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Abstract—In this work, we study interference cancellation
techniques and a multi-relay selection algorithm based onrgedy
methods for the uplink of cooperative direct-sequence code

division multiple access (DS-CDMA) systems. We first devise

low-cost list-based successive interference cancellatigGL-SIC)
and parallel interference cancellation (GL-PIC) algorithms with
RAKE receivers as the front-end that can approach the maximm
likelihood detector performance and be used at both the relgs
and the destination of cooperative systems. Unlike prior &t the
proposed GL-SIC and GL-PIC algorithms exploit the Euclidean

distance between users of interest and the potential neares

constellation point with a chosen threshold in order to build an
effective list of detection candidates. A low-complexity nalti-relay
selection algorithm based on greedy techniques that can apgach

consumption can be obtained when appropriate decoding and
relay selection strategies are applied.

A. Prior and related work

DS-CDMA systems are a multiple access technique that
can be incorporated with cooperative systems in ad hoc and
sensor networks [5], [6], [7]. Due to the multiple access
interference (MAI) effect that arises from nonorthogored r
ceived waveforms and narrowband interfering signals, the
system performance may be adversely affected. To deal with
this issue, multiuser detection (MUD) techniques have been

the performance of an exhaustive search is also proposed. Adeveloped [8] as an effective approach to suppress MAI.

cross-layer design strategy that brings together the propsed
multiuser detection algorithms and the greedy relay selean is
then developed along with an analysis of the proposed techmnies.
Simulations show an excellent bit error rate performance ofthe
proposed detection and relay selection algorithms as comped
to existing techniques.

Index Terms—DS-CDMA networks, cooperative systems, relay
selection, greedy algorithms, SIC detection, PIC detectio

M

I. INTRODUCTION

The optimal detector, known as maximum likelihood (ML)
detector, has been proposed in [9]. However, this method
is infeasible for ad hoc and sensor networks considering its
computational complexity. Motivated by this fact, sevesab-
optimal strategies have been developed: the linear detecto
[10], the successive interference cancellation (SIC),[11¢
parallel interference cancellation (PIC) [12] and the mminm
mean-square error (MMSE) decision feedback detector [13].
A key challenge is how to design interference cancellation

ULTIPATH fading is a major constraint that seriouslyt€chniques with low cost and near ML performance. Moreover,

Indeed, severe fading has a detrimental effect on the regeif0OPerative relaying systems and feasible for deployment a
signals and can lead to a degradation of the transmissionti¢ relays and small devices.

information and the reliability of the network. Cooperativ

In cooperative relaying systems, different strategiesukia

diversity is a technique that has been widely considertige multiple relays have been recently introduced in [14§],

in recent years [1] as an effective tool to deal with thiEl6l, [17], [18]. Among these approaches, a greedy algurith
problem. Several cooperative schemes have been proposel§ ian effective way to approach the global optimal solution.
the literature [2], [3], [4], and among the most effectiveesn Greedy algorithms are important mathematical technidues t
are Amplify-and-Forward (AF) and Decode-and-Forward (DEPllow the approach of obtaining a locally optimal solutitm

[4]. For an AF protocol, relays cooperate and amplify theomplex problems with low cost in a step by step manner.
received signals with a given transmit power amplifyingitheDecisions at each step in the greedy process are made to
own noise. With the DF protocol, relays decode the receivéfiovide the largest benefit based on improving the locaéstat
signals and then forward the re-encoded message to the d@gout considering the global situation. Greedy algarith
tination. Consequently, better performance and lower pow&ay fail to achieve the globally optimal choice as they do

not execute all procedures exhaustively, however, they are
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vide acceptable approximations. Greedy algorithms haea be
widely applied in sparse approximation [19], internet mogt

[20] and arithmetic coding [21]. In [19], orthogonal matai
pursuit (OMP) and basis pursuit (BP) are two major greedy
approaches that are used to approximate an arbitrary input
signal with the near optimal linear combination of various
elements from a redundant dictionary. In [20], greedy rogti

is mentioned as a routing strategy where messages are simply



forwarded to the node that is closest to the destination. V) the relay selection strategy is proposed. In Section VI,
order to reduce the computational complexity and improee tithe computational complexity and the greedy relay selactio
overall speed of arithmetic coding, a greedy re-normabimat process are analyzed. In Section VII, the cross-layer desig
step that contains greedy thresholding and greedy oututtis explained. In Section VIII, simulation results are prasel

is proposed and analyzed in [21]. In relay-assisted systeraad discussed. Finally, conclusions are drawn in Sectian 1X
greedy algorithms are used in [16], [17] to search for the Notation: in this paper, we use boldface upper and boldface
best set of relays, however, with insufficient numbers @®wer fonts to denote matrices and vectors, respectively.
combinations considered, a significant performance lossdsd (.)7 represent the transpose and Hermitian transpose,

experienced as compared to an exhaustive search. respectively(.) ! stands for the matrix inversiot;[.] denotes
the expected valu¢,. | indicates the norm of a scalar ajid ||
B. Contributions implies the norm of a vector.

This work presents cost-effective interference candehat
algorithms and multi-relay selection algorithms for co@tize
DS-CDMA systems. The proposed interference cancellation
algorithms do not require matrix inversions and rely on the
RAKE receiver as the front-end. A cross-layer optimization e
approach that jointly considers the proposed interference
cancellation and relay selection algorithms for ad hoc and
sensor networks is also proposed. The proposed techniques
are not limited to DS-CDMA systems and could also be
applied to multi-antenna and multi-carrier systems. Gtager
designs that integrate different layers of the network Heeen
employed in prior work [22], [23] to guarantee the quality of
service and help increase the capacity, reliability andecaye Fig. 1. Uplink of a cooperative DS-CDMA system.
of systems. However, MUD techniques with relay selection in
cooperative relaying systems have not been discussedywide| e consider the uplink of a synchronous DS-CDMA system
in the literature. In [3], [24], an MMSE-MUD techniqueWith K users(ky, ks, ..kx), L relays(ly,ly,...l.), N chips
has been applied to cooperative systems, where the resBf§ symbol andL, (L, < N) propagation paths for each
indicate that the transmissions are more resistant to MAll aknk- The system is equipped with a DF protocol at each
obtain a significant performance gain when compared with"@lay and we assume that the transmit data are organized
single direct transmission. However, extra costs aredutced, N Packets comprising” symbols. The received signals are
as matrix inversions are required when an MMSE filter itered by a matched filter, sampled at chip rate to obtain
deployed. sufficient statistics and organized infd x 1 vectorsy,,,

The contributions of this paper are summarized as follow:» @ndY,q, which represent the signals received from the

. We propose a low-cost greedy list-based successi@urces (users) to the destination, the sources to thesrelay
interference cancellation (GL-SIC) multiuser detectioﬁnd the relays 1o the destination, respectively. The pregpos

method that can be applied at both the relays and tF}Lgorithms for interference mitigation and relay selectare
destination of wireless systems employed at the relays and at the destination. As shown in
« We also develop a low-cost greedy list-based parallel “lf_ig.l, the cooperation takes place in two phases. During the

terference cancellation (GL-PIC) strategy which emplo;fgSt phase, the received data at the destination and-the

RAKE receivers as the front-end and can approach tﬁ%lay can be described by

Il. COOPERATIVEDS-CDMA SYSTEM MODEL

ML detector performance. K

« We present a low-complexity multi-relay selection algo- _ k
: . Yea = ) @sqSkhsa kbr + Nsa, 1)
rithm based on greedy techniques that can approach the sd ; s °
performance of an exhaustive search.

