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Bidirectional Algorithms for Interference
Suppression in Multiuser Systems

Patrick Clarke and Rodrigo C. de Lamare

Abstract—This paper presents adaptive bidirectional minimum
mean-square error parameter estimation algorithms for fast-
fading channels. The time correlation between successive channel
gains is exploited to improve the estimation and tracking capabil-
ities of adaptive algorithms and provide robustness against time-
varying channels. Bidirectional normalized least mean-square and
conjugate gradient algorithms are devised along with adaptive
mixing parameters that adjust to the time-varying channel
correlation properties. An analysis of the proposed algorithms is
provided along with a discussion of their performance advantages.
Simulations for an application to interference suppression in mul-
tiuser DS-CDMA systems show the advantages of the proposed
algorithms.

Keywords—Multiuser systems, interference suppression, adaptive
algorithms, mobile channels.

I. INTRODUCTION

Low-complexity reception and interference suppression are
essential in multiuser mobile systems if battery power is
to be conserved, data-rates improved and quality of service
enhanced. Conventional adaptive schemes fulfil many of these
requirements and have been a significant focus of the research
literature [1], [2], [3], [4], [5], [6], [7], [8]. However, in time-
varying fading channels commonly associated with mobile
systems, these adaptive techniques encounter tracking and
convergence problems. Optimum closed-form solutions can
address these problems but their computational complexity is
high and CSI is required. Low-complexity adaptive channel
estimation can provide CSI but in highly dynamic channels
tracking problems exist due to their finite adaptation rate [9].
An alternative statistical approach is to obtain the correlation
structures required for optimal minimum mean-square error
(MMSE) or least-squares (LS) filtering [10], [11]. Although
this relieves the tracking demands placed on the filtering
process, in a Rayleigh fading channel, a zero correlator is the
result due to the expectation of a Rayleigh fading coefficient,
and therefore the cross-correlation vector, equating to zero i.e.
E [h1[n]] = 0 and E [b∗1[n]r[n]] = 0. In slowly fading channels
this problem may be overcome by using a time averaged
approach where the averaging period is equal to or less than
the coherence time of the channel. However, in fast fading
channels an averaging period equal to the coherence time of
the channel is insufficient to overcome the effects of additive
noise and characterize the multiuser interference (MUI) [1].
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Furthermore, the use of optimized convergence parameters
such as step sizes and forgetting factors into conventional adap-
tive algorithms extend their fading range and lead to improved
convergence and tracking performance [8], [12], [13], [14],
[15], [16], [17], [18]. However, the stability of adaptive step-
sizes and forgetting factors can be a concern unless they are
constrained to lie within a predefined region [19]. Other alter-
native schemes include those based on processing the received
data in subblocks [20], [21], [22] and subspace algorithms
[23], [24], [25], [26], [27], [28].In addition, the fundamental
problem of obtaining the unfaded symbols whilst suppressing
MUI remains. Consequently, the application of such algorithms
is restricted to low and moderate fading rates. The limitations
of conventional estimation approaches led to the development
of methods that attempt to track the faded symbol, such as the
channel-compensated MMSE solution [29], [30]. This removes
the burden of fading coefficient estimation from the receive
filter. However, a secondary process is required to perform
explicit estimation of the fading coefficients in order to perform
symbol estimation [31].

Approaches that avoid tracking and estimation of the fading
coefficients were proposed in [32], [31], [33]. Although a
channel might be highly time variant, two adjacent fading
coefficient will be similar and have a significant level of
correlation as studied in [32], [31], [33]. These properties
can then be exploited to obtain a sequence of faded symbols
where the primary purpose of the filter is to suppress multiuser
interference and track the ratio between successive fading
coefficients; thus, not burdening it with estimation of the fading
coefficients themselves. However, this scheme has a number
of limitations stemming from the use of only one correlation
time instant and a single class of adaptive algorithms.

In this work, a bidirectional MMSE based interference
suppression scheme for highly dynamic fading channels is
presented. The non-zero correlation between multiple time
instants is exploited to improve the robustness, tracking and
convergence performance of existing MMSE schemes. Un-
like existing adaptive solutions [32], [31], [33], [8], which
do not fully exploit the fading correlation between multiple
successive time instants, the proposed bidirectional approach
exploits the correlation and adaptively weighs the output of
the receive filter in order to optimize the estimation perfor-
mance. Normalized least-mean square (NLMS) and conjugate
gradient (CG) type algorithms are presented that overcome a
number of problems associated with applying the recursive
least-squares (RLS) algorithm to bidirectional problems. Novel
mixing strategies that weigh the contribution of the considered
time instants and improve the convergence and steady-state
performance, increasing the robustness against the channel
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discontinuities, are also presented. An analysis of the proposed
schemes is developed and establishes the mechanisms and
factors behind their behaviour and expected performance. The
proposed schemes are applied to conventional multiuser DS-
CDMA [2] and cooperative DS-CDMA systems [3], [4] to
assess their MUI suppression and tracking capabilities. The
application of the proposed scheme and algorithms to multiple-
antenna and multicarrier systems is also possible. Simulations
show that the algorithms improve upon existing schemes with
minimal increase in complexity.

The main contributions of this work can be summarized as:
• Bidirectional MMSE based interference suppression

scheme for highly dynamic fading channels.
• Bidirectional adaptive parameter estimation algorithms

based on NLMS and CG techniques.
• An analysis of the convergence and the computational

complexity of the proposed algorithms.
• A study of the proposed and existing algorithms in DS-

CDMA and cooperative DS-CDMA multiuser systems.
This paper is organized as follows. Section II briefly details

the signal models of a conventional DS-CDMA system and
a cooperative DS-CDMA system. Section III presents the
proposed scheme and its corresponding optimization problems
and the motivation behind their development. Switching and
mixing strategies that optimize performance are proposed and
assessed in Section IV, followed by the derivation of the
proposed algorithms in Section V. An analysis of the pro-
posed algorithms is given in Section VI, whereas performance
evaluation results are presented in Section VII. Conclusions
are drawn in Section VIII.

