| , n ∈ {n1, n2}, (5.15)

and with r̃(k+1)
cm→vn replacingr(k+1)

cm→vn everywhere it appears in (5.13). In the algorithm,

the only additional change required is, as required for bothARBP and ANS-BP, that the

computed approximated message updatesµ̃
(k+1)
cm→vn are stored to be used later as theµ̃

(k)
cm→vn

values when processing (5.15).

5.4.4 Numerical Example

In this section, a numerical example for the residual calculation of the standard RBP and

proposed Rel.-RBP algorithms is provided to clarify the steps required. For a particular

check nodec in the RBP algorithm, the message update computations are performed for

all edges emanating from the check node, based on the messages, shown in Fig. 5.8,

incident on the check node. These updates are performed using (2.28), as for the example

for the messageµ(k+1)
c→v1 :
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µ(k+1)
c→v1

= 2atanh

[

tanh(
−4.8

2
)tanh(

8.5

2
)tanh(

9.1

2
)tanh(

6.7

2
)tanh(

−7.2

2
)

]

= 4.6,

(5.16)

and likewise for the other messages computed and displayed in Fig. 5.9 using the

incoming messages from Fig. 5.8. Then, the residuals for each message are computed

as in (5.1) simply by subtracting from the computed messagesfor each edge the message

which has most recently been passed in the graph, shown in Fig. 5.10. Thus, for the

message from check nodec to variable nodev1 the residual is computed as

r(k+1)
c→v1

= |µ(k+1)
c→v1

− µ(k)
c→v1

| = |4.6− 2.9| = 1.7, (5.17)

and the other residuals are found to be

r(k+1)
c→v2

= 3, r(k+1)
c→v3

= 1.8, r(k+1)
c→v4

= 1.6, r(k+1)
c→v5

= 0.1, r(k+1)
c→v6

= 0. (5.18)

Thus for these messages, the messageµ
(k+1)
c→v2 is the best according to the residual and

its residual would be compared to all others in the graph. Ifr
(k+1)
c→v2 was the largest in the

graph, then the message updateµ
(k+1)
c→v2 would be assigned.

For the Rel.-RBP algorithm, only the two edges with smallest reliability of incoming

message at each check node are considered. Those edges for the example check node,c,

are highlighted in blue in Figs. 5.8 - 5.10. Thus, for the Rel.-RBP algorithm, only two

message update computations are required to produce each check node residual. The two

computed residuals

r(k+1)
c→v2

= 3, and, r(k+1)
c→v5

= 0.1, (5.19)

are compared, the messageµ
(k+1)
c→v2 is observed to have the largest residual among those

two and sor(k+1)
c→v2 is taken to be the check node residual, to be compared to all other check
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node residuals. If it is the largest among thoseM values, then the message updateµ
(k+1)
c→v2

is assigned.

v1

v2

v3 v4

v5

v6c
9.4

−4.8

8.5 9.1

6.7

−7.2

Figure 5.8: The messages passed to check nodem at timek.
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4.6 4.6

4.7

−4.6
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v2

v3 v4

v5

v6c

Figure 5.9: The messages which are computed and which would pass at timek + 1, if
selected through largest residual.
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4.6

−4.6
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v3 v4
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v6c

Figure 5.10: The state of the messages emanating from check nodem at timek
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5.5 Analysis

5.5.1 Performance

As discussed in Chapter 2, for a cycle free graph the convergence of the BP algorithm is

guaranteed, and in fact an update schedule may be found whichconverges in one iteration

[13]. However, for the graph with cycles, convergence is notguaranteed but the iterative

BP algorithms are observed to perform well in general, particularly on graphs with fewer

short cycles and better connectivity as discussed in Chapters 3 and 4. In this section a

comparison is made between the messages passed in the RBP algorithm and the proposed

Rel.-RBP algorithm.

a

b c d

e

cm

Figure 5.11: General check node in the graph.

