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A novel approach to linearly constrained minimum variance (LCMV)
beamforming based on reduced-rank processing is proposed. The
method is based on a constrained joint iterative optimisation of an
adaptive projection matrix and a reduced-rank filter according to the
minimum variance criterion. We derive LCMV expressions for the
design of the projection matrix and the reduced-rank filter and
present low-complexity adaptive algorithms for their efficient
implementation. Simulations show that the proposed scheme outper-
forms the full-rank and existing reduced-rank methods with low
complexity.

Introduction: Adaptive beamforming techniques have attracted con-
siderable interest and found applications in radar, wireless communi-
cations and sonar, amongst others. The optimal linearly constrained
minimum variance (LCMV) beamformer minimises the array output
power while maintaining a constant response in the direction of the
signal of interest (SOI) [1]. However, this technique requires the inver-
sion of the input data covariance matrix R and knowledge of the steering
vector. Adaptive versions of the LCMV beamformer were reported with
stochastic gradient (LCMV-SG) [2] and recursive least squares (LCMV-
RLS) [3, 4] algorithms. The convergence and tracking performances of
these algorithms are affected by the number of interferers, the eigen-
value spread of R and the number of sensor elements M [5].

A key technique in short data-record situations and in problems with
many parameters is reduced-rank adaptive filtering. Prior work con-
sidered several methods: eigen-decomposition [5], the multi-stage
Wiener filter (MSWF) [6, 7] and the auxiliary-vector filter (AVF) algor-
ithms [8]. Despite improved convergence and tracking performance,
these methods are complex and suffer from numerical problems.

In this Letter we propose a novel adaptive reduced-rank LCMV beam-
forming approach based on constrained joint iterative optimisation of
adaptive filters.

System model: Let us consider a smart antenna system equipped with a
uniform linear array (ULA) ofM omnidirectional sensors. The signals of
K narrowband sources impinge on the array (K , M ) with unknown
directions of arrival (DOA). The ith snapshot’s M � 1 vector of
sensor array outputs can be modelled as [1]

rðiÞ ¼ AðuÞsðiÞ þ nðiÞ; i ¼ 1; . . . ;N ð1Þ

where u ¼ [u0, . . . , uK21]
T [ CK�1 is the vector of the unknown DOA,

A(u) ¼ [a(u0), . . . , a(uK21)] [ CM�K is the complex matrix with the
steering vectors a(uk) ¼ [1, e22pj(d/lc)cosuk, . . . , e 22pj(M 2 1)(d/lc)cosuk]T

[ CM�1, (k ¼ 0, . . . , K2 1), where (.)T denotes transpose, lc is the
wavelength, d ¼ lc/2 is the inter-element spacing of the ULA, s(i) [
CK�1 is the complex vector of the source signals, n(i) [ CM�1 is the
vector of zero-mean Gaussian noise with variance s

2
and N is the

number of snapshots.

Problem statement: The LCMV filter w(i) ¼ [w (i)
1 w (i)

2 . . . w (i)
M ]T,

solves the following optimisation problem

minimise E½jwH ðiÞrðiÞj2� ¼ wH ðiÞRwðiÞ

subject to wH ðiÞaðuk Þ ¼ 1
ð2Þ

where R ¼ E[r(i)rH(i)], (.)H denotes Hermitian transpose and E[.] is the
expected value. The filter w(i) can be estimated via SG or RLS
algorithms [5], however their convergence speed depends on M and
the eigenvalue spread of R. A reduced-rank algorithm attempts to cir-
cumvent these limitations by reducing the number of adaptive coeffi-
cients and extracting the most important features of the processed
data. Let us consider an M � D projection matrix SD(i) which carries
out a dimensionality reduction on the received data as given by

�rðiÞ ¼ SH
D ðiÞrðiÞ ð3Þ

where, in what follows, all D-dimensional quantities are denoted with a
‘bar’. The reduced-rank vector r̄(i) is the input to a filter represented by
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the D � 1 vector w̄(i) ¼ [w̄1
(i) w̄2

(i) . . . w̄D
(i)]T. The filter output is

xðiÞ ¼ �wH ðiÞ�rðiÞ ð4Þ

If we consider the LCMV design in (2) with the reduced-rank covariance
matrix R̄ ¼ E[r̄(i)r̄H(i)] ¼ SD

H(i)RSD(i) and the reduced-rank steering
vector ā(uk) ¼ SD

H(i)a(uk) we obtain

�wðiÞ ¼ ð�aH ðuk Þ �R
�1

�aðuk ÞÞ
�1 �R

�1
�aðuk Þ ð5Þ

The minimum variance (MV) for a LCMV filter with rank D is

MV ¼ ðaH ðuk ÞSDðiÞðS
H
D ðiÞRSDðiÞÞ

�1SHD ðiÞaðuk ÞÞ
�1 ð6Þ

Based on the development above, the problem is how to efficiently and/
or optimally design an M � D transformation matrix SD(i).