II. SIGNAL MODELS

In this section, we describe the signal models of a DS-
CDMA system operating in the uplink and a cooperative
DS-CDMA system in the uplink equipped with relays and
the amplify-and-forward (AF) cooperation protocol. These
systems are employed for testing the proposed algorithms even
though that extensions to multiple-antenna and multi-carrier
can also be considered with appropriate modifications of the
algorithms.

A. DS-CDMA Signal Model

We consider the uplink of a synchronous DS-CDMA system
with K users, N chips per symbol and Lp (Lp < N)
propagation paths for each link. We assume that the delay
is a multiple of the chip rate, the channel is constant during
each symbol interval and the spreading codes are repeated from
symbol to symbol. The received signal after filtering by a chip-
pulse matched filter and sampled at chip rate yields the M -
dimensional received vector given by

r[i] = A1b1[i]H1[i]c1[i] +

K∑
k=2

Akbk[i]Hk[i]ck[i]︸ ︷︷ ︸
MUI

+η[i] + n[i],

(1)

Fig. 1. Cooperative DS-CDMA System Model

where M = N+L−1, and ck[i] and Ak are the spreading se-
quence and signal amplitude of the kth user, respectively. The
M ×N channel matrix with L paths is given by Hk[i] for the
kth user, the M×1 vector η[i] corresponds to the intersymbol
interference and n[i] is the noise vector. Conventional schemes
use BPSK modulation and the differential and bidirectional
schemes employ differential BPSK where the sequence of
data symbols to be transmitted by the kth user are given by
bk[i] = ak[i]bk[i−1] where ak[i] is the unmodulated baseband
data. Assuming that linear receive processing is adopted, the
output of the receive filter is given by

x[i] = wH [i]r[i], (2)

where w[i] is an M -dimensional vector that corresponds to
the receive filter.

B. Cooperative DS-CDMA Signal Model

We also consider the uplink of a cooperative DS-CDMA
system with K users, Nr relays, N chips per symbol and
Lp (Lp < N) propagation paths for each link. The system
shown in 1 is equipped with an AF protocol at each relay. The
received signals at the nth relay and the destination nodes are
filtered by a chip-pulse matched filter, sampled at chip rate to
obtain sufficient statistics and organized into M ×1 vectors as
described by

rsrn [i] =

K∑
k=1

ask [i]bk[i]hsrn [i]ck[i] + nrn [i], (3)

rrd[i] =

Nr∑
n=1

arn [i]hrnd[i]rsrn [i] + nd[i] (4)

and

rrd[i] =

Nr∑
n=1

K∑
k=1

ask [i]arn [i]hsrn [i]hrnd[i]ck[i]bk[i]+

Nr∑
n=1

arn [i]hrnd[i]nrn [i]+nd[i].

(5)
where hsrn [i] and hrnd[i] are the channel fading channel
coefficients between the source and the nth relay, and the nth

relay and the destination, respectively, and nrn [i] and nd[i]
are additive white Gaussian noise vectors at the relays and the
destination, respectively.

The received data is processed by a linear receive filter,



3

which produces the output given by

x[i] = wH [i]rrd[i], (6)

where w[i] is an M -dimensional vector that corresponds to
the receive filter for the cooperative system.

III. PROPOSED BIDIRECTIONAL SCHEME

Adaptive parameter estimation has two primary objectives:
estimation and tracking of the desired parameters. When
applied to multiuser wireless systems, these translate into
recovery of the desired symbol, tracking of channel variations
and suppression of MUI. However, in fast fading channels
these objectives place unrealistic demands on conventional
filtering and estimation schemes. Differential techniques re-
duce these demands by relieving adaptive receivers from the
task of tracking fading coefficients [31]. This is achieved by
posing an optimization problem where the ratio between two
successive received samples is the quantity to be tracked. Such
an approach is enabled by the presumption that, although the
fading is fast, there is correlation between the adjacent channel
samples as described by

f1[i] = E [h1[i]h
∗
1[i+ 1]] ≥ 0, (7)

where h1[i] is the channel coefficient of the desired user.
The interference suppression of the resulting receive filter
is improved in fast fading environments compared to con-
ventional adaptive receivers but only the ratio of adjacent
fading samples is obtained. Consequently, differential MMSE
schemes are suited to differential modulation where the ratio
between adjacent symbols is the data carrying mechanism.

However, limiting the optimization to two adjacent samples
exposes these processes to the negative effects of uncorrelated
samples

E [h1[i]h
∗
1[i+ 1]] ≈ 0, (8)

but also does not exploit the correlation that may be present
between two or more adjacent samples, i.e.,

f2[i] = E [h1[i]h
∗
1[i− 1]] > 0

f3[i] = E [h1[i+ 1]h∗
1[i− 1]] > 0.

(9)

In order to address these weaknesses, we propose a bidirec-
tional MSE cost function based on multiple adjacent samples
so that the number of channel scenarios under which the dif-
ferential MMSE performs beneficial adaptation is substantially
increased. Termed the bidirectional MMSE, due to the use of
multiple time instants, the motivation behind this proposition is
illustrated by the plots of fading/channel coefficients in Fig. 2,
where J1 represents the 2 sample differential MMSE. There is
a low level of correlation present between samples i and i−1,
thus any adaptation of the receive filter will bring little benefit.
However, the proposed scheme for 3 time instants operates
over J1,J2 and J3; therefore, it can exploit the correlation
between i+1 and i−1 and past data. Figure 2 gives an example
of a channel where there is a significant level of correlation
between samples.

The proposed bidirectional scheme can be expressed in the

Fig. 2. Fading channels: an uncorrelated fading channel on the top figure
and a correlated fading channel on the bottom figure.

form of an an optimization problem as described by

wo[i] = arg min
w[i]

E
[∣∣b[i]wH [i]r[i− 1]− b[i− 1]wH [i]r[i]

∣∣2
...

