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Abstract

Error control coding is an essential part of modern commatioas systems. LDPC codes
have been demonstrated to offer performance near the fuerdahlimits of channels
corrupted by random noise. Optimal maximum likelihood dkeg of LDPC codes is too
complex to be practically useful even at short block lengtid so a graph-based message
passing decoder known as the belief propagation algorithused instead. In fact, on
graphs without closed paths known as cycles the iterativesage passing decoding is
known to be optimal and may converge in a single iteratiothoaigh identifying the
message update schedule which allows single-iteratiovecgance is not trivial. At finite
block lengths graphs without cycles have poor minimum distgproperties and perform
poorly even under optimal decoding. LDPC codes with largekbllength have been
demonstrated to offer performance close to that predicedddes of infinite length, as
the cycles present in the graph are quite long. In this theBIBC codes of shorter length
are considered as they offer advantages in terms of lateamtycamplexity, at the cost
of performance degradation from the increased number ot skicles in the graph. For
these shorter LDPC codes, the problems considered are:

First, improved construction of structured and unstruedltDPC code graphs of short
length with a view to reducing the harmful effects of the egobn error rate performance,
based on knowledge of the decoding process. Structured gragias are particularly
interesting as they allow benefits in encoding and decodimgpdexity and speed. Sec-
ondly, the design and construction of LDPC codes for thelkbfading channel, a par-
ticularly challenging scenario from the point of view of @rcontrol code design. Both
established and novel classes of codes for the channel asgdeoed. Finally the de-
coding of LDPC codes by the belief propagation algorithmdasidered, in particular
the scheduling of messages passed in the iterative dedd#apwledge-aided approach
is developed based on message reliabilities and residualbotv fast convergence and
significant improvements in error rate performance.
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Chapter 1

Introduction

Contents
1.1 OVEIVIEW . . . . o o e e 1
1.2 Motivation . . . . . . . . . 2
1.3 Contributions . . . . . . ... 3
1.4 ThesisOutline . ... .. ... . ... ... 5

1.1 Overview

Error control coding has developed from the seminal work afu@e Shannon [1] to
become an integral element of practical communicationesys Relatively recent ad-
vances, in particular the application of the Turbo prineif#] to the decoding of Turbo
codes [3] and LDPC codes [4], have allowed performance wapgroaches the funda-
mental limits of channel capacity derived by Shannon. The&wothis thesis investigates
Low-density Parity-check (LDPC) codes, first introducedha work of Gallager [4] [5]

and rediscovered by MacKay and Neal [6], with some impontaark carried out in the

intervening years [7]. Upon rediscovery, there has beerhrmierest in these codes ow-
ing to the advances in computational capacity which makentpeactically viable. In

particular, this thesis proposes and studies LDPC codéremtion and decoding strate-

gies for short code block lengths.

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014
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CHAPTER 1. INTRODUCTION 2

Early work on LDPC codes involved generalisations to caséfs wegular parame-
ters [8] and explorations of asymptotic performance [9][XDf great importance is the
work of Tanner [7] which provides a graphical representatwb the LDPC code. The
graphical interpretation of the code allows the applicatid a broad class of message-
passing algorithms which have been independently disedve@number of times, allow-
ing the decoding problem to be framed as the computation gjimels in a distributed in-
ference problem and allowing the development of a set o$ttaléistribute the processing
to be carried out locally at the nodes of the graph which isgrts the code [11] [12] [13].
More recent developments in the literature have seen LDRIgsadopted in a number
of standards, including WiIMAX [14], DVB-S2 [15], and sat&dlicommunications [16].
In [17], bounds on code parameters at finite block lengthglareed. In practical use,
LDPC codes are subject to the interrelated issues of coryplaixthe encoding process,
delay incurred in the decoding process and performance raaythe the Shannon limit
at shorter block lengths. Shorter block lengths may redoeeomplexity of both encod-
ing and decoding processing and reduce latency incurretidoylbck-wise processing
of the bit stream by the decoder, but the performance of theCRodes under iterative
decoding suffers at shorter lengths, both in terms of aelieverror rates and the time
taken for the decoder to converge. These issues detracttfremractical usefulness of
LDPC codes, and form the motivation for the work on shorgtér DPC codes presented
in this work.

1.2 Motivation

Early work on LDPC codes focused on establishing bounds dionpeance and on the
derivation of optimal parameters under asymptotic assiomp{9] [10]. However, there
are a number of problems with using LDPC codes in demandigly thiroughput, low
power consumption and low complexity scenarios. Firstlgjlevthe graph-based itera-
tive decoding developed for LDPC codes provides low compleecoding, encoding is
in the general case quite costly in terms of complexity wiherdimensions of the code are
large [18]. Certain advantages may be achieved through #thefusirther constraints on
the structure of the code graph, in addition to those basistcaints inherent to the gen-
eral code class. These constraints lead to a number of speatfe classes which allow,

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 1. INTRODUCTION 3

among other advantages, reduced complexity encoding apibwed performance un-
der certain difficult transmission conditions while alstralucing new challenges to the
code design and construction [19] [20] [21] [22] [23]. Theskvantages and challenges
motivate an investigation of structured LDPC codes. Degieé benefits offered by the
structured LDPC codes classes, demanding complexity andghput requirements of
modern communications systems often limit the practicallgwable dimensions of the
code. This leads then to another issue found in implemeh@fC codes, that while the
codes of large block length provide performance close tbgredicted under asymptotic
analysis, at shorter lengths there is significant degradati performance. As will be
discussed, certain assumptions made concerning the goalomger hold at these more
practical block lengths [10]. Another issue which affecesfprmance and which may
make these codes less useful in practical scenarios is ldite/eéy slow convergence of
the iterative decoding algorithms, incurring an unacdelptéevel of delay in the system
as a result of the high required number of iterations in treder.

These issues motivate the investigation of the performaht®PC codes under iter-
ative decoding at short to medium block lengths, with a faouthe effects that particular
realisations of the code graph at non-asymptotic dimesdiawe on the iterative decod-
ing process and on how this knowledge may be exploited in codstruction and in the

iterative decoding in order to improve performance at thpraetical code dimensions.

1.3 Contributions

The contributions presented in this thesis are summarséollaws:

e As briefly mentioned previously, the imposition of part&ustructural constraints
on the graph of the LDPC code allows numerous benefits. Haw#wese con-
straints present new challenges in code construction iticpkar, where certain
established approaches lack the required flexibility drttaiachieve the desired
performance. The first contribution presented in this wqgli@s to the problem
of graph construction for structured LDPC codes a methogeldped by the au-

thor, for improving code graph construction by the use oftérative decoder in the

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 1. INTRODUCTION 4

construction phase to test the effect certain graph settinge on the overall perfor-
mance of the code realisation. This method, known as deag@misation (DO)
was seen to provide performance improvements for unstetttDPC codes in the
critical low error rate region at no extra cost to the comgjeaf operation during
transmission [24]. The first contribution outlined in thsodiment concerns the ap-
plication of this method to the useful code class of Quaslicy.DPC (QC-LDPC)
codes, with a performance improvement of approximatelgB.8bserved for the
code constructed with the proposed method compared to the @anstructed by
the standard QC-PEG algorithm.

e The block fading channel presents unique challenges fremtiannel coding point
of view, with the classic approach of large random LDPC caikinfy to provide
performance approaching the theoretical limit of the clehi®5] [26] [27]. A
number of constrained LDPC code classes have been preserthedliterature in
order to mitigate the effects of the channel through conoestin the graph be-
tween nodes affected by different fading coefficients. Taestruction of these
codes provides a particular challenge, towards which a eumicontributions are
presented in the body of this work. In the first contributinrhis area, an improved
construction technique for the Root-LDPC class of codes\i28¢h achieve the di-
versity of the channel is presented, providing a significadiing gain over the prior
methods, with improvements of up @37dB observed. This technique is further ap-
plied to the construction of constrained Root-LDPC codessda. In the second
contribution on the topic of coding for the block fading chah the unstructured
LDPC codes for achieving the diversity of the block fadinguchel are considered.
These codes, presented for the special case of the charthetweai independent
fadings, are then extended to the general case of codesesliticed structure with
respect to the Root-LDPC codes.

¢ In order to further improve the error rate performance ofrshlmck length codes,
novel candidate selection metric in code graph constmdsiaeveloped based on
knowledge of harmful structures present in the graph of tdecwhich lead to a
loss of independence of message passed in the iterativdidg@lgorithm and thus
to performance degradation. In contrast to the previousigussed decoder-based
approach which required a large number of tests in orderdweatly generate a

meaningful metric for use in the graph construction, thishod produces a metric
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CHAPTER 1. INTRODUCTION 5

directly based on the observed settings of the code grapis. métric allows for
the avoidance of the performance-degrading graph stegamd a further improve-

ment in the low error rate region of operation of the code.

e The final contribution presented in this work concerns teeative sum product
decoding of LDPC codes. As previously stated, the decoditgsifor this algo-
rithm define the message updates applied to decoding baséé connections of
the code graph, but do not specify the order in which thesatggdare made. The
standard schedule of updates involves, in each iteratidimeodlgorithm, operating
on all nodes of one type in the bipartite graph of the code hrd tn a separate
phase of the iteration operating on the other type of nodéss dimple approach
however fails to propagate the most up-to-date messagesginithe graph. Re-
cent developments, termed informed dynamic schedulin§)ave demonstrated
great improvements in convergence of the decoder by usengutrent state of the
messages in the graph to select the next message to be uf8jtgx9]. The work
presented on this topic allows for a significant reductiothien complexity of the
dynamic scheduling by exploiting knowledge of the messagsipng update rules,
in order to provide similar performance at a much lower cast] in some key sce-
narios also provides an improvement in the performance efdécoder, both in

terms of the error rate observed and the speed of convergétive decoder.

1.4 Thesis Outline

The rest of this thesis is organised as follows:

e In Chapter 2, a review of the literature is provided, covetimg fundamentals of
LDPC codes and a number of key concepts which will be useditfirout this the-
sis. The general coding system including channel modelsidered are introduced
and the specifics of LDPC codes including the propertiesettide graph and its
use in decoding and graph construction are also introdukssh. considered here

are the code classes considered and the methods used tteroode parameters.

e Chapter 3 presents work on the decoder-optimised consiruatiethod for the
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structured LDPC code classes, QC-LDPC codes and irreguypaateaccumulate
(IRA) codes. In addition, the structured LDPC code classesltae of providing
performance approaching the theoretical limit of the blfackng channel are con-
sidered, and improved construction methods and novel cdadees are developed
and demonstrated to provide performance approachingmhiat it should be noted
that the work presented in Chapter 3 on coding for the blockhéadhannel was
developed through collaboration with A.G.D Uchoa. Speaili¢ the code con-
structions for Root-LDPC graphs were developed with the eigmeof the author
on graph construction methods combining with the knowleafg®.G.D Uchoa on
the specifics of the channel and the challenges involveds,Tthe work presented
on construction of Root-LDPC graphs constitutes the comtiob of the author in

the collaborative effort.

e Chapter 4 presents the graph construction method for progwstiort to medium
block length code graphs with improved low error rate peri@ance based on
knowledge and avoidance of harmful structures in the finaplgrof the code. The
performance of the proposed construction method is cordgarthat of the state
of the art, and is then extended to the construction of a nuwitthe code classes
considered in Chapter 3.

e In Chapter 5, the improved reduced-complexity reliabibysed scheduling
scheme based on the IDS approach for the SPA is presentesl démonstrated
to provide performance improvements for both regular aretjilar LDPC codes.
In addition, the scheduling scheme is extended to the h@iggfagation based Min

Sum approximation to the SPA in order to provide a lower caxipy alternative.

e Chapter 6 summarises the contributions of the thesis, pesvadnclusions for each
of the topics considered and discusses related open prshgmthe potential for

future work.
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Chapter 2

Literature Review

Contents
2.1 Introduction . . . . . . . .. 7
2.2 ChannelCoding . ... ... ... . . .. .. .. .. 8
23 LDPCCodes . . . .. . . e 11
2.4 Construction Techniques for LDPC Codes . . . . . ... ... ... 22
25 Decodingof LDPCCodes . . . ... ... ... ... 29

2.1 Introduction

This chapter provides an introduction to the key topics w@red in this thesis, first pre-
senting the fundamentals of channel coding and of LDPC codparticular, and then
providing a solid basis upon which to understand the follmynaterial. Code parameter
optimisation and code graph construction are discusseld,seme of the key approaches
of each introduced. The effect of harmful structures in theecgraph at short to medium
block lengths is discussed, and some of the graph construagiproaches from the liter-
ature for improving performance at these lengths are desdriThis forms the basis for
the work on structured and unstructured LDPC graph construproposed in Chapters
3and 4.

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014
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CHAPTER 2. LITERATURE REVIEW 8

The decoding of LDPC codes by iterative techniques is thersidered. The belief
propagation algorithm is described in detail, along witmedower complexity and im-
proved performance variants of the algorithm. These datsanis provide the basis for
the contributions presented in Chapter 5, on schedulingnigroved convergence and

performance of the iterative BP-based decoding.

2.2 Channel Coding

The goal of channel coding is to improve the reliability withich information may be
conveyed over a noisy medium, such as a wireless commumisathannel or an imper-
fect data storage system [30]. This is achieved throughrttieduction of redundancy,
derived from the information to be conveyed, prior to trarssion over the noisy chan-
nel. At the receiver, this redundant portion of the trantedimessage may be exploited
in combination with the original information message inartb correct the errors which
may have been introduced to the information message by treeh An extra benefit of
certain error correcting codes is error detection, wheegbgrror correction failure event

is detectable.

2.2.1 System Overview

¢
En(éder Channel De(I:gder

Figure 2.1: A general LDPC coding system

Error control coding comprises the complimentary operatiof encoding and de-
coding, where encoding is the process by which the code womtaduced from the
information message. Encoding is performed prior to trassion over a channel which
introduces some form of random corruption to the transihitterd c, where the precise
corruption is unknown at the receiver. The receiver may hvewbave some degree of
knowledge of the channel conditions [30]. In Fig. 2.1 abdtie, corrupted version af
which is provided by the channel to the receiver.ig\t the decoder the received word

is known, along with, in certain cases, the full knowledgehaf error control code used
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CHAPTER 2. LITERATURE REVIEW 9

to encode the information messageto producec. With this information, along with the
knowledge of the channel conditions, the objective of theoder is to produce a good

estimate ot, denotect.

A number of useful channel models exist which reflect certaal-world scenarios
and allow for evaluation of the various error control codeggproaches. The models
considered in this work are the binary additive white Gaarssioise (AWGN) channel
[31], which is widely used in the literature and thus readilpws for a fair comparison
with prior work and the novel approaches presented in thesi#h and the block fading
channel which models scenarios involving slowly varyindifg [25] [26] [27].

For the AWGN channel, the receiver inpuis

r = x+n, (2.1)

wherex is the length/V vector of binary phase shift keying (BPSK) symbols derived
from the code wora as

andn is the lengthV vector of noise samples, with each element N (0,0?) , i =
1,---, N, i.e., the noise samples are zero mean Gaussian randorhlganeith variance

o

For the block fading channel, the received veats made up of the samples

Ti:’yi‘ri+ni77i:17"'aN7 (23)

where again the; are BPSK channel input symbols angare the Gaussian noise
samples. The transmitted word is also subjected imdependent attenuations, described

by the fading coefficient;:
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N
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Throughout the work on the block fading channel in this thesbherent detection is
assumed and so the receiver perfectly accounts for the ghisatroduced in the chan-
nel, resulting in real-valued fading coefficients j = 1,--- , F' which are independent

and identically Rayleigh distributed; € R™.

The block fading channel model introduced here relates teaasio where the phys-
ical conditions offered to the communications system aa¢ ohflat fading channel, i.e.,
the coherence bandwidth of the channel is larger than theviddth of the signal, but
where the communications system has access to some limitexsity, which may be
found in the time, frequency or spatial dimension. The codedwnay then be partitioned
and transmitted such that the received word is not subjd¢otacgingle fading coefficient
but rather that each of the subsets of the received word are subjecfFtindependent
fading coefficients [25] [26].

Another simple and useful channel model is the binary eeashannel (BEC), where
each of the multiplicative;; terms of (2.3) take only the valu@sor oo, and the additive
noise terms are zero. That is, in the BEC either the transinsigyenbol is received with
absolute certainty or no information about the originalueabf the symbol is received,
an event which is termed an erasure. An erasure occurs fanaayn the BEC with

erasure probability.
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2.3 LDPC Codes

In general, an error control coding scheme involves a mapjpom some information or
message word to a code word of greater length, where thesesexbne-to-one relation-
ship between each information word and its correspondimig egord. This relationship
Is necessary in order that the information word is recoveriom the code word [30].
Following convention, the length of the information wordaken asik” while the length

of the code word isV. Thus, the encoding process introduces redundancy, with

M=N-K (2.5)

extra elements transmitted in each code word. Through@uititbsis, binary codes are
considered, meaning that each element of the message aadvoods are eitheb or 1.
In addition, the coding schemes considered are, unlesswitfgestated, assumed to be
systematic. For systematic schemes, the message word@rauhwithin the code word

asin

c=[m p, (2.6)

wherem is the lengthK" message vector input to the encoder anid the lengthi/
vector of redundant bits produced by the encoder, known agpdhity part of the code

word.

An important parameter of the error control code is the cade, generally denoted
R. This gives an indication of the amount of redundancy iniceti by the code and is

defined as

K
R=% =" 2.7)

LDPC codes are linear block codes which are fully describethb matrix known as
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the parity-check matrix of the code [4]. For the binary cdke,codeC with parameters
(N,K) is formally defined as the K-dimensional subspace ef\hctor space of all N-
tuples over the binary Galois field. For a linear block cotle,garity-check matrix is the
binary M x N matrix H such thatC is the nullspace oH. The linear block code code
may equally be described by the binaky x N generator matrixG, the matrix whose

rowspace equals. From these definitions, it is clear that for every C:

c = mG, (2.8)

and

cHT =0, (2.9)

where both operations are carried out under modulo-2 aetietm LDPC codes are
linear block codes characterised by sparse parity-chet¢kaes, i.e. there is a low den-
sity of non-zero elements in the parity-check makiof the LDPC code relative to the

number of zero entries [32].

2.3.1 Parity Check Equations

For the LDPC code, the mapping from message word to code wefidedi byG and
(2.8) may also be expressed by the parity-check equatiotiseofode. The equations
form a set of constraints on the code words of the code andedimeed by the rows of

H, constraining certain subsets of the code word bits to suzeto under modulo-2
arithmetic. The equations of (2.10) specify an examplealin®ock code. The derivation

of the parity-check matri¥l for the check equations is described in Section 2.3.2 and the
exampleH is given in (2.11).
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Cr: V1 B vy D vy D s =0,
Cy: vy @ v3 D vy D vg =0,
3! Vg D v5 D ve D vy =0,
Cy: v1 D v D vs D vy D vg =0,
Cs : v © vy D v =0.

(2.10)

The elements; referred to in (2.10) are the elements of the code wordyj.€.c,i =
1,---, N [32]. The charactep is shorthand for addition under modulo-2 arithmetic.

2.3.2 Representations of the LDPC Code

Matrix Representation

As previously stated, the LDPC code may be specified by thef patrity-check equations
for the code, or equivalently by the parity-check maldx The parity-check matrix must
satisfy (2.9) for each of the® code words in the code which in turn must satisfy the
parity-check equations. A parity-check matrix for the epdarparity-check equations of
(2.10) is presented below. Note that when a code word; lparticipates in a parity-check
equationc;, there is al in the:-th row andj-th column,H, ; = 1. If a code word bit,
does not participate in a certain parity-check equatiothen there is & in the (i, j)
position of the parity-check matri%]; ; = 0 [30].

11010100
01110001
H = 00011110/, (2.11)
10101011
i 11000001 |
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Note that the parity-check matrix of (2.11), correspondontipe parity check equations
of (2.10), serves as an example and is useful for the purmdgkgining code properties,

but as it is not sparse it describes a linear block code buamaDPC code.

Graphical Representation

The Tanner graph [7] is a powerful tool allowing the use ofatee techniques for the
decoding of LDPC codes. The graph allows the developmentaptication of previ-

ously known graph-based message passing algorithms whiinfufate the decoding as
a distributed inference problem [33] [34]. There is a on@ite relationship between the

Tanner graph and the parity-check matrix of the code.

A note on nomenclature: In the literature, when referring to LDPC codes, the term
code may refer to the ensemble of all code realisatidnwhich have the same set of
parameters (matrix dimensions, row and column weightsh ather sources may refer
to the individual instances dfl. The majority of this work will focus on short block
length codes, and as such the ensemble performance ast@dduyche asymptotic code
evaluation tools such as EXIT functions [9] and density etioh [10], while an impor-
tant indicator of code performance at lower SNRs, will not e primary focus of the
work. As will be discussed in greater detail in Section 2.3t3short block lengths the
performance of a graph randomly selected from the enseméjedeaviate significantly
from the ensemble average. For the sake of simplicity, asgudision of the ensemble
will be clearly and explicitly stated as such, while in gealehe terms code and code
graph throughout this work will refer to the particular izuste or realisation of the graph

under consideration.

The Tanner graph is a bipartite graph, with the node clagsggesenting code bits in
one case and parity-checks in the other. The node repregeht code bit is referred
to as the variable node, while that representing the pahigek is called the check node.
From our definition ofH, there areN variable nodes and/ check nodes. Theg-th
variable node is connected to th¢h check node by an edge if and only if there i3 a
in the position(z, j) in H or, equivalently, thej-th code word bit participates in theth

parity-check equation. By the convention of the literatdine, variable nodes are drawn
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as circles and the check nodes as squares [30]. As the partk matrix of the binary
LDPC code contains only or 0 entries and no position may have more than one entry,
a single edge only may connect any two nodes of the graph., Alsm the structure of
H, an edge may only connect two nodes of different type, i.ear@kle node may only

connect to check nodes, and a check node may only conneatiableanodes [30] [32].

The graph of the example code defined in both (2.10) and (BXkEsented below in
Fig. 2.2

C1 C C3 C4 Cs

Figure 2.2: An example Tanner graph

An introductory discussion of the use of the code graph intérative message passing
decoding strategies will be provided in Section 2.5 and sfuriker definitions related to

the code graph will be provided in Section 2.3.4.

2.3.3 LDPC Code Parameters

The iterative decoding strategies used for the decodindp®fC codes exploit the sparsity
of the graph, i.e., the fact that there are relatively fewasdgpnnecting the nodes of the
graph, or equivalently that there are relatively féventries and many entries inH.
The parameters of the code (ensemble and realisation bdtichvhave already been
introduced are the dimensions Hf which also, provided is full rank, define the code
rate R (any number of additional rows may be addeddpwhich are linear combinations
of the M linearly independent rows and which will not affect the effee code rate).
The additional parameters of the code dictate the sparkttyeagraph by specifying the
number of edges emanating from the nodes of the graph. Clehéytotal number of

edges emanating from all variable nodes must equal thertotaber of edges emanating
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from all check nodes. The number of edges emanating from a isagérmed the weight
or degree of that node. For a variable naggethe weight is the number dfs in the j-th
column of H, for the check node; the weight is the number dfs in the i-th row of
H [30].

For a regular LDPC code, all variable nodes have the samehivéigand all check

nodes have the same weight andd.. is related tal, by

de = (1 - R)dv = (1 - _)dv (2.12)

For an irregular LDPC code, the weight of the variable nodes éheck nodes are
allowed to vary. In this case, the variable node and checle ngglght distributions are
useful descriptors of the weights of the nodes. The variabtée distribution is defined

as

M) = 3 nal ™, (2.13)
and the check node distribution is

dc'maw

ple) = D pi'™, (2.14)

andd

spectively. The coefficienk; is the fraction of all edges emanating from variable nodes

whered are the maximum variable node and check node weights, re-

VUmazx Cmazx

of weight j andp; is the fraction of all edges emanating from check nodes oftei
Together the edge degree distribution gaifz), p(z)) along with the code dimensioné

and M specify the irregular code ensemble [8].

It follows from the definitions of\; andp; that
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DN=Dom=1, (2.15)

and that

Sipifi o Jy pla)de
> Ni/J - fol Mz)dz (2.16)

R=1-

The node weights for regular codes and the degree distribpairs for irregular codes
have a very great impact on the performance of the code utetative decoding. By
convention, selection of the code parameters for the cogrized code design, and will
be discussed in the following section, while code consimnaieals with the production
of a particular instance of the code graph through edge planein the graph and will

be introduced in Section 2.4.

For the example code of (2.10), (2.11) and Fig. 2.2, the eégeeg distribution pair

2
Az) = gxl + ng, (2.17)
3 12 . 5
p(x) = —2* + —=2* + —a*. (2.18)

20 20 20

For the regular raté LDPC code withd, = 3 andd. = 6, commonly referred to as
the (3, 6) regular code, the edge degree distribution pair is

MNz) = 22, (2.19)

p(x) = 2°. (2.20)
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Parameter Selection

As will be more thoroughly discussed in Section 2.5, the mgsgpassing decoder for
LDPC codes involves framing the problem of finding the madglif code word transmit-
ted given the received word as the generation and passingséages which represent
some measure of belief of the value of the code word bit withictvithe message is
associated. Two distinct message generation rules areedpphe for messages origi-
nating at the variable nodes and one for messages originatithe check nodes. Thus
the message passing processing is sometimes considerezsaaga exchange between
two simple decoders, a variable node decoder and a checkdeadeler. It is important
that the message sent to a node along a particular edge issed lon the information
received from that node on that edge, as that would lead totardependence of beliefs
passed by the algorithm and would degrade performance. ddrass taken to ensure the
outward messages on each edge are (mostly) independestiofithrd messages on that
edge and are so called extrinsic messages. The provisib iprevious sentence arises
from the fact that every graph of finite length contains atbpaths which result in the
development of dependence among the messages passed@ansmber of iterations.
This breakdown of independence provides many of the chgdkenonsidered throughout

this work and will be further discussed throughouit.