« An analysis of the computational complexity, the greedy K
relay selection method and the cross-layer design is Yo, :Zafrlskhsrl,kbk'i‘nsr“ )
presented. —

« A cross-layer design that incorporates the optimization
of the proposed GL-SIC and GL-PIC techniques and thewhereMl = N + L, — 1, b, € {+1, —1} correspond to the
improved greedy multi-relay selection algorithm for thgransmitted symbolsq*, and ak, represent thes-th user's
uplink of a cooperative DS-CDMA system is developegmplitude from the source to the destination and the sowrce t
and evaluated. relayl. The vectorsi,q 1, hs,, . are theL, x 1 channel vectors
The rest of this paper is organized as follows. In Sectidor userk from the source to the destination and the source
I, the system model is described. In Section I, the GL-SI@ relay!, respectively. Thél/ x 1 noise vectorsi;; andng,,
multiuser detection method is presented. In Section IV3he contain samples of zero mean complex Gaussian noise with
PIC multiuser detection method is then developed. In Sectiwariances?. The M x L, matrix S; contains the signature



sequence of each user shifted down by one position at each I[ll. PROPOSEDGL-SIC MULTIUSER DETECTION

column that forms In this section, we detail the GL-SIC multiuser detectot tha

sk(1) 0 can be applied in the uplink of a cooperative system. The
) GL-SIC detector uses the RAKE receiver as the front-end, so
< _ : osk(1) 4 that the matrix inversion required by the MMSE filter can be
Sl IR S ©)  avoided [25], [23], [26], [27], [28], [29], [30], [31], [32][33],
' [34], [35], [36], [37], [38], [?], [39]. The GL-SIC detector
0 " skp(N) exploits the Euclidean distance between the users of sttere

and their nearest constellation points, with multiple oirp
wheres; = [si(1), sk(2), ...sx(IV)]” is the signature sequenceat each stage, all possible lists of tentative decisionsémh
for user k. During the second phase of the transmissionser are generated. When seeking appropriate candidates, a
each relay decodes and reconstructs the received sigriads ugreedy-like technique is performed to build each list arld al
a DF protocol, then they forward the processed signals f@ssible estimates within the list are examined when uaiski
the destination. It is assumed that each relay is perfectigers are detected. Unlike prior work which employs the
synchronized and transmits at the same time, the signalfhcept of Euclidean distance with multiple feedback SIC
received at the destination are then expressed by (MF-SIC) [40], GL-SIC does not require matrix inversions
and jointly considers multiple numbers of users, condiela
constraints and re-ordering at each detection stage tdnobta

_ k ;
Yra = Z Z @, aSklrd kbrd ke + Nra, @ an improvement in detection performance.
=1 k=1

L K

whereaf , is the amplitude for source (uset)from thei-th A Proposed GL-SIC design
relay to the destinatiorn,, 4 1, is the L, x 1 channel vector for
userk from thel-th relay to the destinatiom,., is the M x 1
zero mean complex Gaussian noise with variam%;ef)md,k is 0
the decoded symbol at the output of relagfter using the DF 12— [N
protocol. . o .

The received signal at the destination comprises the data Ty, J

h‘

Q Uk

c3 .

transmitted during two phases that are jointly processékeat
destination. Therefore, the received signal is describea@ b
2M x 1 vector formed by stacking the received signals from
the relays and the sources as given by

B
g di

Fig. 2. The reliability check in BPSK and QPSK constellation
K

k
Vol kzlas”’S’“hSd’kb’“ Ned ) In the following, we describe the process for initially
[yrd] - EL: i F Sh ; + [ rd ] ' detectingn users described by the indicks, k-, ..., k,, at the
=& Aryd =k d kOrid,k first stage. Other users can be obtained accordingly. Asrshow
by Fig. 2,3 is the distance between two nearest constellation
The received signal in (5) can then be described by points, dy, is the threshold. The soft output of the RAKE
receiver for usek is then obtained by
K
Ya(i) =Y CrHi()Ax(9)Bx(i) + n(i), (6) u(i) = Wiy, (4), 8
k=1

wherey,, (i) represents the received signal from the source
wherei denotes the time instant corresponding to one symbel the I-th relay, ux (i) stands for the soft output of theth
in the transmitted packet and its received and relayed sopisymbol for userk and w, denotes the RAKE receiver that
Cy is a2M x (L + 1)L, matrix comprising shifted versionscorresponds to a filter matched to the effective signature at

of S as given by the receiver. After that, we order all users according to a
decreasing power level and organize them int§ & 1 vector
Cp = S 0 ... 0 (7) ta- We choose the first entries|to(1),ta(2), ..., ta(n)] which
0 S ... S denote usersc, ks, ..., k,, the reliability of each of then

users is examined by the corresponding Euclidean distance

Hy(i) represents aL + 1)L, x (L + 1) channel matrix pepyeen the desired user and its nearest constellation poin
between the sources and the destination and the relays eand;th explained next.

destination linksA (i) is a(L +1) x (L + 1) diagonal matrix

of amplitudes for usek. Bk(l) = [bk, brid,ks brad i, ---brLd,k]T Decision reliable

is a(L+1) x 1 vector for userk that contains the transmitted|s 51| ,, users are considered reliable

symbol at the source and the detected symbols at the output

of each relay, and(i) is a2M x 1 noise vector. Uy, (1) (1) & Cgrey, fortell,2,..,n], 9



these soft estimates will then be applied to a sligér) as
b, (1) = Q(ug, (1) (i), for t € [1,2,...,n],  (10)

where Eta(t)(i) denotes the detected symbol for thg¢)-th

user,Cgry is the shadowed area in Fig. 2, it should be noted
that the shadowed region would spread along both the vertica

and horizontal directions. The cancellation is then penfedt

in the same way as a conventional SIC where we mitigate the

impact of MAI brought by these users

Yorys+1() = Yp, 5(1) — Z Har o0 (Dbt (1), (11)

t=1

whereH.,. 1.1 (i) = 5" S (1) (i)Nar, 1. (1) (i) Stands for the
desired user’s channel matrix associated with the link betw
the source and theth relay,y,,, ; is the received signal from
the source to thé-th relay at thes-th (s = 1,2,..., K/n)

cancellation stage. The process is then repeated with @noth

Sore(i) = [be, (1) (4), by, (2)(4), ...]” stands for the previous
stages detected reliable symbols,

%D(Z) = [btp(l)(i)vbtp(Q)(i)a---abtp(np)(i)]T is anp, X 1
vector that denotes the current stage reliable symbols
detected directly from slice®(-) when (12) occurs,

si(i) = [cg(l),c;’;@),...7c_;’;(n )]T,j =1,2,...,N.,%is a

nq x 1 vector that contains the detected symbols deemed
unreliable at the current stage as in (13), each entry of
this vector is selected randomly from the constellation
point setC and all possibleN.:* combinations need to
be considered and examined.