+
∣∣b[i]wH [i]r[i− (D − 1)]− b[i− (D − 1)]wH [i]r[i]

∣∣2
+
∣∣b[i− 1]wH [i]r[i− 2]− b[i− 2]wH [i]r[i− 1]

∣∣2
...

+
∣∣b[i− 1]wH [i]r[i− (D − 1)]− b[i− (D − 1)]wH [i]r[i− 1]

∣∣2
+

∣∣b[i− (D − 2)]wH [i]r[i− (D − 1)]− b[i− (D − 1)]wH [i]r[i− (d− 2)]
∣∣2]

,

(10)
where D denotes the number of considered time instants.
Introducing summations into (10) yields a more concise form

wo[i] = arg min
w[i]

E

[
D−2∑
d=0

D−1∑
l=d+1

∣∣b[i− d]wH [i]r[i− l]− b[i− l]wH [i]r[i− d]
∣∣2] ,

(11)
where an output power constraint is required to avoid the trivial
all-zero receive filter solution

E
[∣∣wH [i]r[i]

∣∣2] = 1. (12)

Although the existing differential scheme operates over 2
correlated samples, the proposed scheme is able to exploit
the additional correlation present between multiple adjacent
samples. Moreover, it is also possible to obtain further gain
by weighting the correlation between multiple adjacent sam-
ples. However, the benefit of using multiple time instant is
dependent on the fading rate of the channel and the related
correlation of the channel coefficients. We have investigated
the use of multiple time instants and it turns out that a
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scheme which exploits 3 adjacent samples captures most of
the performance benefits. In particular, we have tested the
proposed bidirectional scheme and algorithms with various
values of adjacent time instants (between 4 and 8) and verified
that exploiting extra time instants above 3 does not yield
significant gains. In fact, the number of time instants is a
parameter to be chosen by the designer.

The optimization problem of the proposed scheme for 3 time
instants is given by

wo[i] = arg min
w[i]

E
[∣∣b[i]wH [i]r[i− 1]− b[i− 1]wH [i]r[i]

∣∣2 (J1)

+
∣∣b[i]wH [i]r[i− 2]− b[i− 2]wH [i]r[i]

∣∣2 (J2)

+
∣∣b[i− 1]wH [i]r[i− 2]− b[i− 2]wHr[i− 1]

∣∣2] (J3)

,

(13)
where J1−J3 equate to those of Fig. 2, and the time instants of
interest have been altered to avoid the use of future samples. In
addition to (13), an output power constraint is again required
to avoid an all-zero trivial solution as given by

E
[∣∣wH [i]r[i]

∣∣2] = 1. (14)

In what follows, we describe switching and weighting strate-
gies to optimize the proposed scheme and obtain further
performance gain.

IV. SWITCHING AND WEIGHTING STRATEGIES

The advantages of a bidirectional scheme operating over 3
time or more time instants have been verified in our studies.
However, the performance of the scheme may be degraded
when received vectors based on uncorrelated fading coeffi-
cients are employed in the update of the receive filter. This
is particulary evident from the example with an uncorrelated
channel illustrated in Fig. 2, where the contribution to the
cost function represented by J3 is unlikely to aid the accurate
adaptation of w[i]. To avoid this we introduce a set of
switching or mixing parameters that determine the weighting
of the D constituent elements of the bidirectional cost function.
The proposed generalized bidirectional cost function with
weighting factors is described by

wo[i] = arg min
w[i]

E

[
D−2∑
d=0

D−1∑
l=d+1

ρn[i]
∣∣b[i− d]wH [i]r[i− l]− b[i− l]wH [i]r[i− d]

∣∣2] ,
(15)

where n = d(D− 3)+ l+1. However, we again focus on the
case with D = 3 in the remainder of this work. With these
modifications the proposed bidirectional MSE cost function
with 3-time instand and weighting factors is given by

wo[i] = arg min
w[i]

E
[
ρ1[i]

∣∣b[i]wH [i]r[i− 1]− b[i− 1]wH [i]r[i]
∣∣2 (J1)

+ρ2[i]
∣∣b[i]wH [i]r[i− 2]− b[i− 2]wH [i]r[i]

∣∣2 (J2)

+ ρ3[i]
∣∣b[i− 1]wH [i]r[i− 2]− b[i− 2]wH [i]r[i− 1]

∣∣2] (J3)

,

(16)

where 0 ≤ ρn ≤ 3 for n = 1, 2, 3 are the weighting factors.
The determination of the receive vector samples that cor-

respond to the scenarios depicted in Figure 2 is essential if
correct optimization of the ρ is to be achieved. The use of CSI
to achieve this would be an effective but impractical solution
due to the difficulty in obtaining CSI; consequently, other
methods must be sought. In this section, we propose the use
of two alternative metrics: the signal power differential after
interference suppression between the considered time instants,
and the error between the considered time instants.

Firstly, we consider a switching scheme where ρ1−3 = [0, 1]
are determined at each time instant based on the following
post-filtering power differential metrics:

P1[i] =
∣∣w[i]Hr[i]

∣∣2 − ∣∣w[i]Hr[i− 1]
∣∣2

P2[i] =
∣∣w[i]Hr[i]

∣∣2 − ∣∣w[i]Hr[i− 2]
∣∣2

P3[i] =
∣∣w[i]Hr[i− 1]

∣∣2 − ∣∣w[i]Hr[i− 2]
∣∣2 . (17)

If the power difference for each of J1−3 exceeds a predefined
threshold, the corresponding ρ is set to zero; therefore, remov-
ing the corresponding element of the cost function from the
adaptation process at that time instant. For highly dynamic
channels one requires an adaptive threshold which is able to
track the changes in the system and determine appropriate time
instants based on successive samples. Consequently, for each
ρn a threshold, Tn[i], related to a time-averaged, windowed,
root-mean-square of the relevant differential power is used.
The value of ρn in then determined in the following manner:

ρn[i] =

{
0 if Pn[i] ≥ Tn[i]
1 otherwise

, (18)

where

Tn[i] = ν [λPPnRMS [i] + (1− λP )PnRMS [i]] , (19)

PnRMS
[i] =

√√√√ 1

m− 1

i∑
l=i−m

Pn[l]2, (20)

and ν is a positive user defined constant greater than unity that
scales the threshold. The threshold ν is set with the help of
computer experiments in a similar way as the step size of the
NLMS algorithm is tuned. The aim is to scale the threshold
such that it will be used to inform the algorithm about the
relevant differential power which should be used.