EXIT Chart Analysis

An approach for analysing the performance of the LDPC codemble is the tracking
of changes of mutual information of the messages exchangeteaiterative decoder
proceeds. This approach is less costly in terms of complexid allows for a more
intuitive understanding of the decoding process throughpioduction of a graphical
representation of the extrinsic information transfer (EXat the so-called constituent
decoders at the check and variable nodes, where the egtiiisgimation output of each
constituent decoder is set as the input of the other. EXITyaisamay be used to identify
the threshold SNR where a low BER may be obtained for the enseanbl thus may be
used to optimise this characteristic in code design. Intamfdithe use of the EXIT chart
allows for further optimisation of the ensemble by provglian indication of speed of

convergence of the ensemble under consideration [9] [3] [3
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Density Evolution

Density evolution is an approach whereby the assumptionadenthat the messages
passed in the graph are entirely independent, corresppridithe asymptotic case of
a graph in which each node has a tree-like neighbourhoodhigrcase, the changes in
the probability density functions of the messages passedédruterative decoding may
be approximated for a given code ensemble. As a consequinecthreshold value of
channel noise, the noise level above which the decodertfaglsnverge and below which
convergence is guaranteed, may be identified for the ensaimbler consideration. Code
design by use of density evolution involves tuning of thesenisle degree distributions to
achieve an improved threshold [10] [37]. The degree distitins used for the irregular

codes throughout this thesis are derived by density ewslnd are presented in [10].

2.3.4 Properties of the Code and Code Graph

The weight of a binary code word is the number of nonzero estiti contains. The
Hamming distance between two code words is the number ofiposiin which their
entries differ. The minimum distance of a linear block cosléhe smallest Hamming
distance between any two code words in the code, and is gghallminimum weight
of its nonzero code words [30]. It is an important propertytted code which dictates
error rate performance achievable under optimal decodsngall minimum distance re-
sults in greater probability of decoding to an incorrecteawrd and thus an error event
under maximum likelihood and other decoding schemes. Faillphconcatenated turbo
codes, the minimum distance dictates the error floor [38]wéi@r, for LDPC codes
under iterative decoding, while low weight code words dotdbuate to the error floor
as undetected errors, the error rate performance in thisrréggdominated by detected
errors due to the interrelated graph structures known walyas stopping sets [39], pseu-
docodewords [40], near code words [41] trapping sets [48nentary trapping sets [43]
and absorbing sets [44] which have definitions involvingtigely small sets of variable
nodes with induced graphs having a small number of odd-eéewgghbours. These graph
structures lead to uncorrectable errors under iteraticediag when the belief associated

with one or more elements of the variable node set is largermadrect while the beliefs
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associated with the other variable nodes in the set are smaiagnitude. This leads
to the propagation of errors through the induced graph wbahnot be corrected due
to the small number of well connected neighbours of the setan alternative to the
asymptotic threshold analysis approaches of DE and EXITtgltscussed previously,
the graph structures discussed in this section offer aryteall framework for prediction

and bounding of error rate performance of codes at finitekbleogths under iterative

decoding, through importance sampling [45] [46] [47] anldesttechniques [48].

The graph structures discussed above which contributetertior floor of LDPC code
graphs essentially arise when the graph is poorly conne€wrdhe BEC, all error events
are characterised by stopping sets [39], to be formally ddfimelow, which constitute
a worst-case scenario in terms of graph connectivity, he.dase when all check node
neighbours of a variable node set connect back to that seth®©BEC, if a stopping set
is erased it is unrecoverable irrespective of the numbetecdtions applied in the itera-
tive message-passing decoder. The methods introducegtovmgraph connectivity in
order to avoid stopping sets [49] [50] have been observeahpoave performance of the
constructed graph not only on the BEC but on other channeds ialsluding the AWGN
channel, through positively influencing the distributidritee previously discussed struc-

tures in the graph. Some important definitions and graplexamples follow.

Definition 1: A cycle is a closed path in a Tanner graph with noe@ted edge$39]

The length of the shortest cycle in the graph is termed tha girthe graph and may
be used as a metric by which to improve performance undetiverdecoding.

Definition 2: A stopping set is a set of variable nodes for wtegkry check node

neighbour of any member of the set is connected to the sedsdttigice[39].

This structure leads to an uncorrectable error on the BEC anskitutes a worst-case

scenario in terms of independence of messages passed iandiveé decoding in general.

Definition 3: The extrinsic message degree (EMD) of a set dalike nodes (or a
cycle) is the number of check node neighbours singly coaddeitrinsic) to that set or
cycle[49].
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Clearly, the EMD of a stopping set is zero.

Definition 4. The approximate cycle EMD (ACE) of a cycle pregi@dn approximate
measure of the EMD of a cycle by assuming that all check nogdaloeurs which are not

directly involved in the cycle are connected to the cycle onice[49].

An example of a cycle of length 4 is highlighted in red in thegr from our example
parity-check matrix (2.11) and a cycle of length 6 is highted in blue. The length-4
cycle forms a closed path along the edges ¢; — v; — ¢4 with ¢4 connecting back tos.
The length-6 cycle forms a closed path along the edgesc; — vy — c5 — vg — ¢5 With

¢5 connecting back to;.

&1 C2 C3 Cq Cs

Figure 2.3: Cycles in the code graph

Also in Fig. 2.3, the sefvs, v;} forms a stopping set as the neighbours to thiscset,
andc,, connect to the nodes in the set twice. The{setuv,, vs} is not a stopping set as
it has a check node neighbous, which is connected to the variable node set only once.
Note that for the cycle; — ¢; — vy — co — vg — ¢5 associated with this set, the ACE is 3
as it is assumed that any variable node with weight 3 has amgixtconnection, but that
the EMD for this cycle is 1 as the nodesanduvg both connect te, and so those edges

are not extrinsic to the cycle.

The graph properties of Definitions 1-4 and Fig. 2.3 may a¢soliserved in the parity-
check matrix of the code as it corresponds precisely to tke goaph. A length-4 cycle
in the graph corresponds to an arrangement of four nonzéregmH which align both
in row and column indices. A cycle of length 6 corresponds patiern of six nonzero

entries in three rows and three columns, and so on.
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2.4 Construction Techniques for LDPC Codes

One particular instance or realisation of the LDPC code liscsed from the ensemble
of all graphs with the prescribed parameters of degreeildisions and graph dimen-
sions. This graph realisation is then used for decodind) tié encoding process also
derived specifically for that graph. Selection of a parécujraph from the ensemble
may be viewed as the problem of code or graph constructiomrésously discussed, at
practical block lengths, certain graphs in the ensembleoutberform others due to the
presence and distribution of the graph structures definSeation 2.3.4. Thus, the prob-
lem of code construction is that of selecting, from the setligbossible graphs satisfying
the constraints of the ensemble, a graph instance whichda®good performance under
iterative decoding on the channel of interest. In the It common approaches to the
solution to this problem attempt to produce a graph withjoeesly, larger girth, fewer
cycles, larger minimum ACE or EMD or fewer stopping sets. A bemof important and
fundamental graph construction techniques from the liteesare introduced in this sec-
tion. More recent improved construction techniques wilfin¢her discussed in Chapters

3 and 4 in advance of the discussion of the contributionsagdalthapters.

In addition to graph construction according to the selep@@meters, the ensemble
of all graphs may be further limited to the graphs satisfyéegtain constraints on edge
placements, in order to allow for benefits in complexity of@sing or decoding, latency
or performance. Two particular constrained LDPC code ekase also introduced in this

section, and will be further considered throughout thiskwvor

2.4.1 Pseudorandom Codes
Gallager Codes

In his founding work on LDPC codes [4], Gallager proposedm@stwiction method for a
class of LDPC codes now known as Gallager codes, based otattieng) of pseudoran-
domly generated submatrices of column weight one and ofogpaite row weight and

dimensions in order to produce the parity-check matrix whtthdesired parameters:
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H,

H
Hoo= | |, (2.21)

| H, |
where the regulaH, has column weighty and row weight equal to the constant

row weight of the submatrices. The matricHs, Hs, - -- , H, are formed by column

permutations of the randomly generaldgl [30]. Generally, the constraint that no length

4 cycle exists inHg, is also placed on the pseudorandom generation of the subesatr

Mackay Codes

Mackay codes [6] form another class of pseudorandomly géeeércodes where the
parity-check matrix is constructed column by column, widwncolumns of appropriate
weight randomly generated and added to the matrix until thequibed row distribution
is met. In the case of the algorithm failing to produce a gnaph the correct row distri-
bution, the graph may be wholly or partially reset and thepss restarted. An additional
constraint on the existence of short cycles may again besetghovith a check for cycle
creation made at each column placement. This is trivial ier¢ycles of lengtht and

rapidly increases in complexity as longer cycles are camnerdl

2.4.2 Random Codes

The previous two construction techniques have random eieveith some constraints
or deviations from a fully random approach. The random cawfesituction approach,
as presented in [51] and [52], involves setting an apprtgnamber of empty ‘sockets’
for each variable node and check node and generating a ramderteaver in order to
make the connections between the two types of sockets. Akakdben performed to
ensure that the randomly generated graph satisfies thedessgn rules of the LDPC code
graph, i.e. that there exist at most only single connecti@t&een any variable node and

check node pair. If this rule is not satisfied, the graph istrasd reconstructed. Again,
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further constraints may be placed on the existence of cyAlésrnative approaches exist
whereby the graph satisfying the design rules and parasistproduced first, and then a
graph conditioning algorithm is applied to this in orderrtgorove the structural properties

and thus performance of the code.

2.4.3 Progressive Edge Growth Algorithm

Progressive edge growth (PEG) algorithm [53] is a graph tcocson algorithm which
places edges in the graph one by one, ensuring at each edgenglat that either no cycle
is created or, if this is not possible, that the cycle creatsithe largest length possible
under the current graph setting. While this algorithm ainméximise the girth (shortest
cycle length) locally at each edge placement, it is subagdtimthat it does not consider at
the current edge placement the final girth of the graph oreoy@ation at any subsequent
edge placement. Despite this fact, it has been demonstpedduce code graphs which

exhibit excellent performance under iterative decoding.

The PEG algorithm operates from variable node to variabieen@he first edge place-
ment at each variable node is made connecting that node teck ciode selected ran-
domly from the set of check nodes with minimum weight underdtrrent graph setting.
Subsequent connections to the variable node under coasaerup to the weight pre-

scribed by the code parameters, are made by the followingegroe:

A tree is expanded from the variable node under consideraknown as the root
node. Added to the tree with connections to that root nodéherfirst level of the tree,
are all check nodes with edges connecting to the root variaddie. The second level of
the tree is populated first by all variable nodes connecteddse check nodes found in
the first level of the tree, excluding the (root) variable @e@dready found in the tree. To
these variable nodes in the second level are connectedealldieck node neighbours,
excluding those check nodes currently present in the tnelese®juent level expansions of
the tree follow a similar procedure, with variable node heigurs of check nodes in the
previous level first added, followed by the check node neigind of those variable nodes
most recently added to the tree. At each step, if a node iadjrpresent in the tree it is

not added in the new level.The expansion process contimié®noe of two outcomes is
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observed: a level expansion is carried out but no new ched&sare added to the tree
upon completion of a level expansion, all check nodes of thbaj graph are contained
in the tree. In the first case, the set of check node candittatelsich the edge placement
may be made is taken from set of check nodes not currentlyernrée. In the second
case, the set of candidates is taken from the set of checlsramttied to the tree in the
most recent level expansion. In both cases, the check noéeld® placement is selected
randomly from the minimum weight check nodes in the candidzgt. In the former
case, no cycle will be created by the edge placement, whileeitatter case a cycle will
be created, but that cycle will have the greatest lengthilplessnder the current graph
setting.

An example of the tree expansion operation of the PEG alguarfollows.

Uj

/9

Uk1<> ka (s

Cl C]

2

Figure 2.4: Tree expansion process of the PEG algorithm

In the example tree expansion operation of the PEG algordatailed in Figs. 2.4
and 2.5, the variable node of interestvis The submatrixH,...n iS @ binary matrix
constructed by the PEG algorithm in its previous steps ofaifmn. That is, the tree
expansion operation has been employed- 1 times previously for each of thg— 1
variable nodes. The first edge placement at each variable isothade randomly to a
check node among the set of minimum weight check nodes diyrehhis consistent
choice of the minimum weight check node at in the operatiothefalgorithm, both for

first placement and among check nodes of equal largest destesm the current variable
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Figure 2.5: The process of the PEG tree expansion on the/qudugck matrix

node, results in a graph which is approximately regular greke.

The operation of the PEG tree expansion is as follows: fitsteck nodes connected
to the variable node of interest are identified, which in ®whthe parity-check matrix
involves identifying all 1 elements in thgth column. Each check node is added to the
tree, denoted;, andc;, and highlighted in red in Fig. 2.4. Then for each of these khec
nodes, all variable node neighbours are identified. Thigyigvalent in terms of the
parity-check matrix to identifying the non-zero elementsaws i; andi,. For each of
these check nodes, all variable nodes which are not cuwyrenthe tree are then added,
connecting to the check node of origin. In this casecfgrnon-zero entries are found in
the j andk, positions. Asu;, the root variable node, is already in the tree it is not added
but v, is added to the tree. Likewise, foy, the variable nodes,, andv,, are added
to the tree. The variable nodeg, v;, andv, are highlighted in red in Fig. 2.4. Now,
for each of these variable nodes, the check node neighboaiidentified, and those not
already in the tree are added, for v, andc, for v,. v, has no neighbour nodes which

are not already found in the tree and so no check node is addedi$ variable node.
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This tree expansion continues until one of the terminatiiteréa are met. A new edge is
then placed connecting the variable node of interest to dtileeacheck nodes not found

in the expanded tree at the time of termination of expansion.

Trellis-based ACE Graph Construction

A trellis-based construction method was proposed [49] Wiviwolved the construction
of the parity-check matrix by means of random column geraraACE property eval-
uation by trellis expansion for the graph incorporating niegvly generated column, and
comparison of the ACE property of the graph with a preset tiolesvalue. If the ACE
property of the graph failed to exceed the threshold the raunmn is discarded, a new
random column generation is performed, and the trellis gutace is carried out again,
otherwise the column is kept and the algorithm moves on toéxt column. This pro-
cess continues until the graph of the appropriate dimessiseights and ACE properties
is produced. However, convergence of the algorithm is nat@puteed for a given value of
the ACE threshold and set of code parameters. In additioncunsing on ACE properties,
this algorithm does not produce a graph with the improvethgiroperties of the PEG
algorithm. As will be further discussed in Chapter 3, the ACRaapt of this trellis-based
techniqgue may be easily applied to the tree-based PEG #dgoto further improve the
performance of the codes produced [50].

2.4.4 Structured LDPC Codes

Quasi-cyclic LDPC Codes

Quasi-cyclic (QC-) LDPC codes are formed from tiled circtilpermutation matrices,
row- and column-weight 1 matrices formed by shifting theniity matrix [19]. This
allows for greater parallelisation of the decoder and l@mplexity encoding [54] [55],
with complexity linear in block length achievable when tiftsregister implementation
of the encoder is used. Storage requirements for the paniggk matrix are also reduced.
Classically the QC-LDPC codes have been constructed algaliyeas in [56]- [58].
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QC-LDPC parity-check matrices (PCMs) are structured as

Air Ay o Ay,
Hoe = | 0 . (2.22)
| Ac,l AC,Q e Ac,t |

eachA,; is a@) x ) matrix, either a circulant permutation matrix or a null nratr
The PEG algorithm may also be used for QC-LDPC graph consgtructThe tree ex-
pansion operation is carried out on evépyth column of the parity-check matrix. The
edge selection procedure is carried out as for the standa@d®yorithm, once the edge
is selected it defines the first edge placement in a circulaitit, the other edges set by
cyclic shift [59]

Repeat Accumulate Codes

The Repeat Accumulate (RA) class of codes is described by ttiyjoheck matrix of
the form

H;rs = [H; Hy, (2.23)

whereH; is the dual-diagonal matrix with a single weight one column

and H; is a low-density matrix with regular column weights corresging to the
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regular repetition code of the sequential encoder and roighwd [20] [22]. For the
Irregular Repeat Accumulate (IRA) class of codes, the irguérsion of RA codes,
the column weights oH; vary and correspond to a variable repetition code, as do the
row weights which correspond to the combined inputs to theueilator represented
by H; [21]. In both cases, the positions of the entriedHn define the interleaver in
the sequential view of the code. The column and row weightd,s®o the repetitioR
code and combine€ are defined by the density evolution or EXIT chart derived pai
A(z), p(x). In the case of IRA codes, the construction of a particulalisaon of the
graph is equivalent to the design of the interleaver. Thesetigl view of the systematic
IRA encoder is given in Fig. 2.6, where the bloBkperforms the bitwise repetition, the
block ][ is the interleaver and the block deno®€d:ombines the bits emerging from the
previous block with modulo-2 summation according to the vesights of the matri¥; .
The final block in Fig. 2.6 represents a convolutional codé generator ponnomiqu—D
which simply outputs the modulo-2 sum of the current inpuhwine previous output of
that block.

m

>

R 11 C 1+1D_’ P

Figure 2.6: Sequential encoding of the IRA code

Constructions for and extensions to the repeat accumukss of codes will be further
discussed in Chapters 3 and 4.

2.5 Decoding of LDPC Codes

For LDPC codes, optimal maximum likelihood (ML) decodingas too complex to be
implemented even at short block lengths [32]. As has beeriiomad, the sparsity of the
Tanner graph of the LDPC code allows low-complexity decgditiernatives by iterative
means, first considered by Gallager in his seminal work onC2Bdes [4] [5]. These
algorithms, termed message-passing algorithms, digritme processing of the decoder
to the nodes of the graph, with appropriate operationsexhout at the two types of nodes

in the bipartite Tanner graph [7]. The message passingitdigoas used in the iterative
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decoding of LDPC codes is known as the sum-product algoriird) and was indepen-
dently discovered in a number of fields, as belief propagaigP) used for distributed
inference on Bayesian networks [11] [13]. The SPA can alscelsad to certain rep-
resentations of the turbo decoding methods used in the degoflconcatenated codes,
and indeed the LDPC code may in turn be viewed as a class oatamated code, with
two simple component codes, repetition and single pariggckhconnected through an in-
terleaver. This relationship is made explicitly clear foe tase of the accumulator-based
codes [20] [21]. The SPA is known to return the ML solution wloperating on a cycle-
free graph. In the case of graphs with cycles, as with fi@tegth LDPC code graphs, the
SPA is suboptimal but has been extensively demonstratechtade near-optimal perfor-
mance in many cases, providing the near-Shannon limit paedoce which LDPC codes

are well-known for [6].

In this section, the general message-passing approacstimfroduced and its opera-
tion on the graph of the code is detailed. The specific SPAtepddes used at the nodes
of the Tanner graph are then provided. Following this, tHeedale of updates carried
out in the graph is discussed, with the most common schedetssibed and a number
of more recent strategies for scheduling introduced. Rdwigig as a technique for ac-
counting for the loss of independence of messages pasdaelgnaph is briefly described
and a number of reduced-complexity approximations to the &P presented to provide

the grounds for the discussions and proposed work of Chapter 5

2.5.1 Message Passing

The common theme of message-passing algorithms is thatdkegsing load of the de-
coding process is distributed to the nodes of the graph iardadavoid a more complex
global optimisation. The most basic rule of the messagstpaslgorithms is that only
extrinsic information may be passed, that the message ghagseg an edge to a node is
not based on the information received from that node. Indhguiage of belief propaga-
tion, the belief (message) that a node delivers to a nodddnotibe based on the belief

received from that node.

The messages passed in the Tanner graph are labeled agd@pi€ig. 2.7.
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Figure 2.7: The messages passed in the Tanner graph of tee cod
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The precise nature of the messages passed will be discustbedriext section. In Fig.
2.7 the message from the check negw® the variable node, is labeledx,, .., while the
message from the variable nodgsto c; is labeled,,; ..,. The superscript indices:)
and(k+ 1) denote the discrete message update time in the decoderatigiiee iteration
number. In the most common implementation of the messagenopdecoder for LDPC
codes, one iteration is taken to be one update of all messag@sating at check nodes
followed by one update of all messages originating at végiabdes. Thus the input and
output messages of the check node are both indexed atate(ati in Fig. 2.7(a) while
the input messages to the variable node in Fig. 2.7(b) aexedlat k) while the output

message from the variable node is indexe(kat 1).

For the check node message update of Fig. 2.7(a), the meissdgpendent on ex-
trinsic information only, meaning it is computed based amitiformation arriving at the
check node along all edges excluding the edge upon whiclhéwmméssage is passed, that

is:

Hee;—v, :f(/’L’Uj‘)Ci)7 jeN(@)\ ¢, (2.25)

wheref(-) is some function, to be defined in the following section, angh,) is the
set of nodes connected to the check nadéy an edge, i.eN(c;) = vy, vj,, - - s Vi
in Fig. 2.7(a). Equation (2.25) specifies the message catipaotfor a single message

emanating from a check node. The update of the the whole ched& involves the
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computation of all messages emanating from it.

For the variable node update of Fig. 2.7(b), a message upslagain based on the

incoming messages excluding that message arriving on tiee@thsidered, i.e.:

fo;—e; = G(Hep—v;)s B € N(v5) \ 4, (2.26)

where the notation is similar to (2.25), apd) denotes another function to be defined
in the following section. Again, the equation (2.26) comsea single message update,
and full update of the variable node involves the messageuatation and passing for all

edges emanating from the node.

2.5.2 The SPA Update Rules

Inthe SPA for decoding LDPC codes, messages introducee jprévious sectiony, .,
andu,, ., can take the form of probabilities, the ratio of these pholitees termed the
likelihood ratio (LR) or the log of the LR, the LLR, with the na&lifog arbitrarily taken.
The LLR is generally considered for reasons of numericdliltya and computational
complexity and will thus be solely considered in the follagidiscussions. In any case,
the messages passed from and to a variable no@gresent a belief concerning the value

of the code word element associated with that node.

In the SPA decoder presented by Gallager [4] [5], the chedengpdate operation is
based on the maximum a posteriori (MAP) decoder for the sipgtity check which the
node represents, while the variable node update operatibased on the MAP decoder

for the repetition code.

The decoder takes as its input the LLRs for the a posteriorsaggsprobabilities based

on the received word from the channel,

_ Pr(v; = Oly;)
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The equations for the update operations are as follows:

(k)
p,, =2tanh™ | J[ tanh (%) , (2.28)
VEN (ei)\i
notd =L+ Y ., (2.29)
i'eN (vj)\i

The equations (2.28) and (2.29) provide the computatioth@extrinsic information
to be passed from each type of node. The final belief concgthmvalue of the node;

is then based on all messages arriving at the node, alonghetthannel LLR/;:

MEY =L+ > b, (2.30)
iEN(U]')

As previously stated, the SPA operates iteratively, with dinder in which message
updates are performed termed the schedule of the algoritheacommon schedule pre-
viously introduced where one iteration consists of an updétll check nodes, followed
by an update of all variable nodes is called the flooding saleedAlternative schedules
will be considered in Section 2.5.3. The algorithm applles apdate rules in the order
specified by the schedule until some stopping criterion bokstopping criteria are met.
The common stopping criteria are maximum number of itengticeached or all parity
checks satisfied. To perform the parity check, the estimebel@ wordc is taken to be

the vector:

. (k+1)
& = I ‘Mﬂ‘k 1 = (2.31)
0 M%<

forj=0,---, N — 1. The the parity checks are all satisfied if

¢cH” =o0. (2.32)
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2.5.3 Scheduling

Flooding Schedule

The standard implementation of the SPA uses, as previoustusked, the flooding
schedule. This schedule is described graphically in F&}. 2.

(b)

Figure 2.8: The flooding schedule on a simple example graph.

In Fig. 2.8 the nodes shaded in blue are the nodes updatete firgt half-iteration
shown in Fig. 2.8(a) all the check nodes are updated, in tbensehalf-iteration of Fig.
2.8(b) all the variable nodes are updated.

Layered Schedule

The layered BP (LBP) [60] schedule for the SPA, also known afflsdiBP [61] and other
names, updates the nodes in a sequential fashion, enshanthe incoming messages
used for each update make use of the new information availakihe graph. That is,

rather than updating all nodes of one type followed by allesodf the other type, a
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single node or subsets of all nodes of one type are updatédthan a single or some
subset of the nodes of the other type are updated. The dltegraa shuffling continues
until all nodes of one type, typically the check nodes, haaernbupdated. This is called
one iteration of the LBP. The use of the most current inforamatn the graph allows
faster convergence for this schedule compared to the flgatihedule. In the example
provided below, check nodes are updated sequentially irhatiestep and in the second
half-step all variable nodes in the neighbourhood of thetmexently updated check node
are updated. These steps are carried out until all checksriwalee been updated.

(c)

Figure 2.9: The layered schedule on a simple example graph.

Fig. 2.9 shows, in each part (a), (b) and (c) the two halfsstepe first half-step
is shaded in blue while the second half-step is shaded imgreeom this figure, it is
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clear that while this layered schedule involves the samebeurof check node update
operations, there is a cost in an increased numb&f > N of variable node updates.
However, as may be observed from equations (2.28) and (2i#9theck node update
operation dominates the complexity of the SPA and so thigaged cost is not excessive.
In addition, by its serial nature, the LBP does not allow far kevel of parallelisation of

the flooding schedule.

