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Abstract

In this work, we propose structured Root-Check Low-Density Parity-Check
(LDPC) codes and design techniques for block-fading channels. In particular,
Quasi-Cyclic Root-Check LDPC codes, Irregular repeat-accumulate Root-Check
LDPC codes and Controlled Doping Root-Check LDPC codes based on
Progressive Edge Growth (PEG) techniques for block-fading channels are
proposed. The proposed Root-Check LDPC codes are both suitable for channels
under F = 2, 3 and 4 independent fading per codeword. The performance of the
proposed codes is investigated in terms of Frame Error Rate (FER). The
proposed Root-Check LDPC codes are capable of achieving the channel diversity
and outperform standard LDPC codes. For block-fading channel with F = 2 our
proposed PEG-based Root-Check LDPC codes outperform PEG-based LDPC
codes by 7.5dB.

Keywords: LDPC; Root-Check; PEG; Repeat-Accumulate; Block-Fading;
Controlled Doping

1 Introduction

The most recent IEEE Wireless Local Area Network (WLAN) 802.11ad standard

[1] argues that to achieve high throughput the devices must operate with LDPC

codes. As wireless systems are subject to multi-path propagation and mobility,

these systems are characterized by time-varying channels with fluctuating signal

strength. In applications subject to delay constraints and slowly-varying channels,

only limited independent fading realizations are experienced. In such conditions

also known as non-ergodic scenarios, the channel capacity is zero since there is an

irreducible probability, termed outage probability [2], that the transmitted data

rate is not supported by the channel. A simple and useful model that captures the

essential characteristics of non-ergodic channels is the block-fading channel [3]. It is

especially important in wireless communications with slow time-frequency hopping

(e.g., cellular networks and wireless local area networks) or multi-carrier modulation

using Orthogonal Frequency Division Multiplexing (OFDM) [4]. Codes designed

for block-fading channels are expected to achieve the channel diversity and to offer

excellent coding gains.
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1.1 Prior and Related Works

A family of LDPC codes called Root-Check for block-fading channels with F = 2

fading per codeword was proposed in [4]. Root-check codes are able to achieve the

maximum diversity of a block-fading channel and have a performance near the limit

of outage when decoded using the Sum Product Algorithm (SPA). Root-check codes

are always designed with code rate R = 1/F , since the Singleton bound determines

that this is the highest code rate possible to obtain the maximum diversity order [4].

Y. Li and M. Salehi in [5] have presented the construction of structured Root-

LDPC codes by means of tiling circulant matrices, i.e., by designing Quasi-Cyclic

Low-Density Parity-Check (QC-LDPC) codes. It is also shown that the QC-LDPC

codes can perform as well as randomly generated Root-LDPC codes over block-

fading channels. Uchoa et.al. in [6] proposed a PEG-based algorithm to design

LDPC codes with Root-Check properties, thus providing Root-LDPC codes with

larger girths. A strategy that imposes constraints on a PEG-based algorithm which

are required by Root-Check LDPC codes was devised. This approach has provided

better performance in terms of FER and BER than the works in [4, 5]. Duyck et.

al. in [7] proposed the design of a random LDPC codes which are able to achieve

full diversity in block-fading channels with F = 2 fadings. Healy and de Lamare

in [8] extended the work in [7] for the case of block-fading channels with F = 3 and

F = 4 fading per block transmitted.

1.2 Contributions

We propose in this work three structures to design Root-Check LDPC codes which

are: Quasi-Cyclic, Repeat and Accumulate and Controlled Doping. Preliminary re-

sults toward PEG-based algorithm to design QC-LDPC codes with Root-Check

properties for block-fading channel with F = 3, 4 fading per codeword were reported

in [9]. Here, in this work we present a more detailed analysis of Quasi-Cyclic Root-

Check based LDPC codes. Furthermore, initial results for a PEG-based algorithm to

design irregular repeat-accumulate (IRA) LDPC codes with Root-Check properties

for block-fading channels were discussed in [10]. Here, we present a more detailed

analysis of Irregular Repeat-Accumulate and Accumulate IRAA Root-Check struc-

ture for F = 2, 3 independent fading.

In general, the parity check bits of Root-Check LDPC codes are not full diversity.

Boutros in [11] proposed a controlled doping via high order Root-Check LDPC

codes, which are able to guarantee full diversity for the parity check bits. Such

kind of design becomes really important when Iterative Detection and Decoding

(IDD) [12] is used in a Multiple-Input Multiple-Output (MIMO) systems [13, 14].

In IDD systems the detector and the decoder exchange their extrinsic information

in an iterative way. Therefore, if the parity bits are not full diversity the overall IDD

system performance will lead to a degradation in terms of Bit Error Rate (BER)

instead of improvements as stated in [12].

In this paper we also propose a novel full diversity controlled doping Root-Check

RA-based LDPC codes for Block-Fading channels of F = 2, 3, 4 fading which in-

cludes the code rates R = 1
2 , R = 1

3 and R = 1
4 .

The main contributions of this work can be summarized as:

• Root-Check LDPC codes for Block-Fading channels including structured, un-

structured, controlled doping, and RA designs are developed.
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• New PEG-based algorithms for several Root-Check code structures are pre-

sented.

• A comprehensive simulation study of Root-Check LDPC codes and design

algorithms is detailed.

The rest of this paper is organized as follows. In Section II we describe the system

model. In Section III we discuss the prior and related works on the design of Root-

Check LDPC codes and their structure. In Section IV the proposed PEG-based

Quasi-Cyclic Root-Check LDPC codes, Irregular repeat-accumulate Root-Check

LDPC codes and Controlled Doping Root-Check LDPC codes and their structure

are presented. In Section V a discussion of which Root-Check LDPC code is more

appropriate for a specific scenario is provided. Section VI the simulation results are

shown, while Section VII concludes the paper.