S edi) = [...,Bts?(l)(i),...,Efﬁ(n)(z‘)]T includes the corre-
sponding detected symbols in the following stages after
the j-th combination of,(7) is allocated to the unreliable
user vectott,,

t' is an x 1 vector that contains the users from the last
stage.

(b). If all n users are considered as unreliable, then we have

n users being selected from the remaining users at each
following stage, and this algorithm changes to the unrédiab
mode when unreliable users are detected. Additionall .
. . : . eret, = [1,2,...,n] and alln unreliable users can assume
since the interference created by the previous users wéih t[ . . ; : .
" . . e values inC. In this case, the detection tree will be split
strongest power has been mitigated, improved estimates are
. ; . INtd V" branches to produce
obtained by reordering the remaining users.

b, (1) (i) = €™, for t € [1,2,...,n], (18)

Uty (1) (1) € Cgrey, forte([l,2,...,n], a7)

Decision unreliable

(a). If part of then users are determined as reliable, whii@imilarly, (11) is then applied and a conventional SIC with
others are considered as unreliable. we have different orderings at each cancellation stage is perfdraie

each branch.
ug, (1) (1) & Cgrey, for t € [1,2,...,m,)], (12) Since all possible constellation values are tested for all
utq(t)(i) € Coreys for t € [1,2,. ), (13) unreliable users, we have the candidate lists

J(3) — . i (5 j T n
wheret,, is a1 x n, vector that contains,, reliable users and b7 (i) = [Spre(i), (i), Shent(d)]”, 7 =1,2,.... N, (19)
t, is al x n, vector that includes, unreliable users, subjectwhere
tot,Nt, = @ andt, Uty = [1,2,..n] with n,, + ng = n. Sore(i) = [br, (1)(4), by, (2)(4), ...]T are the reliable symbols
Consequently, they, reliable users are applied to the slicer  that are detected from previous stages,
Q(-) directly and then, unreliable ones are examined in terms SZ(Z-) =[cm,\,cm em T, j=1,2,...,N"is anx

fall possible constellation values' (m = 1,2, ..., N,) f Hhat rentesents the number of usersvhi

of all possible constellation values® (m = 1,2, ..., N) from 1 vector that represents the number of usersvhich
the 1 x N constellation points s&& C F, whereFis a subset are regarded as unreliable at the current stage as shown
of the Comp|ex field anGNc is determined by the modulation by (17)' each entry Of% is selected random'y from the
type. The detected symbols are given by constellation point se€.

The vectors',,(i) = [...,Bts})’(l)(z'), ...,Bf}?’ o (#)]" contains
the corresponding detected symbois in the following
stages after thg-th combination ofs,(¢) is allocated to

At this point, N."* combinations of candidates foy, users are all unrellgble USErS. . )
generated. The detection tree is then split id* branches. After the candidates are generated, lists are built for gastip
After this processing, (11) is applied with its corresporgi of users, and the ML rule is used to choose the best candidate
combination to ensure the interference caused byntrie- list as described by
tected users is mitigated. Following that.“ numbers of bbest(i) _ min
updatedy,,, (i) are generated, we reorder the remaining users 1<j<m,where
at each cancellation stage and compute a conventional SIC m=Neor N
with RAKE receivers for each branch. The proposed GL-SIC algorithm is detailed in Table I.
The following K x 1 different ordered candidate detection

lists are then produced: B. GL-SC with multi-branch processing

b7 (i) = [Sore(d), S, (i), s;(i), Sext(i)]T, j=1,2,..., N, The multiple branch (MB) structure [13], [41] that employs

(16) multiple parallel processing branches can help to obtairaex
detection diversity. Inspired by the MB approach [13], [41]

btp(t)(i) = Q(utp(t) (Z)), fort € [11 2, ---7”10]1 (14)
I;tq(t)(i) =c™, forte(l,2,..,n, (15)

1Yer, (1) = Har, ()07 (3) [|* . (20)

where



TABLE |
THE GL-SICALGORITHM

up (1) = Wil Yar, (i) % soft outputs of all candidates
orderuy () according to a decreasing power level and organize them
into t,
for s=1to K/n
if no unreliable users have been detected
for t=1: n
if gta(,)(i) ¢ Cgrey % reliable

b1a (t) (l) = Q(ma (t) (l))

TABLE 1l
THE MODIFIED ML SELECTION PROCESS
b°PT =[] % define an empty vector initially
fork=1to K
forn=1to K
bom, = [0°P, b0t [k], b%Mbase [k + 1, ..., b%base [K]

temp
en

Apply ML rule to choose the best combination
% save the corresponding estimate for user k from the selecte
branchO,_, . . that provides the best combination

(! .
else % unreliable pOoPt = [bOPY b lselected

7 - m k]
endbtam@) =c ddd PROPOSEDGL-P éMULTIUSER DETECTION

gf;dconvemional SIC via each branch In this section, we present a GL-PIC detector that can be
else% unreliable users have already been detected at previagesst app”ed at both the relays and destination in the uplink of
Ee{r?édiﬁci’fé‘(i"“ estimates for stage s and send them a cooperative system. The GL-PIC detector uses the RAKE
Perform conventional SIC in each branch receiver as the front-end, so that the matrix inversion ghbu
ende“d by the MMSE filter can be avoided. Specifically, the proposed
% apply ML to choose the best candidates list GL-PIC algorithm determines the reliability of the detette
B(i) = min 1< i<cm where | Yory (3) = Hor ()07 (3) || ¢ symbol by comparing the Euclidean distance between the sym-
mic(::saggi t[qe’éma;{n]ec?ntgeii dritjedt:)c;n di?ffrzzﬁﬁet\gggon bols of users of interest and the potential nearest coatteil
o group ot aooint with a chosen threshold. After checking the relidpili
sequences to form a parallel structure with each brancleshar

a different detection order. This approach generateswigts of the sy_mbol e;t_lmates by listing all p(_)SS|bIe combination
; ) . of tentative decisions, the, most unreliable users are re-
further candidates for detection and can further improwe th

. o . ﬁxamined via a number of selected constellation points in a
performance of GL-SIC. Since it is not practical to test a reedy-like approach, which saves computational comtylexi
L, = K! possibilities due to the high complexity, a reducea y bp ’ b

. avoiding redundant processing with reliable users. ™fe s
number of branches is employed. Note that a small numbe%:r}imates of the RAKE receiver for each user are obtained by

of branches captures most of the performance gains an
allow the GL-SIC with the MB technique to approach the ug (i) = Wiy, (), (22)
As shown in Fig.2, for the:-th user, the reliability of its soft

ML performance. With each index number @y, being the
corresponding index number @ cyclically shifted to the right ) : : - k

estimates is determined by the Euclidean distance between
u(#) and its nearest constellation points

by one position as shown by
o, =[K,1,2,...K —2,K — 1],

O,=|K-1,K,1,.... K — 3, K — 2], .. .
= T ’ ] Decision reliable

: If the soft estimates of,, users satisfy the following condition
O, =12,3,4,..., K,1],