In Fig. 5.11 an arbitrary check node is illustrated, with incoming messages indicated

on the edges labeleda to e. In the RBP algorithm, the message which will be selected and

passed from this check node will be the message associated with the largest residual. For

the Rel.-RBP algorithm, the update message selection will be based on incoming message

reliability as well as message residuals. For the sake of thefollowing discussion, assume

the incoming message on edgea has the smallest reliability and the message arriving on

edgee has the second smallest reliability. Broadly, there are two possible scenarios of

interest: the first one is that the edge associated with the largest residual isa or e, and the

second is that the edge with the largest residual is among{b, c, d}. In the first case, the

RBP and Rel.-RBP select the same message for update from this node.

|µRBP,1| = |µRel.−RBP,1|. (5.20)

In the second case, the message will differ and the difference will depend on whether
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Algorithm 7 Reliability-based Scheduling

Initialise µ0
cm→vn

= 0

Initialise µ0
vn→cm

= Ln

Initialise For each CN,identify and calculate the max. residualR(1)
cm = r

(1)
cm→va :

r
(1)
cm→va = maxm,n r

(1)
cm→vn andrecord the associated messageµcm→va .

while stopping rule is not satisfieddo

Identify cb : R(k+1)
cb

= max
m

Rcm

Assign the previously storedµ(k+1)
cm→vc associated withR(k+1)

cb , and setim to zero in the

appropriate position.

Perform the indicator vector check.

For the selected check node,cb, identifyandcalculatethe next-largest residualR(k+1)
cb

andrecord the messageµ(k+1)
cb→vp.

Update eachµk+1
vc→cd

, d ∈ N(c)\b andMvc according to (5.3) and (5.4) respectively,

and set the appropriate position in eachid to one.

for eache ∈ N(d) \ c do

Perform the indicator vector check.

Identify and calculate the check node residualR(k+2)
e and record the message

µ
(k+2)
ce→vq , storing the valueq also.

end for

if the iteration count incrementsthen

Stopping rule: perform parity-checks and stop if all checksare satisfied or if the

maximum iteration count has been reached.

end if

end while
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a or e is associated with the larger residual. If the larger residual is associated with

edgee which has the second smallest incoming message reliabilityat the node, then the

message update will involve the incoming messages on the edges{a, b, c, d} while the

RBP message update for the edge with the largest overall residual, which for the sake of

this argument will be edgeb, will involve the incoming messages on edges{a, c, d, e}. As

the check node update equation uses the hyperbolic tangent function, the updated message

is dominated by the smallest absolute value among the incoming messages considered in

the update and for this case which we label 2a, the message arriving on edgea dominates

the update and so the updated message for RBP and Rel.-RBP are approximately equal.

|µRBP,2a| ≈ |µRel.−RBP,2a|. (5.21)

Finally, when the message selected for update by the RBP algorithm is not among

the two edges with smallest incoming reliabilities and the Rel.-RBP algorithm finds that

the residual associated with edgea is larger than the residual associated with edgee, the

updated message for the RBP will be dominated by the smallest reliability of all incoming

messages, the message on edgea, while the Rel.-RBP update will be dominated by the

second smallest incoming reliability, the message on edgee. In this case:

|µRBP,2b| < |µRel.−RBP,2b|. (5.22)

Thus, overall we find that at each check node

|µRBP | ≤ |µRel.−RBP |, (5.23)

where the equality is satisfied only in case 1 above. As the message magnitudes (reli-

abilities) correspond to confidence in the current estimateof the symbol for the variable

node which the message is associated with, these larger magnitude messages passed to

parts of the graph which have weak current beliefs has the effect of speeding up the con-

vergence of the algorithm, as will be seen in Section 5.6.
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It should be noted that the edge serial nature of the Rel.-RBP means that it suffers,

as with the RBP algorithm, from errors which would not otherwise occur in the BP al-

gorithm with the standard flooding schedule at high maximum iteration numbers, which

occur when the algorithm makes poor choices initially and errors propagate through the

graph. However, the very fast convergence of the Rel.-RBP algorithm which may be ob-

served in Section 5.6 may make it useful for scenarios with tight constraints on latency,

where additional buffer storage prior to decoding and a variable-iteration architecture in

the receiver as in [96] [97] would offer an increase in the throughput of the system. In

addition, the errors at high iteration numbers may be avoided by use of the Rel.-RBP al-

gorithm as part of a dual stage decoding approach such as [66]which uses a simple check

and switches to an alternatively scheduled algorithm to avoid the relatively rare errors

which harm the overall error rate of the decoder. Another potential approach would be

to use the Rel.-RBP algorithm in combination with the quota-based approach of [68] to

detect and break message passing patterns which are likely to terminate in a decoding

failure. Both of these approaches have been demonstrated to be very effective when used

with the RBP algorithm, and when used with the Rel.-RBP algorithm would yield greater

benefits in terms of convergence speed and complexity.