2 System Model

Consider a block fading channel, where F is the number of independent fading

blocks per codeword of length N . Following [5], the t-th received symbol is given

by:

rt = hfst + ngt , (1)

where t = {1, 2, · · · , N}, f = {1, 2, · · · , F}, f and t are related by f = ⌈F t
N
⌉, where

⌈φ⌉ returns the smallest integer not smaller than φ, hf is the real Rayleigh fading

coefficient of the f -th block, st is the transmitted signal, and ngt is additive white

Gaussian noise with zero mean and variance N0/2. In this paper, we assume that

the transmitted symbols st are binary phase shift keying (BPSK) modulated. We

assume that the receiver has perfect channel state information, and that the SNR

is defined as Eb/N0, where Eb is the energy per information bit. The information

transmission rate is R = K/N , where K is the number of information bits per

codeword of length N . For the case of a block-fading channel, we consider R =

1/F , since then it is possible to design a practical diversity achieving code [5]. The

performance of a communication system in a non-ergodic block-fading channel can

be investigated by means of the outage probability [5], which is defined as:

Pout = P(I < R), (2)

where P(φ) is the probability of event φ and I is the mutual information. The

mutual information IG, for Gaussian channel inputs is [5]:

IG =
1

F

F
∑

f=1

1

2
log2

(

1 + 2R
Eb

N0
h2
f

)

, (3)

so that an outage occurs when the average accumulated mutual information among

blocks is smaller than the attempted information transmission rate.

3 Root-Check LDPC Codes
In this section, the parity check matrix (PCM) of the most relevant Root-Check

LDPC codes are discussed. The number of fadings considered are F = 2, 3 and 4

which correspond to code rates R = 1
2 ,

1
3 and 1

4 .
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3.1 Random Root-Check LDPC Codes

Here, we will introduce some definitions and the notation adopted in this work. The

LDPC code in systematic form is specified by its sparse PCM H:

H = [IN−K P], (4)

where IN−K is the identity matrix of size (N-K) and P is an (N-K)-by-K matrix.

Then the generator matrix for the code is:

G = [PT
IK ], (5)

where (·)T refers to the transpose operation.

The variable node degree sequence Ds is defined to be the set of column weights

of H as designed, and is prescribed by the variable node degree distribution λ(x)

as described in [15]. Moreover, Ds is arranged in non-decreasing order. The first

proposed Root-Check LDPC codes were devised by Boutros et. al. in [4]. Therefore,

the general structure of the PCM for a random Root-Check LDPC code for F = 2

can be defined as

H =

(

1i 2i 1p 2p

1c I H2i 0 H2p

2c H1i I H1p 0

)

, (6)

where the nodes (1i and 2i) represent the systematic symbols that are sent over

two independent fading, the same happens to nodes (1p and 2p) which are the

parity symbols; (1c and 2c) are the check nodes. In the PCM H, there are eight

sub-matrices of size N
4 × N

4 . I is an identity sub-matrix, O is a null sub-matrix,

H1i and H2i are sub-matrices of Hamming weight 2 connected to the systematic

symbols, H1p and H2p are also sub-matrices of Hamming weight 3 connected to

the parity symbols. In a similar fashion, it can be devised for the case of F = 3 as

stated in [4].

3.2 Quasi-Cyclic Root-Check LDPC Codes

Following the idea of Boutros et. al. in [4], Li and Salehi in [5] devised a Quasi-

Cyclic Root-Check LDPC Codes. The PCM H of a QC-LDPC code can be defined

as [16]:

H =

















H0,0 H0,1 · · · H0,w−1

H1,0 H1,1 · · · H0,w−1

...
...

. . .
...

Hc−1,0 Hc−1,1 · · · Hc−1,w−1

















, (7)

where Hij is an n × n circulant or all-zeros matrix, and c and w are two positive

integers with c < w. The null space of H gives a QC-LDPC code over GF (2) of

length N = wn. The rank of H is at most cn. Hence the code rate is at least w−c
w

.
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For the case of Quasi-Cyclic Root-Check LDPC codes the PCM follows the same

idea as (6), although the sub-matrices become a set of Quasi-Cyclic matrices. Con-

sequently, I becomes

I(top−left) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 0 0 0

0 I1,1 0 0

0 0 I2,2 0

0 0 0 I3,3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (8)

H1i as

H1i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I4,0 I4,1 0 0

0 I5,1 I5,2 0

0 0 I6,2 I6,3

I7,0 0 0 I7,3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(9)

and for H1p we define it as

H1p =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 I4,5 I4,6 I4,7

I5,4 0 I5,6 I5,7

I6,4 I6,5 0 I6,7

I7,4 I7,5 I7,6 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (10)

where in each Ii,j is a circulant permutation matrix and each 0 is a null matrix.

The example presented in Equations (8), (9) and (10) are for a regular Root-Check

QC-LDPC code C(3, 6). Root-Check QC-LDPC codes were proposed with the aim

of providing fast encoding and to save memory to store the generator matrix. Li and

Salehi in [5] have shown that the QC-LDPC codes can perform as well as randomly

generated Root-LDPC codes [4] over block-fading channels.

3.3 Unstructured Full Diversity LDPC Codes

Duyck et. al. in [7] proposed the design of random LDPC codes which are able

to achieve full diversity in block-fading channels with F = 2 fading. The principle

proposed in [7] is to design random LDPC codes with code rate R ∼= 0.5 to avoid

stopping sets in the systematic bits. Moreover, the systematic bits must have degree

dv = 2 to avoid stopping sets.

The design of such LDPC codes was achieved by requiring that the number of

check nodes in the graph be greater than N
2 , i.e., that the rate be less than 1

2 , and

that the weight of the first N
2 variable nodes is 2 and that the graph be constructed

by the PEG algorithm [17], which maximises cycle length at each placement, en-

suring under these conditions no cycles in the sub-graph comprised of the first N
2

variable nodes alone. The requirement of recoverability for the worst-case scenario

is equivalent to the requirement that no systematic variable node vsyst ∈ Vsyst,

affected by α1, is an element of any stopping set found among the variable nodes

V1 ∪ {V2 ∪V3 ∪ · · ·VF }\Vi. This requirement must hold for all i = 2, · · · , F for
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the systematic variable nodes to be recoverable on the block binary erasure channel

and thus for the code to achieve full diversity on the block fading channel. The

parity-check matrix for this general case, with variable node subset labels and the

corresponding fading coefficients are given in Fig. 1.