O, = [K,K—1,K —2,...,2,1](reverse order). ut, (1) (1) & Carey, for t € [1,2,...,m4], (23)

After that, each of thé( parallel branches computes a GL-SIGyheret, is al x n, vector that contains,, reliable estimates,
algorithm with its corresponding order. After obtainiig+1 C,,.. is the grey area in Fig.2 and the grey area would extend
different candidate lists according to each branch, a nemtlifialong both the vertical and horizontal directions. Thesié so
ML rule is applied with the following steps: estimates are applied to a slio@(-) as described by
1) Obtain the best candidate brankfia= (i) among all « . .
K +1 (O included) parallel branches according to the b, (1) (1) = Qur, 1y (7)), for t € [1,2,...,n0],  (24)

ML rule: where by, (1 (i) denotes the detected symbol for thet)-th
Olpase (3) = mi ) — Ou, () 12 user.
b () = min_|| Yy, (1) = Hur 67 () |2 (21)
2) Re-examine the detected symbol for user(k = Decision unreliable

1,2,...,K) by fixing the detected results of all otherin case that, users are determined as unreliablel & n,

unexamined users intvase (7). vectort, with n; unreliable estimates included is produced,
3) Replace thé:-th user's detection resulf, in b%wae (i) as given by

by its corresponding detected values from all otlher .

branchesb® (i), (Iy # lpase, O = Oy, ) with the same Uty(1) (?) € Corey, fort €[1,2,...,m), (25)

index, the combination with the minimum Euclidean diswe then sort these unreliable estimates in terms of their

tance is selected through the ML rule and the improvegliclidean distance in a descending order. Consequendy, th

estimate of usek is saved and kept. first n, users from the ordered set are deemed as the most
4) The same process is then repeated with the next usegiireliable ones as they experience the farthest distance to

baee (i) until all users inb e (i) are examined.  their reference constellation points. Thesg estimates are
The proposed modified ML selection technique is shown then examined in terms of all possible constellation valties

Table II. (m = 1,2,...,N.) from the 1 x N, constellation points set



C C F, whereF is a subset of the complex field, aid. is
determined by the modulation type. Meanwhile, the remaginin
n, = ny — ng uUnreliable users are applied to the sli€gf)
directly, as described by

btp(t)(i) = Q(utp(t)(i)), for t € [1, 2, ...,np], (26)
by, (1 (i) = ™, for t € [1,2,...,ng), (27)

wheret, Nt, = @ andt, Ut, = t;.

Therefore, by listing all possible combinations of elensent
across then, most unreliable users, the following x 1
tentative candidate decision lists are generated

bJ = [5(17 %77 S(]I]T7 j = 1727 "'7N¢?q7 (28)

where
S = [bru(1), e, (2)s -oos Dty (no)]T IS @M x 1 vector that
contains the detected values for thg reliable users,
Sy = [be,(1): b, (2)s - i, ()] T IS @my x 1 vector that

TABLE Il
THE GL-PICALGORITHM

ug (i) = wkHySTl (i) % soft outputs of all candidates
for k=1:K

% Threshold comparison

|f ula(t) (l) ¢ Cg,-ey

b, (1) (1) = Q(u, (1) (%))
else
prepared for reliability re-examination

end
end
Sort unreliable estimates , in terms of the Euclidean distance
in a descending order
for t=1:nq % for the firstn, most unreliable users

by, (1) (1) = ™
end
for t=ngq+1:length(s)

bq,(t)(i) = Q(u1b(t)(i))
end
% Apply the ML rule to choose the best candidate list
b = min, __ ng | Var, (i) = Hery7 (0) |12
% The three-iteration PIC process
% b°" is used as the input

Pi_ H K = Fi—1
representsy, unreliable users that are detected by the Pk = AWy o = 2 Horpaleresby )
slicer Q(.) directly, V. PROPOSED GREEDY MULTRELAY SELECTION METHOD
s = [ctﬁ:(l),c{”@),,,,,C{Z(nq)]T is an, x 1 tentative In this section, a greedy multi-relay sel_ectlon method is
candidate combination vector. Each entry of the vectétroduced. For this problem, an exhaustive search of all
is selected randomly from the constellation point et possible subsets of relays is needed to attain the optimum
and all possibleéV."* combinations need to be consideredielay combination. However, the major problem that present
and examined. us from applying an exhaustive search in practical commu-
The trade-off between performance and complexity is highfjjcations is its very high computational complexity. With
related to the modulation type and the numbey) (of users relays involved in the transmission, an exponential coriple
we choose front,. Additionally, the threshold we set at theof 2© —1 would be required. This fact motivates us to seek al-
initial stage is also a key factor that could affect the dyaliternative methods. By eliminating the poorest relay-desion
of detection. link stage by stage, the standard greedy algorithm can be
After the N/ candidate lists are generated, the ML rulgsed in the selection process, yet only a local optimum can

is used subsequently to choose the best candidate listbgsachieved. Unlike existing greedy techniques, the pregos
described by greedy multi-relay selection method can go through a seffici

opt . . L\ g number of relay combinations and approach the best one based
b = 1<§E]I\1,;q 1Y sr, () = Har 07 (@) |7 (29) on previous decisions. In the proposed relay selection, the
signal-to-interference-plus-noise ratio (SINR) is usedtlae
criterion to determine the optimum relay set. The expressio
of the SINR for usey is given by

Blwg'hg[?]
Eln?] +n’

N _ wherew, denotes the RAKE receiver for user E[|n|?]is the
where b}, denotes the detected value for usemt thei-th  interference brought by all other users, ani the noise. For
PIC iteration,H., » andH,,, ; stand for the channel matricesthe RAKE receiver, the SINR for useris given by
for the k-th and j-th user from the source to theth relay, Ih#h, 2

q ''q

respectivelyh’ ™! is the detected value for usgrthat comes SINR. — (32)
from the (i — 1)-th PIC iteration. Normally, the conventional 4 f: IhEhg[2 4 02 hEh ’

PIC is performed in a multi-iteration way, where for each = e k INMlg Ma
iteration, PIC simultaneously subtracts off the intenfie for k#q
each user produced by the remaining ones. The MAI generateldere h,, is the channel vector for uset H is the channel
by other users is reconstructed based on the tentativeialesis matrix for all users. It should be mentioned that in various
from the previous iteration. Therefore, the accuracy offits¢ relay combinations, the channel vectoy for userg (¢ =
iteration would highly affect the PIC performance as errar, 2, ..., K) is different as different relay-destination links are
propagation occurs when incorrect information importghis  involved, o%; is the noise variance. This problem thus can be
case, with the help of the GL-PIC algorithm, the detectiocast as the following optimization:

performance is improved. The key novelty is that GL-PIC .

employs more reliable estimates by exploiting prior knalgle SINRq,,,, =max {min(SINRg,,),q=1,...K}, (33)
of the constellation points. The proposed GL-PIC algoritem where(2,. denotes all possible combination séts< L(L +
detailed in Table II. 1)/2) of any number of selected relay&NRg, _ represents