Although the current sample corresponding to Jn may bring
little benefit in terms of adaptation, this does not indicate
that all previous cost function elements corresponding to Jn
should be discarded. An alternative approach is to use a
set of convex mixing parameters that are not restricted to 1
or 0. This allows each element of the cost function to be
more precisely weighted based on its previous and current
values. However, the setting of these mixing parameters is
once again problematic if they are fixed. Accordingly, an
adaptive implementation that can take account of the time-
varying channels and previous values which continue to have
an impact on the adaptation of the filter is sought. The errors
extracted from the cost function (16) are chosen as the metric
for developing algorithms. These provide an input to the
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weighting factor calculation process that is directly related to
the cost function of (16). The time-varying mixing factors are
given by

ρn[i] = λeρn[i− 1] + (1− λe)
eT [i]− |en[i]|

eT [i]
(21)

where
eT [i] = |e1[i]|+ |e2[i]|+ |e3[i]|, (22)

and the individual error terms are calculated as

e1[i] = b[i]wH [i− 1]r[i− 1]− b[i− 1]wH [i− 1]r[i]
e2[i] = b[i]wH [i− 1]r[i− 2]− b[i− 2]wH [i− 1]r[i]
e3[i] = b[i− 1]wH [i− 1]r[i− 2]− b[i− 2]wH [i− 1]r[i− 1].

(23)
The forgetting factor, 0 ≤ λe ≤ 1, is user defined and, along

with normalization by the total error, eT [i], and
3∑

n=1

ρn[0] = 1,

ensures
3∑

n=1

ρn[i] = 1 and a convex combination at each time

instant.

V. ADAPTIVE ALGORITHMS

In order to devise low-complexity adaptive algorithms based
on the proposed bidirectional schemes, we consider the mini-
mization of the cost function given by

C(w[i]) = E
[∣∣b[i]wH [i− 1]r[i− 1]− b[i− 1]wH [i]r[i]

∣∣2
+
∣∣b[i]wH [i− 2]r[i− 2]− b[i− 2]wH [i]r[i]

∣∣2
+

∣∣b[i− 1]wH [i− 2]r[i− 2]− b[i− 2]wH [i]r[i− 1]
∣∣2]

subject to E
[∣∣w[i]Hr[i]

∣∣2] = 1.

(24)
This cost function then forms the basis of the adaptive algo-
rithms derived in this section. However, to reduce the complex-
ity of the derivations, enforcement of the non-zero constraint
is not included and instead enforced in a stochastic manner at
each time instant after the adaptation step is complete [31].

A. Normalized Least-Mean Square Algorithm

We begin with the low-complexity NLMS implementation
that employs an instantaneous gradient in a steepest descent
framework. Firstly, the instantaneous gradient of (24) is taken
with respect to w∗[i], yielding

∇w∗[i]C(w[i]) = −b[i− 1]r[i](b[i]wH [i− 1]r[i− 1]− b[i− 1]wH [i]r[i])H

−b[i− 2]r[i](b[i]wH [i− 2]r[i− 2]− b[i− 2]wH [i]r[i])H

−b[i− 2]r[i− 1](b[i− 1]wH [i− 2]r[i− 2]− b[i− 2]wH [i]r[i− 1])H

(25)
At this point, in order to improve the convergence performance
of the NLMS algorithm, the bracketed error terms of (25) are
modified by replacing the receive filters with the most recently
calculated one, w[i − 1]. The resulting gradient expression is

given by

∇w∗[i]C(w[i]) = −b[i− 1]r[i]
(
b[i]wH [i− 1]r[i− 1]− b[i− 1]wH [i− 1]r[i]

)H︸ ︷︷ ︸
e1[i]

−b[i− 2]r[i]
(
b[i]wH [i− 1]r[i− 2]− b[i− 2]wH [i− 1]r[i]

)H︸ ︷︷ ︸
e2[i]

−b[i− 2]r[i− 1]
(
b[i− 1]wH [i− 1]r[i− 2]− b[i− 2]wH [i− 1]r[i− 1]

)H︸ ︷︷ ︸
e3[i]

.

(26)
Placing the above gradient expression in the steepest descent
update recursion, we obtain

w[i] = w[i−1]+
µ

M [i]|wH [i− 1]r[i− 1]|
[b[i− 1]r[i]e∗1[i] + b[i− 2]r[i]e∗2[i] + b[i− 2]r[i− 1]e∗3[i]] ,

(27)
where µ is the step-size and the normalization factor, M [i], is
given by

M [i] = λMM [i− 1] + (1− λM )rH [i]r[i], (28)

where λM is an exponential forgetting factor [31]. The en-
forcement of the constraint is performed by the denominator
of (27) which ensures that the receive filter w[i] does not tend
towards a zero correlator as the adaptation progresses.

The incorporation of the variable switching and mixing fac-
tors of Section IV has the potential to improve the performance
of the above algorithm by optimizing the weighting of the
error terms of (26). Integration of the factors given by (18)
and (21) yields

w[i] = w[i−1]+
µ

M [i]|wH [i− 1]r[i− 1]|
[ρ1[i]b[i− 1]r[i]e1[i] + ρ2[i]b[i− 2]r[i]e2[i] + ρ3[i]b[i− 2]r[i− 1]e3[i]]

(29)
as the receive filter update equation.