3.3.1 Unstructured Full Diversity Rate 1
3

In (11) is shown a code graph for the case of F = 3 fading per codeword [8] by means

of imposing null matrices on the parity-check matrix, along with restrictions on the

cycles present in the sub-graphs of the code. The structured matrices [Hα,1H2]

and [Hα,2H3] must be constructed by the PEG algorithm, as in [7], ensuring the

extrinsic connections to V2 and V3, respectively. The constraints on the code sub-

graphs result in the variable nodes of V1 having weight 4. The distribution of the

nodes in V2 and V3 is unconstrained and may be irregular. In addition to this

weight constraint, each of the sub-matrices [Hα,1H2] and [Hα,2H3] are constrained

to have rate less than 1
2 , and so the final graph will have rate less than 1

3 .

HBF3 =

α1 α2 α3
[ ]

Hα1,1 Hα2 0

Hα1,2 0 Hα3

(11)

3.3.2 Unstructured Full Diversity Rate 1
4

The code graph achieving the requirements on stopping sets among V1, · · · ,V4

containing systematic variable nodes is presented in (12) [8]. We can see that with

each additional fading coefficient considered, a straightforward graph expansion is

carried out, effectively nesting the F − 1 diversity achieving graph in the code

capable of full diversity performance on the channel with F fading coefficients.

HBF4 =

α1 α2 α3 α4








Hα1,1 Hα2 0 0

Hα1,2 0 Hα3 0

Hα1,3 0 0 Hα4

(12)

4 Proposed PEG-Based Root-Check LDPC Codes

In this section, the proposed PEG-Based Root-Check LDPC codes are discussed.

The number of fadings considered are F = 2, 3 and 4 which correspond to code

rates R = 1
2 ,

1
3 and 1

4 .

4.1 QC PEG-Based Root-Check LDPC Codes

Preliminary results on the design of a PEG-based Quasi- Cyclic Root-Check LDPC

codes for Block-Fading channel with F = 3, 4 fadings per codeword were presented

by Uchoa et. al. in [9]. The codes generated by this strategy can achieve a significant

performance in terms of FER with respect to the theoretical limit. These codes can

save up to 3dB in terms of signal to noise ratio to achieve the same FER when

compared to other codes.
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A Root-Check LDPC code requires a designer to divide both variable and check

nodes in F equal parts. Following the non-systematic Root-Check structure reported

in [4], the PCM becomes:

H = [S1P1, · · · ,SFPF ], (13)

where the subscripts represent the variable nodes (systematic and parity, respec-

tively) under a specific fading block. A systematic PCM can be defined as being

H = [A|B], where A is connected to the systematic and B is connected to the

parity check bits, respectively. So, if we consider the structure in (13) in systematic

form, the PCM becomes H = [S1, · · · ,SFP1, · · · ,PF ]. In order to obtain the gen-

erator matrix, the sub-matrix B formed by parity matrices P1, · · · ,PF must be a

non-singular matrix, which means it is invertible under GF (2) [5].

To design a practical code for F = 3 which is able to achieve the channel diversity,

the rate of such code must be R = 1
F

= 1
3 . As a result, the PCM for R = 1

3 can be

defined as in (14),

H =



























I0,0 H0,1 0 0 0 0 H0,6 H0,7 H0,8

I1,0 0 H1,2 0 0 0 0 H1,7 H1,8

H2,0 I2,1 0 0 0 0 0 0 H2,8

0 I3,1 H3,2 H3,3 0 0 0 0 0

H4,0 0 I4,2 H4,3 H4,4 0 0 0 0

0 H5,1 I5,2 H5,3 H5,4 H5,5 0 0 0



























, (14)

where Hij and Iij are n × n circulant matrices, while 0 is an all-zeros matrix.

The notation Iij was used to reinforce that such connections are the Root-Check

connections [4]. The restrictions that should be imposed are only the Iij to be placed

in the positions described in (14) and the upper and down triangular sub-matrices in

the parity part,B, ofH. In order to perform a PEG-based design the only restriction

imposed is that the sub-matrices Iij and the upper and down sub-matrices of (14)

are kept. The other sub-matrices can be placed following a quasi-cyclic PEG-based

algorithm.
Similarly to the case of R = 1

3 , the PCM structure for F = 4 with code rate

R = 1
4 the PCM can be defined as in (15).

H =













































I0,0 H0,1 0 H0,3 0 0 0 0 0 0 H0,10 0 H0,12 0 H0,14 0

I1,0 0 H1,2 0 0 0 0 0 0 0 0 H1,11 0 H1,13 0 H1,15
I2,0 H2,1 0 H2,3 0 0 0 0 0 0 0 0 H2,12 0 H2,14 0

H3,0 I3,1 H3,2 H3,3 0 0 0 0 0 0 0 0 0 H3,13 0 H3,15
0 I4,1 H4,2 0 0 0 0 0 0 0 0 0 0 0 H4,14 0

H5,0 I5,1 0 H5,3 0 0 0 0 0 0 0 0 0 0 0 H5,15
H6,0 0 I6,2 0 H6,4 0 0 0 0 0 0 0 0 0 0 0

0 H7,1 I7,2 0 0 H7,5 0 0 0 0 0 0 0 0 0 0

0 0 I8,2 H8,3 H8,4 0 H8,6 0 0 0 0 0 0 0 0 0

H9,0 0 H9,2 I9,3 0 H9,5 0 H9,7 0 0 0 0 0 0 0 0

0 H10,1 H10,2 I10,3 H10,4 0 H10,6 0 H10,8 0 0 0 0 0 0 0

H11,0 H11,1 0 I11,3 0 H11,5 0 H11,7 0 H11,9 0 0 0 0 0 0













































.