Informed Dynamic Scheduling Strategies

The informed dynamic scheduling (IDS) strategies make tifi@ecstate of the messages
currently being passed in the graph to determine the nexdagego update, choosing that
message update which will bring the greatest improvemebelef. The concept was
developed for general message passing algorithms [28tdbEing applied specifically
to the problem of decoding LDPC codes [29] [62] [63] and isrted residual belief
propagation (RBP). The residual refers to the absolute vdltreealifference between the
message most recently passed between two nodes and thgewsseh would be passed
if the update for those two nodes was performed. The mesgadptaiassociated with
the largest residual is performed. As such, the computatighe residuals upon which
the schedule choices are made involves significant additiorst in terms of algorithm
complexity, as many message update computations are pexdidor each actual message
update. Nevertheless, this algorithm demonstrates @rogpbiconvergence speed when
compared to the flooding and layered schedules. This comn@eplso generalised in [29]
to the check node sequential IDS scheme, known as node-wigdlBBP), where the
check node associated with the largest residual is updséedficing convergence speed
somewhat in exchange for improved error rate. Much intemest many variations of
these IDS schemes have appeared in the literature [64] §65]67] [68].

The residual for a given message is computed as

r(p ) = e, — pl ), (2.33)

wheren,, is a node of arbitrary type and, is a node of the other type in the bipartite
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graph. The messages,_.,, are LLRs and so are contained on the real line, thus the

norm of equation (2.33) reduces to the absolute value.

(c)

Figure 2.10: The informed dynamic schedule of the RBP algoritin a simple example
graph.

For the RBP, the residuals are taken for the check to variabksages, and the al-
gorithm proceeds as depicted in Fig. 2.10. In Fig. 2.10, ieslhighlighted in blue
indicate residual calculations and the lines in red indicaessage updates. Fig 2.10(a)
depicts the residual initialisation, where residuals niaesstomputed for all edges. Fig
2.10(b) shows in red the actual message update, where tlsageespdated is that which
is associated with the largest residual, while Fig. 2.18jows the second half-step of the

RBP update, where the messages emanating from the activatedleanode, that node
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which has an updated message incident on it, are in turn egdas shown highlighted
in red. Following this update, new residuals must be contpfdethe affected edges, as
shown in blue in Fig. 2.10(c). The NS-BP algorithm is inis&ld in the same way as the
RBP algorithm, as in Fig. 2.10(a).

(b)

Figure 2.11: The informed dynamic schedule of the NSBP algmrbn a simple example
graph.

Fig. 2.11 then shows the process by which the NS-BP algorittoogeds. Again,
the edge with the largest residual is identified, as higdighn Fig. 2.11(a). The check
node associated with this edge is then updated, depictetsshading and the green
highlight of its associated edges. These operations dotesthe first half-step. In the
second half-step of the NS-BP, those variable nodes whick reseived updated mes-
sages are themselves updated, excluding the edges upoln theitncoming messages
were received. The updated variable to check messagesdicated in red and blue
dashed lines. Now, the new residuals are computed for thoigming messages from
checks which have been affected by the variable to checkagesgpdates. These checks
are shaded in blue. The edges for which residuals are cothptgandicated in blue and
in red and blue dashed lines.

Note After initialisation, the RBP algorithm iterates from step$ {0 (c) in Fig. 2.10
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while NS-BP iterates through steps (a) and (b) in Fig. 2.1les€halgorithms do not
adhere to iterations beyond these steps, an edge in the tR&Ppor a check node in
the case of NS-BP, may be revisited before some other edgehaslits message(s) up-
dated. As such, there is no natural point in the processirigase algorithms at which
an iteration has passed, as there is with both flooding aretddyschedules. For the
purposes of performance comparisons, the artificial immaheasure is taken in the liter-
ature to be the point in operation of each algorithm when tivalver of check to variable
message updates equals that of the flooding and layeredusebeds will be further dis-
cussed in Chapter 5, this may be an overly optimistic choicedmparison, considering
the number of additional message computations each ID$ithigoperforms in residual

calculation.

2.5.4 Reweighting Strategies

Reweighting strategies for message-passing decoding o€CLddles have been proposed
as an application of tree-reweighted BP [69] (TRBP), a tectenfqugeneral inference on
graphs, to the decoding problem. The TRBP approach was vdilidargraphs limited to
pairwise connections. In applying it to the decoding probléhe algorithm was reduced
to a single reweighting factor applied to the LLR messageatgsito account for the loss
of independence of messages passed in the graph througtesiempe of cycles [70] [71].
The initial work of Wymeersch et al. was appropriate for dr@pith regular distributions
only, a different strategy to reweight the LLR message wgxlatas developed in [72]
and [73] that can deal with irregular graphs.

2.5.5 Low-complexity Approximations to the BP Algorithm

Another area of great interest is the class of decoders lmastit SPA which take advan-
tage of the properties of the check node message updatedagar@ lower complexity
approximation [74] [75] [76]. The tanh-based check nodeat@dule for two LLRsS,[,
andL,, may be restated exactly through the use of the Jacobiantlugeas
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f(Lq, L2) = sign(Ly)sign(Ly) min(|Lq], |La|)
+log(1 + e Ertlzly _og(1 + e~ 11-12l) (2.34)

and f(L,, L2) may be implemented for a node with more than 2 incoming messag
with the forward-backward algorithm [76]. To reduce conxjthethe additive terms of
(2.34) may be implemented by look-up table. In addition terfg a form of the check
node update operation which lends itself to hardware implaation, a number of ap-
proximations to the precise check node update are deriezd (2.34). The most basic
approximation, termed the Min Sum algorithm, replaces thiecheck node update by
observing that the additive terms of (2.34) are quite snmathat the update may be ap-
proximated by the first term, which simply involves finding ttmallest absolute value of
the inputs and applying to this value the product of the sajrike inputs. While the Min
Sum approximate BP-based algorithms exhibits relativelyr geerformance compared
to the full SPA, some approximations are capable of perfageaery close to the full
algorithm, particularly the Offset and Normalised BP-baalkggrithms [77] [78].

The Min Sum algorithm replaces (2.28) or (2.34) with

K) on (109 ~ (k)
Moy = | 11 sign (uvj,ac) (j,,elfvlgg)\j(luvj,%
J'EN(ei)\

>) L (235)

while equations (2.29) and (2.30) remain the same.

This check to variable message update is altered for theGBB algorithm as

p, =TT sien (1) (max( min (| ]) = 8. 0>), (2.36)

j’EN(Ci)\j jleN(Ci)\

wheref is a positive offset constant that may be optimised priorangmission.
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The related Normalised-BP algorithm is defined by the checkariable message
update

in. (1,
) (mln]’EN(Ci)\j (|Mv_j/ —cq
«

)> , (2.37)

/’Lgf)—ﬂ)] = H Slgn (ng(/)_)ci
J'EN(ei)\

wherea is a normalisation constant greater than one. For both Ofised Normalised-
BP, equations (2.29) and (2.30) remain as for the standard SPA
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3.1 Introduction

This chapter presents the work carried out on the constructi structured LDPC codes,
particularly the construction of short block length codestigh modifications to the PEG
algorithm including the use of the decoder to improve thegtaent choices made in that
algorithm. The code classes considered are QC-LDPC codgsdd®@imulator-based

codes such as the IRA class of codes which may be consideradsaafILDPC codes and
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decoded as such [20] [21], and those codes related to thelRRE class of codes [23]
which were proposed for use on the block fading channel [@blasi-cyclic (QC) LDPC
codes allow reduced complexity of encoding [19], as the geoeand parity-check ma-
trices have an imposed structure which may be exploited shahencoding may be
performed with shift registers [55]. The QC structure aldoves the decoding by SPA
decoder to be further parallelised, which offers benefitspeed of decoding. The pro-
gressive edge growth (PEG) algorithm may be applied to tinstaaction of QC-LDPC
codes to improve the girth of the graph [59]. The RA-based satlew encoding in com-
plexity which grows linearly with block length and decodibg the SPA algorithm [22]
through the dual-diagonal accumulator structure in thé&yaheck matrix of the graph
and the irregular version, the IRA codes, provide improvetbpmance in the lower SNR
region of operation [21]. The block fading channel is a ukelfiannel model for the rep-
resentation of a variety of realistic scenarios which imealowly-varying fading. This
model which consists of a number of blocks subject to inddpenhfading coefficients in
addition to additive noise is particularly challengingrfrahe point of view of the error
control code design. One set of solutions to the problem deatesign for the block
fading channel is based around the Root-LDPC code class®&}e the structure of the
parity-check matrix is constrained to ensure that the égiaodes associated with the
systematic information bits of the code word achieve thetéichdiversity of the channel
and thus approach the theoretical limit of the channel im$eof error-rate performance.

The contributions of this chapter are as follows:

e An improved construction method for QC codes comprisingrtée work carried
out on an extension to the prior work of the author [79]. Tlopraach is based on
the use of the SPA decoder at certain points during graphreation by the PEG
algorithm to choose edges which offer improved performawidéfirst be detailed
briefly. The application of this decoder-based approachtivn be made to the

construction of the structured code classes for use on the R\&i@&nnel.

e The proposed code constructions for the Root-LDPC baseddasdg will be pre-
sented. The PEG algorithm is employed to construct codengraghich adhere to
the class constraints while possessing improved girth hnsl offer performance

closer to the theoretical channel limit.
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e Upon introduction of the proposed PEG-based constructoRbot-LDPC codes,
the novel constructions for further constrained code elasse then considered.
First the construction of the previously known QC-Root-LDR@es is considered,
the code class which offers the diversity-achieving properof the Root-LDPC

codes in combination with the complexity reductions of the €pdes.

e Finally the novel accumulator-based Root-LDPC code classi@nconstruction
by means of the PEG algorithm is proposed and detailed,daiivantage of the
benefits of the RA and IRA codes while achieving the diversitthefblock fading

channel.

e The performance of the proposed code constructions forithereels under consid-

eration will be evaluated through a detailed simulatiomgtu

The rest of this chapter is laid out as follows: In SectiontB& decoder-based con-
struction metric previously developed for use on unstngetgraphs is described in detail.
Section 3.3 describes the use of this metric in a PEG-basedraation for the QC-LDPC
code graph and an algorithmic description of the graph cocisbn is also provided. Sec-
tion 3.4 discusses the challenges of coding for the blockhadhannel and introduces
from the literature the Root-LDPC class of codes for apprvarcthe outage limit of the
channel. In Section 3.5 the proposed constructions for RB&EC code graphs by use of
the PEG algorithm are introduced. Section 3.6 proposes @l rode class for the block
fading channel which makes use of the root-check node andeo&tcumulator graph
structure to offer both outage approaching performancelandencoding complexity.
Section 3.7 provides the simulation study with results fopsut the contributions of the

chapter and Section 3.8 summarises the contributions métie ichapter.

3.2 Decoder-Optimised Progressive Edge Growth

This section introduces the work of author first developef¥8] and presented in [80]
on the PEG-based LDPC graph construction algorithm withravgd performance in the
error floor region [42], named the decoder optimised (DO) REgGrithm. The DO-PEG
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algorithm operates on the set of check node candidates @eddoy the PEG tree ex-
pansion operation for connection to a variable node of @stein the progressive edge
placement procedure which constructs the graph. The ¢aunaept of the DO-PEG
algorithm is to use a small sample run of the decoder with paténtial edge placement
in place in order to identify that edge which will have thet@s perhaps least detrimen-
tal) effect on the performance of the message passing #igonn the final constructed
graph. The block diagram of the DO-PEG algorithm is preskmeFig. 3.1 and the
blocks of the diagram relate to the algorithm as follows:

e The algorithm operates on a graph with an appropriate nuoflreck nodes and,
during the processing of the algorithm, partially connéc@d currently uncon-
nected variable nodes. A desired vector of variable nodghteicalled the degree
sequence is also known, while as in the PEG algorithm thekchede degree dis-
tribution of the graph produced will be near-regular.

e From this graph, a subset of the M check nodes is derived alidatas for con-
nection to the variable node under consideration. While thekoin the diagram
allows flexibility in choosing the set selection procedumehe DO-PEG algorithm
this block represents the PEG tree expansion operatiorhwéiarns the set of min-
imum weight check nodes at greatest distance in the graphthe variable node
of interest, each of which will produce the largest cyclegilde under the current
graph settings.

¢ In the case when the set returned by the set selection blotkios more than one
check node, the DO operation is used to select a survivorkchede. For each
candidate check nodg a candidate code, with corresponding generator and parity-
check matrices, is derived. Given that the variable ngdis under consideration,
the candidate graph for candidate check ngde derived by taking the graph under
the current setting and placing the edgg v,). The matrice<G,.;; andH,.; are
derived as outlined in Chapter 2. Simulated transmissionarptesence of AWGN
is performed and the iterative SPA decoder is used to proshiteutput LLRS. A
number, which by necessity of the complexity of the optimdgaoperation must
be quite small, of SNR points and noise/message vectorsark The SNR points
are chosen to fall in the low error rate region of operatiothef code under con-

sideration. For each candidate, the DO metric is compuked¢candidate with the
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largest metric is selected as the survivor and the conmeistimade from that check
node to the variable node.

Decoder Optimisation Operation

Length— Candidate CN

Rate — H set  selection Grost ™ Channel [ SPA, Hiee P POPEG [ Lol Max()
D procedure metric
—»
v

CDO

Figure 3.1: Block diagram of the decoder-based construetigorithm

3.2.1 Computation of the DOPEG Metric

For each candidate code, the soft-output bit LLRs of the SRAdier are given by

Pj = Lj + Z Hei—v; J=1,-- s Niest, (31)
ie./\[(’uj')

where N,..; is the number of variable nodes in the test parity-checkimatrd cor-
responds to the index of the variable node under consideralh order to compute the
DO metric associated with each candidate check node, aegatgrsum of the weighted
LLR magnitudes is taken across the multiple received wosthinces decoder at each
SNR point, with the weighting factor taking account of wrestlthe convergence at a

certain variable node was toward the correct value or awany ft:

N
mi = > i, [P, (3.2)
t=1 j=1
where

5 1 if sgn(Pft) = sﬁt

—1 else
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andsﬁt is the encoded bit value at indicgst and3, wheret indexes the&” instances
of received and decoded words per SNR point and the index for theZ SNR points
considered. The noise vectors are generated randomly hattappropriate variance.

For each of th¢/\7§j| candidate check nodes the above computation produces & 8et o

real numbersyn?, 3 = 1,--- , Z, the set of vectorsjs = |mf ,mf ,---mf for

Ciq ) Cio?
i1 i9 1|N£]‘
6: 1,---, 7.

If the sample mean value of eaqh is G, the normalised vector of convergence mea-

sures at each SNR poiftconsidered is

uy = 2 (3.3)

and so each entry ing indicates whether a particular check node placement affere
performance above, at or below the average for test sceaaBONR /5. Then the final

convergence metric for each check node is

Z
Zo, = ) e i€ {1 INE|. (3.4)
=1

The check nodepo with the largest.,, , is selected and the eddepo, v; } is placed.

Table 3.1: Code generation times, in seconds, for the algosifpresented.

N 250 | 500 1000

PEG 28 182 1287
DOPEG|| 5319 | 45183 | 252210

Table 3.1 shows that the computation of the DO metric incuosresiderable increase
in complexity for the PEG-based construction of unstrusdiurDPC codes. As the block
length of the code to be constructed increases, the prof2@eldEG algorithm will be-
come inviable sooner than the PEG algorithm. However, $hi®t considered to be a par-
ticular issue as the improved construction methods are pigedrily to construct codes
with shorter block lengths, at larger block lengths the eggresent in the graph do not
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influence the error rate performance as greatly. At the shbtock lengths considered,
this approach offers a clear benefit in error rate performarMoreover, the increased
complexity occurs only in during the graph constructiongghevhich will be completed
offline and thus the choice of construction algorithm dodsaffect complexity of use of

the constructed graph, provided the code parameters asarmhe.

3.2.2 Justification of the DO Approach

The DO-PEG algorithm has been demonstrated to produce & griéip improved per-
formance with respect to the base PEG construction. Inélytithe achieved result may
be understood by the fact that the graph of the chosen caedidde forms a subgraph
of the final code. At each point when the DO metric is produdkd,candidate code
graphs differ in only one edge placement and the shorte each of those edges par-
ticipates in is of equal length. Thus, the difference in perfance which the DO metric
identifies is related to the connections of the cycles ctetidhe existing cycles in the
graph, the number of shortest-length cycles created andistrébution of greater-than-
shortest-length cycles created by the edge placement. @igoaseach placement in
the progressive edge construction the edge with the begtapit according to the DO
metric leads to a final graph with better overall performanides is corroborated by sim-
ulation results of Fig. 3.2 which were presented previously 9] [80]. For the DOPEG
construction of Fig. 3.2, five distinct noise and messagéoveavere generated at each
SNR point tested, the SNR range operated over d#s-2dB in steps 0f0.05 and the
decoder was operated to a maximum of 50 iterations, at wioafit ghe soft-output bit
LLRs of (3.1) were used to compute the DO metric of (3.2) to)3¥able 3.2 gives the
numbers of short cycles found in the graphs constructed 6y &l DOPEG algorithms,
used to produce the results of Fig. 3.2. The DOPEG algoritrodyces a graph with
fewer shortest-length cycles and this contributes to theaved error rate performance
observed in Fig. 3.2.
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Table 3.2: Numbers of short cycles found in the code graphthisPEG and DOPEG
graph constructions.

gith=6 H PEG DOPEG
No. 6 Cycles 1562 1395

No. 8 Cycles | 24057 23154
No. 10 Cycles|| 352803 355602

10_ F T T T T T

—%— PEG

——O— DOPEG

3 3.25 35 3.75 4 4.25 4.5
E, /N, (dB)

Figure 3.2: Error rate performance for the unstructuredesatbnstructed by the DO-
PEG and PEG algorithms, with block length= 250 and irregular variable node degree
distribution with largest weight 8.
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Algorithm 1 DOPEG Algorithm
for j =1ton do

for k =1to D,(j) do
if £k == 0then
Place edgé€c,,n, v;), ¢min Chosen randomly from the minimum weight check
nodes of the current graph.
else
Expand tree fromy; until the cardinality ofNj,j stops increasing but is less than
mor NI # () but NI7T = 0.
if j <m+ 1then
Place edg€c,,in, v;), cmin chosen randomly from the minimum weight CNs
of NI .
else
for p=1to Length(N'} ) do
PCM H,.s; formed fromH under current graph setting up to columy
with edge in positior{ N} (p), v;)
UseH,. to decode in the presence of AWGN over the selected SNR range
using the log-domain SPA decoder with soft output.
Compute convergence metrics as described in (3.4).
ldentify CN cpo : 2, = arg Max ;.
Place edge in positioftpo, v;) 1
end for
end if
end if
end for

end for
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3.3 DO-PEG for the QC-LDPC code class

The performance improvements offered by the decoder ogaitioin approach over the
base construction algorithm motivated its use in the caoson of LDPC codes with
quasi-cyclic (QC) structure, which as previously stated tmagxploited to allow reduc-
tions in encoding complexity and benefits through paraiion of the decoding opera-
tions. In [59] the PEG construction algorithm was appliedh® construction of graphs
with QC structure, termed the QC-PEG algorithm in the follogvdiscussion. The QC-
PEG algorithm selects through the use of the PEG tree exqratis placement positions
of the non-zero tiled sub-matrices in the code graph and diséipn of the first entry in
each sub-matrix, with subsequent entries made accordiagyalic shift. The QC-PEG
constructed QC-LDPC codes exhibit improved performance the QC-LDPC codes
constructed by random permutation due to increased gitik.€ktension of the decoder
optimisation operation to the QC class of LDPC codes is tdr@€-DO-PEG and uses
the decoder to test potential candidate codes as in theagpoutlined in Section 3.2 to

produce final graphs with improved performance in the eromrftegion of operation.

3.3.1 Proposed Code Construction

In those cases when the cardinality of the set of minimum kateigdes iri/\Tfj| Is greater

than one, which is observed to occur with high regularityratrsblock lengths, the QC-
PEG algorithm selects from those nodes a check node at randdrplaces a QC sub-
matrix accordingly. The decoder optimisation operatiotlioed in Section 3.2 may be
used in this case to select the candidate QC sub-matrix whilCbffer the best perfor-

mance in the test case under the current graph settings.b&hkigperforming candidate
code becomes a sub-graph of the final graph and so improvéatpance at the inter-

mediate stages in construction leads to improvements fonpeance of the final graph.

The intermediate test codes of the QC-DO-PEG code congiructigorithm are
formed from the graph under the current setting with a cantipermutation matrix in
the position and with the cyclic shift dictated by the checkles of the set provided by

the PEG tree expansion. The candidate code for some cheekepidefined in terms
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of columns of@) x @ QC sub-matrices as

Htest - [Biurr.’ Bgurr'7 T B;Er{’ Bcand.} (35)

where each matriB{™™, k = 1,--- ,j — 1 has dimension§c x Q andv = % and
the dimensions)/ and() are constrained to ensure thails an integer value. ThB{"™"
matrices are the columns of QC sub-matrices which have b@siopsly constructed by
the QC-DO-PEG algorithm. The candidate column matrix is ttw@rstructed as

A'l,j
A‘Z,j
Beana. = . . (36)
Acircposg,j
A,
The QC sub-matriced., ;, a € {1,--- ,v}\circpos, are the sub-matrices of the col-

umn of interest under the current graph setting. The suhliantciGCOSg,j is specified
by the check node candidatg. It has a non-zero entry in the shift positiag in its
first column and zeros in all other positions in that columhe Bubsequent columns of

Acirepos, j @re produced by progressive downward cyclic shifts of tret Golumn. The

indicescircpos, andh, are given by:

g
QL (3.7)

circpos, = |

hg = ((g — (circpos, — 1) - Q —1) mod Q) + 1. (3.8)

The candidate graphs are used in the decoding in the presér®&GN and the

metric calculation is carried out in exactly the same wayoastfe DO-PEG construction
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algorithm of Section 3.2. The pseudocode of the QC-DO-PE®oiged in Alg. 2.

Algorithm 2 QC-DO-PEG

1. for j=1:tdo

2. fork=1:D,(j)do
3. if k==0 & j > % then
4. Choose candidate,,; at random from the se?Vé’}wvl.
5. form=0:Q—1do
6. circpos = [ind/Q]
7. shift = ((ind — (circpos —1) - Q +m — 1) mod Q) + 1
8. Place edge in the positid(circpos—1)-0)+shift> Vj-Q+m)
9. end for
10. else
11. Expand the tree from the VI, to depth/ s.t. Nf,j stops expandingr N_gj #0
but N = 0.
12. if j <c+ 1then
13. Choose candidate,,; at random from the se}V$w’l.
14. form=0:Q—1do
15. circpos = [ind/Q]
16. shift = ((ind — (circpos —1) - Q +m —1) mod Q) + 1
17. Place edge in the positid®(circpos—1)-0)+shift> Vj-Q+m)
18. end for
19. else
20. for p =1 : Length(N,™") do
21. Form the PCMH,,,,, as H under the current graph setting with a
circulant permutation matrix in the position defined by itstfientry
(Ceand.» Vj-q+1) Wherec ana. = N (p).
22. Use H.,,.q. to encode, decode in the presence of AWGN using log-
domain SPA decoder with soft output.
23. Compute convergence metrigs as described in Section 3.2.1.
24, ldentify CN cing : 2., = arg max z;.
25. form=0:Q—1do Z
26. circpos = [ind/Q|
27. shift = (1 + (ind — (circpos — 1) - Q +m — 1) mod Q) + 1
28. Place edge in the positid(circpos—1)-0)+shift, Vj-Q+m)
29. end for
30. end for
31. end if
32. end if
33. endfor
34. end for
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3.4 The Block Fading Channel and Root-LDPC Codes

This section introduces the coding strategies which haes lgesigned for use on the
block fading channel. The work on the Root-LDPC code classat®duced and sum-

marised [23]. This code class was designed to achieve tleesitly of the block fading
channelillustrated in Fig. 3.3.

f)/l ’)/2 e o o f)/F
F F F

Figure 3.3: Diagram illustrating the block fading channel

The lengthV code word is subjected 6 independent fading coefficients, represented
in the figure above ag, 72, - - - , yr in addition to additive noise. The fading coefficients
~; are independent and identically Rayleigh distributed. Thimum diversity order
achievable on the channel is given by the slope of the oufageplotted on a log-log
scale, where the outage limit is the fundamental limit onethrer rate performance possi-
ble on the channel corresponding to the irreducible prditglithe outage probability, that
transmission of data at a given rate is not supported. Thergty orderd,,,.,. achievable
for a linear binary code on this channel is

d<1+|F(1-R)]. (3.9)

Thus the highest code rate which achieves maximum divetsiyF’ of the channel is
R = % [81]. The outage probability is given by

Pt =P(I<R), (3.10)

whereP (-) denotes the probability of an event afds the mutual information be-

tween the input and the output of the channel. The mutuatnmétion /; for real Gaus-
sian inputs is [82] [83]
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1 Ey
—log, (1 + 2Rﬁfyf) (3.11)

[Eﬂuj

f:

while for BPSK inputs the mutual information is [82] [83]

1 <1 E E
_ b_2 b_2
Ippsk = I fEl 3 <(9( 2Rﬁo%f)) + (9(—1/2 Foyf))) (3.12)
with
& 1 (wa)2 2
— ! — | d 3.13
g(T) /OO \/%e Og2 (1 +e2w7> w ( )

which does not have a closed form solution. The valug(of can be computed using
the Gauss-Hermite quadrature method. The above expregsiathe mutual information
are semi-analytic in that they must be applied for realisetiof the fading coefficients
v¢. The outage probability using; is taken as the standard for comparison in the results
provided for the block fading channel throughout this thgshile examples of the outage

probability using/zps are also provided.