5.5.2 Complexity Analysis

One of the main motivators for the novel decoding algorithmspresented presented in this

chapter was to deal with the high computational cost the existing IDS schemes must pay

in order to dynamically select each message for update. The modified iteration measure

introduced in Section 5.3 provided a tool for viewing the error performance of the exist-

ing and proposed IDS schemes as a function of the complexity of the layered/flooding

schemes. While this proved useful in highlighting the computational complexity of the

IDS schemes and produced enlightening simulation results which will be further dis-

cussed in Section 5.6, a more formal and precise discussion of the complexity of the

various schemes is presented in this section.

Referring once again to the BP update equations of (2.28) and (2.29), it is clear that the

check node will dominate the complexity of the SPA schemes. As such, the discussion of

the complexity of the algorithms will revolve around a discussion of the number of check
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node updates required, with further references to increased storage space and additional

requirements of the IDS schemes to follow. Table I of [76] provides a comparison of the

required complexities of the different implementations ofthe BP algorithm, with numbers

of addition, multiplication and use of special operations such as use of hyperbolic tangent

and table look-up operations considered. In this work, required uses of check node up-

date of the considered schemes are discussed in order to maintain generality and clarity

of discussion, along with ease of comparison with the literature which also follows this

convention [67] [68].

Flooding scheduling

In the flooding scheme, all check nodes are updated, followedby all variable nodes, where

a node update involves computing all outgoing messages fromthe node. Thus the com-

plexity of one iteration isMdc = Ndv (the number of edges in the graph) uses of the

check node update equation andNdv uses of the variable node update equation.

Layered scheduling

For the layered schedule as considered in this work, theM check nodes are updated

sequentially. After each check node, all connected variable nodes are updated. Thus, this

scheme involves in one iterationMdc uses of the check node update equation andMdcdv

uses of the variable node update equation.

RBP Algorithm

For the RBP scheme the complexity in terms of uses of the respective node update equa-

tions will first be presented for a single edge update, and then the complexity per iteration

will be developed for each type of iteration measure. In reference to Fig. 5.1, when the

update is assigned in the first step of the algorithm for the edge associated with the largest

residual, a single variable node is updated and a new residual must be computed for each

edge emanating from the(dv − 1) check nodes which receive updated beliefs. That is,
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one check-to-variable message update results in(dv − 1) uses of the variable node update

equation and(dv−1)(dc−1) uses of the check node update equation. One iteration under

the classic iteration measure involvesMdc check to variable message assignations and so

the complexity of the RBP for one classic iteration isMdc(dv − 1)(dc − 1).

The modified iteration measure was defined in order to allow for a like-for-like com-

parison in terms of usages of the check node update equation between the flooding/layered

schedules and the IDS schemes. As such, one modified iteration of the RBP scheme re-

quires
Mdc

(dv − 1)(dc − 1)
check node message assignations and thus the complexity per

modified iteration of the RBP isMdc uses of the check node update equation.

NS-BP Algorithm

The complexity required for the NS-BP scheme is the same as forthe RBP scheme. With

Fig. 5.2 as a reference, the first step of the NS-BP algorithm isto assigndc check-to-

variable messages for the check node associated with the largest residual. For each vari-

able node receiving new information,(dv − 1) new messages are computed in the second

step of the algorithm. Finally, for each check node which receives updated beliefs,(dc−1)

uses of the check node update equation are required to compute the new residuals. Thus

for dc message update assignations, the complexity required isdc(dv−1) uses of the vari-

able node update equation anddc(dv−1)(dc−1) uses of the check node update equation,

giving a per classic iteration complexity in terms of check node update equation uses of

Mdc(dv − 1)(dc − 1) which is the same as for the RBP algorithm.

Proposed Rel.-RBP Algorithm

For the proposed algorithm, the first two stages are identical to that of the RBP algorithm,

first the check-to-variable message assignation followed by the VN extrinsic edge update

requiring(dv − 1) uses of the variable node update equation. Thus(dv − 1) check nodes

received updated beliefs and new check node residuals must be computed. This requires

a comparison of magnitudes on incoming reliabilities and selection of the two smallest-

reliability messages for residual calculation. Two uses ofthe check node update equation
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Table 5.1: Table showing the complexity requirements of thedecoding schemes consid-
ered

Algorithm Uses of VN Upd. Eqn. Uses of VN Upd. Eqn.