Following that,b°" is used as the input for a multi-iteration
PIC process as described by

K
b, = QHE 4o, =Y _HE JHe ;b0 (30)

Jj=1
J#k

SINR, = (31)

r(q)



the SINR for userg in setQ,, min (SINRg, ) = SINRq, accurate and the global optimum can be approached more
stands for the SINR for relay sé?, and Q.5 is the best closely. Furthermore, its complexity is less tha(L + 1)/2,

relay set that provides the highest SINR. which is much lower than the exhaustive search. Similarly,
the whole process is performed only once before each packet
and only needs to be repeated when the channels change. The

A. Sandard greedy relay selection algorithm ' - ' g h
. . roposed greedy multi-relay selection algorithm is deggidh
The standard greedy relay selection method works in sta le IV

by removing the single relay according to the channel path
power, as given by TABLE IV

THE PROPOSED GREEDY MULHRELAY SELECTION ALGORITHM
Ph = hq{—{dhmdv (34)

T d

. Qa4 =11,2,3,...L]% Q4 denotes the set when all relays are involved
where h, 4 is the channel vector between thieh relay SINRq, = min(SINRq,,  ),¢ = 1,2,..K
a

and the destination. At the first stage, the initial SINR is SINR,.. = SINRq,
determined when all. relays are involved in the transmission. for stage =lto L —1

. . . for r=1to L + 1-stage
Consequently, we cancel the worst relay-destination linék a Q, = Q4 — Q4(,)% drop each of the relays in turns

calculate the current SINR for the remainindg- 1 relays, as SINRgq, = min(SINRq, (¢)), ¢ = 1,2, ..., K
compared with the previous SINR, if end for
SINRcur = max(SINRg, )
SINR, > SINR 35 Qcur = QSINReur
o pres (35) if SINReur > SINRpre and |Qeu| > 1
we update the previous SINR as 24 = Qeur
SINRpre = SINRcur
[
SINRpre = SINReur, (36) esebreak
end if

and move to the third stage by removing the current poorest, ¢
link and repeating the above process. The algorithm stops
either whenSINR.,, < SINR,,e or when there is only one VI. ANALYSIS OF THE PROPOSED ALGORITHMS
relay left. The selection is performed once at the beginning
each packet transmission.

In this section, we analyze the computational complexity
required by the proposed and existing interference caatamstl
algorithms and the proposed greedy relay selection method.
B. Proposed greedy relay selection algorithm

In order to improve the performance of the standard algx—
rithm, we propose a new greedy relay selection algorithrh tha
is able to achieve a good balance between the performance and
the complexity. The proposed method differs from the steshda TABLE V
technique as we drop each of the re|ay5 in turns rather thanCOMPUTATIONAL COMPLEXITY OF EXISTING AND PROPOSEIMUD
drop them based on the channel condition at each stage. The ALGORITHMS

Computational complexity

algorithm can be summarized as: Algorithms Computational Complexity (Flops)
1) Initially, a set2 4 that includes all.. relays is generated Matched filter M4L2 + 4K Ly, — 2L, + 6K) — 2K
and its corresponding SINR is calculated, denoted by
SINRpe. Con\ée;gtional Jffgf;” +142I)(Lp4l_( iLg
2) For the second stage, we calculate the SINR Ior Conventional M(4L2 +4KL, — 2L,
combination sets with each dropping one of the relays PIC +1gK+42K2) — 4K
from 4. After that, we choose the combination set with Linear MMSE receiver j\%d; J_\f4(11(6LK B 283:
the highest SINR for this stage, recordedSad R, . 4K +4) “hr
3) CompareSINR,,, With the previous stag8INR,., if M(4L, + 4K L, — 2L, + 6K)
. . . . Proposed GL-SIC —2K + N (20MK — 8Mn
(35) is true, we save this corresponding relay combi- FAM 2K + 2n — 2)
nation as)q,r at this stage. Meanwhile, we update the M(4L2 +4KL, — 2L,
SINRprc as in (36). Proposed GL-PIC ;71121;;\};1(1(2)8&41(2
4) After moving to the third stage, we drop relays in turn Standard Likelihood M(ZL;C +(4KLP+— ngf_ Q)K)

again from Q¢ obtained in stage twoL — 1 new We firgtngeeapare the compntationalbcamplexity of the pro-
combination sets are generated, we then select the gesed (GL-SIC and GL-PIC) and other existing interference
with the highest SINR and repeat the above processadancellation algorithms in terms of the required floatingnpo
the following stages until eithe$INR..,, < SINR,,,. or operations (flops). The resulting complexity is calculatsda
there is only one relay left. function of the following parameters:

This proposed greedy selection method considers the combis Total number of userg.

nation effect of the channel condition so that addition&fus  « The number of multipath channel componenhis

sets are examined. When compared with the standard greedy The number of constellation point¥. that correspond
relay selection method, the previous stage decision is more to the modulation type.




» The parametef/ which corresponds to the length of the/' = 10, the number of multipath channgl, = 3 and assume
receive filters, wherel/ = N + L, — 1 and N is the the BPSK modulation is adopted. The required number of flops
spreading gain. (log-scale) of the proposed and existing MUD algorithms are

Specifically, in the GL-SIC algorithmp refers to the simulated in Fig.3, where in the GL-SIC algorithm,= 2

number of users we considered per each stage, and in the @gers are considered jointly at each stage and in the GL-PIC
PIC algorithm,n, represents the number of unreliable use@gorithm, n, = 3 unreliable users need to be re-examined
that need to be re-examined in the second processing stagethe second processing stage. With the increase of the
The required flops are considered both in the case of rg@rameter), the standard ML detector climbs significantly
and complex matrix operations. It is worth noting that, ialre faster than other MUD schemes, which, from another point of
arithmetic, a multiplication followed by an addition recgs 2 Vview, demonstrates that the improvement in its performasce
flops while for the complex numbers, 8 flops are required whé@ehieved at the expense of a large increase in computational
an addition is executed after a multiplication. As a resitilt, complexity. A similar complexity trend for the linear MMSE
can be approximated that the complexity of a complex matrigceiver illustrated in Fig.3 shows a relatively lower cdexp
multiplication is 4 times of its real counterpart. ity than the standard ML detector, however, its complexity

Table. V illustrates a comparison of the computationalill substantially exceeds that of the remaining straegs

complexity for various existing detection methods and aorp @ cubic cost is brought. Another important point observed
posed algorithms. It is worth noting that the GL-SIC aldamit in Fig.3 is that our proposed algorithms offer a moderately
has variable complexity according to different circumsts higher cost than the matched filter, the conventional SIC and
as an unpredictable number of unreliable users may app## conventional PIC, whereas they provide a considerable
in any of the stages. As a result, the corresponding worgerformance advantage over these schemes, resulting in an
case scenario is evaluated whenrallisers are considered asattractive trade-off between complexity and performance.
unreliable at the first stage.