(15)

The restrictions that should be imposed to design a PEG-based QC-Root-Check

LDPC codes for rate R = 1
4 are similar to the case of R = 1

3 .
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4.1.1 Proposed Design Algorithm

Here, we introduce some definitions and notations. Then, we present the pseudo-

code of our proposed algorithm for PEG-based Quasi-Cyclic Root-Check LDPC

codes. A block-fading channel with F = 3 and F = 4 are considered. In extending

to a greater number of fadings, F > 4, the general structure presented is maintained,

with the systematic VNs for each fading possessing Root-Check identity matrices

connecting to parity VNs in each of the other fading blocks only, ensuring the upper

and lower triangular sections of parity bits observed in (14) and (15). The placement

of the remaining cyclic sub-matrices is required to maintain this relationship and

provide satisfactory final code degree distribution. The LDPC code in systematic

form is specified by its sparse PCM H = [A | B], where A is a matrix of size

M -by-K, and B is an M -by-M matrix. The generator matrix for the code is G =

[(B−1
A)T | IK ], IK is an identity matrix of size K.

The variable node degree sequence Ds is defined as the set of column weights of

the designed H, and is prescribed by the variable node degree distribution λ(x) as

described in [15]. Moreover, Ds is arranged in non-decreasing order. The proposed

algorithm, called QC-PEG Root-Check, constructs H by operating progressively

on variable nodes to place the edges required by Ds. The Variable Node (VN) of

interest is labelled vj and the candidate check nodes are individually referred to

as ci. The PEG Root-Check algorithm chooses a check node ci to connect to the

variable node of interest vj by expanding a constrained sub-graph from vj up to

maximum depth l. The set of check nodes found in this sub-graph are denoted N l
vj

while the set of check nodes of interest, those not currently found in the sub-graph,

are denoted N l
vj
. For the QC-PEG Root-Check algorithm, a check node is chosen

at random from the minimum weight check nodes of this set.

4.1.2 Pseudo-code for the QC-PEG-Root-Check Algorithm

Initialization: A matrix of size M×N is created with the circulant identity matrices

Ii,j in the positions shown in (14) and (15) and zeros in all other positions. We define

the indicator vectors z1, · · · , zF 2 for the cases R = 1
3 , R = 1

4 respectively as:

z1 = [01× 2N
9
,11×N

9
,01×N

9
,11×N

9
,01×N

9
]T ,

z2 = [11×N
9
,01× 4N

9
,11×N

9
]T ,

z3 = [01×N
9
,11×N

9
,01×N

9
,11×N

9
,01× 2N

9
]T ,

zχ = [0
1× (i−1)·N

9
,1

1× (7−i)N
9

]T for χ = 4, 5, 6,

zγ = [1
1× (i−6)·N

9
,0

1× (12−i)N
9

]T for γ = 7, 8, 9,

(16)
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z1 = [01× 3N
16
,11× N

16
,01× N

16
,11× 2N

16
,01× 2N

16
,

11× N
16
,01× N

16
,11× N

16
]T ,

z2 = [11× N
16
,01× N

16
,11× N

16
,01× 4N

16
,11× N

16
,

01× 2N
16
,11× 2N

16
, ]T ,

z3 = [01× N
16
,11× N

16
,01× N

16
,11× 2N

16
,01× 4N

16
,

11× 2N
16
,01× N

16
]T ,

z4 = [11× N
16
,01× N

16
,11× 2N

16
,01× N

16
,11× N

16
,

01× 2N
16
,11× N

16
,01× 3N

16
, ]T ,

zχ = [0
1× (i+1)N

16
,vALT (0: (11−i)N

16 −1)]T

for χ = 5, · · · , 10,

zγ = [vALT ( (17−i)N
16 : 7N16 −1),0

1× (22−i)N
16

]T

for γ = 11, · · · , 16,

(17)

vALT = [11× N
16
,01× N

16
,11× N

16
,01× N

16
,11× N

16
,01× N

16
,11× N

16
] (18)

These indicator vectors are modelled on that of the original PEG algorithm [17],

indicating submatrices for which placement is permitted, thus imposing the form

of (14) or (15). The degree sequence as defined for LDPC codes must be altered to

take into account the structure imposed by Root-Check codes, namely the circulant

identity matrices, Ii,j , of (14) and (15). The pseudo-code for our proposed QC-PEG

Root-Check algorithm is detailed in Algorithm 1, where the indicator vector, zi, is

taken from (16), (17) for constructing codes of rate R = 1
3 , R = 1

4 , respectively.

Algorithm 1 QC-PEG Root-Check Algorithm

1. for j = 1 : F 2 do
2. for k = 0 : Ds(j)− 1 do

3. if j ≥ N
F

& k == 0 then

4. Place edge at random among minimum weight submatrices permitted by the indicator zj ,

with a random first edge placement within the chosen submatrix, in column (j−1)·N
F2 -th.

5. Place remaining edges in the submatrix by circulant shift of the first placement.
6. Null the entry in the indicator vector zj in the position of the chosen submatrix, preventing

further placements in that submatrix.
7. else
8. Expand the PEG subtree from the (j−1)·N

F2 -th VN to depth l such that the tree contains all
CNs allowed by the indicator vector or the number of nodes in the tree does not increase
with an expansion to the (l+1)-th level.

9. Place edge connecting the
(j−1)·N

F2 -th VN to a CN chosen randomly from the set of
minimum weight nodes which were added to the subtree at the last tree expansion.

10. Place remaining edges in the submatrix by circulant shift of the first placement.
11. Null the entry in the indicator vector zj in the position of the chosen submatrix, preventing

further placements in that submatrix.
12. end if
13. end for
14. end for



Uchoa et al. Page 10 of 20

4.2 RA Based Root-Check LDPC Codes

Preliminary results on the design of Irregular Repeat Accumulate (IRA) LDPC

codes PEG-based with Root-Check properties were reported in [10]. We considered

a block-fading channel with F = 2 and F = 3. Here, in this section we synthesize

the most relevant information on the design of IRA Root-Check LDPC codes and

Irregular Repeat-Accumulate and Accumulate (IRAA) Root-Check LDPC codes.