BP-Flooding Ndv Mdc
BP-Layered Nd2v Mdc
RBP/NS-BP Ndv(dv − 1) Mdc(dv − 1)(dc − 1)
Rel.-RBP/Rel.-NS-BP Ndv(dv − 1) 2Mdc(dv − 1)

are required at each check node, followed by a comparison to find the largest residual of

the two computed. At the check node the check node residual, destination variable node

and computed message are stored for use in the message assignation of step 1. Thus for

each message update assignation, the proposed Rel.-RBP algorithm requires2(dv − 1)

uses of the check node update equation and for a classic iteration of the Rel.-RBP the

check node update equation is used2Mdc(dv − 1) times. This is a complexity reduction

compared to the(dv − 1)(dc − 1) uses necessary for the RBP algorithm because of the

limits imposed on the LDPC code parameters that

2 ≤ dv < dc. (5.24)

Proposed Rel.-NS-BP Algorithm

As was the case for the NS-BP algorithm, the Rel.-NS-BP requiresthe same number of

check node update equation uses as the Rel.-RBP, requiring2dc(dv − 1) uses for everydc

assigned messages and thus2Mdc(dv − 1) uses per classic iteration.

Graphical Illustration of the Complexity

Figs. 5.12 and 5.13 provide a graphical illustration of the complexity per iteration pro-

vided in the table above, with Fig. 5.12 demonstrating the variation of complexity for a

fixed code rate and degree distributions and increasing block length while Fig. 5.13 shows

how the complexity changes for the different degree distributions provided in Tables 1 and

2 of [10], where the average check and variable node degrees were used. Number of uses
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of the check node update equation (2.28) is taken as the measure of complexity in both

plots. This is justified first by the fact that, for the standard SPA, the complexity of the

check node update is greater than that of the variable node update (2.29) and thus domi-

nates overall complexity, and in the second case by the fact that the reliability-based IDS

schemes and the standard IDS schemes require the same numberof uses of the variable

node update per classic iteration, and thus will differ in complexity only in the number of

check node updates. Additionally, the LBP requires approximately the same number of

variable node updates as those IDS schemes. The BP algorithm with flooding schedule

however requires fewer uses of the variable node update equation per iteration, and this

should be noted when considering the plots of Figs. 5.12 and 5.13.
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Figure 5.12: Plot of the complexity per iteration of the established and proposed schedules
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Figure 5.13: Plot of the complexity per iteration of the established and proposed schedules
with varying degree distributions

This section and in particular Figs. 5.12 and 5.13 illustrate the great computational
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cost associated with the dynamic scheduling based BP schemes. This serves to highlight

the importance of the proposed iteration measure of Section5.3 in allowing a comparison

of error rate performance of the proposed and established schemes which takes this re-

quired processing into account. As stated, the additional complexity of the IDS schemes

is dominated by the computation of messages used only for residual calculation which

must be performed online during the decoding in exactly the same way as the computa-

tion of the messages which are passed in the standard approaches. As such, the very fast

convergence exhibited by the RBP and NS-BP when compared to BP andLBP schemes

under the classic iteration measure may offer an overly optimistic view of performance,

as parallel computation of all the messages required to keepthe residual up to date may

not be possible in every scenario of interest. It should be noted that the purely sequen-

tial computation of messages which would correspond to the schemes evaluated under

the proposed alternative iteration measure may be overly pessimistic, as some level of

parallelisation of the required computation may be possible in many scenarios. As such,

the use of both the classic and proposed iteration measure allows a better insight into the

performance of the schemes considered.

5.6 Simulation Results

In this section, the simulation study which illustrates thecontributions made in this chap-

ter is presented. The results are provided primarily for twoLDPC code test cases, which

have already been in the plots of Figs. 5.3 to 5.6, namely the block length 400 PEG-

constructed regular rate1
2
(3, 6) code and the block length 576 rate1

2
WiMAX code with

maximum variable node degree 6. These codes were chosen to demonstrate the perfor-

mance achievable for the proposed algorithms in the short block length case which is

the primary focus of this work as a whole. These codes also allow for ease of compari-

son between the work presented here and the literature, and for recreation of the results

presented.

The channel considered is the AWGN channel. The plots show thebit error rate (BER)

performance of the proposed and established schemes as a function of the classic iteration,

the proposed modified iteration measure and as the signal-to-noise ratio (SNR) of the
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channel varies.