B. Least Squares Algorithm
To achieve faster convergence and increased robustness

to fading we now pursue a LS based solution. Firstly, the
bidirectional cost function of (24) is cast as an LS problem
by replacing the expected value with a weighted summation,
as described by

CLS(w[i]) =

i∑
l=1

λi−l
[∣∣b[i]wH [i− 1]r[i− 1]− b[i− 1]wH [i]r[i]

∣∣2 +∣∣b[i]wH [i− 2]r[i− 2]− b[i− 2]wH [i]r[i]
∣∣2 +∣∣b[i− 1]wH [i− 2]r[i− 2]− b[i− 2]wH [i− 1]r[i− 1]

∣∣2]
,

(30)
where λ is an exponential forgetting factor. Proceeding as with
the conventional LS derivation, and modifying the equivalent
error terms in a similar manner to as in (26), we arrive at
the following expressions for the component autocorrelation
matrices:

R̄1[i] = λR̄1[i− 1] + b[i− 1]r[i]rH [i]b∗[i− 1]
R̄2[i] = λR̄2[i− 1] + b[i− 2]r[i]rH [i]b∗[i− 2]
R̄3[i] = λR̄3[i− 1] + b[i− 2]r[i− 1]rH [i− 1]b∗[i− 2]

(31)
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and the component cross-correlation vectors:

t̄1[i] = λt̄3[i− 1] + b[i− 1]r[i]rH [i− 1]w[i− 1]b∗[i]
t̄2[i] = λt̄2[i− 1] + b[i− 2]r[i]rH [i− 2]w[i− 1]b∗[i]
t̄3[i] = λt̄3[i− 1] + b[i− 2]r[i− 1]rH [i− 2]w[i− 1]b∗[i− 1]

.

(32)
The overall correlation structure is then formed from the
summation of the preceding expressions, yielding

R̄[i] = R̄1[i] + R̄2[i] + R̄3[i] (33)

and
t̄[i] = t̄1[i] + t̄2[i] + t̄3[i]. (34)

where
w[i] = R̄−1[i]t̄[i]. (35)

Similarly to the NLMS algorithm, performance improvements
can be expected if the variable switching and mixing factors,
(18) and (21), are incorporated into the correlation expressions.
The resulting expressions are

R[i] = ρ1[i]R1[i] + ρ2[i]R2[i] + ρ3[i]R3[i] (36)

t[i] = ρ1[i]t1[i] + ρ2[i]t2[i] + ρ3[i]t3[i] (37)

Introducing the above expression into the RLS framework
would lead to a low-complexity algorithm with improved
convergence and robustness compared to the NLMS of Section
V-A. This requires the integration of (31) with the matrix
inversion lemma [9], [34]. However, the derivation requires
an expression with a rank-1 update of the form

R[i] = R[i− 1] + λr[i]rH [i] (38)

for the autocorrelation matrix; a form which (31) is unable to fit
into without assumptions that cause a significant performance
degradation. Consequently, an alternative low-complexity al-
gorithm to implement the LS solution given by (31) - (35) is
required.

C. Conjugate Gradient Algorithm

Due to the particular form of the bidirectional LS for-
mulation and the conventional RLS recursion, an alternative
low-complexity method is now derived. The CG technique
has been chosen to avoid matrix inversions and due to its
excellent convergence properties [35], [36], [37]. We begin
the derivation of the proposed CG type algorithm with the
autocorrelation (31) and cross-correlation (32) structures of
subsection V-B. Inserting them into the standard CG quadratic
form yields

J(w) = wH [i]R[i]w[i]− tH [i]w[i]. (39)

From [36], the unique minimiser of (39) is also the minimiser
of

R[i]w[i] = t[i]. (40)

This shows the suitability of the CG algorithm to the bidirec-
tional problem. At each time instant a number of iterations
of the following method are required to reach an accurate
solution, where the iterations are indexed with the variable

j. Other single iteration CG methods are available but these
depend upon degeneracy - a term that describes the situation
where the successive CG vectors are not orthogonal [38].
Consequently, we employ the conventional method to ensure
satisfactory convergence. At the ith time instant the gradient
and direction vectors are initialized as

g0[i] = ∇w[i]CLS(w[i]) = R[i]w0[i]− t[i] (41)

and
d0[i] = −g0[i], (42)

respectively, where the gradient expression is equivalent to
those used in the derivation of the previous algorithms. The
vectors dj [i] and dj+1[i] are R[i] orthogonal with respect to
R[i] such that dj [i]R[i]dl[i] = 0 for j ̸= l. At each iteration,
the receive filter is updated as

wj+1[i] = wj [i] + αj [i]dj [i] (43)

where αj [i] is the minimizer of J(wj+1[i]) such that

αj =
−dH

j gj [i]

dH
j [i]R[i]dj [i]

. (44)

The gradient vector is then updated according to

gj+1[i] = R[i]wj [i]− t[i] (45)

and a new conjugate gradient direction vector is obtained as
given by

dj+1[i] = −gj+1[i] + βj [i]dj [i] (46)

where

βj [i] =
gH
j+1[i]R[i]dj [i]

dH
j [i]R[i]dj [i]

(47)

ensures the R[i] orthogonality between dj [i] and dl[i] where
j ̸= l. The iterations (43) - (47) are then repeated until j =
jmax.

The variable switching and mixing factors can be incor-
porated into the algorithm to improve performance. This is
achieved by operating the CG algorithm over the modified
correlation structures given by (36) and (37).

VI. ANALYSIS

In this section, we analyze the proposed bidirectional algo-
rithms to gain insight of the expected performance but also
to obtain further knowledge into the operation of the pro-
posed and existing algorithms. The unconventional form of the
proposed cost functions precludes the application of standard
MSE analysis. Consequently, we concentrate on the signal-
to-interference-plus-noise ratio (SINR) of the proposed algo-
rithms in order to analyze their interference suppression and
tracking performance. We firstly study the NLMS algorithm
and the features of its weight error correlation matrix in order
to arrive at an analytical SINR expression. Following this,
we explore the analogy between the form of the bidirectional
expression and convex combinations of adaptive receive filters
[39], [40].
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A. SINR Analysis

Let us define the instantaneous SINR expression given by

SINRinst ,
wH [i]RSw[i]

wH [i]RIw[i]
, (48)

where RS and RI are the signal and interference and noise
correlation matrices, into a form amenable to analysis.