A repeat-accumulate (RA) code consists of a serial concatenation, through an

interleaver, of a single rate 1/q repetition code with an accumulator having transfer

function 1
1+D

, where q is the number of repetitions for each group of K information

bits. Fig. 2 shows a typical repeat-accumulate code block diagram. The implemen-

tation of the transfer function 1
1+D

is identical to an accumulator, although the

accumulator value can be only 0 or 1 since the operations are over the binary

field [18, pp. 267-279]. As discussed in [18, pp. 267-279], to ensure a large minimum

Hamming distance, the interleaver should be designed so that consecutive 1s at its

input are widely separated at its output. The RA based codes proposed in [10] were

systematic. The main limitation of RA codes is the code rate, which cannot be

higher than 1
2 .

Irregular repeat-accumulate (IRA) codes generalize the concept of RA codes by

changing the repetition rate for each group of K information bits and performing

a linear combination of the repeated bits which are sent through the accumulator.

Furthermore, IRA codes are typically systematic. IRA codes allow flexibility in the

choice of the repetition rate for each information bit so that high-rate codes may

be designed. Their irregularity allows operation closer to the capacity limit [18, pp.

267-279].

The PCM for a systematic RA and IRA codes has the form H = [Hu Hp], where

Hp is a square dual-diagonal matrix given by

Hp =























1

1 1

. . .
. . .

1 1

1 1























. (19)

For RA codes, Hu is a regular matrix having column weight q and row weight 1.

For IRA codes, Hu has irregular columns and rows weights. The Generator Matrix

(GM) can be obtained as G =
[

IK H
T
uH

−T
p

]

, where IK is an identity matrix of

dimension K ×K. In matrix notation H
−T
p can be described as

H
−T
p =























1 1 · · · 1

1 1 · · · 1

. . .
...

1 1

1























. (20)
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4.2.1 IRA Root-Check Rate 1
2

The design of a Root-Check with an IRA structure imposes some constraints in

terms of PCM to guarantee the Root-Check properties. Following the notation

adopted in [19], for the case of a systematic Rate 1
2 with F = 2, the PCM must be

like

H =





IN
4

H2 0N
4

H3

H2 IN
4

H3 0N
4



 , (21)

where H2 and H3 are N
4 × N

4 sub-matrices with Hamming weight two and three,

respectively, while 0N
4

is a null sub-matrix with dimension N
4 × N

4 . Therefore, to

impose the RA structure and Root-Check properties the PCM of an IRA Root-

Check is

H =





IN
4

H2 0N
4

Hp

H2 IN
4

Hp 0N
4



 , (22)

where Hp is a dual diagonal matrix with dimension N
4 × N

4 .

4.2.2 IRA Root-Check Rate 1
3

For the case of Rate 1
3 with F = 3, we followed a similar structure to the one

adopted in [4,9]. The accumulator used is a transfer function given by 1

1+D+D
N
9

as

suggested by [20]. As a result, Hp must be redefined as

Hp =





Hp1

Hp2



 , (23)

Hp1 =



















1 0 · · · · · · · · · · · · · · · 0

1 1 0
. . .

. . .
. . .

. . . 0

...
. . .

. . . 0
. . .

. . .
. . . 0

0 0 1 1 0 0 0 0



















, (24)

Hp2 =



















1 0 · · · 0 1 0 · · · 0

0
. . . 0 0 1 1 0 0

... 0
. . . 0 0

. . .
. . . 0

0 0 0 1 0 0 1 1



















, (25)
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where Hp1 and Hp2 are sub-matrices with dimensions N
9 × 2N

9 . Therefore, the PCM

H = [Hu|Hp] for this particular case of an IRA Root-Check Rate 1
3 as

H =



























IN
9

H1 0N
9

| 0 Hp2 0

IN
9

0N
9

H1 | 0 0 Hp1

H1 IN
9

0N
9

| Hp1 0 0

0N
9

IN
9

H1 | 0 0 Hp2

H1 0N
9

IN
9

| Hp2 0 0

0N
9

H1 IN
9

| 0 Hp1 0



























, (26)

where H1 and IN
9
are sub-matrices with dimensions N

9 × N
9 and H1 is a sub-matrix

with Hamming weight equal to 1. The null sub-matrices 0 on the right hand side of

(26) have dimensions N
9 × 2N

9 while on the left hand side the dimensions are N
9 × N

9 .

4.3 IRAA Root-Check Design

The general structure of an Irregular Repeat-Accumulate and Accumulate (IRAA)

encoder can be seen in Fig. 3. In this figure, some b extra parity bits are indicated

in addition to the normal p parity bits. The b parity bits can be punctured to

obtain a higher code rate. For instance, in general an IRAA code has rate 1/3

without puncturing, while by puncturing b parity-checks a code with rate 1/2 can

be obtained.

The PCM of an IRAA LDPC code can be represented by

H =





Hu Hp 0

0
∏

1 Hp



 , (27)

where
∏

1 must be a sub-matrix with rows and columns with Hamming weight one.

In order to obtain IRAA Root-Check LDPC codes some constraints must be

imposed on the standard IRAA design. We have noticed that the IRAA Root-

Check LDPC codes led to a more flexible rate compatible code. For further details

refer to [10].

4.3.1 IRAA Root-Check Rate 1
2

We applied the Root-Check structure from (22) in (27) to obtain the following PCM

for rate 1/2

H =















IN
9

H2 0N
9

Hp 0 0N
9

H2 IN
9

Hp 0N
9

0N
9

0N
9

0N
9

0N
9

∏

1

0N
9

Hp

0N
9

0N
9

Hp 0N
9















, (28)

where IN
9
, H2, Hp and 0N

9
are all N

9 × N
9 in dimension, while

∏

1 is N
3 × N

3 . The key

point to guarantee the full diversity property is the puncturing procedure. Instead

of puncturing b parity bits we have punctured p. The reason why puncturing p
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instead of b guarantees the full diversity is due to the fact that the Root-Check

structure of the code is kept unchanged.