Fig. 5.14 demonstrates that for the regular code consideredand under the classic it-

eration measure, the proposed Rel.-RBP scheme exhibits excellent performance in the

low iteration region of operation, outperforming all decoders in this region including the

RBP which boasts very fast convergence. Beyond approximately 10 iterations, the Rel.-

RBP is outperformed by the RBP and beyond approximately 25 iterations it is further

outperformed by the NS-BP and Rel.-NS-BP schemes. The plot alsodemonstrates that

the Rel.-NS-BP offers the same performance as the NS-BP. Fig. 5.15 demonstrates that

the excellent error rate performance of the proposed schemes is achieved at a significantly

lower complexity than the respective base schemes. The Rel.-NS-BP converges strikingly

faster than the NS-BP, albeit much slower than the flooding andlayered schemes. The

Rel.-RBP scheme achieves significant gains over the layered BP which is important be-

cause, due to the use of the modified iterations, in this plot the various schemes have the

same complexity per iteration. Fig. 5.16 shows the operation of the schemes considered

for the irregular WiMAX code. Again, the Rel.-RBP exhibits excellent performance in

the low iteration number region of operation and in this caseconverges to the same error

rate as the RBP at higher iterations. As expected [29], the node-wise schemes perform

better for a high number of iterations. Once again, the Rel.-NS-BP algorithm achieves the

same error rate performance as the NS-BP. Fig. 5.17 demonstrates that, when the modi-

fied iteration measure is considered, the proposed Rel.-NS-BPagain performs far better

than the NS-BP but worse than the layered or flooding schedules. The improvement of

the Rel.-RBP over the LBP in this case is smaller. However, as the complexity of the two

schemes in terms of check node update operations is the same,the small improvement

is still notable. Fig. 5.18 demonstrates that, as expected,when a low maximum number

of iterations of 5 iterations is allowed the proposed Rel.-RBP performs the best among

the decoding schemes considered, achieving a0.1dB gain over the already impressive

RBP and approximately0.5dB gain over the layered scheme. Also as expected given the

results presented previously, the Rel.-NS-BP and the NS-BP schemes perform very simi-

larly. When 10 iterations of each decoder is allowed, Fig. 5.19 shows that the Rel.-RBP

still provides the best performance, with a small gain over the RBP algorithm and more

than0.2dB of gain over the LBP. Again, the performance of the Rel-NS-BP scheme is

close to that of the NS-BP scheme. Fig. 5.20 shows that in the higher maximum itera-

tion number region of operation of 40 iterations, the NS-BP and Rel.-NS-BP provide the
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best performance, while the Rel.-RBP has converged to the same performance as the RBP

scheme. Fig. 5.21 demonstrates the very great affect of the different view of iteration

measure on the perception of the performance on the IDS schemes. When the schemes

are compared on equal complexity terms, the Rel.-RBP exhibits significant performance

improvements over the LBP, with a gain of approximately0.1dB above a BER of10−4.

This plot again demonstrates that in the low iteration number the Rel.-RBP algorithm per-

forms excellently. At a maximum of 10 iterations shown in Fig. 5.22, the gain offered

over the LBP scheme is still present but has reduced to a less significant margin. Again,

the three other IDS schemes do not offer practical error rates under this iteration measure.

At the high maximum iteration region of operation of 40 iterations shown in Fig. 5.23 the

Rel.-RBP does not offer improvements over the LBP in terms of error rate but also does

not perform worse, matching the plot for that scheme closely.

Fig. 5.24 demonstrates the Min Sum based approximate residual may be used in place

of the full hyperbolic tangent based residual to further reduce the complexity of the pro-

posed IDS scheme with very little impact on the error rate performance.
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Figure 5.14: Plot of the convergence of the established and novel schedules applied to the
regular code with the classic iteration measure.
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Figure 5.15: Plot of the convergence of the established and novel schedules applied to the
regular code with the proposed modified iteration measure.
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Figure 5.16: Plot of the convergence of the established and novel schedules for the irreg-
ular WiMAX code with the classic iteration measure.
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Figure 5.17: Plot of the convergence of the established and novel schedules for the irreg-
ular WiMAX code with the proposed modified iteration measure.
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Figure 5.18: Plot of the BER vsEb
No

for the rate1
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WiMAX code at 5 classic iterations.
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Figure 5.19: Plot of the BER vsEb
No

for the rate1
2

WiMAX code at 10 classic iterations.
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Figure 5.20: Plot of the BER vsEb
No

for the rate1
2

WiMAX code at 40 classic iterations.
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Figure 5.21: Plot of the BER vsEb
No

for the rate1
2

WiMAX code at 5 modified iterations.
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Figure 5.22: Plot of the BER vsEb
No

for the rate1
2

WiMAX code at 10 modified iterations.
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Figure 5.23: Plot of the BER vsEb
No

for the rate1
2

WiMAX code at 40 modified iterations.
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Figure 5.24: Plot of the BER vs classic iterations for a numberof SNR points for the
A.Rel.-RBP and Rel.-RBP algorithms.
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5.7 Summary