The receive filter error weight vector is described by

ε[i] = w[i]−wo[i], (49)

where wo is the instantaneous standard MMSE receiver.

Let us now describe the expression of the numerator of (48)
with the desired signal component:

Sc = εH [i]RSε[i]+εH [i]RSwo[i]+

PS,opt[i]︷ ︸︸ ︷
wH

o [i]RSwo[i] +wH
o [i]RSε[i],

(50)
and of the interference plus noise component described by

Si+n = εH [i]RIε[i]+εH [i]RIwo[i]+wH
o [i]RIwo[i]︸ ︷︷ ︸

PI,opt[i]

+wH
o [i]RIε[i].

(51)
Taking the expectation and the trace of Sc and Si+n, defining

K[i] = E[ε[i]εH [i]] and G[i] = E[wo[i]ε
H [i]], we can define

the following SINR expression:

SINR , tr{E[Sc]}
tr{E[Si+n]}

=
tr[K[i]RS +G[i]RS + PS,opt[i] +GH [i]RS]

tr[K[i]RI +G[i]RI + PI,opt[i] +GH [i]RI]
.

(52)

From (52) it is clear that we need to pursue expressions for
K[i] and G[i] in order to reach an analytical interpretation of
the bidirectional NLMS scheme.

Substituting the filter error weight vector into the filter
update expression of (27) yields a recursive expression for the
receive filter error weight vector described by

ε[i] = ε[i− 1]
+
[
I+ µr[i]b[i− 1]rH [i− 1]b∗[i]− µr[i]b[i− 1]rH [n]b∗[i− 1]

+µr[i]b[i− 2]rH [i− 2]b∗[i]− µr[i]b[i− 2]rH [n]b∗[i− 2]
+µr[i− 1]b[i− 2]rH [i− 2]b∗[i− 1]− µr[i− 1]b[i− 2]rH [i− 1]b∗[i− 2]

]
ε[i− 1]

+µr[i]b[i− 1]e∗o,1[i]
+µr[i]b[i− 2]e∗o,2[i]
+µr[i− 1]b[i− 2]e∗o,3[i]

,

(53)
where the terms eo,1−3 denote the error terms of (26) when
the optimum filter wo is used. Utilizing the direct averaging
approach developed by Kushner [41], often invoked in this type
of stochastic analysis, the solution to the stochastic difference
equation of (53) can be approximated by the solution to a

second equation [9], [42], such that

E
[
I+ µr[i]b[i− 1]rH [i− 1]b∗[i]− µr[i]b[i− 1]rH [n]b∗[i− 1]

+µr[i]b[i− 2]rH [i− 2]b∗[i]− µr[i]b[i− 2]rH [n]b∗[i− 2]
+µr[i− 1]b[i− 2]rH [i− 2]b∗[i− 1]− µr[i− 1]b[i− 2]rH [i− 1]b∗[i− 2]

]
=
I+ µF1 − µR1 + µF2 − µR2 + µF3 − µR3

,

(54)
where F and R are correlations matrices. Specifically, R1−3

are autocorrelation matrices given by

R1 = E
[
µr[i]b∗[i− 1]rH [i]b∗[i− 1]

]
R2 = E

[
µr[i]b∗[i− 2]rH [i]b∗[i− 2]

]
R3 = E

[
µr[i− 1]b∗[i− 2]rH [i− 1]b∗[i− 1]

] (55)

and F1−3 cross-time instant correlation matrices, given by

F1 = E
[
µr[i]b∗[i− 1]rH [i− 1]b∗[i]

]
F2 = E

[
µr[i]b∗[i− 2]rH [i− 2]b∗[i]

]
F3 = E

[
µr[i− 1]b∗[i− 2]rH [i− 2]b∗[i− 1]

]
.

(56)

Using (54) and the independence assumption of
E [eo,1−3[i]ε[i]] = 0, E

[
rH [i]r[i− 1]

]
= 0 and

E [bk[i]bk[i− 1]] = 0, we arrive at the expression for
K[i]

K[i] = [I+ µF1 − µR1 + µF2 − µR2 + µF3 − µR3]K[i− 1] [I+ µF1 − µR1 + µF2 − µR2 + µF3 − µR3]
+µ2R1Jmin,1[i]
+µ2R2Jmin,2[i]
+µ2R1Jmin,3[i]

(57)
where Jmin,j [i] = |eo,j |2. Following a similar method, an
expression for G[i] can also be reached

G[i] = G[i− 1] [µF1 − µR1 + µF2 − µR2 + µF3 − µR3] .
(58)

At this point we study the derived expression to gain an insight
into the operation of the bidirectional algorithm and the origins
of its advantages over the conventional differential scheme.
Equivalent expressions for the conventional stochastic gradient
scheme are given by

K[i] = [I+ µF1 − µR1]K[i− 1] [I+ µF1 − µR1]
+µ2R1Jmin,1[i]

G[i] = G[i− 1] [µF1 − µR1] .
(59)

The bidirectional scheme has a number of additional correla-
tion terms compared to the conventional scheme. Evaluating
the cross-time instant matrices yields

F1 = |a1|2c1cH1 E [h[i]h∗[i− 1]]︸ ︷︷ ︸
f1[i]

F2 = |a1|2c1cH1 E [h[i]h∗[i− 2]]︸ ︷︷ ︸
f2[i]

F3 = |a1|2c1cH1 E [h[i− 1]h∗[i− 2]]︸ ︷︷ ︸
f3[i]

. (60)

From the expression above it is clear that the underlying
factor that governs the SINR performance of the algorithms
is the correlation between the considered time instants, f1−3,
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data-ruse and the use of f2. Accordingly, it is the additional
correlation factors that the proposed bidirectional algorithms
possess that enhances its performance compared to the con-
ventional scheme, confirming the initial motivation behind the
proposition of the bidirectional approach. Lastly, the f1−3

expressions of (60) are the factors that influence the optimum
number of considered time instants.