In order to achieve satisfactory performance on the blodinfachannel, the error
control code must achieve the maximum diversity of the ckhand must also offer
reasonable coding gain which, for a full diversity codegrsfto the separation between
the error rate achieved as plotted on a log-log scale andohefithe outage limit of the

channel.

The requirement for an iteratively decoded code to achieeeliversity of the channel
is equivalent to the requirement that the systematic bies@de recoverable on the block
binary erasure channel when any single fading coefficiembizzero [23]. The block
binary erasure channel has the same form as that illustrated). 3.3 but the fading
coefficients may take only the values € {0,00}. Codes which meet this requirement
are termed Maximum Distance Separable (MDS) codes. As #& dfghe standard un-

structured LDPC code failing to meet this requirement, tted to achieve relatively
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poor performance on the block fading channel. The Root-LDBdeclass was devel-
oped [23] as a class of MDS codes which allow full recovenhefdystematic bit nodes on
the block binary erasure channel through the use of spen#ldheck nodes. These nodes
ensure that each systematic bit subject to some fading cieeitt; is provided with in-
formation from blocks associated with all other fading ®g;, j € {1,--- , F'}\i. The
Root-LDPC structure is presented for the= 2 case below both graphically in Fig. 3.4
and through its parity-check matrix in Fig. 3.5.

1i 1p 2 2p

12 2cl

Figure 3.4: Simple Tanner graph of the Root-LDPC code for tbekdfading channel
with F' = 2

In Fig. 3.4 the nodd: represents th% systematic bit nodes subjectedde while
the node2:; represents th% systematic bit nodes subjectedde. The nodedp and2p
represent théf parity bits subjected ta; andas, respectively.

17 Ip 21 2p
E E E Hy | 12

Hpyg= | - A ! oeeeee- e
0 2cl

Figure 3.5: Parity-check matrix of the Root-LDPC code forllack fading channel with
F=2

In Fig. 3.51 is an identity matrix of sizé4Y ando is a null matrix of size’4i. The blocks
H, andH, are low density sub-graphs of siZe x I with column and row weights
appropriate to satisfy the degree distribution of the coBfer example, for th€3,6)
regular Root-LDPC codé,, has column weigh2 and H, has column weigh8, and

their combined row weight iS.

The Root-LDPC code graph generalises to the block fadingrediavith greater num-
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bers of fades through the repetition of the above structiirdentities and nulls for each
fading block. The raté code graph for thé” = 3 channel is given is Fig. 3.6. Note that
for this graph, half of the root check connections for a gigehof systematic bits con-
nect to one of the other fading blocks and the other half contoethe remaining fading
block. This ensures recovery of all systematic bits in thenewf two very small fading

coefficients (or erasures).

L2 3 1p 2p S _
T H 0| 0  Hy,: 0 i|w
‘T 0H, 0 ! 0 : Hy |
Hpoo B 110 Hy 0 0 0 0 i
ES= Vo THS 0 | 0 | Hy i|2s
H0 1| He i 0 00 |
OHT| 0 H 0 |w

Figure 3.6: Parity-check matrix of the Root-LDPC code forlthaxk fading channel with
F=3

The work on Root-LDPC codes for use on the block fading chafoweld in the lit-
erature includes the papers of Boutros et al. [23] [84] intigdalg the class and further
expanding the analysis [85] [86], the extension to the QCecstducture for the Root-
LDPC code [87] and further analysis on the outage threst88{ [The work presented in
this chapter focuses first on the construction of modeexigth Root-LDPC code graphs
which offer improved error rate performance. Followingstha novel modification to the
code class is presented to allow the dual-diagonal accuondade structure to be used
while maintaining the Root-LDPC structure and the diversithieving property it allows

on the block fading channel.

It should be noted that in addition to the Root-LDPC class astantion, termed
random but requiring the imposition of certain constragrtshe graph, has been proposed
in the literature for achieving the diversity of the partanublock fading channel with
F = 2. This approach requires a cycle-free sub-graph assocmtbdthe systematic
nodes of the code, which may be achieved through use of thedRie@thm along with

certain constraints on allowable code dimensions and nedeeds. This approach will
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be considered in greater detail in Chapter 4.

3.5 PEG Construction of the Root-LDPC Codes

The Root-LDPC structure of [23] introduced in the previoustis& guarantees full di-
versity on the block fading channel but the coding gain of¢bde is still affected by
the cycles present in the graph, and so a gap remains betiwegetformance of the
Root-LDPC codes and the performance allowed by the outagmapildy. This moti-
vates the consideration of alternatives to the random oact8ins used previously for the
Root-LDPC and QC-Root-LDPC codes.

3.5.1 Standard Root-LDPC Codes

The use of the PEG algorithm to construct the Root-LDPC codevalthe construction

of a graph with improved girth with respect to the pseudadoamn construction and thus
achieves a coding gain. In order to use the tree expansidmochetf the PEG algorithm

to construct the Root-LDPC graph, the graph must first beaiiggd to contain the root-
check connections in the appropriate positions and the pigements following tree
expansion must be restricted to those positions allowdd imndH, of Fig. 3.5. In the
original work on the PEG algorithm [53], for the implememndat of the tree expansion

it was suggested to use a binary indicator vector with enindicating whether or not
each check node has appeared in the tree at any level. Thatodvector contains &

in the m-th position if check node,, has not yet been encountered in the expanded tree
and contains & in that position ifc,, is already contained in the expanded tree to the
current level. In order to ensure no edge placement to thekamedes with some range
of indices, the indicator vector need only be initialised o that range before the PEG
tree expansion is carried out. Thus it is useful to definetﬁerrate% Root-LDPC code
the indicator vectors, andi, as

i, = [olxy N} , (3.14)
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= [1,,x0,,x], (3.15)

which may be used to ensure that placements are made onlg H ttand H;, sub-
matrices. The vectdy is used when the progressive edge construction is oper@atitige
variable nodes in; and1, while the vectoi, is used when the algorithm is operating on
the variable nodes i2; and2,,. Two further changes are required to ensure the constructed
graph possesses the Root-LDPC code graph structure. Ristiegjree sequende, to
be used in the construction must be derived from the desiegted sequenc®, by

accounting for the identity matrices ofandi, as

S DUN]. (3.16)

Finally, the presence of the identity matrices in the grapbrpo beginning construc-
tion precludes the random edge placement which the PEGitlgomakes initially at a
variable node with no current connections, and through lttie tree expansion process
may begin. The pseudo-code for the proposed constructymmitim for the rate} code
for the F' = 2 channel is provided in the following in Alg. 3. Note that thésgraph
associated with the systematic nodes is constructed fiesigare that the longest cycles

possible are associated with those nodes.

The PEG construction of the = 3 Root-LDPC code graph specified by the parity-
check matrix of Fig. 3.6 is also achieved by the use of thecaidr vector to constrain
edge placements to the allowable sub-matri¢gs,jn the systematic parts of the graph
associated withi, 2 and3i, andH, in the parity parts of the graph associated with

2p and3p. Thus for the nodes i and1p the indicator vector will become

i = le%llxgolxgllxgolx% ) (3.17)

while
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Algorithm 3 PEG Construction of thé” = 2 Root-LDPC Graph
for j = 1ton do

for k =1to D4(j) do

if (j <5 <j <) then

Leonstr. = 11
else

iconstr. = i2
end if

if (k==1)& (j > %) then
Place edgé€c,.n, v;), ¢min Chosen randomly from the minimum weight check
nodes of the current graph.

else
Expand the tree from,. As check nodes are added to the tree, the correspond-
ing entries ofi...«,. are settd. The tree expansion continues until the cardi-
nality of Nf)j stops increasing but is less thand_VIN_})j £ 0 butﬁjl = 0.
Place edgéc,,in, v;), ¢min chosen randomly from the minimum weight CNs of
N_gj, the set indicated bigons. .

end if

end for

end for
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iy = 11><%01><%11><%] ) (318)

and

%0 2N | (319)

Use of the PEG algorithm with these indicator vectors wilbguce a Root-LDPC
graph for thef” = 3 channel with improved girth with respect to the random cautsion.

3.5.2 QC-Root-LDPC Codes

This section outlines the use of the PEG algorithm to constRoot-LDPC code graphs
having the QC sub-matrix structure. The random QC-Root-LD&degraph was previ-
ously presented in the literature [87]. The proposed canstm applies the previously
discussed QC-PEG construction approach [59] in combinatiimthe novel use of the

indicator vector in PEG construction to impose the desineagplg structure constraints,
and will be demonstrated in the simulation study to followSaction 3.7.2 to provide
improved performance compared to the random QC-Root-LDP@hgraFurther work

on QC-Root-LDPC code graphs is presented in [89].

The QC-Root-LDPC code graph for thfé = 2 block fading channel may be repre-
sented by the parity-check matrix of (3.20)

i 2 1p 2

Hpy, = | 1 Hae 0 Hy (3.20)
I H, 0

Qqc

This parity-check matrix differs from that of Fig. 3.5 only that the sub-matrices

H,, andH,  are formed from tiled circulant permutation matrices asxshm (3.21)

Qqc
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A1,1 A1,2 Al,c
A A c Ay,
H, = | 0T (3.21)
L Ac,l Ac,2 T Ac,c |
where for this case
M
c=—, (3.22)
20Q)

because the dimensions of eddh,, andH,,  are x Z. As before the matrices
A, ; have dimensiong) x  and are either null matrices or circulant permutation matri
ces. Clearly@ and% must be integer values. Additionally, the dimensidrjsand%
constrain the maximum allowable node weights as each nbnAgy can have at most
weight one rows and columns, the maximum weight of edgh andH,,. in both row

and column is.

Graph construction proceeds as for the QC-PEG algorithmiqusly described,
which selects the non-nul; ; positions in columry and row: and the position of the first
entry inA, ;. Each subsequent entry i, ; is determined by right cyclic shift. As in the
PEG construction of the standard Root-LDPC graph, the inaliceector constraint of;
andi, in (3.14) and (3.15) is applied at each level of the expands] tvith an additional
modification to ensure that at most one set of entries is madadhA; ;. The indicator
vector for a given column of sub-matrices is updated follayveach sub-matrix place-
ment to exclude multiple placements in a particular rang@ check node indices. The
indicator vector is reset to its initial value when each nelumn is considered, taking its

values fromi; andi, as appropriate.

3.6 Accumulator-based Root-LDPC Codes

The Root-LDPC structured codes offer the diversity of thekliading channel and with
the use of the PEG construction developed in Section 3.50wepl coding gain brings the
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performance of the code class closer to the limit possibltherchannel. The iteratively
decoded Root-LDPC codes take advantage of the relativelyctwplexity of the SPA
decoder which exploits the sparsity of the parity-checkrixand on the block fading
channel achieves faster convergence to better error rdtes sompared to other LDPC
code graphs. However, the generator matrix for these codlegemerally be dense and
thus the encoding operation has a high computational cesteged with it, particularly
with increasing block length. The accumulator-based @ésedes introduced in Chapter
2 posses the dual diagonal sub-matrix in the parity-chedkixnahich allows encoding
by back substitution, resulting in encoding complexity @hgrows linearly with block
length. This section outlines a modification to the Root-LDé&@de class which incor-
porates the dual-diagonal accumulator structure and sstdrmed the repeat-accumulate
Root-LDPC (RA-Root-LDPC) code class.

3.6.1 RA-Root-LDPC Codes

The rate% RA-Root-LDPC code graph for use on thhe= 2 channel will first be devel-
oped, followed by the extension to the r%tgraph for theF" = 3 block fading channel.
From this progression, the generalisation to higher numbiiading coefficients will be-
come clear. Referring to Fig. 3.5 of Section 3.4, the paritgak matrix may be rewritten

as shown in (3.23) with no change to the essential strucfutreearaph.

12 20 2p 1p

HFQQC: I Ha Hb 0 1c2 (323)
H, I 0 H;| 21

In this form it is clear that the part of the graph associatéd tine parity bits may be
very nearly assigned the dual diagonal structure of theraatator, labeled],, in (3.24)
below.
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H, = o . (3.24)

In fact, rather than a singlH, matrix of size% X % which would require a single
non-zero entry in the upper-right corner of the null matrixX2p and thus would violate
the Root-LDPC structure, eadth, of (3.23) is replaced with ﬁl X % H, matrix and the
resulting graph is called the RA-Root-LDPC code. The onlyatftd this change on the
coding system is that the two sets of parity Bitsand2p are not dependent on each other
and therefore the encoding of each set may be done indegndancommon with all
Root-LDPC codes, the placement of the null matrices in thigygaaurt of the graph allows
the encoding of p and2p to be carried out independently, as the values of the paitgy b
in 1p rely solely on the values dfi, 2i and other values ifip, and not on any of the bits
in 2p. The same stands for the parity bitim Thus the RA-Root-LDPC graph structure
effectively allows the use of linear-complexity accumatabased encoding for the two
sets of parity bits at an effective block Iength%éf

The generalisation of this approach to channels with higherbers of fades and thus
codes with lower rate will be illustrated first for the examplf the code with raté for
the F' = 3 block fading channel. The Root-LDPC code for this channetid®on may be
arranged as in Fig. 3.7.

Each sub-matrix in the systematic part of the graph %i, 3i) is sizes x & while
every block in the parity part of the graphy( 2p, 3p) is size% X % Now it is clear that
the parity bits oflp rely only on the systematic bits af, 2; and3:, and on themselves.
Likewise for the parity bits ir2p and3p. Thus the dual-diagonal sub-matrix of the accu-

mulator may be used to replace each of the blocks in Fig. 38 avmatrixH, of size

2N 2N
9X9'

This produces a code which may be encoded linearly as thpggate RA or IRA
codes. However, the performance of this code suffers duesttatt that the sub-matrices
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N . o S
H,T 0| Hyy 0 0 0 |
Hi0 T| Hyj 0 | 0 i
Hoo — OHa _______ 0 Hblzo i
F3= 1Tl 0] 0 [ Hy, 0 |
TI0H, 0 | 0 | Hyy|w
0iT/H, 0 | 0 | Hy il

Figure 3.7: Parity-check matrix of the Root-LDPC code forhleck fading channel with
F=3

Figure 3.8: Parity sub-matrix far = 1,2, 3

H,, ., andH,, , take the form

Hy, . = [H, 0], (3.25)

and

HbQ,:c = [Hl Hp] ) (326)

whereH; is the matrix with a single non-zero entry in the upper-rightner and zeros
everywhere else. The size Hf,, 0 andH, in (3.25) and (3.26) i% X % Consider the
systematic bitd: in a situation where the first fading coefficient is very snfa#. in
practical terms close to an erasure). The arguments toM@faply equally ta2: and3i
through the symmetry of the parity-check matrix structuneorder to recover the bits in

17 in this case, information is needed fr@mand3p through the root-check connections
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of the identity matrices. In contrast to the standard RooRCxodes at rate, the sys-
tematic bits of the proposed code receive information frarty one half of2p and one
half of 3p. This leads to a loss in coding gain with respect to the stahRaot-LDPC
codes. In an effort to ameliorate this performance cost @hieving lower encoding
complexity through use of the accumulator, the work of [9@|sweferenced. That is,
the lower encoding complexity of the RA code relies on a codecire with all zeros
above the main diagonal in a modifiddl,, additional diagonal non-zero entries below
the dual-diagonal are permitted. This produces a genedaiscumulator with transfer
function m for a separation of g spaces between the dual-diagonaésrand the
new diagonal. Additional diagonals correspond to add@iaarms in the denominator of
the transfer function. The transfer functi%m proved most useful in this case and
when this accumulator was substituted iy, . andH,, ., H;, , remains the same and

H,, , takes the new form

H,,, = [Hp H,], (3.27)

whereHp is the% X % matrix with non-zero entries on the main diagonal and in the

upper-rightmost entry only as illustrated by

Hp (3.28)

The inclusion of the additional diagonal may reduce théngifthe graph, as described
in [90], however the benefits in the quality of messages phdse to the additional con-
nections from the parity parts of the graph to the root chexdes account for the gains
observed in Section 3.7.2 over the graph without the aduitidiagonal. One final change
was made with respect to the graph introduced in the aboweédRA-Root-LDPC code
for ' = 3 to produce the proposed IR3A-Root-LDPC code for= 3, that is to re-
verse the assignment of the accumulator blocks for the chedks in rows3¢2 and1¢2

associated witRp, i.e.
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Hb1,2 - [HD Hp] ) (329)

and

H,,, = [H, 0]. (3.30)

This change ensures symmetry in the parity-check matrigrims of the information

received through the root-check node at each set of systehiist

To generalise to lower code rate RA-Root-LDPC codes and higinebers of fades,
the accumulator is split ové” — 1) sub-matrices and includés— 2 additional diagonals
evenly spaced to provide the greatest connections pogsilthe systematic bits through

the root-check nodes.

3.6.2 Construction of RA-Root-LDPC Codes

The construction of the RA-Root-LDPC and R3A-Root-LDPC grapiwslves initialis-
ing all of the parity parts of the graph to the predeterminecuanulator structures de-
fined in Section 3.6.1 and intitialising the root-check itiignmatrices in the necessary
positions. The construction degree sequence must be ddrive the desired degree
sequence by subtracting the weight of the initialised syatec graph from the desired
degree sequence (i.e. for the= 2 graph the degrees are reducedlbyor the F' = 3
graph the degrees are reduced2bgnd so on.). Following this, the PEG algorithm is
constrained to run as for the PEG construction of the sta@aot-LDPC graphs by the
use of the indicator vector to make placements only in thabensatrices denoted Iy,

in (3.23) and 3.7.
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3.7 Simulation Study

In this section, the construction schemes and novel codes éta the structured LDPC
codes proposed in this chapter are supported by the resuslt®olations on the relevant
channels. For the decoder-based construction of QC-LDPEs;tite channel considered
is simply the AWGN channel while the performance of the RooPiDcodes is evaluated
on the appropriate block fading channels. BPSK modulatiarsel in both cases. The
specifics of the simulation parameters for each code typpraseded in Sections 3.7.1

and 3.7.2, respectively.

3.7.1 DO-PEG construction of the QC-LDPC code graphs.

The constructed codes considered are irregular with%rand maximum variable node
degree8. The irregular degree distribution is derived accordingh® requirements of
the QC class from the density evolution optimal distribotwith maximum weight con-
strained ta8. The distribution of the final graph is constrained by the @Qcure such
that there are multiples of Q, the sub-matrix size, nodesiohaveight. The distribution
is further altered to have fewer weightvariable nodes than the total number of check
nodes in the graph in order to avoid cycles composed entifalyeight2 variable nodes,
which would form unavoidable stopping and harm performanespective of the con-
struction algorithm used [22]. This modification to the enbé constitutes a trade-off in
performance in the waterfall region for performance in tive &rror rate rate region of the
error rate curve. Thus the variable node degree distribygrovided to the construction

algorithms considered is

AMz) = 0.46882" + 0.343827 4 0.1874x", (3.31)

for each of Figs. 3.9 and 3.10. For both of those plots the AWG&haoel the decoder
was operated to a maximum of 40 iterations, the BER is taketh#®owhole code word
and a minimum of 80 block errors were observed for each pairthe error rate plot.

The BER is considered as is standard in the literature, tavdtbo ease of comparison of
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the considered schemes. The error rate for the whole cod# iwgenerally considered
rather than that of the systematic block only to reflect thot flaat the syndrome check
for errors in the decoded word is taken for the whole code wéior the QC-Random
plot included for comparison in both Figs. 3.9 and 3.10 tmelcen irregular construction
was used to produce a graph with the same design parametitis @E€-PEG and QC-
DOPEG graphs, followed by a simple girth conditioning altjon to remove the cycles
of length 4 from the graph.

In Fig. 3.9 the error rate performance of the lengiki code with QC submatrix size

@ = 8 is presented for the QC-PEG and QC-DO-PEG graph construdgontams. In
Fig. 3.10 the error rate performance of the lengith code with QC submatrix siz@ =

16 is presented for those construction algorithms. For botspla graph was selected
by random construction method from the ensemble with theespanameters as those
constructed by QC-PEG and QC-DOPEG algorithms and a simpjghgranditioning
algorithm was used to remove cycles of length 4. Figs. 3.93%mh@ demonstrate the
significant performance improvements in the low error ratgan of the curve known as
the error floor which are achieved by the use of the QC-DO-PHGtoaction algorithm

compared to the standard QC-PEG construction algorithm.

The choice of the QC paramet@rfor both scenarios considered above is made to al-
low the PEG-based construction a reasonable degree obfreddough which improved
performance with respect to the random construction magbieeed. The values chosen
reflect those chosen in [59] in terms of the ra%o As () decreases, the greater freedom
of the PEG node selection procedure is found to provide irgagerformance, with
the limiting case of) = 1 constituting the unstructured code. Clearly,(aslecreases
the benefits available from the QC structure in terms of cexipt and parallelisation

diminish also.
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Figure 3.9: Error rate performance for the QC codes construzy the DO-PEG and PEG
algorithms, with block lengthlv = 256 and sub-matrix siz€) = 8. The Shannon limit
for the continuous-output AWGN channel when BPSK is usédli83dB at R = % [30]
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Figure 3.10: Error rate performance for the QC codes coastduby the DO-PEG and
PEG algorithms, with block lengthv = 512 and sub-matrix siz€) = 16. The Shannon
limit for the continuous-output AWGN channel when BPSK is uissi188dB atR = £

[30]
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3.7.2 Results for the Root-LDPC codes considered

This section presents the results for each of the contabstmade on the construction
of Root-LDPC code graphs for use on the block fading channéist Ehe results for
the PEG construction of the standard Root-LDPC codes willrbsgnted and discussed,
then the results for the PEG construction of QC-Root-LDPC sad#é be provided and
finally the plots supporting the novel accumulator-basedtR@PC code class will be
provided. For all plots in this section, the maximum alloweober of iterations in the
decoder is 20, as is standard in the literature on the Roote_Bdtles, reflecting the fast
convergence offered due to the diversity of the channelttieogeneral Root-LDPC codes
on the block fading channel the parity bits do not converggéocorrect values and so
the FERSs presented in the plots of Figs. 3.11 to 3.16 are takehd block of systematic

nodes only.

PEG Construction of Root-LDPC Graphs

In Fig. 3.11 the frame error rate (FER) of the systematic naslpsotted for a range of
values ofﬁ—g for the proposed PEG construction along with the estaldigiraph con-
struction techniques from the literature. Systematic FE€bnsidered as the Root-LDPC
code class does not offer outage-approaching error raterpence for the parity nodes
of the Root-LDPC code. The standard Root-LDPC graphs havearhetwe of Fig. 3.5
and the codes are thus r%t;ethe block length of all codes i200. The PEG construction
in red is observed to outperform the randomly constructaddsrd and QC code graphs
across the full range of values considered. The performahttee standard unstructured
PEG constructed LDPC code graph on this channel is alsogedvor comparison. Fig.
3.12 compares the performance of the shorter length grapisracted by the proposed
strategy compared to that of the established random catistnifor the QC-Root-LDPC
class. Again, the graphs constructed by the proposed PE&dlzpproach achieve better
performance across the full range of noise variances ceresid The final plot for the
standard PEG-Root-LDPC construction is provided in Fig.43tlhe code graphs have
the structure of Fig. 3.6 which has rateand with block lengthV = 540. For this
case the PEG-based construction is again observed to fartpehe established random

construction across the range of noise variances considere
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PEG Construction of QC-Root-LDPC Graphs

Fig. 3.14 shows the performance of the proposed constrdii€el-based construction
of the QC-Root-LDPC code graph for the block fading channeth wit= 3 with block
length N = 378. As expected, the improved cycle properties of the graplthvhesult
from the use of the PEG algorithm in construction allow the RIEJ5-Root-LDPC code
graph to outperform the graph selected by random construetcross the range (%

values considered.