For each case shown in Table. V, the upper bound of

the complexity is given by the standard ML detector, where

it explores all possible combinations of the detected tesul

and chooses the one with the minimum Euclidean distangg. Greedy relay selection analysis

However, when a large number of users need to be considered,

an exponential complexity growth would limit its appliczii

in practical utilization. In contrast, with careful controf The proposed greedy multi-relay selection method is a
the number of unreliable users andn, being re-examined Stepwise backward selection algorithm, where we optintize t

in both proposed algorithms, a substantial complexity regvi selection based on the SINR criterion at each stage. We begin
is achieved. Additionally, our proposed greedy list-based the process when all relays participate in the transmisaizh
gorithms offer a clear complexity advantage over the linefffen subtract off the contributions brought by each of theyse
MMSE receiver as they adopt the RAKE receiver as the froffem set of selected relays of the previous stage. The relay
end, so that the cubic complexity can be avoided. Anothé@mbinations generated at each stage are presented assfollo
feature to highlight is that although our proposed algongh

have a complexity slightly higher than the matched filter,

the conventional SIC and the conventional PIC, they exhibit Stage 1: {Q}},

significant performance gains over existing techniques. Stage 2 : {Q% 937 Q§7 . Q%L

Stage S {Qia QS? an cey Qi+2—s}a

Stage L —1: {inl, Qé’lv ng}’
Stage L : {QF Q)

@
S

45t

R

5 Comentona sic where(); denotes thé-th relay combination at the-th stage.

~E— Conventional PIC

computational complexity in flops (log-scale)

% 5 e S eciver Clearly, the maximum number of relay combinations that we
. ‘ | S Sanema it gtecor have to consider for alL stages isl +2+ 3+ ...+ L =
1 D (1+L)L/2, since this algorithm stops either WhBNR,,, <
SINR,:e Or when there is only one relay left, the associated
Fig. 3. Computational complexity in flops for various MUD eetors complexity for the proposed greedy relay selection stsateg

less than(1 + L)L/2.

In order to further investigate the computational compglexi Compared with the exhaustive search, which is considered
for various MUD techniques, we fix the number of useras the optimum relay selection method, the number of relay



combinations examined at each stage is given by We then investigate the upper bound by comparing the
Stage 1: {Q1}, proposed algorithm and the exhaustiye search at_ an aspitrar
stage s, other stages can be obtained accordingly. At an
arbitrary stages, sinceQ;, .. .4 is a candidate subset of the
exhaustive search, we have

Stage 2: {03,03,Q3 ...,0%},

.. s s s s
Stage s : {Q7,95,93, ..., Qo1 .x-ss2 } Q2

=) exhaustive

— max {QS i)’i S [1,C£+1_S]},

exhautive(

: L+1—
Q]S)roposcd € {nghautivc(i)’ 1e [1’ C’L S]}’

Stage L — 1 : {Q1L_17 95—17 Qg_l’ . QLL(—L{U , wherngxhauSmC(i) represents the‘Lth_reIay combination se-
Lo . 2 lected at thes-th stage of the exhaustive greedy relay selection
Stage L= {Q7, Q5 Q3,...,QF }. method.

The total number of relay combinations can then be calodilate Assuming both strategies select the same relay combination

asCF+CF '+ CE 2+ ..+ C? +C} =2F — 1, where at stages, we have

each termCy, = "m=l-m-ntl) represents the number .

of combinations that we choose, i.e:, elements fromm proposed = /M3 75 -+ D}

elementém > n). The proposed greedy algorithm provides Sxhaustive = 17 My ooy D},

a much lower cost with a moderate to large number of relays ) )

when compared with the exhaustive search as an exponerifiif Situation again leads to the equality tSaNRq: = = =

complexity is avoided. SINRg: . . In contrast, if the exhaustive search picks
In fact, the idea behind the proposed algorithm is to choodgother relay set belongs l{mgxhautive(i)ai € 1, cEtt o))

relay combinations in a greedy fashion. At each stage, Weat provides a higher SINR, cleart®’ . .4 # 2 haustive:

select the set of relays with the highest SINR and the previowe can then obtain the inequality th&iNRqs =~ =~ <

stage result always affects the following stage set of sla§INRq: , . .

candidates. Then we subtract off the contribution brought b

each of the remaining relays and iterate on the residuakrAft

several stages, the algorithm is able to identify the optimu VII. PROPOSED CROS8 AYER DESIGN

relay set. To this end, we propose the following proposition

In this section, we present and analyze a cross-layer design
strategy that combines the proposed MUD techniques with
e proposed greedy multi-relay selection algorithm foe th
uplink of the cooperative DS-CDMA networks. This approach

Proposition: the proposed greedy algorithm achieves
SINR that is bounded as follows:

SINRgostandard < SINRoproposed < SINRexhaustive jointly considers the performance optimization acrostedént
layers of the network, since inappropriate data detectimh a
Proof: _ ~ estimation that are executed at the lower physical layer can
From the proposed greedy algorithm, the set containing t§gread incorrect information to the data and link layer eher
selected relay at the-th stage is given by relay selection strategy performs, causing the loss ofuligef

s . formation and degradation of the overall system perforreanc
proposed = {77, -, P} In this case, when improved data detection is obtained at the
= max{Q L\ Droboseald)s i € [1.L+2 = 5]}, physical layer, together with an effective relay selectian
whereQ*\ Q*(i) denotes a complementary set where we drdjgtter system performance can be achieved.
the i-th relay from the relay se®*. m, n andp represent the As stated in previous sections, the system operates in
relay m, the relayn and the relay, respectively. two phases, where for the first phase, the proposed MUD
We first prove the lower bound for an arbitrary stagby techniques are applied and processed at each of the reldys wi
induction, other stages can be obtained accordingly. Assma DF protocol, after the detection process, the proposestigre
both algorithms achieve the same set at stagee have multi-relay selection algorithm is then performed to seled t
Qs — {m,n,....p} optimum relay co_mbmat|on. In_th(_e se_cond phase, the chosen
z‘and‘“d el relays take part in the transmission in order to forward the
proposed = 1M M-, P}, information to the destination. After all the data are reedi
which leads to the equalit}IiNRg: = SINRfl;mpogcd’ at the destination, the_ proposed MUD algorithms are applied
if we then proceed with the proposed greedy algorithm ar@ recover the transmitted data.
choose a different set which provides a higher SINR, we haveGiven the received datg,, andy,,, at the destination and
0 = {m,n,....p} each of the relays, we wish to optimize the overall system
zta“dard e performance in terms of the bit error rate (BER), through the
Qroposed = {117, - a}, selection of the received signals, at the destination from all
with the only different relay being # ¢, and assuming that relays, the accuracy of the detected symbfx;;}g,;C at each of
¢ provides a higher SINR tham we prove the inequality that the relays and the detected resbitsat the destination, subject

SINRstandara < SINRG 1 oposed- to practical system constraint&( L, Ly, by, Hea, Her,s Hras
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Nsq4, Nsr, @ndn,.z). The proposed cross-layer design can be cabhis algorithm operates in stages, and the SINR for the
into the following optimization problem selected relay combination at each stage is given by

A b H, b SINR: =SINRgq,, Q' = Q4 =[1,2,3,..., L],

(b,2°7) = min | [ > HmdBTzd] - l > Hndbﬂ'] I* SINRg: =max {SINRg:},02 = 01\ Q1(3),i = 1,..., L,
1eQs 1eQs 3 9 9 )

subject to SINRg: =max {SINRgs}, Q7 = Q°\ Q°(i),i=1,..,L -1,

m = Ng*or N[,
Q°Pt — 0% when SINRg. < SINRs 1,
SINRgs = max { min (SINRQS(k))}

SINRqr =max {SINRq: }, QF = QL=1\ QF71(i),i =1,2.