B. Combinations of Adaptive Receive Filters
To further our understanding of the bidirectional algorithms

we follow a heuristic and complementary approach that leads
to an analogy with a combination of adaptive filters [39].
The bidirectional LS solution given by (35) is made up of
6 constituent correlation structures that result in a filter output
of

y[i] =
[
(ρ1R1[i] + ρ3R2[i] + ρ3R3[i])

−1
(ρ1t1[i] + ρ2t2[i] + ρ3t3[i])

]H
r[i].

(61)
Decomposing the expression above leads us to an expression
where the signal y[i] is formed from the output of 3 individual
adaptive receive filters

y[i] =

[(
R1[i] +

ρ2

ρ1
R2[i] +

ρ3

ρ1
R3[i]

)−1

t1[i]

]H
r[i]

+

[(
R1[i] +

ρ1

ρ2
R2[i] +

ρ3

ρ2
R3[i]

)−1

t2[i]

]H
r[i]

+

[(
R1[i] +

ρ1

ρ3
R2[i] +

ρ2

ρ3
R3[i]

)−1

t3[i]

]H
r[i]

.

(62)
This is equivalent to a convex combination of adaptive receive

filters with varying λ [39], [40], where each of the 3 filters
focuses on the correlation between the 2 of the 3 considered
time instants. However, the presence of the autocorrelation
matrices in the inverses of the expression also indicates that
the remaining time instants also influence the structure of
each filter. Although the mixing factors are not separable we
can interpret them as a form of weighting that is present in
conventional combinations of adaptive filters. This explains in
part the additional control and performance they provide.

VII. SIMULATIONS

In this section, the proposed bidirectional adaptive algo-
rithms are applied to conventional multiuser and cooperative
DS-CDMA systems using the signal models described in
Section II. The application of the proposed algorithms to
multiple-antenna and multi-carrier systems is straightforward
and requires a change in the signal models. The individual
Rayleigh fading channel coefficients, h[i], are generated using
Clarke’s model [43] where 20 scatterers are assumed. In all
simulations the number of packets is denoted by Np and the
fading rate is given by the dimensionless normalized fading
parameter, Tsfd, where Ts is the symbol period and fd is
the Doppler frequency shift. The convergence parameters of
the algorithms have been optimized resulting in step-sizes

forgetting factors of 0.1 and 0.99, respectively, λe = 0.95,
λM = 0.99 and the number of CG iterations, jmax = 5.

As detailed in Section VI, the proposed algorithms do not
minimize the same MSE as a conventional MMSE receiver;
therefore, the MSE is not an adequate performance metric.
As a result, BER and SINR based metrics are chosen for the
purpose of comparison between existing algorithms and the
optimum MMSE solution. Due to the rapidly fading channel,
the instantaneous SNR, SNRi, is highly variable and so the
SINR alone is also not a satisfactory metric. To overcome this
it is normalized by the instantaneous SNR to give SINR

SNRi
. This

value is negative in all simulations and directly reflects the
MUI interference suppression and tracking capabilities of the
proposed algorithms [32], [31].

A. Conventional DS-CDMA

Here we apply the adaptive algorithms of Section V to
interference suppression in the uplink of a multiuser DS-
CDMA system described in Section II. Each simulation is
averaged over Np packets and detailed parameters are specified
in each plot.

1) Analytical Results: We first assess the analytical ex-
pressions derived in Section VI-A and their agreement with
simulated results. Central to the performance of the differential
and bidirectional schemes are the correlation factors f1−3

and the related assumption of h1[i] ≈ h1[i − 1]. Examining
the effect of the fading rate on the value of f1−3 shows
that f1 ≈ f2 ≈ f3 at fading rates of up to Tsfd = 0.01.
Consequently, after a large number of received symbols with
high total receive power

3 [I+ µF1 − µR1] ≈ [I+ µF1 − µR1 + µF2 − µR2 + µF3 − µR3] ,
(63)

due to the decreasing significance of the identity matrix. This
indicates that the expected value of the SINR, of the bidirec-
tional scheme, once f1 ≈ f2 ≈ f3 have stabilised, should be
similar to the differential scheme. A second implication is that
the bidirectional scheme should converge towards the MMSE
level due to the equivalence between the differential scheme
and the MMSE solution [31]. Fig. 3 illustrates the analytical
performance using the expressions given in Section VI-A.

The correlation matrices are calculated via ensemble aver-
ages prior to the start of the algorithm and G[0] = K[0] = I. In
Fig. 3 one can see the convergence of the simulated schemes to
the analytical and MMSE plots, validating the presented analy-
sis. Due to the highly dynamic nature of the channel, using the
expected values of the correlation matrix alone cannot capture
the true transient performance of the algorithms. However, the
convergence period of the analytical plots within the first 200
iterations can be considered to be within the coherence time
and therefore give an indication of the transient performance
relative to other analytical plots. Using this justification and
the aforementioned analysis, advantages should be present in
the transient phase due to the additional correlation information
supplied by F2 and F3. This conclusion is supported by Fig. 3
and the similar forms of the analytical and simulated schemes
relative to each other and their subsequent convergence.
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Fig. 3. SINR performance comparison of simulated and analytical proposed
NLMS algorithms over a single path channel.

2) SINR Performance: The SINR/SNR performance of the
proposed algorithms is given by Figs. 4 and 5. The perfor-
mance of the CG implementation of the differential algorithm
is marginally below that of the RLS during convergence but
the bidirectional scheme provides noticeable improvements.
The differential and bidirectional algorithms converge close to
the MMSE optimum as expected from the previous analysis.
The bidirectional NLMS algorithm provides more significant
improvements over the differential scheme, both in the final
stages of convergence and steady-state. These differences can
be accounted for by the reduced receive signal power; the
matrices equivalent to F2 and F3 improving the consistency
of the steady-state performance by reducing the impact of
weakly-correlated samples; and the NLMS’s suitability to data
reuse as in the affine projection (AP) algorithm. As expected,
the conventional adaptive schemes are unable to converge or
track the solution due to the more demanding task of tracking
both the fading coefficients and suppressing MUI.