Proposed Accumulator-based Root-LDPC Code Sub-class

The proposed code sub-class of Section 3.6.1, the IRA-Ro®&€_graphs with PEG con-
struction, are evaluated in this section. Fig. 3.15 denmates that the IRA-based graph
designed for thé” = 2 channel achieves the performance of the PEG-Root-LDPC graph
with no observable loss in performance. This result is §icgmt as it shows that the linear
complexity in encoding allowed by the presence of dual diadjstructure in the graph is
achieved without a sacrifice in performance for this chaooetition. Fig. 3.16 however
demonstrates that, as expected, for channels fith 2 the linear complexity encoding
allowed by incorporating the accumulator structure in thatp part of the graph incurs
a cost in degraded performance. The plot for the IRA-Root-L@QRAPh suffers a consis-
tent loss with respect to the PEG-Root-LDPC graph of more théaB. The proposed
use of the higher weight accumulator, which correspondsitadditional non-zero di-
agonal in the parity sub-matrices, ameliorates the pedioga degradation to less than
0.3dB compared to the PEG-Root-LDPC graph across the range eévaonsidered.
This improved code class maintains the benefits of the aclatontbased codes in terms
of encoding complexity by keeping the null upper-triangstaucture above the main di-
agonal of the parity sub-matrices. Thus, in certain openaliscenarios the performance
degradation which is suffered by the proposed IRAwW3-Root-CO®de sub-class may
be acceptable in exchange for the complexity reductiorredfén encoding.
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Figure 3.11: Error rate performance for the PEG construBteadt-LDPC code for the
block fading channel withF" = 2 compared to the classic random constructions.
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Figure 3.12: The performance of the proposed PEG construétir the Root-LDPC
code on the block fading channel with= 2 compared for shorter block lengths with the
performance of the randomly constructed QC-Root-LDPC code.
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Figure 3.13: The performance of the proposed PEG construétir the Root-LDPC
code on the block fading channel with = 3 compared to the randomly constructed
Root-LDPC code. Both graphs are irregular with block lenyjth- 540
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Figure 3.14: The performance of the proposed PEG construfdr the QC-Root-LDPC
code on the block fading channel with = 3 compared for to the randomly constructed

QC-Root-LDPC code.
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Figure 3.15: The performance of the proposed PEG consttuBt&-Root-LDPC code
compared to that of the PEG constructed Root-LDPC code griaphation 3.5.
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Figure 3.16: The performance of the proposed PEG consttuBta-Root-LDPC and
IRAW3-Root-LDPC code graphs compared to that of the PEG cactsd Root-LDPC
code graph of Section 3.5.
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Average Convergence of the Considered Root-LDPC Graphs

Fig. 3.17 plots the average number of iterations requireéderSPA decoder against SNR
for the F = 2 channel and the Root-LDPC constructions considered. It dstretes that
decoding on the Root-LDPC graphs converges considerablg quockly than on the un-
structured graph. This is unsurprising as the unstructgraph does not effectively share
the available information from the code bits affected byedént fading coefficients. In
addition, there is a small improvement apparent in the PB@sttucted graphs over those
selected randomly. At higher SNRs, the Root-LDPC graphs e¢geven average in close
to one iteration. This result is again unsurprising, as thetR®PC graph is designed to
provide perfect recovery of the systematic bits in a singletion on the block binary era-
sure channel, a channel which resembles the block fadingehavith very large SNR. It
should be noted that the average number of iterations iteploand that if the decoder is
constrained to a single iteration that the error rate perémrce would suffer greatly, as the
relatively rare error events which require a higher numbeteoations would contribute

significantly to the error rate in this lower error rate regad operation.

3.8 Summary

In this chapter, the construction of short to medium lendgfiPC code graphs with dif-
ferent structures was considered. First, building on ther pvork of the author, the im-
proved code construction algorithm based on the use of tAedS8&oder to improve edge
placements at certain points in the PEG algorithm was dpeeldor the construction of
QC-LDPC code graphs. This was demonstrated to offer signiffserformance improve-
ments in the low error rate region of operation of the errortad coding scheme, where
shorter-length LDPC codes generally suffer from a reduaciioerror rate improvement

for improving channel conditions, known as the error floogpdmenon.

In the second part of this chapter, a number of constructioblpms for the Root-
LDPC code class were considered. The PEG algorithm was fipsiea to the construc-
tion of standard Root-LDPC graphs in order to improve thengiftthe graph compared
to the randomly constructed Root-LDPC graph. This proposetsteuction was then
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combined with the QC-PEG algorithm found in the literatureaiow construction of
QC-Root-LDPC code graphs which also have improved girth. okafg this, a novel
sub-class of the Root-LDPC class making use of the repeatiadate approach was
developed to offer the code graph with the error rate perdmce properties of the Root-
LDPC codes on the block fading channel along with the reduastin encoding complex-
ity allowed through the presence of the accumulator stredgtuthe sub-graph associated

with the parity bit nodes.

The contributions outlined in this chapter were supportgdaldetailed simulation
study presenting results for the channel scenarios, gtapttsres and constructions dis-
cussed. Performance improvements through the use of theged construction methods
were observed, while the IRA-Root-LDPC code sub-class wadstrated to offer the

same performance as the standard Root-LDPC codes when thed?istuction is used.
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Figure 3.17: The figure showing the average number of immatrequired for conver-
gence on the block fading channel with= 2.
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4.1 Introduction

In contrast to the work on graph construction of Chapter 3ctitested candidate sub-
graphs using the decoder directly, much of the prior worlhmltterature on graph con-
struction involves pseudorandom approaches constrap#teluse of knowledge of cer-
tain structures in the graph which are known to harm the pedoce of the decoder.
These structures were introduced previously in the litweateview of Chapter 2, and
include short cycles, cycles with few external connectitm¢he rest of the graph and

combinations of cycles with poor graph connectivity. Thevpously discussed PEG algo-
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rithm makes girth the metric of interest and produces graptisexcellent performance.
The ACE based schemes use an approximate measure of the nofmdp@od’ connec-

tions emanating from cycles, i.e., connections which doamninect back to the cycle
through a single node, and make edge placement choices bashis measure. The
EMD measure is the exact measure which the ACE metric appeigsn A cycle with

zero EMD is a stopping set, which is defined in Chapter 2 andasvkrto correspond to
an uncorrectable error on the binary erasure channel (BEQ)pBig sets are also known
to harm the performance of the message-passing decodehenabiannels. When two
cycles with low EMD are connected together by all of theipexgive extrinsic edges, a

stopping set is also formed.

In this chapter we propose a multipath EMD strategy for PEGel graph construc-
tion of LDPC codes which leads to improved error floor perfante in the constructed
code realisation. The proposed method is flexible in rategular node degree distri-
butions and the class of constructed code. It is implemesseiprogression of decision
metrics which are used to prune a set of candidate placenwatiighe decisions based on
an indirect measure of the impact of each placement on tighgsa whole. The goal is
to reduce the effects of the unavoidable graph structuessept at finite block lengths on
the iterative LDPC decoding process. Following the prestent of the proposed metric,
a novel class of codes capable of approaching the outagedimblock fading channels
with different numbers of fading coefficients is introduc@tiese codes are demonstrated
to perform excellently at short block lengths, but requirelatively large number of de-
coder iterations to achieve the desired performance. Togosed multipath EMD con-
struction is demonstrated to provide considerable gaiterins of decoder convergence.
A detailed justification for each of the main contributioriglee chapter, namely the pro-
posed novel graph construction approach and the proposedsitiy-achieving class of
codes, is provided for each of the main contributions of thapter. A simulation study
of the proposed construction along with the existing stditthe-art is provided, showing
the gains achievable for a number of structured code classdse AWGN channel and
for the proposed novel reduced structure diversity-aéhgeeodes on the block fading

channel.

In summary, this chapter has the following contributions:
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e Detailed description of the proposed graph constructimatesyy, including a pseu-

docode for clarity.

e Proposed code class design to operate on a block fading ehaith an arbitrary

number of fading coefficients.

e Mathematical analysis of the proposed multipath EMD deaigghthe block fading

structures.

e Simulation study of the proposed and previous state-cfthenethods.

The rest of this chapter is laid out as follows: In Section #h& proposed multipath
metric progression is detailed, including a discussiorheffirevious approaches, and a
mathematical and algorithmic description of the proposgat@ach. Section 4.3 provides
analysis of the proposed metric progression. In sectiontdetnovel code class for use
on the block fading channel is described, a discussion of prork for the channel with
two fading coefficients motivates the expansion first to the@nmel with three fading co-
efficients and then to the general case. A note on the veraa# of these codes on
channels with varying numbers of fading coefficients thiotlge use of a simple punc-
turing scheme is also provided. In Section 4.5, a detail@disition study is provided for

the work proposed in this chapter. Section 4.6 providesef bummary to the chapter.

4.2 Proposed Multipath EMD Metric Progression

In this section, the basis for the proposed constructioordtgn, the novel multipath
EMD metric progression, is introduced and discussed inildéta overview of previous
construction metrics motivates the approach considerdgisrchapter. The new metric
progression is then outlined in detail, and the pseudocodth& proposed construction

Is provided, explicitly describing the proposed multipEfD construction algorithm.
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42.1 Metric

As previously discussed in detail in Chapter 3, the PEG-bgsaph construction algo-
rithm follows a columnwise and edgewise progressive canstn where, for each edge
to be connected to the variable under consideration, thaf séitcheck nodes in the graph
is pruned according to the path length metric derived fromttee expanded from that
variable node. The set of check nodes surviving this selegtiocess would if connected
to the variable node result in the creation of cycles withdhme largest length possible
under the current setting of the graph. Following this, teedf surviving check node
candidates is further pruned to the set containing onlygloheck nodes with equal min-
imum current weight. This imposes a near-regular distigioubn the check nodes of the
graph. The approach outlined in [50], termed the improve® REIPEG algorithm, ap-
plies the ACE concept to the PEG construction through the tifgegpath ACE metric
after the above path length and check node weight metricslhesn applied. As outlined
in [49], the ACE measure approximates the degree to which la@ cpnnects externally
to the rest of the graph and so provides an indication of Kediiood of stopping set cre-
ation. The performance of the graphs constructed by the I8§&ithm demonstrate the
effectiveness of avoiding stopping sets for improving perfance even on the AWGN
channel. Another work in the literature attempts to accdomnthe approximate nature of
the ACE metric by applying an exact EMD measure to the set afidate check nodes
which survive the metric progression of the IPEG algorithue. (path length, check node
weight and path ACE metrics) [91]. In this previous algorithatt variable nodes in the
tree expanded from the variable node of interest and tetmgan the candidate check
node are identified, and the EMD of this set of variable noddaken as the metric by
which to choose a survivor check node for edge placementtHéocase when there is
a single path from variable node of interest to each checle maahdidate, this measure
gives an indication of the likelihood that these paths wdltipate in a stopping set.
However, for the case where there are multiple paths betweerariable node of in-
terest and the candidate check nodes, this metric does flexttrihe likelihood that the
individual cycles created will participate in a stopping)lset rather the likelihood that all
those cycles combined will form or participate in a stoppsety Clearly, when multiple
paths exist the set of variables which appear in the local défeall paths will be larger
than (and will contain) the sets of variables for each pa#thiof these relatively smaller
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sets of variable nodes for each path will potentially pgstite in smaller and hence more
damaging stopping sets than the set of all variable noddwitotal graph and the EMD
measure. Furthermore, the EMD measure for the whole loeglgset of variable nodes
does not give a clear indication of the connectivity of thaividual paths contained in the

local graph.

Motivated by this observation, a new progression of meigqggoposed for choosing
a survivor check node from a set of candidates. First, the P&&expansion is carried
out to find the set of check nodes at equal maximum distanee the variable node
of interest. This reduces the set of check nodes to be caesidgeatly and has been
demonstrated as one of the best approaches currently krikvanm this set the minimum
weight candidates survive, forcing the final check noderibistion to near-regular and
further reducing the set of check nodes which must be coresidé-or each of these sur-
vivors, in an operation to be outlined in the following seati for each candidate check
node each distinct path from root variable node to candida¢ek node is identified and
the precise EMD of each path is computed. From the currerdidate check node set,
those check nodes with fewest paths from variable node tckamade are selected to sur-
vive. This step in the selection process is justified by tloe thzat the small stopping sets
found in the final graph will be formed primarily from multgktycles joined together by
their only respective extrinsic edges and that choosingtlge placement which creates
fewer short cycles reduces the likelihood of small stopgegcreation. Finally, for the
remaining check nodes which have equal maximum distana@muam weight and the
same minimum number of shortest paths from the variable nbd#erest, the average
EMD of the shortest paths is computed and the candidate hathargest value is chosen
for edge placement. This choice of average EMD across dispather than the EMD of
the path with worst connection is again made to reduce theathi&elihood of stopping
set creation in the graph construction. The results predantSection 4.5.1 demonstrate
the efficacy of avoiding stopping set creation throughoetdhaph in this manner, with
a gain of approximately.5dB observed for the QC-LDPC graph and of approximately
0.25dB for the IRA graph.
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4.2.2 Computation of the Metric

As the metric progression detailed in the following makes afsthe notation introduced
in [53], a brief review is useful. The PEG algorithm involhasree expansion from the
root variable node;, with each level added to the tree including an additionbkstiof
check and variable nodes, up to the lelak which all check nodes are included in the
tree, or further expansion adds no new check nodes. The sbieck nodes reached at
level [ is denoted/\/jj while those not yet included are denot?tjj. We also define the
set of variable nodes included in the tree from nagd& m levels asM;". Note that, for
variable nodesM; contains only; while for check nodes\17, contains the immediate

variable node neighbours ef. We denote’ the set of all M check nodes.

Once the initial stage of graph construction is complePREG algorithm first returns

the subset

A= {(NTT: N =0}, (4.1)

and from this set the minimum weight candidates are selexted

B ={ei: IMZ] = min [MC[}. (4.2)

Then for the node paifv;, ¢;} with ¢; € B and L levels between; andc;, such that
J\Tﬁ = (), the set of variable nodes found at the levels all paths between the nodes in

this pair is

D, = Mi N ML (4.3)

The setsD, must be found for each of the levels in the graph betweer andc;.

There exists a path between two variable nodes in adjacezisteanda + 1 if
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Ny ON) #0 v, € Dy vy € Doy (4.4)

In order to produce the distinct path number and path EMD iotit is necessary to
find the set of distinct path variable node sets. These sexaanded level by level and

intialised for the connections from root node to each nodB;ias

s1 = {vj, vu },82 = {vj, v}, Sy = {5, vy, 1 (4.5)

because there is an edge connecting the root nptteeach node in the first level. The
number of distinct paths at the first levels = |D, |, while the number of distinct paths
up to levela is denotedP,. For each path and path variable nodessetb level a with
ve{l,---,P,}, with variable node, = s, N D, the node irs, which was found at the
current level, there will bév, N D, 4| distinct paths after expanding the set of distinct
path sets to levela + 1). The new sets produced from the paths sets to leeeld those
nodes in levela + 1) are produced according to:

Sz = {8y U vy, :./\/'S(lmpa ﬂ/\/’fwy # 0}, Vsy,v € {1, , P}, Yoy, € Doy1.  (4.6)

Thus a distinct path set for the next level is created for eachbination of the path set
to the current leve$, and a node D, if there is a path between the nodesinat the
current level and the node iR, ;. When this process has been carried but 1 times
for the check node; then the set of all distinct path ses = {s, .. },p € {1,--- P} to
level L is found. The number of distinct paths framto ¢;, denoted,., is the cardinality
of the set of all distinct path set§,., = |S.,| = P.. The above process must be carried
out for each check node . The number of distinct paths for each check node is the
first element of the proposed metric progression used toepthm set of candidate check
nodes:
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C={¢:P,= min F.}. 4.7)

In the event that there is a single entrydrthe check node selection procedure termi-
nates and that check node is chosen as the survivor nodeeaaddi{v;, C} is placed. If,
however, there is more than one elemerd,ithe path EMD of each set i, is computed
for ¢; € C. The EMD for the path corresponding to the sgt is

Eyeo=Har:ar € /\/',277 cr € N H, Yo, € sy, (4.8)

CGSP,CZ' \Ub

The EMDE, ., for each path can be computed simply by taking the sum of therots
of the parity-check matrix corresponding to the nodes, i) and counting the number of
1s in the resulting vector. For each check nodé,ithe EMD of (4.8) is computed for all
paths inS., and then the final metric used is computed as the mean of tlaisdeEpMD

values:

1
Yo, = 5 > EBpe (4.9)

The successful candidate is then the check node with thedaingean path EMD value:

Cplace = Ci € C: Yei = Hlaé( Ve (410)
cz€

Fig. 4.1 gives the graphical representation of (4.3)-(4d)a particular variable node
vy and two check node candidates labele@ndc;, respectively. The tree is expanded
to depth two and the nodes at each level for all paths areifeehby applying (4.3) for
levels 1 and 2. So, from the downward tree frogthe variable nodes in the first level
of the downward tree ana/l},0 = {vy ,vq, v3} while from the first upward tree from,,
it is clear that the nodes reached at letiet- 1 = 1 are M| = {vy ,v3, v5, vg}, SO
the nodes which are found at that level in both trees are tdesipresent in the graph

connectingvy andc,, D; = {v,, vs3}. The same observation giveel? = {vs ,vs5, ve}
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and M? = {v4} so itis clear thav, alone appears in the graph fram andc. at this
level, D, = {v,}. For the graph between andcy, it is observed that there is a single
path only, a®D; = {v.} andD, = {vs}. In this simple example two paths are identified
betweeny, andc, while a single path is identified betweepandc,, and according to the
metric progression outlined, would be chosen for the edge placement. In this simple
example the EMD calculation and pruning of (4.8)-(4.10) ldowt be needed as there is

already a single superior check node candidate.

Downward Tree Upward Tree 1 Upward Tree 2
g : g g
Al T

O 00 | O

Ce Cr Ce Cr

Figure 4.1: The path identification process described [8){#4L.6) as implemented by a
comparison of a downward PEG-like tree from the root vagatdde and an upward tree
from each of the candidate check nodes. For a given candidayenode found at the
same level in both the downward and upward tree is contaméuki graph between the
root variable node, and that candidate check node. By (4.5)-(4.6) the uniquesth
identified.

The pseudocode of Algorithm 4 explicitly describes the athm and shows where
equations (4.1)-(4.10) appear in the structure of the megalesign algorithm.
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Algorithm 4 Proposed Multipath EMD-Driven PEG Design

1. for j=1:Ndo
2. for k=1:D(j) do
3. if k==1then
4. Place edge,, ¢; with the check node chosen randomly from the minimum
weight check node sét} : [M7_ | = _min_ M .
5. else
6. Expand a tree from; to depth/ such thaenher/\/f = /\/4 L#£0or JW 0.
7. From A, the check nodes at greatest distance fla;raelect the set of check
nodess with minimum weight:
8. A={N" N =0}
9. B={c: \MO = mm M [}
10. For each check node i, find all distinct paths from the root variable node
by the following procedure:
11. First find all nodes at each level as:
12. D, = Mi n ML
13. Intialise the path sets as:
14. sq:{vj,vuq},q€{1,~-- ,Dl}
15. and expand through levels- - - | L according to:
16. Sz = {8v Uy, 1 NQ p, NN, 7&@} Vsy,v € {1,--+ , B}, Y0y, € Day1
17. Prune the seB according to the number of dlstlnct paths givingGet
18. C={¢:P, = zmré P}
19. Compute the méan path EMD metrics for each surviving check naddidate
as follows:
20. PCz |{Ck}| CkGN (b)p,e;? Ck g./\/’ (d£b)p.c Vb,dEl,---,f
21. = — Z e,
Fe, p=1:P,
22, Choose the check node which has the best graph connectieityding to the
multipath EMD-based metric as:
23. Cplace = Ci € C 1 7Y, = rcngé( Ve,
24.  endif )
25. end for
26. end for
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4.3 Analysis of the Multipath EMD Metric Progression

In a PEG-based construction, any cycles created by pladeohdie edge(x;, v;) will
contain that edge, including the shortest-length cycleateld. One or many cycles are
created when, in Step 6 of AIgorithmATfj = 0.

In review, the PEG algorithm selects from the set= {N 1 : N, = 0} the set of
nodes with minimum weight3 = {¢; : |[M?| = gleigp\/lgm\}. In that algorithm, the
nodes in this set were considered to be equivalent in ternttseaf effect on the perfor-
mance under iterative decoding as they are at equal maxinstande fronw;, and so a
node was selected from this set at random. In the followinpgstication for the decision

metric progression employed in the proposed constructgorighm is provided.

Denote the number of shortest-length paths from check rpde B to the current
variable node); asP,, and recall that the s€t= {c; : P, = ?;é% F.,}. Thus a placement
involving any element of would create the same minimum number of shortest cycles,
P... The proposed algorithm selects a node fi©imased on the extrinsic connections of

thoseP,, cycles.

At any particular edge placement in the progressive cocistmny the original PEG
algorithm would creaté’,, cycles of lengtt2I+2, with ¢, € B while the multipath EMD
approach of this paper creatEs cycles of the same length. By design:

P,<PF.,,6 ceCrc cB. (4.12)

y )

In the above expression, the equality is satisfied in onlydages, when

P, =PV, €B, (4.12)

whereP is some constant, or when
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1B] = 1. (4.13)

In both of these case§, = B. Thus, at worst the proposed metric reduces to that of

the original PEG algorithm.

Consider the construction of two code graphs, where all lufitial edge placement is
made using the same original PEG algorithm. For each platgthe number of shortest
cycles created, similarly to the notation used abdve,(PEG) with z indexing the edge
placement and. denoting cycle length. Thus the total number of length-4deym the
PEG constructed graph ig P, ,(PEG), whereF is the total number of edges in the

z=1:F
graph. The same applies for cycles of lengtk- 6,8, - - -

Now, the first graph in our hypothetical situation is consted entirely by the PEG
algorithm, while for the second graph the final placementasienby the proposed mul-
tipath EMD algorithm. In both cases, cycles of lendthk= 2| + 2 are created. The total

number of cycles of lengthl + 2 in each graph is

Z . a112(PEG), (4.14)
and
P, 2142(PEG) 4+ Pg o142(MEMD), (4.15)
z=1:F—1
respectively.
We wish to show that
> P.22(PEG) + Ppa2(MEMD) < > P.5.5(PEG), (4.16)
z=1:E—1 z=1:F
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Expanding the above equation, we obtain

3" P.22(PEG) + Ppoi2(MEMD) <
z=1:EF—1 (417)
3" P.2iis(PEG) + Ppia(PEG).

z=1:E—1

From above, if we assume that~ B3,
PE72|+2(PEG) — PE72|+2(MEMD) = €, (418)
wheree is some positive integer, while if = B,

Pgo1+2(PEG) — Ppo1o(MEMD) = 0, (4.19)

proving that (4.16) holds.

Due to the suboptimal nature of PEG-based constructionstaxdome choice in edge
placement at an earlier stage of the graph, though locatiynahy may negatively impact
on available choices for edge placement at a later stagenstruwtion, the corresponding
proof may not be constructed for earlier edge placements, E. However, the pro-
posed algorithm follows the tractable locally optimal aggh of the PEG algorithm and
has been demonstrated through simulation to produce gcapable of excellent perfor-
mance. As further support for the assertion that reducesungber of shortest length
cycles throughout the graph, Table 4.1 provides the totadbar of cycles of length 6, 8
and 10 in a number of the code graphs used in Figs. 4.7 and #Bth& cycles counted
by means of the algorithm of [92]. Note that the proposedrilym produces the graph
with the fewest number of cycles of length 6 among the consbms considered.
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Table 4.1: Numbers of cycles of each length found in the cadglg for the graph
constructions considered.

girth=6 H QC-PEG QC-M.-EMD-PEG QC-PEG-ACE-EMD
No. 6 Cycles 1560 1392 1488

No. 8 Cycles 29000 30608 28888

No. 10 Cycles|| 462312 481320 465744

4.4  Full Diversity Codes with Reduced Structure

In this section a class of codes with fewer constraints ongtiagh structure than the
Root-LDPC graph, termed reduced structure, which are capdlaichieving the diversity
of the block fading channel is introduced. A multipath EMDsm extension for the
codes with reduced structure for block fading channelsse ptesented. The diversity-
achieving code class developed in this section compriseaerglisation of the previously
presented code which achieves the diversity of the chanmieliv= 2 only [93]. In that

paper, two results from the literature were employed:

For a code to achieve full diversity on the block fading chelnthe systematic nodes
must be fully recoverable on the block binary erasure chgnme the channel where the
fading coefficients take only the valugse [0, co] [84].

and the well-known and previously discussed result comegIistopping sets:

Under iterative SPA decoding, each uncorrectable errortentiinary erasure channel
is associated with a stopping set, stopping sets fully chiarae the error events on that
channel [39].

The rest of this section proceeds as follows: In part 4.4&,dreviously presented
code for theF' = 2 case is outlined. Part 4.4.2 presents the extension of gipsach
to the FF = 3 case, while part 4.4.3 indicates the procedure for constigi@ code for
a block fading channel with any number of fading coefficierRart 4.4.4 discusses the

coding gain of the proposed codes.
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441 F =2Case

The work in [93] presented unstructured codes which achigVeliversity on the block
fading channel with? = 2 provided certain constraints on rate, distribution and cy-
cle properties are met. In order to meet the above requirethen the systematic
nodes be recoverable on the block binary erasure channelhwhsimilar to the block
fading channel subject té' independent fading coefficients but with each coefficient
By € [0,00], f = 1,--- , F, the fact that stopping sets fully characterise error on the
binary erasure channel and thus also account for the ermotiseoblock erasure channel

is used to produce a new sufficient condition for achievirgydiversity of the channel:

A systematic node is not recovered if it is a member of a shgppet and if that

stopping set is erased

We term a stopping set containing a systematic variable asggstematic stopping set.
In the F' = 2 case, an uncorrectable error occurs when all nodes in ansgBtestopping

set are affected by the same fading coefficignt

B Bo
T

Figure 4.2: The rate % code for the block fading channel with = 2

The general parity-check matrix for the code on fhe- 2 channel is presented in Fig.
4.2. Denotel; as the set of variable nodes affectedfyandV; as the set of variable
nodes affected by,. Assume that all the systematic nod&s,;, are contained within
V1 and that protection of these nodes is the goal. From the wotlke literature, stated
above, the requirement that the code achieves full diyemitthe F = 2 channel is
exactly the requirement that there exists no subsetV;,,, such thatS'is a stopping set.
In the notation previously introduced, this may be stated as
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;€8 3ci,¢ €N e @ N e, (4.20)

This means that for each subset of the systematic nodé/gegt, there exists some
variable node with at least one extrinsic connection wigpeet to that subset. If this
is the case, there is no stopping set contained withjp and by the previously stated
results of the literature, each node is recoverable on thekltdinary erasure channel [39],
implying that the code achieves full diversity [84]. Thuse full diversity requirement of

the code has been stated as a constraint on the nature ofdbg@ph.