Proposed method: In the proposed method, the projection matrix SD(i)
and the reduced-rank filter w̄(i) are jointly optimised according to the
LCMV criterion to yield a scalar output x(i). The projection matrix
SD(i) is structured as a bank of D full-rank filters (filters with the
same dimensions of r(i), i.e. M � 1) sj(i) ¼ [s1, j(i) s2, j(i). . .sM, j(i)]

T

( j ¼ 1, . . . , D) with dimensions M � 1 as given by SD(i) ¼
[s1(i)js2(i)j. . .jsD(i)]. By expressing the output estimate x(i) of the
reduced-rank scheme as a function of r(i), SD(i) and w̄(i) we obtain

xðiÞ ¼ �wH ðiÞSH
D ðiÞrðiÞ ¼ �wH ðiÞ�rðiÞ ð7Þ

Note that for D ¼ 1 the proposed scheme becomes a conventional full-
rank LCMV filtering scheme with an additional weight parameter wD(i)
that provides a gain on the output. ForD . 1, the signal processing tasks
are changed, SD

H(i) computes a subspace projection and the reduced-rank
filter w̄H(i) estimates the desired output.

The LCMV expressions for the filters SD(i) and w̄(i) can be computed
via the proposed optimisation problem

minimise E½j �wH ðiÞSH
D ðiÞrðiÞj

2�

subject to �wH ðiÞSH
D ðiÞaðuk Þ ¼ 1

ð8Þ

The constrained optimisation problem in (8) can be transformed by the
method of Lagrange multipliers into an unconstrained optimisation
problem [5] the cost function of which is

LMV ¼ E½j �wH ðiÞSH
D ðiÞrðiÞj

2� þ 2<½l�ð �wH ðiÞSH
D ðiÞaðuk Þ � 1Þ� ð9Þ

where l is a scalar Lagrange multiplier, � denotes complex conjugate
and the operator <[.] selects the real part of the argument. By fixing
w̄(i), minimising (9) with respect to SD(i) and solving for l, we get

SDðiÞ ¼ ½ �wH ðiÞR�1
w �wðiÞaH ðuk ÞR

�1aðuk Þ�
�1

R�1ðiÞaðuk Þ �w
H ðiÞR�1

w ðiÞ
ð10Þ

where R(i) ¼ E[r(i)rH(i)] and Rw(i) ¼ E[w̄(i)w̄H(i)]. By fixing
SD(i), minimising (9) with respect to w̄(i) and solving for l1, we
arrive at

�wðiÞ ¼ ½�aH ðuk Þ �R
�1
ðiÞ�aðuk Þ�

�1 �R
�1
ðiÞ�aðuk Þ ð11Þ

where �RðiÞ ¼ E½SH
D ðiÞrðiÞr

H ðiÞSDðiÞ� ¼ E½�rðiÞ�rH ðiÞ�; �aðuk Þ ¼ SH
D ðiÞaðuk Þ

The associated MV is

MV ¼ ð�aH ðuÞ �R
�1
ðiÞ�aðuÞÞ�1

ð12Þ

Note that the filter expressions in (10) and (11) are not closed-form sol-
utions for w̄(i) and SD(i) since (10) is a function of w̄(i) and (11)
depends on SD(i) and thus it is necessary to iterate (10) and (11) with
an initial value to obtain a solution.