The selection stops WhefiNR s < SINRq--1 IS achieved,

k=12 .,K, and the optimum relay combination is then computed as
s<L, Qeort = Q5. After that, the selected relays continue to forward
i=1.2 .. L+2—s the re-generated signals to the destination in the secoaskph

At the destination, after we receive both the signals from
the direct links and the selected relays, we then apply the

where b’ stands for thej-th candidate list generated aftefGL-SIC/GL-PIC algorithms again to obtain lists of candiat
applying the GL-SIC/GL-PIC algorithms at the destinatiorfombinations?’, and the ML algorithm is adopted afterwards

(37)

Q¢ represents the selected relay combination at the stagd® choose the optimum detection list as given by

SINRQS o is the SINR for thek-th user in thei-th relay

comblnatlon at stage and Q°Pt is the optimum relay com-b =

bination obtained through the proposed greedy relay sefect
method. The cross-layer optimization in (37) is a non-canve
optimization problem due to the discrete nature of the joint_

detection and relay selection problems. We propose to solve 1<j<mwhere
it in two stages using the proposed greedy detection ang rela ™=e cor N

selection algorithms.
During the first phase, the received vectpy, passes

through the proposed GL-SIC/GL-PIC algorithms at the relay

I, lists of candidate combinationts, , are generated in the

lower physical layer and the corresponding detected result

. ysd Hsd bj 9
1§jénng1Where H . %;)pt Yra | l %;)pt L P H
m=N.%r N" € €

H,.b Hsdbj ‘ ,
min I > Hydbra | — > Hyab’ I .
leQopt leqoept

(40)

The proposed cross-layer design is detailed in Table VI.

TABLE VI
THE CROSSLAYER DESGIN

br,q.% 1S then obtained via the following ML selection

Bra = I Yor, = Har 0l 4117 (38)

min
1<j<m,where
m=N.%r NI

This interference cancellation operation affects theofeihg
process in two different ways.

o The accuracy of;rld,k directly controls the re-generated
signalsy,.; received at the destination via the physical
layer as can be verified from (4), hence, it further affects
the decisiond, made at the end as (5) computes.

« Improper detection Oﬁolng can cause the error propaga-
tion spreads in the second phase.

Consequently, in the second phase, the proposed greegy rela,
selection strategy is performed at the data and link layer, t
selection takes into account the physical layer charatiesi
as appropriate detection result coming from the lower pia}si

layer can prevent error propagation spreading into the uppe

data and link layer. In contrast, it also considers the festu

of the channel combinations so that poor channels can he

Phase |

%received signals from the source-destination link

Yeq = Hsabw

%received signals from the source to thth relay

Yor, = Hsr by

% Interference cancellation process at each of the relays
Apply the GL-SIC/GL-PIC algorithms

at each of the relays to obtain lﬁ\[d

% Apply the ML rule to selecﬁrld from b{‘Ld

~ o i 2
b'r'ld = MmN 1 <j<m,where H ySTl - HS7‘Lbrld ||
7n:NquDr N

Phase I
Apply the greedy multi-relay selection method

SINRgs = min {SINRm(k)}, k=1,2,..,K
SINRgs = max {SINRgs }, Q5 = Q71 \ Q7 1(4),
i

i=1,2,..,.L+2—s

Q°P* = Q° when SINRgs < SINR,,

%received signals from the selected relays to the destimati
E H7 1 db7 1d

zeQOPt

Apply the GL-SIC/GL-PIC algorithms

at the destination to obtain b’

% Apply the ML rule to selecby, from b’

rd =

~ Hsab dbj 5
b= i b — J .
1SjISnr}zI?where ” leQEOPt HTldeld ZEQZOP‘: H’"ldb H

n
m=N. Tor NI

avoided.

Vi —STVMUCATIONS

In order to describe this process mathematically, we firstIn this section, a simulation study of the proposed mul-
define the SINR for the-th relay combination at an arbitrarytiuser detectors and the low cost greedy multi-relay select

stages as

method is carried out. The DS-CDMA network uses randomly

generated spreading codes of length= 32 and N = 16,

SINRQ? = min {SINRQ:(M }, k= 1, 2, ceey K. (39)

it also employsL, = 3 independent paths with the power
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profile [0dB, —3dB, —6dB] for the transmission link. The cor-

responding channel coefficients are taken as uniformlyoand O Conventonal Sic
variables and normalized to ensure the total power is unity. < orehcte
We assume perfectly known channels at the receiver. Equal w0 ; e

power allocation with normalization is assumed to guamnte
no extra power is introduced during the transmission. Tleg gr
area in the GL-SIC and GL-PIC algorithm is determined by g
the threshold wherel,;, = 0.25. We consider packets with
1000 BPSK symbols and average the curves over 300 trials.
For the purpose of simplicity, = 2 users are considered in

the GL-SIC scheme at each stage and for the GL-PIC strategy,

a three-iteration PIC process is adopted. The following-sim 10" 2 -
ulations are compared and analyzed in both non-cooperative SNR(S)
and cooperative scenarios.

15 20

Fig. 5. GL-PIC comparison in non-cooperative system withud@rs over
Rayleigh fading channel