4.3.2 IRAA Root-Check Rate 1
3

For the case of rate 1/3 we considered the design done in (26) and we apply the

constraints in (27) to obtain the following PCM

H =





Hu | Hp 0

0 |
∏

1 Hp



 . (29)

It must be noted that without puncturing the code rate is 1/5.

4.3.3 Pseudo-code for the IRA-PEG Root-Check Algorithm

Initialization: A matrix of size M ×N is created with the identity matrices IK and

parity matrices Hp in the positions shown in (22), (26), (28), (29) and zeros in all

other positions. We define the indicator vectors z1, · · · , zF for the cases R = 1
2 ,

R = 1
3 respectively as:

z1 = [01×γ ,11×γ ]
T ,

z2 = [11×γ ,01×γ ]
T ,

(30)

z1 = [01×2χ,11×χ,01×χ,11×χ,01×χ]
T ,

z2 = [11×χ,01×4χ,11×χ]
T ,

z3 = [01×χ,11×χ,01×χ,11×χ,01×2χ]
T

, (31)

where γ = N
2 for the case of IRA, while for IRAA design γ = N

4 . We have χ = N
9

for the case of IRA, while for IRAA design χ = N
15 . In addition, for rate R = 1

2

under IRAA design zi = [zi,04×γ ], while for rate R = 1
3 under IRAA design

zi = [zi,06×χ].

These indicator vectors are modelled on that of the original PEG algorithm [17],

indicating sub-matrices for which placement is permitted, thus imposing the form

of (22), (26), (28), (29). The degree sequence as defined for LDPC codes must be al-

tered to take into account the structure imposed by Root-Check codes, namely, the

identity matrices IK and the parity matrices Hp, of (22), (26), (28) and (29). The

pseudo-code for our proposed IRA-PEG Root-Check algorithm is detailed in Algo-

rithm 2, where the indicator vector zi is taken from (30) and (31) for constructing

codes of rate R = 1
2 , R = 1

3 respectively.

4.4 Controlled Doping Root-LDPC Codes Design

Boutros in [11] a controlled doping via high order Root-Check LDPC codes was

proposed. Such Root-Check LDPC codes are able to guarantee full diversity for

the parity check bits. First of all, we have made some modifications in the original

doped Root-Check LDPC code PCM described in [11].
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Algorithm 2 PEG Root-Check LDPC Algorithm
1. for j = 1 : K do
2. for k = 0 : Ds(j)− 1 do
3. Expand the PEG tree from the j-th VN to depth l such that the tree contains all CNs allowed

by the indicator vector or the number of nodes in the tree does not increase with an expansion
to the (l+1)-th level.

4. Place the edge connecting the j-th VN to a CN chosen randomly from the set of minimum
weight nodes which were added to the sub-tree at the last tree expansion.

5. end for
6. end for

4.4.1 Controlled Doping Root-LDPC Codes R = 1
2

The modifications we have made was to take the advantages of easy encodability

of IRA-based LDPC codes. Furthermore, a PEG-based design to improve the local

girth of the generated LDPC codes was considered. The purpose of controlled and

uncontrolled doping is to improve the energy coefficient of information bits after

solving parity bits. Then, the parity bit should transmit a high-confidence message

to a new information bit. Uncontrolled doping corresponds to a diversity population

evolution (DPE) steady-state parameter p∞ = 7.82% for a C(3, 6) regular Root-

LDPC code [11]. Controlled doping can achieve a fraction p∞ as high as 100%. The

sub-matrix (19) is modified by introducing a smaller identity (or a permutation)

matrix for parity bits. Therefore, in order to obtain a Root-Check LDPC code with

50% of controlled doping, Hp is redefined as

Hp =

[

IN
8

ON
8

PN
8

DDN
8

]

, (32)

where I is an identity matrix, O is a null matrix, P is a permutation matrix with

Hamming weight 1, DD is a dual diagonal matrix and all sub-matrices of Hp are
N
8 × N

8 in dimension. Accordingly, the final PCM becomes

H =















IN
4

H2i 0N
4

IN
8

0N
8

P2 DDN
8

H1i IN
4

IN
8

0N
8

P1 DDN
8

0N
4















, (33)

where subscripts in P1 and P2 means that are distinct permutation sub-matrices

with hamming weight 1. The sub-matrices H1i and H2i are in dimension N
4 × N

4 .

P1 and P2 are in dimension N
8 × N

8 . The PEG algorithm will work through the

sub-matrices H1i and H2i.

4.4.2 Controlled Doping Root-LDPC Codes R = 1
3

The PCM for the case of code rate R = 1
3 has followed a similar design as for an IRA

Root-Check code rate R = 1
3 in (26). Therefore, the PCM for the proposed PEG

controlled doping Root-Check LDPC code (PEG-CDRC LDPC) has the structure
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as presented in (34),

H =

























I H2 0 | 0 0 I 0 0 0

I 0 H2 | 0 0 0 0 I 0

H2 I 0 | I 0 0 0 0 0

0 I H2 | 0 0 0 0 P3 DD

H2 0 I | P1 DD 0 0 0 0

0 H2 I | 0 0 P2 DD 0 0

























, (34)

where the subscripts of Pi in (34) means that are distinct permutation sub-matrices.

The sub-matrices of eq. (34) are all N
9 × N

9 in dimension. In addition, the left hand

side of (34) are connected to the systematic symbols while the right hand side are

connected to the parity check bits.

4.4.3 Controlled Doping Root-LDPC Codes R = 1
4

For the case of rate 1
4 with F = 4, we have adopted a different type of structure

to guarantee the full diversity of the code. In addition, we have also rearranged the

rows of the PCM in order to obtain a non singular sub-matrix in the parity check

part which corresponds to the right hand side of (35), where the subscripts of Pi

in (35) means that are distinct permutation sub-matrices. The sub-matrices of eq.

(35) are all N
16 ×

N
16 in dimension. Moreover, the left hand side of (35) are connected

to the systematic symbols while the right hand side are connected to the parity

check bits.