Low-complexity implementation: We present a low-complexity adaptive
algorithm for efficient implementation of the proposed method and show
its computational complexity. By computing the instantaneous gradient
terms of (9) with respect to SD

�(i) and w̄�(i), we get

rLMVSD�ðiÞ
¼ x�ðiÞrðiÞ �wH ðiÞ þ 2l�aðuk Þ �w

H ðiÞ

rLMV �w�ðiÞ ¼ x�ðiÞSH
D ðiÞrðiÞ þ 2l�SH

D ðiÞaðuk Þ
ð13Þ
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By introducing the positive step sizes ms and mw, using the gradient
rules SD(iþ 1) ¼ SD(i)2 msrLMVS̄D

�(i) and w̄(iþ 1) ¼ w̄(i)2
mwrLMVw̄�(i), enforcing the constraint and solving the resulting
equations, we obtain

SDðiþ 1Þ ¼ SDðiÞ � msx
�ðiÞ½rðiÞ �wH ðiÞ � aðuk Þ �w

H ðiÞaH ðuk ÞrðiÞ� ð14Þ

�wðiþ 1Þ ¼ �wðiÞ � mwx
�ðiÞ½I � ð�aH ðuk Þ�aðuk ÞÞ

�1 �aðuk Þ�a
H ðuk Þ��rðiÞ ð15Þ

where x(i) ¼ w̄H(i)SD
H(i)r(i). The proposed scheme trades-off a full-rank

filter againstD full-rank adaptive filters as the projection matrix SD(i) and
one reduced-rank adaptive filter w̄(i) operating simultaneously and
exchanging information. The details on the complexity of the analysed
methods are given in Table 1 in terms of multiplications. The proposed
algorithms have a complexity D times higher than the LCMV full-rank
SG [2] and significantly lower than the other analysed techniques.

Table 1: Computational complexity of LCMV algorithms

Algorithm Multiplications

Full-rank-SG [2] 3Mþ 2

Full-rank-RLS [3] 6M 2
þ 2Mþ 2

Proposed-SG 3DMþMþ 3Dþ 6

MSWF-SG [7] D(2M 2
þ 5Mþ 7)

MSWF-RLS [7] D(4M 2
þ 2Mþ 3)

AVF [8] D(4M 2
þ 4Mþ 1)þ 4Mþ 2

Simulations: A smart antenna system with a ULA containing M ¼ 32
sensor elements is considered for assessing the beamforming algorithms.
The performance of the proposed scheme and algorithms is compared
with existing techniques, namely the full-rank LCMV-SG [2] and
LCMV-RLS [3], and the reduced-rank algorithms with SD(i) designed
according to an eigen-decomposition, the MSWF [7], the AVF [8] and
the optimal linear beamformer that assumes knowledge of the covariance
matrix [1] in terms of signal-to-interference-plus-noise ratio (SINR). For
each scenario, 200 runs are used to obtain the curves. In all simulations,
the DOA of the SOI is ud ¼ 208, the desired signal power is sd

2 ¼ 1, the
signal-to-noise ratio (SNR) is SNR ¼ sd

2/s2 and we have seven inter-
ferers at 2458, 2308, 2108, 08, 408, 608, 758 with powers following a
log-normal distribution with associated standard deviation 3 dB around
the SOI’s power level. The parameters of the algorithms are optimised
and the filters initialised as w̄(0) ¼ [1 0 . . . 0] and SD(0) ¼
[ID
T 0D�(M 2 D)

T ], where 0D�M 2 D
T is a D � (M2D) matrix with zeros.

We first evaluate the SINR performance of the analysed algorithms
against the rank D using optimised parameters (m0, n0 and forgetting
factors l) for all schemes and N ¼ 250 snapshots. The results in
Fig. 1a indicate that the best rank for the proposed scheme is D ¼ 4
(which will be used in the second scenario) and it is very close to the
optimal full-rank LCMV filter. Our studies with systems with different
sizes show that D is relatively invariant to the system size, which
brings considerable computational savings. In practice, the rank D can
be adapted to further improve performance.

Fig. 1 SINR performance of LCMV algorithms against rank (D) with M ¼
32, SNR ¼ 15 dB, N ¼ 250 snapshots (Fig. 1a) and against snapshots
with M ¼ 32, SNR ¼ 15 dB (Fig. 1b)
ELECTRO
We show another scenario in Fig. 1b where the adaptive LCMV filters
are set to converge to the same level of SINR. The curves show excellent
performance for the proposed scheme, which converges much faster than
the full-rank-SG algorithm, and is also better than the more complex
MSWF-RLS and AVF schemes.

Conclusions: We propose a novel LCMV reduced-rank beamforming
scheme based on joint iterative optimisation of adaptive filters. A low-
complexity implementation of the proposed scheme is also developed
using SG algorithms. The results show performance significantly
better than existing schemes with reduced complexity.
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