In this chapter, the residual-based IDS schemes were introduced in detail and a discus-

sion of the high computational cost of the residual calculation in those schemes, aided

by a proposed new measure of iteration for evaluating the error-rate performance of the

IDS schemes, provided the motivation for the development ofimproved knowledge-based

dynamic scheduling schemes. Based on the knowledge possessed by the decoder during

processing of the beliefs passed in the graph, the reliability was selected as an indicator

of which edges were likely to be associated with large residuals. This approach allowed a

significant reduction in the required computation to support the dynamic scheduling. The

focus on edges with small reliability and hence relatively poor convergence had the added

benefit of speeding up convergence in the Reliability-Residual-BP algorithm proposed

in this chapter and of offering improved error rate performance at low error rates/higher

SNR. The simulation study supporting the proposed algorithmdemonstrated its excellent

performance, in particular in the low iteration number range of operation. In the higher

iteration range of operation, the proposed algorithm suffered somewhat compared to the

node-wise schemes such as the NS-BP. As a possible future direction of the work, a mixed

scheduling scheme which uses the proposed Rel.-RBP for some number of iterations and

then switches to use either a node-wise informed schedule orsimply the layered schedule

may improve performance at higher maximum iteration numbers, in a similar fashion to

the work presented in [66]. Another possibility would be theuse of the proposed Rel.-

RBP schedule with the addition of the constraints discussed in[68] and so to avoid the

message passing patterns which ultimately lead to error events. The proposed new iter-

ation measure also served to show, in the results section, that when all processing in the

decoder is taken into account, the Rel.-RBP performs best out ofthe standard and existing

IDS schemes, with both RBP and NS-BP failing to outperform either flooding or layered

scheduled algorithms under this view. The excellent performance of the Rel.-RBP scheme

under both classic and modified iteration measures makes a strong argument in favour of

this scheme over the existing IDS schemes considered.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, construction and decoding techniques for LDPC codes at short to medium

block lengths have been investigated. Constructions for structured and unstructured

LDPC code classes with improved graph properties and thus improved error rate per-

formance have been developed and analysed. Code design and construction for the par-

ticularly challenging block fading channel has also been considered, with a number of

novel approaches proposed and evaluated in comparison to the current state of the art in

the literature. Improved decoding strategies for LDPC codes based on informed dynamic

scheduling have also been considered. In the following, themain contributions of the

thesis are summarised by chapter.

Chapter 3 considers the construction of structured LDPC codes for the AWGN and

block fading channels. For the AWGN channel, the construction of the QC-LDPC class

of codes at short to medium block lengths was improved by the use of the decoder to

select edge placement in the graph, to offer improvements inerror floor performance of

the code. For the block fading channel, a number of construction problems for the Root-

LDPC code class were considered, and a PEG-based graph construction was proposed and

demonstrated to offer performance improvements over the standard random approaches.

In addition, a new class based on the root-check node structure combined with the re-
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peat accumulate graph was proposed to allow low complexity encoding and full diversity

operation on the block fading channel.

In Chapter 4, an understanding of the structures in the graph which lead to decoder

failure was applied to the problem of graph construction. A construction algorithm for

producing graphs with excellent performance in the error floor region was proposed based

on this knowledge and on the avoidance these harmful structures in the graph of the

code. The proposed Multipath EMD graph construction providing lower error rate in

the higher SNR region has the benefit of being flexible in potentially being applied to dif-

ferent construction approaches and in the rate, dimensionsand distributions of the graphs

constructed. In addition, the gains achieved by the graph construction do not result in

any cost in increased complexity during the operation of thecoding scheme. The short

length graphs constructed would be attractive for use in wireless communication systems

where the latency and complexity costs of using longer blocklengths are not suitable.