H =





























H1 I H1 H1 | I 0 0 0 0 0 0 0 0 0 0 0

H1 0 I 0 | P1 I 0 0 0 0 0 0 0 0 0 0

H1 0 H1 I | P2 P3 DD 0 0 0 0 0 0 0 0 0

I H1 0 H1 | 0 0 0 I 0 0 0 0 0 0 0 0

0 H1 I 0 | 0 0 0 P4 I 0 0 0 0 0 0 0

0 H1 H1 I | 0 0 0 P5 P6 DD 0 0 0 0 0 0

I 0 H1 0 | 0 0 0 0 0 0 I 0 0 0 0 0

0 I H1 0 | 0 0 0 0 0 0 P7 I 0 0 0 0

H1 H1 0 I | 0 0 0 0 0 0 P8 P9 DD 0 0 0

I H1 0 H1 | 0 0 0 0 0 0 0 0 0 I 0 0

H1 I 0 H1 | 0 0 0 0 0 0 0 0 0 P10 I 0

0 0 I H1 | 0 0 0 0 0 0 0 0 0 P11 P12 DD





























,

(35)

4.5 Proposed Design Algorithm

Here, we introduce some definitions and a specific notation. Then, we present the

pseudo-code of our proposed algorithm. In this work, the scenarios of a block-fading

channel with F = 2, F = 3 and F = 4 are considered. In extending to a greater

number of fading, F > 4, the general structure presented is maintained.

4.5.1 Pseudo-code for the PEG-CDRC LDPC Algorithm

Initialization: A matrix of size M ×N is created with the identity matrices I, dual

diagonal matrices DD and parity matrices Hi in the positions shown in (33), (34),
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(35) and zeros in all other positions. We define the indicator vectors z1, · · · , zF for

the cases R = 1
2 , R = 1

3 and R = 1
4 respectively as:

z1 = [01×γ ,11×γ ]
T ,

z2 = [11×γ ,01×γ ]
T ,

(36)

z1 = [01×2χ,11×χ,01×χ,11×χ,01×χ]
T ,

z2 = [11×χ,01×4χ,11×χ]
T ,

z3 = [01×χ,11×χ,01×χ,11×χ,01×2χ]
T ,

(37)

z1 = [11×3ζ ,01×5ζ,11×ζ ,01×ζ ,11×ζ ,01×ζ]
T ,

z2 = [01×3ζ ,11×3ζ,01×2ζ ,11×2ζ ,01×2ζ ]
T ,

z3 = [11×ζ,01×ζ ,11×ζ ,01×2ζ ,11×3ζ ,01×4ζ]
T ,

z4 = [11×ζ,01×2ζ ,11×ζ ,01×5ζ ,11×3ζ ]
T ,

(38)

where γ = N
2 , χ = N

9 and ζ = N
16 .

These indicator vectors are modelled on the basis of the original PEG algorithm

[17], indicating sub-matrices for which placement is permitted, thus imposing the

form of (33), (34) and (35). The degree sequence as defined for LDPC codes must

be altered to take into account the structure imposed by Root-Check codes, namely,

the identity matrices I, the permutation matrices Pi, the dual diagonal matrices

DD and the parity matrices Hi, of (33), (34) and (35). The pseudo-code for our

proposed CDRC-LDPC algorithm is detailed in Algorithm 2, where the indicator

vector zi is taken from (36), (37) and (38) for constructing codes of rate R = 1
2 ,

R = 1
3 and R = 1

4 respectively.

5 Discussion

In this section we analyse the advantages and disadvantages of different types of

PEG-based Root-Check LDPC codes discussed in the previous sections.

In terms of performance the PEG-based Root-Check LDPC codes are able to

get closer to the outage curve than their counterpart Root-Check LDPC codes.

However, the complexity of encoding standard PEG-based Root-Check LDPC codes

can be prohibitive for some hardware implementations.

The Quasi-Cyclic PEG-based Root-Check LDPC codes have the advantage of per-

forming better than Quasi-Cyclic Root-Check LDPC codes and both codes require

low memory to store the PCM. Moreover, Quasi-Cyclic based LDPC codes can be

encoded by using simple shift registers.

RA PEG-based Root-Check LDPC codes have the advantage of being simple to

encode and also simple to design the PCM. Furthermore, the parity part of an

RA-based PCM is a dual diagonal which is straightforward to obtain the generator
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matrix [18, pp. 267-279]. Such codes perform very close to the channel capacity

which is usually upper-bounded by the outage curve. In addition, RA-based LDPC

codes can provide: low complexity to encode, simplicity on the design of the PCM

and low memory is required to store them. On the other hand, the main limitation

of RA-based codes is the code rate, which cannot be higher than 1
2 .

In the case of Unstructured Full Diversity LDPC codes, they draw an important

path in terms of designing the PCM which avoids the constraints that must be

imposed to produce Root-Check based LDPC codes. Nonetheless, they require a

more complex encoding process which is the same complexity as the case of Random

LDPC codes.

As discussed previously, the PEG Controlled Doping Root-Check LDPC codes

are able to guarantee full diversity for the parity check bits. These LDPC codes are

relevant for the case of IDD in MIMO systems. The results presented in [21] demon-

strate how useful are PEG-CDRC LDPC codes for MIMO systems in a block-fading

channel. In addition, our proposed PEG-CDRC LDPC codes have the advantage

of being RA-based encodable which are simple to encode and the PCM is easily

designed.

6 Simulations

The performance of the proposed PEG-based Root-Check LDPC codes for block-

fading channels with F = 2, F = 3 and F = 4 independent fading blocks is analysed.

The block length of the codes for rates R = 1
2 and R = 1

4 is L = 1024 while for rate

R = 1
3 the block length is L = 900. The standard SPA algorithm is employed at the

decoder with a maximum of 5 iterations for rate R = 1
2 and for rates R = 1

3 and

R = 1
4 a maximum of 20 iterations were used. The Gaussian outage limit in (3) is

drawn in dashed line in each figure for reference.