—6— Conventional SIC
—P— Linear MMSE receiver
MB-SIC(Lb=4)
nggﬁ&f%b:’ the Rayleigh fading channely = 32 and the user number
is 20. As depicted in Fig.5, the results compare the BER
versus SNR performance between the conventional detectors
and the GL-PIC techniques with different number of unrdéab
users being re-examined, the figure advises that the GL-
PIC algorithm performs better than the conventional SIC
detector and the conventional PIC detectors, both with RAKE
receivers employed at each cancellation stage. Moreovr, w
10 ‘ ‘ ‘ the additional number of unreliable users being re-exadhine
15 20 . . . .
extra performance gains can be obtained. However, in this
non-cooperative Rayleigh fading system, the performamee i
Fig. 4. GL-SIC comparison in non-cooperative system withugers over provement is slight and the detection capability is not that
Rayleigh fading channel good when compared with the GL-SIC scheme.
The next scenario illustrated in Fi@?(a) shows the BER
The first example shown in Fig.4 illustrates the performansersus SNR plot for the cross-layer design using the prapose
comparison between the proposed GL-SIC interference s@gtectors and the greedy relay selection method, where we
pression technigue and other multiuser detection methegis oapply the GL-SIC/GL-PIC algorithms at both the relays and
the Rayleigh fading channel. The proposed GL-SIC algoriththe destination in an uplink cooperative scenario with 1€rsis
uses the spreading codes with lengéth= 32 and the overall 6 relays and spreading gaivi = 16. The performance bounds
system is equipped with 20 users that only takes into accodiet an exhaustive search of different detectors are predent
the source to the destination link. The conventional Sltere for comparison purposes, where it examines all pessibl
detector is the standard SIC with RAKE receivers employeadlay combinations and picks the best one with the highest
at each stage and the Multi-branch Multi-feedback SIC (MBINR. From the results, it can be seen that with the relay
MF-SIC) detection algorithm mentioned in [40] is presentesklection, the GL-SIC(L, = 1) detector performs better
here for comparison purposes. We also produce the simulattban the GL-PIC detector in high SNR region. Furthermore,
results for the multi-branch SIC (MB-SIC) detector whererfo the BER performance curves of our proposed relay selection
parallel branches with different detection orders are eygdl. algorithm approach almost the same level of the exhaustive
Specifically, the detection order for the first branch is olgd search, whilst keeping the complexity reasonably low for
through a power decreasing level, while the detection srdearactical utilization.
for the remaining three are attained by cyclically shiftihg In contrast, when the algorithms are assessed in terms
order index from the previous branch to right by one posjtionf BER versus number of users in Fgb) with a fixed
similarly, RAKE receivers are adopted at each cancellati@NR=15dB. Similarly, we apply both the GL-SIC and the
stage. Simulation results reveal that our proposed singledh GL-PIC detectors at both the relays and destination. The
GL-SIC significantly outperforms the linear MMSE receivenesults indicate that the overall system performance diegra
the conventional SIC and exceeds the performance of MB-S#8 the number of users increases. In particular, this figsce a
with L, = 4 and MB MF-SIC with L, = 4 for the same BER suggests that our proposed greedy relay selection method ha
performance. a big advantage for situations without a high load and can
In the second example, the BER performance of the argpproaches the exhaustive search very closely with a rela-
lyzed detection schemes is then examined for the proposieely lower complexity. Additionally, the BER performaac
GL-PIC detector employed in the direct transmission oveurves of GL-SIC detector is better than the GL-PIC detector

10
SNR(dB)
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employed at the relays and the destination Commun,, vol. 12, no. 5, pp. 796-807, Jun. 1994.
[12] M. K. Varanasi and B. Aazhang, “Multistage detectionasynchronous

; code-division multiple-access communication&€EE Trans. Communi-
In order to further verify the performance for the proposed cation, vol. 38, no. 4, pp. 509-519, Apr. 1990,

cross-layer design, we compare the effect of differentalete [13] Rr. c. de Lamare and R. Sampaio-Neto, “Minimum mean-sglirror
with 10 users and 6 relays when this new greedy multi- iterative successive parallel arbitrated decision feeklbdetectors for

: ; ; ; ; DS-CDMA systems,"TEEE Trans. Communication, vol. 56, no. 5, pp.
relay selection algorithm is applied in the system. Theltssu 778-789. May, 2008,

depicted in Fig.6 with spreading gav = 16 indicate that the [14] . Jing and H. Jafarkhani, “Single and multiple relayestion schemes
GL-SIC (L, = 1) approach allows a more effective reduction  and their achievable diversity order$EEE Trans. Wreless Commun.,

of BER and achieves the best performance that is quite Clgfﬁ vol. 8, no. 3, pp. 10841098, Mar 2009.

. . P. Clarke and R. C. de Lamare, “Transmit diversity andyreselection
to the single user scenario, followed by the MB MF-SI algorithms for multi-relay cooperative MIMO systemsFEE Trans.

(Ly = 4) detector, the MB-SIQ L, = 4) detector, the GL- Veh. Technol, vol. 61, no. 3, pp. 1084-1098, Mar 2012.

PIC detector, the linear MMSE receiver, the conventionél SI1é] M. Ding, S. Liu, H. Luo, and W. Chen, "MMSE based greedyemma
selection scheme for AF MIMO relay systems$EEE Sgnal Process.

detector a}nd the conventional PIC detector. AQditionéﬂIjs . Lett, vol. 17, no. 5, pp. 433-436, May 2010.
worth noting that some extra performance gains are attained S. Song and W. Chen, “MMSE based greedy eigenmode &eiefrir
for the GL-PIC approach as more, unreliable users are " QFTM||MO ff{'ag_Cha””‘v:j'SgEEE ‘i‘gbecom' 'r‘]\_”ﬁ}ge',mtv CA, '?:_C- 2015-
lected and re-examined [18] S. Talwar, . Jing, and S. Shahbazpanahi, “Join relelecdion an
se : power allocation for two-way relay networks|EEE Sgnal Process.
Lett, vol. 18, no. 2, pp. 91-94, Feb 2011.
IX. CONCLUSIONS [19] J. Tropp, “Greedy is good: Algorithmic results for sgarapproxima-
. . tion,” |IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242, Oct.
In this work, we have presented the GL-SIC and GL-PIC in- 5904 Y PP
terference cancellation algorithms, which can approaeiMh [20] R. Flury, S. V. Pemmaraju, and R. Wattenhofer, “Greedyting with
performance at a much |Ower cost than Competlng techr"ques bounded Stretch,TEEE Infocom., Rio de Janeiro, BraZII, Apr 2009.

) . 1] VY. Jia, E. Yang, D. He, and S. Chan, “A greedy re-nornaicn method
We have also proposed a greedy mUItI'relay selection aléa' for arithmetic coding,”"|EEE Trans. Communication, vol. 55, no. 8, pp.

rithms that outperforms existing greedy algorithms andhivist 1494-503, Aug. 2007.
a performance close to an exhaustive search. A novel crolg} R. C. de Lamare, “Joint iterative power allocation afmeér interfer-

. . _ _ ence suppression algorithms for cooperative DS-CDMA ne®/01ET,
layer design strategy that incorporates GL-SIC or GL-PIC, Communications, vol. 6, no. 13, pp. 1930-1942, Sep. 2012,

and a greedy multi-relay selection algorithm for the uplafk [23] w. Chen, L. Dai, K. B. Letaief, and Z. Cao, “A unified crelser
cooperative DS-CDMA systems has been also presented. This framework for resource allocation in cooperative netwgrksEE Trans.

: : bk Wireless Commun., vol. 7, no. 8, pp. 3000-3012, Aug. 2008.
approach effectlvely reduces the error propagation g I’6‘[24] Y. Cao and B. Vojcic, “MMSE multiuser detection for campative diver-

at the relays, avoiding the poorest relay-destination Vitikle sity CDMA systems,|EEE Wireless Communications and Networking
requiring a low complexity. Simulation results demon&rat  Conference, pp. 42-47, Atlanta, GA, Apr. March.

_ il R. C. de Lamare and R. C. de Lamare, “Adaptive reduceéd-ramse
that the performance of the proposed Cross layer deS|gn2§ filtering with interpolated fir filters and adaptive interpturs,” |IEEE

superior to existing techniques, can approach an interéere Signal Processing Letters, vol. 12, no. 3, March 2005.

free scenario and be applied to other wireless systems.  [26] R. Meng, R. C. de Lamare, and V. H. Nascimento, “Spassitiare
affine projection adaptive algorithms for system identifa®” in Proc.
Sensor Signal Processing for Defence Conference, London, UK, 2011.
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