For the code of [93], in order to achieve the requirement & the property of the
PEG construction that for some number of nodes in the irpinse of construction, no
cycles are created. As all stopping sets are formed fronvichatl of multiple connected
cycles, this portion of the graph is free of stopping setshé&original formulation of the
PEG algorithm, the order of parity-check matrix constroetis left to right and the graph
associated with the firgtcolumns of the parity-check matrix is referred to as thelheftd
subgraph of thg-th variable node. For weightvariable nodes, it was demonstrated [49]
that no cycle is created up to the variable negg_,) where M is the number of check
nodes of the graph. As such, when the PEG construction is aisédhe systematic
variable nodes are assigned to the fikSvariable nodes, the code can be guaranteed to

achieve diversity if those systematic nodes have weighti2 an

K < g < (M —1). (4.21)

Under these conditions, the variable node subset affegtéti will be cycle free and

so will also be free of stopping sets.

442 F = 3Case

In this subsection, the novel extension of the approach limckbfading channels with
F > 2is presented. First the channel with= 3 will be considered, and a solution will be

developed for this scenario. Following this the genertibsao the block fading channel
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with any number of fading coefficients will be made. Certaimustiural constraints will
be necessary, as will become clear in the following. As stith extended class of codes
will be termedreduced structure full diversity codes for the block fadafgnne] as the
structural requirements are reduced compared to the psyipresented Root-LDPC
codes [84].

61 62 ﬁS
e e N N
Vi Va Vs —

Figure 4.3: The rate % code for the block fading channel with = 3

For this case, the general parity-check matrix is represkintFig. 4.3. Again assum-
ing that the systematic variabl€,,,, nodes are contained withiri, the requirement for
full diversity again relies on stopping sets. However, is fase, it is necessary that the el-
ements of;,, be recoverable on the block binary erasure channel obsamwahere any
one of the fading coefficients may be non-zero, or any pair beagon-zero. If all three
coefficients are zergs( = 5, = 5 = 0) the systematic nodes are entirely unrecoverable,
and if 5; = oo the systematic nodes will be fully recovered from the chanrespective
of B ands. In the case that, if for examplg; is non-zero while3; = 5, = 0, then any
stopping set5 C V; U V, would be unrecoverable [39] and likewise for the other sng|
non-zero fading coefficient scenario. Considering only ttieraate of the systematic
nodes, the necessity thétis not a stopping set is again as expressed in (4.20), but the

subsets of nodes for which this requirement must hold haareled to every set where:

SNVyst 0 : SCViUV,, SC VUV (4.22)

Once again, the full diversity requirement for the code heenbstated as a constraint
on the graphical structure of the code realisation. ForRhe 3 case, the requirement
is more difficult to achieve, as there are more configuratairtbe block erasures which
must be considered. However, once a graph is constructechvgaitisfies (4.20) and
(4.22), it is guaranteed to achieve full diversity on theckléading channel witht" = 3,
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by the results of [39] and [84].

The equations (4.20) and (4.22) together impose the liraititlo systematic stopping
set exists solely among the variable noded/inamong the nodeg; V3| and among
the variable node8/ V;]. In the Root-LDPC code approach, stopping sets are avoided
by the imposition of the root-check structure. However, idev to avoid this structural
requirement, an alternative solution is presented in Fig. Each of the two subgraphs
[Hpg, 1 Hg,| and[Hjg, » Hp,| are constructed to achieve full diversity on the= 2 chan-
nel. As such, the subgrajh;, ; is cycle free, as i¥l3, .. Combined, they may have many
cycles, however the placement of the null matrices enshegexktrinsic connections exist,
to Hp, with respect to3;, 5, and toH, with respect to5,, 5. Thus the systematic vari-
able nodes are recoverable under hoth= 5, = 0, 3 = co ands; = 3 =0, P = oo.
Additionally, underg; = 0, 5y = 3 = oo the extrinsic connections ensure no systematic
stopping sets among the subset of variable nodes affectgddmyly. This code therefore
completely recovers the systematic bits on the block eeasluannel and so achieves full

diversity on the block fading channel.

. /81 52 63_

Hﬁhli Hy, i 0
Hppz = [ R
Hy ot 0 ¢ Hy

Figure 4.4: Full diversity parity check matrix for thlé = 3 channel

443 Caseswith? > 3

B Ba Br
TN N "\ VN
‘/1 ‘/2 — -— VF —

Figure 4.5: The rate& % code for the general block fading channel
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In the general case with' fading coefficients, to recover the systematic nodes con-
tained inV, the stopping set requirement generalises to involve aksts including ele-
ments ofl/; and excluding all elements of one or more other fade-aftes#ts of nodes.
Now (4.20) must hold for all the subsets described by:

S N ‘/syst 5& (Z)v (423)

where

SCViUVE UVh, - UVi, & {kr-kn} C {2, F}. (4.24)

m

The constraints on the code graph described by Eqns. (4203) and (4.24) provide
a graphical interpretation of the requirements to achiallaliversity on the block fading
channel with generaft'.

The full diversity code for the/" = 4 channel is provided in Fig. 4.6. Diversity-
achieving codes for block fading channels with a greaterlmemof fading channels are

constructed in a similar progression as that from#Ahe 3 code to theF' = 4 code.

B B B3 Jon

Hg 1y Hg: 0 0 0
HBF4 — Hﬂl»Qi 0 i Hgsi 0
Hps 0 1 0 @ Hy

Figure 4.6: Full diversity parity check matrix for thé = 4 channel
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4.4.4 Pseudocode and Coding Gain of Proposed Codes

The pseudocode for construction of the proposed diveesityeving codes with an arbi-
trary number of fadest, is provided in Algorithm 5, demonstrating clearly the sepa
construction of the submatrices by the PEG- based congtnuct

The imposed parity subgraph of the proposed codes ensliréséusity. Coding gain,
and thus the distance to the outage limit of the channel isi@id by both the threshold
performance of the code and the distribution of cycles wiflils, . Hz |. While the
degree distribution optimisation for the proposed codsscknd block fading channels
with F > 2 remains as an open problem, the simulation results will destnate that
these codes perform reasonably well when constructed witir@gular variable node
degree distribution optimised for the AWGN channel. Howgearis the case for the
F = 2 codes, decoding convergence is slow. In order to deal wighgkue, the multipath
EMD based PEG construction is applied to the constructidgh@proposed codes, along
with the F' = 2 codes of [93] in order to improve the decoding convergeneed@nd

improve the coding gain.

4.4.5 Rate and Fade Compatible Puncturing

From the code graph structures in Figs. 4.4 and 4.6 for dtyeashieving codes on block
fading channels withF" = 3 and F' = 4, respectively, we can see that the graph for
the FF — 1 channel is effectively nested within the graph for the clednvith /' fading
coefficients. In addition, the graphs are designed to redoum the worst-case scenario
ofa; = 0,1 € {1,---, F}. This allows the use of the graph designed for the channhl wit
F fading coefficients on thé' — 1 channel by means of the elementary puncturing scheme
wherein the bits oV are punctured. In this case, only the bN5, V,,--- | V] are
transmitted over the block fading channel with— 1 fading coefficients. At the input
to the decoder, the LLRs associated with the variable nod&&irare set to zero, and
iterative decoding is carried out on the full graph for thechannel code. As this is
equivalent to an erasure, the properties of the graph erisatehis does not affect the

diversity achieving capabilities, with respect to the eraie of the systematic bits.
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Algorithm 5 Proposed Diversity-Achieving LDPC Codes

1. Initialise with \,,;,(z) derived from the desired final(z), Ry, < % and N,,, =

K+ .
2. for x=1:Fdo
3. Call Algorithm 4 to carry out the multipath EMD PEG constroctifor each sub-
matrix [H/BlleﬁQL [Hﬁl,ZHﬁzs]’ T [Hﬂl,F—lHﬂF]'
4. end for

5. Construct the final code from the submatrices as in Figs. 4d44a6, stacking the
Hj, .1 submatrices vertically in the systematic part of the pachgck matrix and
placing theH, submatrices along the diagonal of thex A parity part of the final
parity-check matrix.
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4.5 Simulation Results

The simulation study in this section is presented in twospdrt the first, the performance
results for the structured code classes on the AWGN and erabannels are given, in
the form of decoded code word bit error rate (BER) as the SNReo€tktannel varies. In
the second part of this section, part 4.5.2, the reducedtateidiversity-achieving codes
are evaluated on the block fading channel. In this case,ebglts are provided as the
variation of the frame error rate (FER) of the systematic paithe decoded code word as
the channel SNR varies. This is due to the challenging natitiee channel, the parity
part of the code word is generally not corrected and so thisgb#éhe decoded code word
is not used for the purposes of performance comparison.igmscontrast to the results
provided for the AWGN and erasure channels, where the erterisacomputed for the
whole code word. This decision was made because in genkeakyhdrome check is
used as a stopping criterion for the decoder and the ermpfahe whole code word will

impact performance in practical systems.

45.1 QC-LDPC and IRA Codes

In this section we present results demonstrating the gdireaed through the use of the
proposed novel construction algorithm, comparing thetdblock length performance of
a number of classes of codes to those codes constructedwguysenethods, the original
PEG algorithm [53] and the ACE-based IPEG improvement [30h@with an algebraic
construction for the QC-LDPC codes [58]. For both QC-LDPC soded IRA codes,
the irregular degree distribution was the density evolubptimised maximum degree 8
variable node distribution available in the literature][Itable II:

Az) = .30013z + 283952 + .415922" (4.25)

For all codes constructed, the check node distribution veaisspecified in the con-

struction algorithm, but rather was forced to have neamsggoncentrated form:
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p(r) = az’ + (1 —a)a*, (4.26)

The QC-LDPC codes were constructed as in [59], with the coastm algorithm
choosing tile placements and first entry positions withia tites, and each subsequent
entry specified by cyclic shifts. The final distribution oktQC-LDPC codes was thus
altered slightly from (4.25) in order to achieve the necsss#ructure. Following the
approach of [59], the tile size of the codes produced wastrined to be relatively
small compared to the final graph size. This results in impdgerformance for the PEG
constructed QC-LDPC codes at the cost of a sacrifice in thefileonéthe quasi-cyclic
structure. This amounts to a performance/complexity/megrirade-off, and in this case
the convention of [59] was followed. An algebraic constrmcbased on Sidon sequences
was also included in the comparison, in order to provide atpafireference for the per-
formance achieved by the codes constructed. Note thatltigbraic construction uses
larger tile sizes and therefore achieves greater complex@uction and possible paral-
lelisation. However, this construction lacks the flextilyilof the PEG-based construction

algorithm.

The IRA codes were constructed by the PEG-based algorithmastlyi with the only
necessary alteration being the initialisation of the gragdociated with the parity bits of

the code word to the pre-determined dual diagonal structitiee accumulator.

For both QC-LDPC and IRA codes and following [22], the varialbele degree distri-
bution was also constrained to ensure that the number ohiv8igariable nodes was less
than the number of check nodes, thus ensuring no stoppiegvese formed of weight-
2 variable nodes alone, a particularly harmful case. Asrémsiirement was applied to
all the codes constructed, it does not affect the compamdaonstruction algorithms

presented.

For both the QC-LDPC and IRA codes, transmission was simulatethe AWGN
channel. The decoder was operated to a maximum of 40 itesa#ind 100 block errors
were gathered for each point in the plots. Improved perfoiceas seen in the error floor
region for both the QC-LDPC and IRA codes constructed by thpgsed multipath EMD
PEG-based algorithm compared with both the IPEG-basedroatisns using the ACE

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 4. MULTIPATH EMD CONSTRUCTION OF LDPC CODES 103

metric [50] and the original PEG-based constructions [53].

Fig. 4.7 presents the error rate plot for the QC-LDPC code# thie original PEG
[53], the modified IPEG [50] and the proposed multipath EMDstouctions all used
to construct the constrained QC-LDPC irregular code graphsth block length256
and submatrix siz€) = 8. The plot for the algebraically constructed Sidon sequence
based construction [58] is also included for comparisompgses. Due to the constraints
of that construction, the block length of graph construetsithg Sidon sequences is 258
and the QC submatrix i = 43 and the graph i$3,6) regular. It is clear from Fig.
4.7 that the PEG-based designs provide significant perfocenanprovements over the
algebraic construction across the range of SNRs considetei@, the IPEG design offers
modest improvements over the original PEG constructioméndrror floor region. The
proposed multipath EMD strategy achieves a gaif.dfiB over the PEG construction
and 0.3dB over the IPEG construction at an error rate beldw?. Also included in
Fig. 4.7 is the plot for the QC-LDPC graph constructed by the Q@RPEG algorithm
introduced in Chapter 3, demonstrating that although thegityconstruction offers better
performance than the considered constructions from temtiire, the method proposed
in this chapter offers best performance overall, with a gdieerved of approximately
0.2dB over the QC-DOPEG constructed graph. This may be accodotdd, the fact
that the decoder optimisation (DO) operation is appliedaféimited number of frames
and iterations due to complexity constraints, and that ¢tection of the noise parameter
for testing in the DO operation may be imperfect. Fig. 4.8/mtes the error rate plot for
the IRA code class, with the modified IPEG design [50] and tlppsed multipath EMD
strategy included on the plot. The graphs constructed hiek lbength250 and rate%.
The proposed strategy achieves a gaif.p5dB over the existing strategy at an error rate
below10~7. Fig. 4.9 includes results for the previously presenteerafion to the IPEG
algorithm which makes use of a precise EMD value after the AG@&ed decision has
been made. It is clear that the strategy presented in thitehautperforms that design

in the error floor region.

Figs. 4.10 and 4.11 show the performance of graphs consttimt the construction
algorithms considered in Section 4.2 on the BEC. As previosted, for this simple
channel the error events are precisely erasures of stogeisgand so these results di-
rectly demonstrate the relative presence of harmful stapgéts in the respective graphs.
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Fig. 4.10 plots the performance of the standard PEG coristiugraph and the graph
constructed by the algorithm of [91], along with a constiattwhich follows the pro-
posed metric progression but makes a random choice aftenithienum path number
criterion is applied, i.e., at each placement in the grapistraction a connection is made
randomly from the sef in (4.7). Thus Fig. 4.10 demonstrates the effect of redutheg
number of shortest paths between the root variable nodehenchiosen check node for
each placement. While the construction of [91] outperfornns prematurely terminated
version of the proposed algorithm, the result is intergsts it demonstrates the gain
achievable through a metric which is distinct from thosedugeeviously in [53], [50]
and [91]. Fig. 4.11 demonstrates the performance of thehgrapstructed using the full
proposed Multipath EMD metric progression, demonstrapgiegormance improvements
in the error floor region.
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Figure 4.7: Performance of QC-LDPC codes of different camsions with rateR = %
and block lengthV = 256.
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Figure 4.8: Performance of IRA codes of different constardiwith rateR = % and
block length/NV = 250.
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Figure 4.9: Plot of performance of the proposed metric aedlipus work for PEG-based
constructions with raté& = £ and block lengthV = 256.
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Figure 4.10: Plot showing the performance on the BEC of thplgcanstructed with the
first stage of the proposed metric progression only, conapi@réhe codes constructed by

the standard PEG algorithm and the construction which ireeACE and local tree EMD
metrics.

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 4. MULTIPATH EMD CONSTRUCTION OF LDPC CODES 109

107

—6— PEG

10_3; —%— PEG-ACE-EMD
- | —A— PEG-Multipath—-EMD

BER

0.2 0.25 0.3
P

e

Figure 4.11: Plot showing the performance on the BEC of thplgt@anstructed with the
full proposed multipath EMD metric progression, compar@the codes constructed by
the standard PEG algorithm and the construction which tieeACE and local tree EMD
metrics.
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4.5.2 Results for the Block Fading Channel

Simulation results for the block fading channel are pre=gim Figs. 4.12 and 4.13. All
codes are irregular, with distributions derived by densitglution for the AWGN channel,
as optimisation [93] remains an open problem for block fgaihannels withF” > 2. Itis
sufficient however to use suboptimal distributions to shuat the proposed codes achieve
full diversity and are capable of performance close to thetRR&@3°C codes with the same
distributions. It should be noted that the proposed codesnvdonstructed by the PEG
algorithm require a greater number of iterations to perfasmwell as the Root-LDPC
codes, as shown in the plots. Analysis of the convergencamMo&lr of the proposed code
class on the block fading channel also remains an open proliléch may be considered
with, for example, the use of the EXIT characteristics of tiogle [9]. However, this
greater computational requirement may be worthwhile wheratlded freedom of graph
construction is taken into account, along with the flexipito use the proposed codes
on varied block fading channels, as shown in Fig. 4.12 forRhe- 4 designed code
punctured for use on the = 3 channel, with only a small sacrifice in performance. In
addition to the computational requirements of the propasetts, a small rate reduction
is imposed in order to meet the requirements of (4.21) foreaatg full diversity. For the

F = 3 channel, the rate is reduced frogrto 0.3248 while for the F' = 4 code of Fig.
4.13 the rate of the proposed cod@ 2468 rather than}I.

The proposed multipath EMD construction was applied to th&tructured codes for
the block fading channel in order to reduce the required rerrobiterations under itera-
tive decoding to achieve the diversity of the channel. It lbarseen clearly in Fig. 4.14
that the improved distribution of cycles in the code graptulteng from the use of the
multipath EMD PEG construction allows a significantly imped speed of convergence,
which justifies the increased complexity burden of this tatsion compared to the PEG
algorithm, particularly as the construction phase is edraut off-line and does not lead
to an extra burden of complexity during transmission. Thideocmonsidered for use on the
F = 2 channelis the raté.48 code of [93] labeledode 3in that paper, with block length
248. Fig. 4.14 shows the performance of bdth= 2 and F' = 3 codes at a fixed SNRs
over a range of maximum allowed iterations, while Fig. 4.t6ves the performance of

the I’ = 2 code at a fixed maximum number of iteration20ffor a range of SNR values.

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 4. MULTIPATH EMD CONSTRUCTION OF LDPC CODES 111

From Fig. 4.14, we see that the use of the proposed stratggifisantly reduces the
number of iterations required for the decoder to convergertear-outage-limit error rate,
reducing the number of iterations required from 30 to 20.sTigiimportant in practical
applications, where latency and computational limits negiewer iterations in decoding.
For 20 decoder iterations, Fig. 4.15 then shows the vanaifosystematic frame error
rate with SNR, demonstrating that the gains achieved by udeeqgiroposed strategy are

significant.
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Figure 4.12: Results for the proposed unstructured codéédblock fading channel with
F = 3 compared to the Root-LDPC code for that channel. The plotifernstructured
code designed for the = 4 channel and punctured for use on thie= 3 channel is also
included.
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Figure 4.13: Results for the proposed unstructured codéédblbck fading channel with
F = 4 compared to the Root-LDPC code for that channel.
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Figure 4.14: Plot of performance of the unstructured diti@chieving codes for the BF
channel with?" = 2 and F' = 3, respectively. In (a) the code rate is 0.48 and block length
N = 248 and SNR is 24dB while in (b) the code rate 0.3262 and blocktleisgV = 282

and SNR is 18dB. For both, FER is plotted against decodetib@raumber.
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BF Channel with F=2 and SPA decoder operated to 20 iterations
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Figure 4.15: A further plot for thé” = 2 code of Fig. 4.14(a) showing the variation of
FER with SNR, with the decoder operating to a maximum of 2@ttens.
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4.6 Summary

In this chapter, a graph-based construction algorithm waggsed which improves the
connection properties of the final graph, providing perfanece gains in the error floor
region of operation. The proposed algorithm, called matiipEMD PEG construction,
is demonstrated to provide significant performance impremets for a number of useful
structured code classes. In addition, a new class of codexfoeving full diversity on

general block fading channels is presented and is demtesti@ perform competitively
compared to the previously presented code class for thisnegtha The novel multipath
EMD construction algorithm is then applied to the consinrcof this code class, with

improvements in decoder convergence speed observed adta res
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5.1 Introduction

As discussed in the literature review of Chapter 2, the mespagsing decoding of LDPC
codes by the SPA performs excellently for large block leagtiereas it suffers due to
the presence of cycles at shorter lengths. The approackessded in Chapters 3 and
4 may be used to ameliorate the effects of cycles in the graghrmaprove the low er-

ror rate performance of the LDPC codes by altering the gragam which the decoding
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algorithm operates, but they do not change the operatidmeo®PA algorithm itself. An-
other problem faced in the use of message-passing decaib®PC codes in situations
with stringent demands on latency and allowable power aopsion, as in many modern
scenarios, is the relatively slow convergence of the SPAdierc The computational bur-
den of the decoding process may be reduced by the use of aptens to the update
rules of the SPA as in the Min Sum algorithm [74] [75], at thetoaf performance sac-
rifices. The Min Sum based approach may be improved by the fusari@ction factors
in the check node update approximation, through a mulagire normalisation update
factor [78] or an additive offset update factor [77]. In batises, these factors account
for the overestimation of message magnitude resulting trerapproximation in the up-
date calculation. In these cases, the complexity per iteras reduced but the number
of iterations required for the decoder to converge is ucédi In a similar approach,
reweighting factors may be applied to the full check nodeatpaf the SPA to amelio-
rate the overconfidence introduced to messages passed imes@nce of cycles, offering
performance improvements [69] [70] [72]. As discussed infiiées 3 and 4, the struc-
ture of some code classes, such as QC-LDPC and protograpb-bades [94], allow
for increased parallelisation of processing in the decddereduce latency. However,
there are practical limits on the parallelisation possihle to the constraints imposed
on the code graph. Linear programming (LP) decoding wasqs®gh as an alternative
to the message-passing approaches, reframing the degoaibgm as a relaxation of
the maximum likelihood (ML) decoding problem which retathe ML certificate [95].
This approach is interesting and novel but suffers from anpcally high complexity
barring its use in many practical scenarios. An alternaapproach will be considered
in this chapter, exploiting the potential of the messageatgpdrder, the schedule of the

message-passing decoder, to influence the convergencerandhée it provides.

As discussed in Chapter 2, the introduction of the sequebéigéred Belief Propa-
gation (LBP) [60], whereby the message updates use the mdstdgte information in
the graph by performing updates in a serial rather than lehrabanner, and the perfor-
mance gains it offers for relatively small increases in claxipy raised significant interest
in scheduling as a means to improve the performance of thedeéecThe informed dy-
namic scheduling (IDS) schemes [28] [29] also introducedhapter 2 offer dramatically
improved performance both in terms of convergence speddresipect to effective itera-

tions and in terms of error rate upon convergence, at theoéostich greater complexity
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due to the additional computations required in calculatimgresidual, many of which
are discarded and recomputed when the state of the messathesgraph change (i.e.,
when a message is updated, the residuals of the messagésamhiaffected in the next
iteration must be recomputed). Owing to the success of the REFithm in improving
the convergence speed of the BP decoder, a good deal of woldebagione on residual-
based BP decoding [64] [65] [66] [67] [68]. In this chapter RBP algorithm will first
be introduced in greater detail, and a detailed discusdidimeocomputational burden of
the residual calculation, supported by simulation reswil provide motivation for the

work in this chapter on alternative dynamic scheduling st

In the proposed work, a dynamic schedule for BP-based megssging decoding
algorithms where poor reliability of messages incident arode is taken as a metric to
identify those message updates which will have a greatesctrgn decoder convergence.
Reliability in the log-domain BP decoder for binary LDPC codesimply taken to be the
magnitude of the LLR. From this reduced list of potential naggsupdates, a message is
then selected for update by computation and comparisoneofediduals as in the RBP
and NWBP schemes. This approach has the dual benefits, in thaegstemce of limiting
the use of the residual and thus greatly decreasing the eaitypbf the algorithm as
a whole and in the second instance of prioritising the updétdhose messages with
lower incoming reliability, where the term incoming derstlat the reliability is taken
for the messages arriving at the node in the current iteratimd which will affect the
residual calculation if carried out for the message emagdtom that node in the next
iteration. By prioritising the outgoing messages with lasliability incoming messages,
the proposed approach effectively prioritises the provisif updated information to those
portions of the graph which have not yet converged. In thelguesidual-based approach
the updates are selected according to the level of changeviiénduce in the messages
passed from one update to the next while in the proposediiélfa and residual-based
approach the choice of update is weighted on both level afigdanduced and magnitude
of belief at the node receiving the update, and so both schaneeintuitively satisfying.
The proposed approach has the desirable property that geegpdates which produce a
large change in LLR (i.e. have a large residual) at nodestwhave already converged
to a strong belief will be avoided in favour of smaller chasigé more uncertain nodes.
Simulation results will show that this approach offers gigant improvements in the

convergence speed of the decoder, as measured by effeeteelal iterations, while
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further analysis will demonstrate that the reductions impt@xity make this approach far
more practical than previous IDS schemes. The proposednashalso exhibit improved

error rates upon convergence with respect to RBP and NWBP inrceeses.

In summary, the main contributions of this chapter are:

a novel knowledge-based message passing algorithm thhditexiie reliability
measure of the messages in the graph to reduce the numbeisségeeresiduals
which must be computed in order to produce a scheduling dodéne decoding of
LDPC codes.

e new low-complexity algorithms based on the Min Sum and of&d algorithms
that exploit the reliability of the messages to produce teeoding schedule at a

lower cost.

e an alternative approach to measuring the number of efiedtvations which pro-
vides insight into the computational cost and effectivengsthe algorithms con-

sidered.

e detailed analyses of the computational complexity and dnmehtal advantages of

the proposed and existing algorithms.

e a comprehensive simulation study of the proposed and egiatgorithms.