In addition to the novel graph construction algorithm, a newclass of code was proposed

for use on generalised block fading channels which has fewerstructural constraints than

the previously discussed Root-LDPC code class. The improvedgraph construction was

applied to this code class to achieve improvements in error rate and convergence speed.

The code class was also demonstrated to allow the use of a simple puncturing scheme to

make the code versatile for use on block fading channels withdiffering numbers of fading

coefficients.

In Chapter 5, a novel schedule for the BP decoder was proposed which made use of

the IDS approach to improve convergence speed while reducing the complexity required

significantly with respect to the residual-based schemes previously presented in the lit-

erature. The proposed scheduling scheme makes use of the reliabilities of the messages

currently passed in the graph along with the impact the message passing will have on con-

vergence in order to improve the message update selection and reduce the total number

of message updates which must be computed in the decoding algorithm. Convergence

speed is demonstrated to improve dramatically and in a detailed analysis and discussion,

the benefit in terms of complexity are demonstrated to be significant. A lower complexity

version of the algorithm is further developed which makes use of the approximate Min

Sum check node update rule for residual calculation at no cost in error rate performance.

The decoding schemes proposed in Chapter 5, through the speedof convergence which
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they offer and the trade off between complexity and performance which they allow have

the potential to find use in many areas of communications where the latency imposed by

slow decoding convergence is unacceptable.

6.2 Future Work

The results presented in this work are presented primarily for simple channel models,

in order to isolate the effects of the code construction or schedule used in decoding on

the error rate under iterative decoding. As such, one potential area of interesting future

work is the investigation of the proposed methods when used in more complex applica-

tion scenarios [32] [34], where factors such as imperfect channel knowledge and limits

on processing time may influence the achievable error performance. For the proposed

constructions and decoding algorithm it would be particularly interesting to investigate

the performance of an iteratively detected and decoded system, where the turbo concept

of iterative exchange of extrinsic information is applied both at the decoder and between

the decoder and detector [98]- [108].

Other topics of interest arising from the work presented in this thesis include:

• The application of the proposed graph design approaches to the other interesting

code classes such as non-binary LDPC codes [109] and generalised/doubly gener-

alised LDPC codes [110] [111].

• The application of the EMD-based metric progression proposed in Chapter 4 to

the problem of knowledge-aided puncturing to produce rate compatible codes and

puncturing schemes which suffer less from performance degradation as a result of

the puncturing [112] [113].

• To investigate the possible benefits of applying the reweighting of [69] [70] [73] to

the reliability-based decoder developed in Chapter 5, in order to produce a decoding

scheme which excels both in convergence speed and error rateat high iterations

while avoiding high complexity. Further to this, the relationship between the gains

achieved by the reweighting strategies and those observed for the offset Min Sum
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approximation to the BP algorithm [77] is interesting and offers the possibility of

producing an IDS scheme such as the one proposed in Chapter 5 with even lower

complexity and excellent performance.

• The use of the reliability-based scheme for message passingon general graphs

may allow the improvements seen for the decoding of LDPC codes to be achieved

in a number of other interesting scenarios where distributed statistical inference

has been applied. Some examples would include the use of message-passing ap-

proaches for the estimation of operating parameters in communications systems,

such as channel conditions in the wireless network [114], machine parameters in

the smart grid [115] or sensor outputs in the wireless sensornetwork [116].
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Glossary

ACE ApproximateCycleEMD

AWGN AdditiveWhiteGuassianNoise

BEC BinaryErasureChannel

BER Bit Error Rate

BP Belief Propagation

BPSK BinaryPhaseShift Keying

DO DecoderOptimised

EMD Extrinsic MessageDegree

EXIT Extrinsic InformationTransfer

FER FrameError Rate

IDS InformedDynamicScheduling

IRA I rregularRepeatAccumulate

LBP LayeredBelief Propagation

LDPC Low-densityParity-check

LLR LogL ikelihoodRatio

LP L inearProgramming

LR L ikelihoodRatio

MAP MaximumA posterioriProbability

MDS MaximumDistanceSeparable

ML MaximumL ikelihood

NS-BP Node-wiSeBelief Propagation

PEG ProgressiveEdgeGrowth

PCM Parity CheckMatrix

QC QuasiCyclic

RA RepeatAccumulate

RBP ResidualBelief Propagation

Rel.-RBP Reliability-ResidualBelief Propagation

SNR Signal toNoiseRatio

SPA SumProductAlgorithm

TRBP TreeReweightedBelief Propagation
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