In Fig. 4 we compare the FER performance among the proposed PEG-CDRC

LDPC codes, IRA PEG Root-Check LDPC code, IRAA PEG Root-Check LDPC

codes, PEG-Root-Check LDPC, Random Root-Check LDPC and PEG based LDPC

[17] codes, all for R = 1
2 . From the results, it can be noted that the proposed PEG-

CDRC LDPC code, IRAA-PEG Root-Check LDPC code and PEG-Root-Check

LDPC code achieve the same FER performance. Moreover, note that all Root-

Check-based codes are able to achieve the full diversity order of the channel, while

(non root-check) PEG LDPC codes fail to achieve full diversity. The PEG-based

Root-Check LDPC codes outperform the PEG LDPC code by about 7.5dB.

In Fig. 5 we compare the FER performance between the proposed PEG-CDRC

LDPC, QC-PEG-Root-Check LDPC, IRA PEG Root-Check LDPC code, IRAA

PEG Root-Check LDPC codes, and QC-PEG LDPC codes, all for R = 1
3 . From the

results, it can be seen that the best performance is achieved by the proposed Quasi-

Cyclic PEG Root-Check LDPC code. IRA-PEG Root-Check LDPC and IRAA-PEG

Root-Check LDPC have in average the same performance in terms of FER. The

PEG-CDRC LDPC code is performing marginally worst than IRA and IRAA PEG

Root-Check based LDPC codes. It was required to sacrifice the FER performance of

the proposed PEG-CDRC LDPC codes to guarantee the full diversity of the parity

check bits. Moreover, note that the proposed CDRC-LDPC code outperforms the

QC-PEG LDPC code by about 2dB in terms of SNR. The proposed QC-PEG-Root-

Check LDPC code outperforms the QC-PEG LDPC code by about 3.5dB.
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In Fig. 6 we compared the FER performance between the proposed PEG-CDRC

LDPC, QC-PEG-Root-Check LDPC codes and QC-PEG LDPC codes all for R = 1
4 .

The codeword length is L = 1024 bits. From the results, it can be noted that

the proposed PEG-CDRC LDPC code outperforms the QC-PEG LDPC code by

about 1.5dB while the proposed QC-PEG-Root-Check LDPC code outperforms the

QC-PEG LDPC code by about 2.5dB. In addition, note that only the PEG-based

Root-Check LDPC codes are able to achieve the full diversity order of the channel.

Fig. 7 shows the average number of iterations required by the proposed PEG-

CDRC LDPC codes, IRA PEG Root-Check LDPC code, IRAA PEG Root-Check

LDPC codes, PEG-Root-Check LDPC, Random Root-Check LDPC and PEG based

LDPC [17] codes, all for R = 1
2 . For the entire SNR region, in average, we can ob-

serve that the proposed PEG Root-Check based LDPC codes require less decoding

iterations than standard PEG LDPC code. It must be mentioned that for medium

to high SNR the average required number of iterations is less than 2 iterations. The

average number of iterations, less than 2 at medium to high SNR, corroborates with

hardware friendly capabilities of structured LDPC codes [5].

7 Conclusion

Novel PEG-based algorithms have been proposed to design Controlled Doping Root-

Check LDPC codes, IRA Root-Check LDPC codes, IRAA Root-Check LDPC codes

and Quasi-Cyclic Root-Check LDPC codes for F ≥ 2 fading blocks. Based on

simulations, the proposed methods were compared to non Root-Check LDPC codes.

The results demonstrate that the Root-Check-based LDPC codes generated by our

proposed algorithm outperform standard LDPC codes. Furthermore, for the case of

rate R = 1
2 the PEG-based Root-Check LDPC codes outperform the PEG LDPC

code by about 7.5dB. As mentioned before, the proposed PEG-CDRC LDPC codes

are RA based LDPC codes which are simple to encode and the PCM can be easily

designed.
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19. Uchôa, A.G.D., Healy, C., de Lamare, R.C., Souza, R.D.: LDPC codes based on progressive edge growth

techniques for block fading channels. In: Proc. IEEE ISWCS’11, Aachen, Germany, pp. 1–5 (2011)

20. Johnson, S., Weller, S.: Interleaver and accumulator design for systematic repeat-accumulate codes. In: 6th

Australian Communications Theory Workshop, pp. 1–7 (2005)
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Figures

Figure 1 PCM unstructured general case. Parity-check matrix for the general case.

Figure 2 RA code block diagram. A systematic repeat-accumulate code block diagram, where K

is the number of information bits and p denotes the parity bits.

Figure 3 IRAA code block diagram. An systematic irregular repeat-accumulate and accumulate
code block diagram. Where K are the information bits, b and p are the parity bits.

Figure 4 FER performance F = 2. FER performance for the PEG-CDRC LDPC, IRA-PEG
Root-Check LDPC, IRAA-PEG Root-Check LDPC, PEG-Root-Check LDPC, Random Root-Check
LDPC and PEG LDPC codes over a block-fading channel with F = 2 and L = 1024 bits. The
maximum number of iterations is 5.

Figure 5 FER performance F = 3. FER performance for the CDRC-LDPC,
QC-PEG-Root-Check LDPC , IRA-PEG Root-Check LDPC, IRAA-PEG Root-Check LDPC and
QC-PEG LDPC codes over a block-fading channel with F = 3 and L = 900 bits. The maximum
number of iterations is 20.

Figure 6 FER performance F = 4. FER performance for the PEG-CDRC LDPC,
QC-PEG-Root-Check LDPC and QC-PEG LDPC codes over a block-fading channel with F = 4
and L = 1024 bits. The maximum number of iterations is 20.
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Figure 7 Iterations performance comparison for F = 2. Average number of required iterations
for the proposed PEG-CDRC LDPC codes, IRA PEG Root-Check LDPC code, IRAA PEG
Root-Check LDPC codes, PEG-Root-Check LDPC, Random Root-Check LDPC and PEG based
LDPC codes with codeword length L = 1024 bits over a block-fading channel with F = 2.
Maximum number of iterations 5.