The rest of this chapter is laid out as follows: In Section th& RBP and NS-BP
algorithms are described in detail to provide a solid basswphich to understand the
work to follow. In Section 5.3 a proposed alternative measidithe iterations of the IDS
scheme is introduced and its effects are discussed in détadection 5.4 the proposed
reliability-based IDS scheme is introduced and describfgection 5.5 provides analy-
sis of the operation of the proposed algorithm and the coatiomal complexity which
it requires. In Section 5.6 the simulation results for thepmsed decoding algorithms
are presented and discussed, and Section 5.7 briefly susasdinie contributions of the

chapter.
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5.2 Residual-based Belief Propagation Algorithms

This section provides a detailed introduction and disawssif the RBP, NS-BP and
their reduced-complexity approximate versions. This matg@rovides motivation for
the novel algorithms outlined in this chapter and informeswifork to be introduced in the

following sections through the notation and the conceptsduced.

5.2.1 Residual Belief Propagation

As previously discussed, the RBP algorithm uses exactly thee sgpdate rules as the
standard implementations of the BP algorithm, with the ngessgdate order not prede-
termined but instead dynamically selected before eachtajdesed on the current setting
of the messages in the graph. This allows for the selectionesfsages to update based
on the impact they will have on convergence, as indicatethéydsidual defined after the

(k)-th message update for the message from check nottevariable node: as

(k+1)  _ 1, (k+1) (k)
Cm—Un |/J/C7n_”)n o MCWL_>'U'VL

, (5.1)

whererﬁiﬂlﬂ, is the residual for the messagéff_l,i,n from check node,,, to variable

nodew, and the superscripts indicate the message update indexméheageé’,ﬁ?_wn

is that which is passed from), to v,, after thek-th update. This means that in order to
compute the residual upon which the choice of ther 1)-th message update is based,
eachu{*™) check node message update must be computed. This, as wikhessed
further, incurs a considerable computational penalty aag require more memory to
store previous values. However, convergence of the RBP #igaorivhen these additional

updates are treated as an increase in computational cdstnisnstrated to be excellent.

After the (k)-th check node message update, the RBP algorithm proceeds asgsfollo

e Update the check node message with the largest residuatifidd as
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M, T, = max 1T (-2)

e Update the APP LLR for nodeand all variable node messages from nbdes

pE) =Ly+ Y pt (5.3)
7 E/\/(’Ub N\
and
k 1
MY =+ >kl (5.4)
€N (vp)

whereL, is the channel LLR for the variable nodgand the superscripts differ from
those in the message passing rules of Eqns. (2.28) and (& Z%apter 2 only because
the update index is arbitrarily taken to change only when eckmode update is per-
formed, for clarity in representing the residual calcuati

e Compute the new residuals for each affected check ngdec N (v,), where
N (n;) is the neighbourhood of the nodgas defined previously in this work, as

Tt = e, — ikl cc € N(w)\a, va € N(e.). (5.5)

¢ Finally, the residual selected for the message updatets geto to ensure the same
message is not erroneously selected for update multipkstim

ri2) = 0. (5.6)
Clearly, the residual calculations introduce a significamhputational load to the al-
gorithm, with(d, — 1)(d, — 1) additional check node message updates required for each
effective update. This is the minimum additional comphexiicurred in the RBP scheme,
resulting from the necessity to keep the residuals up toatatew information propagates
through the graph, and is seen as the cost of the scheduhegnec In order to avoid re-
computation of many messages, additional storage is asiresl by the RBP algorithm,
both for the messages computed but not propagated and farditkeials which are based

on those messages.
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The pseudocode for the RBP algorithm is presented in Algor&improvide a clear
algorithmic view of the process involved and to allow for @@$ comparison with the
algorithms to be introduced in the following.

Algorithm 6 RBP
Initialise e, — v, =0

Initialise i, e, = Ly,
Compute all residualsﬁ},fﬁvn
while stopping rule is not satisfiedb
After update (k), identify and updat€’*}) such that"*!) = max ri.
Setr4]) - |
Update eachY) . ¢ € N(b)\a and M"*" according to (5.3) and (5.4) respec-
tively.
for eachd € N(c) \ b do
Compute the new residuaigfi%)d according to (5.5)
end for
if the iteration count incrementisen
Stopping rule: perform parity-checks and stop if all cheakes satisfied or if the
maximum iteration count has been reached.
end if

end while

As the RBP and the understanding of each of the steps involwathido the discus-
sions that follow, and as reference will be made to thesesstepughout the chapter, Fig.
5.1 provides a block diagram of the steps involved to enslaréycand to allow for ease
of reference at a later stage. In Fig. 5.1, Step 1 of the RBP sjoorels to (5.2), Step 2 to
(5.3) and Step 3 to (5.5).
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Step 1: 1) with the largest r(**1) is updated.

Cq—Up Cq—Up

Ub

pdtl)

Ca

Step 2: MV pFD e € N(b) \ a are updated.

Up

M (E+1)

(k+1)
vy

/'L/Ub_>CC

C1 (6) C3 Cd

v

Step 3: For each ¢ € N(b) \ a, calculate u*2) ~d € N(c)\ b

Ce—Vq)

and from these calculate the residuals r*+2)

Ce—Vq
e O o
C1 C2 Cd

v

Figure 5.1: Diagram outlining the steps of the RBP algorithm
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5.2.2 Node-wise Residual Belief Propagation

Also included in [29] was an alternative residual-basedsags-passing schedule which
allowed for some improvements over the RBP in the convergexi-epror rate at the cost
of reducing the convergence speed. The idea behind thiedlsehedule was to avoid
non-ML errors from which the RBP suffers by means of updatinge@des emanating
from the node associated with the largest residual as agposkee single largest-residual
message only. The block diagram for the algorithm with tluiseslule, known as the

node-wise or NS-BP algorithm is given in Fig. 5.2.

5.2.3 Approximate Residual-based Belief Propagation Schemes

In an attempt to reduce the very high computational load st with the dynamic
schedule of the RBP, a reduced complexity incarnation of tleel% algorithms which
have been introduced was also presented in [29]. In thesedlschemes, the residual

calculation of (5.1) is replaced with

7:(k-‘rl) — ‘la(k-‘rl) ~ (k) ” (57)

Cm—Un, Cm—Un Iucm—mn

where the messagg@s ., represent the message updates as calculated by the Min Sum
check node update operation of (2.35) in Chapter 2. Once tfpederesidual is identified,
the full SPA update rule of (2.28) is applied to produce thesage to be propagated in
the graph. This alteration significantly reduces the commportal cost of the residual
calculation, at the cost of increased storage for the apmabe message versions of the
propagated messages, which must be stored and kept up fodase in the approximate
residual calculation. It was demonstrated that the use fojmate residuals does not

harm the performance of the IDS schemes under discussi$n [29
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(k+1)
Cq—Up

with the largest »**1) is identifed and all

Cq—Up

Step 1: pu

,ug:jlv)ﬂ x € N(c,) are updated.
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e 0o 0
k+1
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and from these calculate the residuals r

Figure 5.2: Diagram outlining the steps of the NS-BP algarith
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5.2.4 Convergence Performance of the Considered Algorithms

Regular Rate 1/2 (3,6) N400 Code
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Figure 5.3: Plot of the convergence of the established sgbsdor the SPA decoder
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Figure 5.4: Plot of the convergence of the established sdbsdor the SPA decoder

Figs. 5.3 and 5.4 demonstrate the convergence performdrbe standard flooding
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and layered BP schedules and those of the IDS schemes frontetature which are

discussed in this chapter, RBP and NS-BP in the moderate SNBnrefioperation.

Note that the RBP schedule offers very fast initial convergandoth cases but for the
irregular code is outperformed by the NS-BP schedule at higgration numbers. This is
due to the very local nature of the RBP schedule, which maydntre error propagation
if a poor message is selected by its residual at an early sfafe processing. Note also
that the error rate is given for classic iteration numbernsTébeling is deliberate and is
in reference to the following section, in which a discuss®provided on the choice of
the point in the algorithms processing at which to compaeepgrformance of the IDS

schemes to the classic schemes.

5.3 Proposed Alternative Measurement of Decoding Iter-

ations

As was noted in Chapter 2, and as will now be apparent from tiezighm outline of the
previous section, the calculation of the residual for both RB& NS-BP schemes incurs
a quite significant cost in terms of additional computatidrew compared to the flooding
and layered schedules. As the IDS schemes do not imposechieer@ent to update all
message of one kind or another before revisiting some notteaniarge current resid-
ual, they do not follow a flooding/layered style of iteratioather the algorithms iterate
the message updates. The argument presented in favour li¥$hechemes established
in [29] treats the computation of the residual as an addifioomplexity of the algorithm
induced by the informed schedule, as distinct from the ngess@date computation. As
a result, the error performance of the IDS schemes was dedlaathe point in their op-
eration when the number of check-to-variable messagesegbdathe graph was equal
to that of the flooding/layered schedules (i.e. aftéd, check-to-variable messages have
been passed). It is true that some choice must be made aleopoitht in the IDS algo-
rithm at which to evaluate performance and to compare to #terchinistic scheduling
schemes. However, as the residuals must be computed baslee st up-to-date in-
formation passed in the graph, and the residual must be adech at each node which
has had its incoming message state changed by a message upiatneighbourhood

to depth 1, the message updates used for residual computaoeffectively indistin-
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guishable from those used for the messages actually passkatt; the algorithm calls

for the residual message updates to be stored and used, tteshaecomputed for each
message actually passed by the IDS scheme). In additiote tilei residual calculations
may be parallelised to some degree in the same way that théasthschedules may al-
low, many real-world scenarios impose limits on processingj interconnection capacity

in the decoder.

It is instructive to define an alternative measure of theatten of the IDS scheme
to be the point in the operation of the algorithm at which thiltnumber of check-to-
variable message updates (both passed messages and thdsmnlysfor residual cal-
culation) equals that of the flooding/layered scheduless @mounts to the case where
the processing of message updates is entirely sequentiadeawes to illustrate the cost
of residual calculation. The error rate of the IDS schemeteuthis iteration measure,
which we term a modified iteration, in combination with theg@rformance under the clas-
sic iteration measure give a clearer picture of the perfoneaf the schemes and the cost

of their operation.

As demonstrated by Figs. 5.5 and 5.6, the choice of iteraieasurement point has a
great effect on the apparent performance of IDS schemesurlicplar, these plots suggest
that in terms of error rate measured against computatiomnext] the RBP and NS-BP
schemes are not as attractive as the results of Figs. 5.3.4wb5sild indicate. This ob-
servation forms the motivation for the work of this chapfepoint to note from Figs. 5.5
and 5.6 is the fact that the error performance for the floodimgjlayered schedules is the
same as in Figs. 5.3 and 5.4, the modified iteration measutlkedee schemes is precisely
the same as the classic iteration measure as they incur iteaddprocessing for sched-
ule determination. In addition, while the NS-BP algorithnpegrs to be very competitive
under the classic iteration measure, offering a trade-@tiivben the fast convergence of
the RBP and good error performance at higher iteration numberoplots of Figs. 5.5
and 5.6 illustrate that the scheme may not be as attractitleea®sults under classic it-
eration measure would indicate, as convergence under tdietbiteration measure is
very slow. More precisely, given that the number of checkddable message updates
in the flooding and layered schedules in one iteration is leiguke number of edges in
the graph M d., we provide the following definitions of the classic and nidi iteration
measures:
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Definition A classic iteration of the IDS scheme is defined to be the arteglue,
initialised to zero, which increments each time in the tigegprocessing of the algorithm
when the number of check-to-variable messamessedn the graph is an integer multiple

of the number of edges in the graphd...

Definition A modified iteration is defined to be the integer value, itiged to zero,
which increments each time in the IDS BP operation that thed taimber of check-to-
variable messagemputedis an integer multiple of the number of edges in the graph,
Md., with the total counting both messages passed and messaggsaited only for

residual computation.

Thus the classic iteration index, denoted defined in terms of the notation of Algo-

rithm 6 of this chapter as

k
T = [Mdc—‘ , (5.8)

where[a| denotes the smallest integer larger than

As k increments for each message passed, the modified iteradasure may be de-
fined in terms ofk provided it is scaled by the number of check-to-variable sage
computations required for each message passed in the dqrefdrring to Fig. 5.1 show-
ing the steps of the RBP algorithm, the updated message psor@le information to a
single variable node, and the processing at this node dglnew information tqd, — 1)
check nodes. At each of these check nodés;- 1) message updates must be performed
in order to produce the up to date residuals. The modifiedtiter measure for the RBP

is thus

- [ g 59)

For the NS-BP, refer to Fig. 5.2. The full check node updates¢em$ messages,
and at each variable node receiving updated informatioreth&d, — 1) new outgoing
messages produced. At each of the receiving check nodes, 1) updates are required

for the residual calculations. That is, fér messages passeti(d, — 1)(d. — 1) message

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 5. KNOWLEDGE-AIDED IDS APPROACH FOR BP DECODING 131

updates must be performed and thus the modified iteratiosuneavill be (5.9), which

is the same as that of the RBP algorithm.

Note that the modified iteration measures described hereresghat the messages
updated for use in the residual calculation can be storedised as the messages passed
in the graph once the largest residual is identified. Als@ rloat the variableg, andd,
are parameters of the regular LDPC code, but the above egsaind their derivations

stand for the irregular case with the substitution of theaye node degree% andd,.

As is evident from equations (5.8) and (5.9) the use of theifieaditeration measure
will not affect the messages passed in the graph of the ID&nselbut will rather affect
the time in the decoder processing at which the stopping aézk is performed and
thus the point in processing at which the performance isuetatl. This explains the
large difference in performance between Figs. 5.3 - 5.4 agsl 5.5 - 5.6 shown in this

section.
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Figure 5.5: Plot of the convergence of the established sgasdor the SPA decoder with

the proposed modified iteration measure
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Figure 5.6: Plot of the convergence of the established sdbgsdor the SPA decoder with

the proposed modified iteration measure
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5.4 Reliability-based Schemes for Informed Dynamic

Scheduling

In this section, the proposed IDS belief propagation schieased on the combined use
of the incoming message reliability and the previously assed message residuals is
detailed. The proposed scheduling scheme is then applieddamnodewise scheme. Fol-
lowing this, the approximate versions of these schemeses&abed which use the Min
Sum approximation to the check node update rule in the rakimhiculation in order to

lower the computational complexity of the dynamic scheauli

5.4.1 Reliability-Residual Belief Propagation

While the convergence capabilities of the RBP algorithm anektsnsion the node-wise
RBP (NS-BP) algorithm are quite impressive, the computatioost of the IDS schemes
presents a significant issue. In order to mitigate this cogdtfarther improve the perfor-
mance, an alternative method to identify the message wigesa residual was sought.

It was noted that in the initial stages of operation, whendient outgoing messages
at the check node are zerp£ )_wn = 0), the residuals for each message are simply the
absolute values of the outgoing messages to be computetheFuhe largest residual

is always in this case associated with the edge with smallestlute value of incoming
messagepé,’jbcm). Thus in this initial stage, in order to compute the residaae must
simply compute the outgoing message on the edge with srallesming message at

each check node.

In fact, the absolute value of the LLR message incoming toctieck node, termed
the reliability, is a useful measure of the confidence of ammede of the value which
that variable node would be decoded to if the iterative atlgor was stopped at that point
of its processing. As stated above, in the initial stagespefration the RBP algorithm
selects exactly the edge associated with the smallesbiléifa Upon investigation of a
number of test cases of the RBP algorithm, after the initiaspha operation the edge
with the largest residual was found to be associated witletigee with minimum current
reliability more than with any other edge, while it was asatad with one of the two
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edges with smallest reliability messages very often. Thosivates the use of the relia-
bility to reduce the number of residuals computed and the®tlerall complexity of the
decoding scheme. Another motivating factor in the use ofhtleesage reliabilities is the
poor performance of the RBP algorithm at higher SNR when coetparboth the NS-BP
and to the LBP algorithms. This poor performance has beeibasicto the highly local
nature of the edge-serial processing of the RBP algorithm 428l the fact that a poor
choice early in the processing of the RBP algorithm resultiogfa largest-residual mes-
sage taking the decoder further from convergence to thecioeode word and the error
propagation that follows. Using the message reliabiliyngl with its residual to select
the message to be updated has the benefit of focusing the tysenedule on sections
of the graph which have not yet converged and then propagttexmessages which lead
to the greatest increase in belief.

The Rel.-RBP message updates are selected according to theifgjlprocedure for
each check node: For the check negg identify the two incoming messages with small-

est absolute value, i.e., the two smallest-reliabilityoiming messages

plt S, | = min !uv’,iilim\ (5.10)
nEN(cm
and
(k+1) (k-+1) _ : (k+1)
/’L’UnQ —Cm ’:u'unQ ﬁcm‘ - nGNI?clmn)\nl |Mvnﬁcm" (511)
For the variable nodes,, andv,,,, calculate the residual
e, = ), =l | e {ng,no}) (5.12)

Now calculate the check-node-residual as
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(k+1)

(k+1) .
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Figure 5.7: Steps involved in computing the reliabilitysbd check node residual

(k1) _ o (k+1) . (k+1) (k+1)
Cm - rc'm_H):c Clem—un T ax TC‘"L_)’UH’ (513)
ne{ni,na}

and record the variable node and the associated updated messtéﬁ’é%z.

This process is repeated for each= 1, --- M. Then, the message update which is

assigned is selected by finding the largest check-nodderaisi

REFD = mpax REHD (5.14)

Ca me{l,-M} ™

Once the check nodg is identified, the associated mess Y s assigned, where
bothn andugjilgn are stored values foy, computed in (5.12) and (5.13) above. The steps
involved in the computation of the check node residual dustilated graphically in Fig.
5.7, with 5.7a showing the identification of the two minimuehability messages in blue,
5.7b showing the computation of the outgoing messages @e tino identified edges and
5.7¢ showing the stored triple for that check nagl:"", v,,, utst), 1.

Care must be taken to ensure that the same message is noeddéteanultiple up-
date assignations. In standard residual-based schenrasisraission of any message is
avoided by setting the residual for the updated messagertoater each assignment,
ensuring in those schemes that the message on some edgetviié passed again until
an updated message arrives at its source node. In the ptbpeseRBP algorithm, by
design, residuals for each message are not stored but thetheheck-node-residual de-
fined in (5.13) is maintained for each check node in the grayohused to select the next

message to be updated. After a message is assigned for eufzartheck node a new
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check-node-residual must be computed. In order to avo&tsef and passing the same
message multiple times before new information arrives atctieck node, an indicator
vector is defined and updated for each check node in the foltpway. The vectoi,,

is a binary vector of lengthM? | with each entry corresponding to an edge emanating
from the check node,,. The vector is initialised to contain all ones. When the mgssa
selected for update assignment is the message passed éhtleeige emanating from
cm, thed-th entry ini,, is set to zero. When a new message arrives at a checkd)pde
on its e-th edge, the=-th entry ini,, is set to one. Prior to the use of (5.10)-(5.14) at
each check node, a check is made on the conterits. df i,, contains only zero entries,
no new information has arrived at, and no new messages fraf) may be computed
which have not already been passed. In this A fl) is set to zero. If,, contains only
one nonzero entry, for example in the position correspantbrthe edge connecting,

to some variable node,, then the sets over which the two minimum values are found in
(5.10) and (5.11) is amended 20(c,,,) \v, and N (¢;,)\{n1, v, }, respectively. Otherwise
(5.10) and (5.11) are applied unchanged because for eaeheadgnating from,, there

is some new incoming message contributing to the updategbmg message calculated

using the check node update equation.

5.4.2 Reliability-based Node-wise BP Algorithm

In a parallel to the development from the RBP to the NS-BP algarithe Rel.-NS-BP
was developed as an extension to that scheme which updatstgak emanating from
the check node associated with the largest check node e¢sidereby avoiding some of
the errors encountered by the Rel.-RBP scheme due to its langd fo passing messages

in the graph.

At each check node, the check node residuals are calcuragsdctly the same manner
as for the Rel.-RBP, with the only change being that a greatetbrurof updates and

residual calculations are performed in each step of theidhgo.
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5.4.3 Approximate Reliability-based IDS Schemes

Following the progression from the RBP and NS-BP to the appratensersions of those
algorithms [29] as outlined in Section 5.2.3, lower comfilexersions of both the Rel.-
RBP and Rel.-NS-BP schemes were developed with the use of theincBeck node
update rule of (2.35). As was the case for the ARBP and the ANSiBResiduals, in this
case the check-node residuals, are computed using the Minupdate operation while
the message updates assigned in the graph are computedthesifidl hyperbolictan
update rule. Similarly to the case for the ARBP/ANS-BP, the dskis approximation in
residual calculation does not cause any significant hartretpérformance of the decoder,
as will be shown in Section 5.6. The change to the Rel.-RBP updke (5.10) to (5.14)

only manifests in the replacing of (5.12) with

~(k+1) _ | ~(k+1) ~ (k)
rC7rL_>'U'rL - |ﬂCTIL_)U7L o NC'VVL_>UWL

y nE {n17n2}a (515)

and with fﬁ’;ﬂlﬂ, replacingréfjfi)vn everywhere it appears in (5.13). In the algorithm,

the only additional change required is, as required for B&RBP and ANS-BP, that the
computed approximated message updﬁi@éﬁln are stored to be used later as ﬂﬁ’é_wn

values when processing (5.15).

5.4.4 Numerical Example

In this section, a numerical example for the residual cakooh of the standard RBP and
proposed Rel.-RBP algorithms is provided to clarify the stepgiired. For a particular
check node: in the RBP algorithm, the message update computations arerpexd for
all edges emanating from the check node, based on the messhgsvn in Fig. 5.8,
incident on the check node. These updates are performegl (Zs#8), as for the example

for the message,.:
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—4. . 1 . —7.2
(kF1) — 2atanh tanh(TS)tanh(%)tanh(&)tanh(%)tanh(%) = 4.6,

IU/C—)Ul 2
(5.16)

and likewise for the other messages computed and display&tyi 5.9 using the
incoming messages from Fig. 5.8. Then, the residuals fdn es&ssage are computed
as in (5.1) simply by subtracting from the computed messtge=ach edge the message
which has most recently been passed in the graph, shown inFi@. Thus, for the

message from check nodé¢o variable node, the residual is computed as

rED = 1D — ) =146 — 2.9] = 1.7, (5.17)
and the other residuals are found to be
r) =3, pFD = 1.8, v =156, rFFD = 0.1, P51V = 0. (5.18)

Thus for these messages, the messé@?é? is the best according to the residual and
its residual would be compared to all others in the graphﬁ’ift? was the largest in the
graph, then the message up JS}Q) would be assigned.

For the Rel.-RBP algorithm, only the two edges with smallesabdlty of incoming
message at each check node are considered. Those edgesdgathple check node,
are highlighted in blue in Figs. 5.8 - 5.10. Thus, for the RRBP algorithm, only two
message update computations are required to produce eadhrbde residual. The two

computed residuals

rD) — 3 and, rtD — o, (5.19)

cC—V2 C—V5

are compared, the messadéﬁ;? is observed to have the largest residual among those

two and s&glﬁi}g) Is taken to be the check node residual, to be compared tahait oheck
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node residuals. If it is the largest among thdgevalues, then the message upd,@ﬁﬁév2

Is assigned.

/

9.4

Figure 5.8: The messages passed to check nodetimek.
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Figure 5.9: The messages which are computed and which wagsl gt time: + 1, if
selected through largest residual.

2.9

Figure 5.10: The state of the messages emanating from cloeleknat timek
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5.5 Analysis

5.5.1 Performance

As discussed in Chapter 2, for a cycle free graph the conveegeithe BP algorithm is

guaranteed, and in fact an update schedule may be found whislerges in one iteration
[13]. However, for the graph with cycles, convergence isquaranteed but the iterative
BP algorithms are observed to perform well in general, paleity on graphs with fewer

short cycles and better connectivity as discussed in Chaftand 4. In this section a
comparison is made between the messages passed in the RB#halgod the proposed
Rel.-RBP algorithm.

\b\i/d/

Figure 5.11: General check node in the graph.

In Fig. 5.11 an arbitrary check node is illustrated, withameng messages indicated
on the edges labeledto e. In the RBP algorithm, the message which will be selected and
passed from this check node will be the message associatetheilargest residual. For
the Rel.-RBP algorithm, the update message selection will §edoan incoming message
reliability as well as message residuals. For the sake dbll@ving discussion, assume
the incoming message on edgéas the smallest reliability and the message arriving on
edgee has the second smallest reliability. Broadly, there are tossible scenarios of
interest: the first one is that the edge associated with tgedaresidual is or e, and the
second is that the edge with the largest residual is ardéngd}. In the first case, the
RBP and Rel.-RBP select the same message for update from this node.

|,MRBP,1| = ’MRel.—RBP,1|. (5-20)

In the second case, the message will differ and the differenit depend on whether
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Algorithm 7 Reliability-based Scheduling

Initialise p2 =0

Initialise 1§ . =L,

Initialise For each CNjdentify and calculatethe max. residuaRﬁ},? = rﬁ},?%a :
ré},fwa = MaX;,, rﬁ}j%n andrecordthe associated message, .., .

while stopping rule is not satisfiedb

Cm

Assign the previously stor ’:’_1,2} associated WitfRE’Z“), and seti,, to zero in the

ldentify ¢, : R((:IZH) =max R

appropriate position.
Perform the indicator vector check.