The BER performance of the differential and bidirectional
schemes is illustrated in Fig. 6, where the system parameters
are equal to those of Figs. 4 and 5. The RLS and CG algorithms
converge to near the MMSE level with the bidirectional scheme
providing a performance improvement over other considered
algorithms. The NLMS schemes exhibit slower BER conver-
gence compared to their SINR performance but reach a level
where decision directed operation can take place in a severely
fading channel. Due to the superior performance of the CG
and RLS based algorithms we predominantly focus on their
performance for the remainder of this section.

Fig. 7 illustrates the performance of the proposed CG
and RLS algorithms as the fading rate is increased. The
conventional schemes with RLS and CG algorithms are unable
to cope with fading rates in excess of Tsfd = 0.005 and
begin to diverge at the completion of the training sequence.
The proposed bidirectional scheme outperforms the differential
schemes but the performance begins to decline once fading
rates above fdTs = 0.01 are reached. Once again, the increase
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Fig. 4. SINR performance comparison of proposed CG algorithms over a
single path channel where all schemes have been trained with 150 symbols
and then switched to decision directed mode.
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Fig. 5. SINR performance comparison of proposed NLMS algorithms over
a single path channel where all schemes have been trained with 150 symbols
and then switched to decision directed mode.

in performance of the bidirectional scheme can be accounted
for by the increased correlation information supplied by the
matrices F2 and F3 and data reuse. The introduction of
the mixing factors into the bidirectional algorithm improves
performance further, especially at higher fading rates. A first
reason for this is the improvement in consistency as previously
mentioned. However, a second more significant reason can
be established by referring back to the observations on the
correlation factors f1−3. Although fading rates of 0.01 may
be fast, the assumption h[i− 2] ≈ h[i− 1] ≈ h[i] is still valid.
Consequently, f1 ≈ f2 ≈ f3 and equal weighting is adequate.
However, as the fading rate increases beyond Tsfd = 0.01
this assumption breaks down and the correlation information
requires unequal weighting for optimum performance, a task
fulfilled by the adaptive mixing factor.

A more detailed plot illustrating the performance advantages
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Fig. 6. BER performance comparison of proposed schemes during training
over a single path channel.

10
−4

10
−3

10
−2

10
−1

−25

−20

−15

−10

−5

0

T
s
f
d

S
IN

R
/S

N
R

(d
B

)

N= 32, Users = 6, SNR = 10dB, N
p
 = 5000

 

 

RLS
CG
Differential RLS
Differential CG
Bidirectional CG
Bidirectional CG with Mixing
MMSE

Fig. 7. SINR performance versus fading rate of the proposed CG schemes
over a single path channel after 200 training symbols.

of the CG switching and mixing parameters presented in
is given by Fig. 8. The switching approach provides little
improvement over the standard bidirectional scheme due to its
discrete and non-adaptive operation. As previously covered, a
low instantaneous value of f1−3, as indicated by a large power
differential, does not indicate that all information gathered
on f1−3 is redundant. The mixing parameter implementations
address this shortcoming by adaptively setting the parameters
via the error weight expression (21) that accurately reflects the
averaged correlation factors. At a fading rate of Tsfd = 0.02
the assumption of f1 ≈ f2 ≈ f3 begins to diminish in accuracy
and therefore unequal weighting is required for performance
in excess of the standard bidirectional scheme, as previously
mentioned and shown in Fig. 8.

The MUI suppression of the proposed and existing schemes
is given by Fig. 9. The bidirectional scheme has significantly
improved multiuser performance compared to the differential
algorithms at low system loads but diminishes as the num-
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Fig. 8. SINR performance over a single path channel of the proposed schemes
with switching and mixing factors.
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Fig. 9. BER performance against system loading after 500 symbols of the
proposed schemes over a single path channel. Schemes are trained with 150
symbols and then switch to decision directed operation.

ber of users increases. This behavior supports the analytical
conclusions of Section VI-A by virtue of the convergence of
the differential and bidirectional schemes and the increasing
accuracy of (63) as system loading, and therefore received
power, increases.

B. Cooperative DS-CDMA

To further demonstrate the performance of the proposed
schemes in cooperative relaying systems [5], we apply them
to an AF cooperative DS-CDMA system detailed in Section
II.

Fig. 10 shows that the bidirectional scheme obtains perfor-
mance benefits over the differential schemes during conver-
gence but, as expected, the performance gap closes as steady-
sate is reached. The inclusion of variable mixing parame-
ters improves performance but to a lesser extent than non-
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Fig. 10. SINR performance of the proposed CG schemes during training in
a single path cooperative DS-CDMA system.
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Fig. 11. BER performance of the proposed CG schemes in a single path
cooperative DS-CDMA system.

cooperative networks due to the more challenging scenario of
compounding highly time-variant channels.

The improvement BER brought about by the bidirectional
schemes is evident from Figure 11. However, the more chal-
lenging environment of a cooperative system with compounded
rapid fading has impacted on the BER performance of the
schemes, as evidenced by the increased performance gap
between the proposed schemes and MMSE reception.

VIII. CONCLUSIONS

In this paper, we have presented a bidirectional MMSE
framework that exploits the correlation characteristics of
rapidly varying fading channels to overcome the problems
associated with conventional adaptive interference suppression
techniques in such channels. An analysis of the proposed
schemes has been performed and the reasons behind the
performance improvements shown to be the additional corre-
lation information, data reuse and optimised correlation factor

weighting. The conditions under which the differential and
bidirectional schemes are equivalent have also been established
and the steady-state implications of this detailed. Finally, the
proposed algorithms have been assessed in standard and coop-
erative multiuser DS-CDMA systems and shown to outperform
both differential and conventional schemes.
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