For the selected check nodg,identifyandcalculatethe next-largest residuﬂﬁ’j+1>

andrecordthe messagpé’:i,lv)p.
Update eacht!, . d € N(c)\bandM,, according to (5.3) and (5.4) respectively,
and set the appropriate position in edgko one.
for eache € N(d) \ cdo
Perform the indicator vector check.
Identify and calculate the check node residug®""® and record the message
M&’;:%)q, storing the value also.
end for
if the iteration count incrementisen
Stopping rule: perform parity-checks and stop if all cheakes satisfied or if the
maximum iteration count has been reached.
end if

end while
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a or e is associated with the larger residual. If the larger redidsl associated with
edgee which has the second smallest incoming message reliahtlitye node, then the
message update will involve the incoming messages on thesddgpb, ¢, d} while the
RBP message update for the edge with the largest overall edsighich for the sake of
this argument will be edgk will involve the incoming messages on eddesc, d, e}. As
the check node update equation uses the hyperbolic tangesiidn, the updated message
Is dominated by the smallest absolute value among the imgpmessages considered in
the update and for this case which we label 2a, the messageguon edge: dominates
the update and so the updated message for RBP and Rel.-RBP arsimppety equal.

|MRBP,2a| ~ |MRel.—RBP,2a | (5.21)

Finally, when the message selected for update by the RBP thgors not among
the two edges with smallest incoming reliabilities and thé-R8P algorithm finds that
the residual associated with edgés larger than the residual associated with edgbe
updated message for the RBP will be dominated by the smallesiitigy of all incoming
messages, the message on edgehile the Rel.-RBP update will be dominated by the
second smallest incoming reliability, the message on edgethis case:

|MRBP,2b| < ’MRel.fRBP,2b|- (5.22)

Thus, overall we find that at each check node

\rBP| < |HRe—RBP|, (5.23)

where the equality is satisfied only in case 1 above. As thesagesmagnitudes (reli-
abilities) correspond to confidence in the current estimnatbe symbol for the variable
node which the message is associated with, these largeritondgmessages passed to
parts of the graph which have weak current beliefs has tleetedf speeding up the con-

vergence of the algorithm, as will be seen in Section 5.6.
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It should be noted that the edge serial nature of the Rel.-RBmsribat it suffers,
as with the RBP algorithm, from errors which would not otheenagcur in the BP al-
gorithm with the standard flooding schedule at high maximteration numbers, which
occur when the algorithm makes poor choices initially arrdrsrpropagate through the
graph. However, the very fast convergence of the Rel.-RBP ighgomwhich may be ob-
served in Section 5.6 may make it useful for scenarios wighttconstraints on latency,
where additional buffer storage prior to decoding and aaldetiteration architecture in
the receiver as in [96] [97] would offer an increase in thetlghput of the system. In
addition, the errors at high iteration numbers may be awbleuse of the Rel.-RBP al-
gorithm as part of a dual stage decoding approach such aw[66) uses a simple check
and switches to an alternatively scheduled algorithm tadatlze relatively rare errors
which harm the overall error rate of the decoder. Anotheepiodl approach would be
to use the Rel.-RBP algorithm in combination with the quoteedaspproach of [68] to
detect and break message passing patterns which are Ilkkédyrhinate in a decoding
failure. Both of these approaches have been demonstratedvery effective when used
with the RBP algorithm, and when used with the Rel.-RBP algoritlouldiyield greater

benefits in terms of convergence speed and complexity.

5.5.2 Complexity Analysis

One of the main motivators for the novel decoding algoritipmesented presented in this
chapter was to deal with the high computational cost thetiegi$DS schemes must pay
in order to dynamically select each message for update. Tdwbfied iteration measure
introduced in Section 5.3 provided a tool for viewing theoeerformance of the exist-
ing and proposed IDS schemes as a function of the complekitiyeolayered/flooding
schemes. While this proved useful in highlighting the corapahal complexity of the
IDS schemes and produced enlightening simulation resutishwill be further dis-
cussed in Section 5.6, a more formal and precise discussitimeacomplexity of the

various schemes is presented in this section.

Referring once again to the BP update equations of (2.28) aRé)(2t is clear that the
check node will dominate the complexity of the SPA schemessukch, the discussion of

the complexity of the algorithms will revolve around a dission of the number of check
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node updates required, with further references to inctksgage space and additional
requirements of the IDS schemes to follow. Table | of [76]Mides a comparison of the
required complexities of the different implementationshaf BP algorithm, with numbers
of addition, multiplication and use of special operationslsas use of hyperbolic tangent
and table look-up operations considered. In this work, ireguuses of check node up-
date of the considered schemes are discussed in order ttamagenerality and clarity
of discussion, along with ease of comparison with the liteawhich also follows this
convention [67] [68].

Flooding scheduling

In the flooding scheme, all check nodes are updated, folldyedl variable nodes, where
a node update involves computing all outgoing messagesthhemode. Thus the com-
plexity of one iteration isMd. = Nd, (the number of edges in the graph) uses of the

check node update equation aNd, uses of the variable node update equation.

Layered scheduling

For the layered schedule as considered in this work,Mheheck nodes are updated
sequentially. After each check node, all connected vagiabtes are updated. Thus, this
scheme involves in one iteratiavi d. uses of the check node update equation @htid,
uses of the variable node update equation.

RBP Algorithm

For the RBP scheme the complexity in terms of uses of the ragpewide update equa-
tions will first be presented for a single edge update, anal titve complexity per iteration
will be developed for each type of iteration measure. Inrefee to Fig. 5.1, when the
update is assigned in the first step of the algorithm for tlypedsociated with the largest
residual, a single variable node is updated and a new rdsitust be computed for each
edge emanating from th/, — 1) check nodes which receive updated beliefs. That is,
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one check-to-variable message update resulié,ir- 1) uses of the variable node update
equation andd, — 1)(d. — 1) uses of the check node update equation. One iteration under
the classic iteration measure involvés/. check to variable message assignations and so
the complexity of the RBP for one classic iteratiomigi..(d, — 1)(d. — 1).

The modified iteration measure was defined in order to allovafiike-for-like com-
parison in terms of usages of the check node update equatiaveén the flooding/layered

schedules and the IDS schemes. As such, one modified ie@Ettine RBP scheme re-
Md

(d, — 1)(d. — 1)
modified iteration of the RBP i8/d,.. uses of the check node update equation.

quires

check node message assignations and thus the complexity per

NS-BP Algorithm

The complexity required for the NS-BP scheme is the same daeddRBP scheme. With
Fig. 5.2 as a reference, the first step of the NS-BP algorithta &ssignd. check-to-
variable messages for the check node associated with tpestaresidual. For each vari-
able node receiving new informatiof, — 1) new messages are computed in the second
step of the algorithm. Finally, for each check node whiclenees updated belieféd.—1)
uses of the check node update equation are required to certipuhew residuals. Thus
for d. message update assignations, the complexity requirg@ds— 1) uses of the vari-
able node update equation afdd, — 1)(d. — 1) uses of the check node update equation,
giving a per classic iteration complexity in terms of checklae update equation uses of
Md.(d, — 1)(d. — 1) which is the same as for the RBP algorithm.

Proposed Rel.-RBP Algorithm

For the proposed algorithm, the first two stages are iddriti¢hat of the RBP algorithm,
first the check-to-variable message assignation followeithé VN extrinsic edge update
requiring(d, — 1) uses of the variable node update equation. Thus- 1) check nodes
received updated beliefs and new check node residuals rawgirbputed. This requires
a comparison of magnitudes on incoming reliabilities anda®n of the two smallest-

reliability messages for residual calculation. Two usethefcheck node update equation

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 5. KNOWLEDGE-AIDED IDS APPROACH FOR BP DECODING 146

Table 5.1: Table showing the complexity requirements ofdéeoding schemes consid-
ered

| Algorithm | Uses of VN Upd. Eqn| Uses of VN Upd. Eqn|
BP-Flooding Nd, Md,
BP-Layered Nd? Md,
RBP/NS-BP Nd,(d, — 1) Md.(d, — 1)(d, — 1)
Rel.-RBP/Rel.-NS-BP  Nd,(d, — 1) 2Md.(d, — 1)

are required at each check node, followed by a comparisonddliie largest residual of
the two computed. At the check node the check node residestina@tion variable node
and computed message are stored for use in the messageatiesigh step 1. Thus for
each message update assignation, the proposed Rel.-RBRhatgeequire2(d, — 1)
uses of the check node update equation and for a classitoteie the Rel.-RBP the
check node update equation is ugddd.(d, — 1) times. This is a complexity reduction
compared to théd, — 1)(d. — 1) uses necessary for the RBP algorithm because of the

limits imposed on the LDPC code parameters that

2 <d, <d. (5.24)

Proposed Rel.-NS-BP Algorithm

As was the case for the NS-BP algorithm, the Rel.-NS-BP reqthesame number of
check node update equation uses as the Rel.-RBP, requitifig, — 1) uses for everyl.

assigned messages and thgd,.(d, — 1) uses per classic iteration.

Graphical lllustration of the Complexity

Figs. 5.12 and 5.13 provide a graphical illustration of tbenplexity per iteration pro-
vided in the table above, with Fig. 5.12 demonstrating théatian of complexity for a
fixed code rate and degree distributions and increasindkidogth while Fig. 5.13 shows
how the complexity changes for the different degree distrdms provided in Tables 1 and

2 of [10], where the average check and variable node degreeswsed. Number of uses
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of the check node update equation (2.28) is taken as the meeasaoomplexity in both
plots. This is justified first by the fact that, for the startl&PA, the complexity of the
check node update is greater than that of the variable nodigte$2.29) and thus domi-
nates overall complexity, and in the second case by theHattle reliability-based IDS
schemes and the standard IDS schemes require the same rfrases of the variable
node update per classic iteration, and thus will differ impdexity only in the number of
check node updates. Additionally, the LBP requires apprakiy the same number of
variable node updates as those IDS schemes. The BP algorithnleeding schedule
however requires fewer uses of the variable node updatdiequzer iteration, and this

should be noted when considering the plots of Figs. 5.12 atf®l 5
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Figure 5.12: Plot of the complexity per iteration of the efished and proposed schedules
with varying block length
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Figure 5.13: Plot of the complexity per iteration of the bished and proposed schedules
with varying degree distributions

This section and in particular Figs. 5.12 and 5.13 illustritéie great computational
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cost associated with the dynamic scheduling based BP schéiissserves to highlight
the importance of the proposed iteration measure of Sebtbm allowing a comparison
of error rate performance of the proposed and establisheehses which takes this re-
quired processing into account. As stated, the additiomalptexity of the IDS schemes
is dominated by the computation of messages used only fauascalculation which
must be performed online during the decoding in exactly dreesway as the computa-
tion of the messages which are passed in the standard appsoaks such, the very fast
convergence exhibited by the RBP and NS-BP when compared to BEBihdchemes
under the classic iteration measure may offer an overlymoptic view of performance,
as parallel computation of all the messages required to #eepesidual up to date may
not be possible in every scenario of interest. It should Hedthat the purely sequen-
tial computation of messages which would correspond to themses evaluated under
the proposed alternative iteration measure may be ovedgipéstic, as some level of
parallelisation of the required computation may be possibimany scenarios. As such,
the use of both the classic and proposed iteration meadaovesad better insight into the

performance of the schemes considered.

5.6 Simulation Results

In this section, the simulation study which illustrates toatributions made in this chap-
ter is presented. The results are provided primarily for hidé*C code test cases, which
have already been in the plots of Figs. 5.3 to 5.6, namely hekdength 400 PEG-
constructed regular rate(3, 6) code and the block length 576 raf@ViMAX code with
maximum variable node degree 6. These codes were chosemtndeate the perfor-
mance achievable for the proposed algorithms in the shodkblength case which is
the primary focus of this work as a whole. These codes alswdthr ease of compari-
son between the work presented here and the literature,oamddreation of the results
presented.

The channel considered is the AWGN channel. The plots shobitleeror rate (BER)
performance of the proposed and established schemes agiafusf the classic iteration,

the proposed modified iteration measure and as the sigmadise ratio (SNR) of the
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channel varies.

Fig. 5.14 demonstrates that for the regular code considemnddunder the classic it-
eration measure, the proposed Rel.-RBP scheme exhibits exicpkrformance in the
low iteration region of operation, outperforming all deeaslin this region including the
RBP which boasts very fast convergence. Beyond approximateitedations, the Rel.-
RBP is outperformed by the RBP and beyond approximately 25 ibesait is further
outperformed by the NS-BP and Rel.-NS-BP schemes. The plodaismnstrates that
the Rel.-NS-BP offers the same performance as the NS-BP. Fi§.d@monstrates that
the excellent error rate performance of the proposed schenaehieved at a significantly
lower complexity than the respective base schemes. TheN€eBP converges strikingly
faster than the NS-BP, albeit much slower than the floodinglayered schemes. The
Rel.-RBP scheme achieves significant gains over the layered B wghimportant be-
cause, due to the use of the modified iterations, in this p¥arious schemes have the
same complexity per iteration. Fig. 5.16 shows the opemnaifdhe schemes considered
for the irregular WIMAX code. Again, the Rel.-RBP exhibits ehkert performance in
the low iteration number region of operation and in this cas®/erges to the same error
rate as the RBP at higher iterations. As expected [29], the-maske schemes perform
better for a high number of iterations. Once again, the R&:BY algorithm achieves the
same error rate performance as the NS-BP. Fig. 5.17 demtassthat, when the modi-
fied iteration measure is considered, the proposed Rel.-N&¢ga performs far better
than the NS-BP but worse than the layered or flooding schediles improvement of
the Rel.-RBP over the LBP in this case is smaller. However, asahmplexity of the two
schemes in terms of check node update operations is the saengmall improvement
is still notable. Fig. 5.18 demonstrates that, as expeegtbdn a low maximum number
of iterations of 5 iterations is allowed the proposed Rel.-RBFgrms the best among
the decoding schemes considered, achievirigldB gain over the already impressive
RBP and approximatel§.5dB gain over the layered scheme. Also as expected given the
results presented previously, the Rel.-NS-BP and the NS-Bé&hse$ perform very simi-
larly. When 10 iterations of each decoder is allowed, Fig9sHows that the Rel.-RBP
still provides the best performance, with a small gain otierRBP algorithm and more
than0.2dB of gain over the LBP. Again, the performance of the Rel-NS-Blfeme is
close to that of the NS-BP scheme. Fig. 5.20 shows that in tjgehimaximum itera-

tion number region of operation of 40 iterations, the NS-B& BRel.-NS-BP provide the
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best performance, while the Rel.-RBP has converged to the sarfegrpance as the RBP
scheme. Fig. 5.21 demonstrates the very great affect ofitfezeht view of iteration
measure on the perception of the performance on the IDS sheWihen the schemes
are compared on equal complexity terms, the Rel.-RBP exhilgitsfisant performance
improvements over the LBP, with a gain of approximatelydB above a BER of0~*.
This plot again demonstrates that in the low iteration nuntiiie Rel.-RBP algorithm per-
forms excellently. At a maximum of 10 iterations shown in.Fig22, the gain offered
over the LBP scheme is still present but has reduced to a lgsgisant margin. Again,
the three other IDS schemes do not offer practical errosnateler this iteration measure.
At the high maximum iteration region of operation of 40 itevas shown in Fig. 5.23 the
Rel.-RBP does not offer improvements over the LBP in terms ofr eate but also does

not perform worse, matching the plot for that scheme closely

Fig. 5.24 demonstrates the Min Sum based approximate @dsithy be used in place
of the full hyperbolic tangent based residual to furthemuthe complexity of the pro-

posed IDS scheme with very little impact on the error ratégoerance.

C. T. Healy, Ph.D. Thesis, Department of Electronics, University of York 2014



CHAPTER 5. KNOWLEDGE-AIDED IDS APPROACH FOR BP DECODING

152

Regular Rate 1/2 (3,6) N400 Code

10 . .
—E— BP - flooding
0 —
n Eb/No =3 —— BP - layered
X —7— RBP
N Rel-NS-BP
10 " Y
\, —&— NS-BP
\ § —&— Rel-RBP
it
)
o
W 107}y 5 ]
m S
[\ O
o Q:-
& ~O8gq
O% O " O888800a0a
0P\ R ey o ooO0000000068)
D W . ‘::::::::";:::x:,uu“ o
; e N Fe = laaanas
Voo s‘;:;\:
10° - -
0 5 10 15 20 25 30 35 40

Classic lterations

Figure 5.14: Plot of the convergence of the established awdlischedules applied to the
regular code with the classic iteration measure.
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Figure 5.15: Plot of the convergence of the established awdlschedules applied to the
regular code with the proposed modified iteration measure.
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Irregular Rate 1/2 WiMAX Code N576
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Figure 5.16: Plot of the convergence of the established awdlschedules for the irreg-
ular WIMAX code with the classic iteration measure.
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Figure 5.17: Plot of the convergence of the established awdlschedules for the irreg-
ular WIMAX code with the proposed modified iteration measure
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Figure 5.18: Plot of the BER V&2 for the rate; WIMAX code at 5 classic iterations.
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Figure 5.19: Plot of the BER V& for the rate; WIMAX code at 10 classic iterations.
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Figure 5.20: Plot of the BER V& for the rate; WIMAX code at 40 classic iterations.
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Figure 5.21: Plot of the BER V& for the rate; WIMAX code at 5 modified iterations.
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Figure 5.22: Plot of the BER V&~ for the ratel WIMAX code at 10 modified iterations.
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Figure 5.23: Plot of the BER V&~ for the ratel WIMAX code at 40 modified iterations.
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Figure 5.24: Plot of the BER vs classic iterations for a nundfe8NR points for the
A.Rel.-RBP and Rel.-RBP algorithms.
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5.7 Summary

In this chapter, the residual-based IDS schemes were inteatin detail and a discus-
sion of the high computational cost of the residual calootain those schemes, aided
by a proposed new measure of iteration for evaluating ther-eate performance of the
IDS schemes, provided the motivation for the developmempfoved knowledge-based
dynamic scheduling schemes. Based on the knowledge poddsstee decoder during
processing of the beliefs passed in the graph, the relabitas selected as an indicator
of which edges were likely to be associated with large redgiurhis approach allowed a
significant reduction in the required computation to suppie dynamic scheduling. The
focus on edges with small reliability and hence relativadpipconvergence had the added
benefit of speeding up convergence in the Reliability-ResiB&aalgorithm proposed
in this chapter and of offering improved error rate perfongcgat low error rates/higher
SNR. The simulation study supporting the proposed algordemonstrated its excellent
performance, in particular in the low iteration number g operation. In the higher
iteration range of operation, the proposed algorithm seffesomewhat compared to the
node-wise schemes such as the NS-BP. As a possible futuctiairef the work, a mixed
scheduling scheme which uses the proposed Rel.-RBP for someenwifiterations and
then switches to use either a node-wise informed schedsienply the layered schedule
may improve performance at higher maximum iteration nus\bera similar fashion to
the work presented in [66]. Another possibility would be tiee of the proposed Rel.-
RBP schedule with the addition of the constraints discuss¢é8hand so to avoid the
message passing patterns which ultimately lead to errartev@ he proposed new iter-
ation measure also served to show, in the results sectiahwiinen all processing in the
decoder is taken into account, the Rel.-RBP performs best dnéstandard and existing
IDS schemes, with both RBP and NS-BP failing to outperform eitloeding or layered
scheduled algorithms under this view. The excellent paréorce of the Rel.-RBP scheme
under both classic and modified iteration measures makesregsirgument in favour of

this scheme over the existing IDS schemes considered.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, construction and decoding techniques foPCRzodes at short to medium
block lengths have been investigated. Constructions farcgtred and unstructured
LDPC code classes with improved graph properties and thpsowed error rate per-
formance have been developed and analysed. Code designstduction for the par-
ticularly challenging block fading channel has also beemsatered, with a number of
novel approaches proposed and evaluated in comparisoe tuthent state of the art in
the literature. Improved decoding strategies for LDPC edused on informed dynamic
scheduling have also been considered. In the followingntaé contributions of the

thesis are summarised by chapter.

Chapter 3 considers the construction of structured LDPC séalethe AWGN and
block fading channels. For the AWGN channel, the constraatiothe QC-LDPC class
of codes at short to medium block lengths was improved by #eeaf the decoder to
select edge placement in the graph, to offer improvemengsror floor performance of
the code. For the block fading channel, a number of construgroblems for the Root-
LDPC code class were considered, and a PEG-based graphumbiost was proposed and
demonstrated to offer performance improvements over tredsrd random approaches.

In addition, a new class based on the root-check node steuctmbined with the re-
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peat accumulate graph was proposed to allow low compleritp@ing and full diversity

operation on the block fading channel.

In Chapter 4, an understanding of the structures in the grdpbhwead to decoder
failure was applied to the problem of graph construction. odstruction algorithm for
producing graphs with excellent performance in the errarftegion was proposed based
on this knowledge and on the avoidance these harmful stegtn the graph of the
code. The proposed Multipath EMD graph construction priogidower error rate in
the higher SNR region has the benefit of being flexible in picay being applied to dif-
ferent construction approaches and in the rate, dimensiosslistributions of the graphs
constructed. In addition, the gains achieved by the grapistoaction do not result in
any cost in increased complexity during the operation ofdbeing scheme. The short
length graphs constructed would be attractive for use ieless communication systems
where the latency and complexity costs of using longer bleckiths are not suitable.
In addition to the novel graph construction algorithm, a retass of code was proposed
for use on generalised block fading channels which has fewectural constraints than
the previously discussed Root-LDPC code class. The imprgvagh construction was
applied to this code class to achieve improvements in eaterand convergence speed.
The code class was also demonstrated to allow the use of déespapcturing scheme to
make the code versatile for use on block fading channelsdiffiering numbers of fading
coefficients.

In Chapter 5, a novel schedule for the BP decoder was proposieti wiade use of
the IDS approach to improve convergence speed while regtloagncomplexity required
significantly with respect to the residual-based schemegiquisly presented in the lit-
erature. The proposed scheduling scheme makes use of idialitgts of the messages
currently passed in the graph along with the impact the ngegsassing will have on con-
vergence in order to improve the message update selectbrednce the total number
of message updates which must be computed in the decodingthifg. Convergence
speed is demonstrated to improve dramatically and in alddtanalysis and discussion,
the benefit in terms of complexity are demonstrated to befggnt. A lower complexity
version of the algorithm is further developed which makes aisthe approximate Min
Sum check node update rule for residual calculation at nbic@sror rate performance.
The decoding schemes proposed in Chapter 5, through the speedvergence which
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they offer and the trade off between complexity and perferceavhich they allow have
the potential to find use in many areas of communications evtrer latency imposed by

slow decoding convergence is unacceptable.

6.2 Future Work

The results presented in this work are presented primasilysimple channel models,
in order to isolate the effects of the code construction dedale used in decoding on
the error rate under iterative decoding. As such, one pafeariea of interesting future
work is the investigation of the proposed methods when useddre complex applica-
tion scenarios [32] [34], where factors such as imperfeanael knowledge and limits
on processing time may influence the achievable error pedoce. For the proposed
constructions and decoding algorithm it would be partidulanteresting to investigate
the performance of an iteratively detected and decodeérsysthere the turbo concept
of iterative exchange of extrinsic information is appliexttbat the decoder and between
the decoder and detector [98]- [108].

Other topics of interest arising from the work presentedis thesis include:

e The application of the proposed graph design approachdwetother interesting
code classes such as non-binary LDPC codes [109] and geeefdbubly gener-
alised LDPC codes [110] [111].

e The application of the EMD-based metric progression pregds Chapter 4 to
the problem of knowledge-aided puncturing to produce ratepatible codes and
puncturing schemes which suffer less from performanceadizgion as a result of
the puncturing [112] [113].

e To investigate the possible benefits of applying the rewteiglof [69] [70] [73] to
the reliability-based decoder developed in Chapter 5, ira@produce a decoding
scheme which excels both in convergence speed and erroatraigh iterations
while avoiding high complexity. Further to this, the retatship between the gains
achieved by the reweighting strategies and those obseoveatd offset Min Sum
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approximation to the BP algorithm [77] is interesting anceodfthe possibility of
producing an IDS scheme such as the one proposed in Chaptén Bwen lower

complexity and excellent performance.

e The use of the reliability-based scheme for message passingeneral graphs
may allow the improvements seen for the decoding of LDPC sdalde achieved
in a number of other interesting scenarios where distribstatistical inference
has been applied. Some examples would include the use ohgegsissing ap-
proaches for the estimation of operating parameters in aamuations systems,
such as channel conditions in the wireless network [114f;mme parameters in
the smart grid [115] or sensor outputs in the wireless semstwork [116].
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Glossary

ACE ApproximateCycle EMD
AWGN Additive White GuassiarNoise
BEC Binary ErasureChannel

BER Bit Error Rate

BP Belief Propagation

BPSK Binary PhaseShift Keying

DO DecoderOptimised

EMD Extrinsic M essagdegree
EXIT Extrinsic | nfformationTransfer
FER FrameError Rate

IDS InformedDynamicScheduling
IRA IrregularRepeatAccumulate
LBP L ayeredBelief Propagation
LDPC L ow-densityParity-check

LLR L ogLikelihoodRatio

LP LinearProgramming

LR LikelihoodRatio

MAP MaximumA posterioriProbability
MDS MaximumDistanceSeparable
ML MaximumL ikelihood

NS-BP Node-wiSe Belief Propagation
PEG Progressiveedge Growth

PCM Parity CheckM atrix

QC QuasiCyclic

RA RepeatAccumulate

RBP ResidualBelief Propagation
Rel.-RBP Reliability-ResidualBelief Propagation
SNR Signal toNoiseRatio

SPA Sum ProductAlgorithm

TRBP TreeReweightedBelief Propagation
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