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Abstract: Low-density parity-check (LDPC) codes have excellent performance for a wide range of applications at reasonable com-
plexity. LDPC codes with short blocks avoid the high latency of codes with large block lengths, making them potential candidates
for ultra reliable low-latency applications of future wireless standards. In this work, a novel informed dynamic scheduling (IDS)
strategy for decoding LDPC codes, denoted reliability-based residual belief propagation (Rel-RBP), is developed by exploiting the
reliability of the message and the residuals of the possible updates to choose the messages to be used by the decoding algorithm.
A different measure for each iteration of the IDS schemes is also presented, which underlies the high cost of those algorithms
in terms of computational complexity and motivates the development of the proposed strategy. Simulations show that Rel-RBP

speeds up the decoding at reduced complexity and results in error rate performance gains over prior work.

1 Introduction

Low-density parity-check (LDPC) codes, invented by Gadlafy],
have been widely adopted in industry standards in recensyra
cluding IEEE 802.11ad (WI-FI) [2], IEEE 802.16e (WiMAX) [3]
DVB-S2 [4], IEEE 802.3an (Ethernet) [5] and for enhanced ieob
broadband applications of the 5th generation of wirelessnsoni-
cations systems. In recent standards, codes with shodekbhave
been proposed, rather than codes with larger blocks asnaligi
advocated for LDPC codes. This is key for the adoption ofehes
codes in future wireless systems and applications suchtiasret
liable low-latency (URLL) for machine-type communicat®ofb],
as the decoding time required by codes with large blocks tith
sult in unacceptable latency. The structure of the LDPC sade
amenable to low complexity decoding, whereas the compuuratti
cost of encoding can be reduced with the help of structuraghgr
[7-9]. Indeed, cost-effective encoding and decoding of Cli@des
can be an important element that contributed to the enefigyesfcy
of future networks.

cost per iteration is smaller but the number of required dexpit-
erations remains the same. In order to accelerate the gmner
of decoding algorithms, techniques based on reweightifg12]
and scheduling [20—24, 27-30] have been studied in the éast f
years. Reweighting techniques apply scaling factors toctieck
node update to address the overconfidence introduced byagesss
exchanged in the presence of cycles. In contrast, schedsiiate-
gies exploit the status of the messages exchanged in thé tpap
determine the next update of message and which messages updat
brings the highest gaimn particular, dynamic scheduling techniques
are suitable for short-block LDPC codes because such codtidsite

a larger number of short cycles and a smaller girth than {algek
LDPC codes, which are known to affect the performance of aggess
passing algorithms [12].

In the context of scheduling techniques, the introductibithe
residual belief propagation (RBP) [20], the node-wise BRMN
BP) [24] and the sequential Layered Belief Propagation (LRR]
algorithms have motivated a number of studies and furthprane-
ments. RBP uses the largest residual obtained from the wbsol

The decoding of LDPC codes based on message passing performgalue of the difference between the messages exchange@dietw

very well for large blocks. However, the decoding may exgrece
performance degradation in the presence of cycles founddes
with short blocks. Designs for short blocks [10-12] may bedut®
mitigate the effects of cycles and improve the performari¢éddC
codes by modifying the graph used in the decoding. Anotlereis
with message-passing decoding for LDPC codes in situatiotis
strict requirements on latency and energy consumptionig6ihe
need for many decoding iterations of the standard beliepagation
type algorithms [1, 13—16] such as the sum-product algoritBPA)
[1] and the minimum-sum algorithm (Min-sum) [13]. The compu
tational burden of the decoding task can be reduced by inting
approximations to the recursions of SPA as in Min-sum at tist ¢
of error rate degradation. The Min-sum algorithm can be robd
by introducing correction factors in the check node updateraxi-
mation, through a multiplicative normalization updatetéag15] or
an additive offset update factor [14]. In such case, the adatjpnal
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nodes and the message to be updated. LBP employs the mast rece
message in the graph by performing updates in a serial réthar
parallel manner. The informed dynamic scheduling (IDS)stés

[20, 22-24] offer a substantially enhanced performanceeims

of convergence speed and error rate, while requiring afignily
higher computational cost due to the extra operations nkedom-

pute residual, many of which are discarded and recomputed tie
status of the messages in the graph changes (i.e., when agaess
is updated, the residuals of the messages affected in tlosviiog
iteration must be recomputed).

In this work, we present a dynamic schedule, named reltgbili
based residual belief propagation (Rel-RBP) whose prehnyi
results were reported in [25, 26]. The proposed Rel-RBPagubr
exploits the reliability of the messages and the residuglsossi-
ble updates to speed up decoding algorithms. We considetiano
of reliability that corresponds to the magnitude of the libglihood



m - le r , ¢
f—_— Encc‘?dm Channel Dchf)Idcr -
@)

v Ug vy Uy Uy Ug Uy Uy
oNe OO0 0 O

Ned, C @ et ( f/) ) B
— ) \ /// 7 s

Fig. 1: a) A general LDPC coding system. b) A pictorial description
of a Tanner graph.

ratios (LLRs) for log-domain BP algorithms. Using the cqpicef
reliability with possible message updates, a messagensstlected
for update by computing and comparing its residuals as ifRtBE
and NW-BP schemes. This approach has two benefits: it limés t
use of the residual, thereby reducing the complexity of therghm;
and prioritizes the update of messages with lower incoméig r
ability, resulting in accelerated convergence due to theatep of
information in parts of the graph that did not contributed/aods
convergence. Rel-RBP has the key feature that messagesspat
sociated with a large change in the LLRs (i.e. have a largduel
at nodes with strong beliefs are avoided in order to promiglisr
changes at nodes with unreliable beliefs. Simulationscatéi that
Rel-RBP results in substantial gains in the convergencedspkthe
decoding algorithm when considering standard decodingtitas.
An analysis of the update rules of Rel-RBP shows that the t&mp
ity reduction of the proposed approach makes it more pradtian
existing IDS schemes.

The main contributions of this work can be summarized as:

e Anovel knowledge-based message passing approach thattexpl
the reliability of the messages in the graph for the decodfidPC
codes.

e A low-complexity message passing algorithm that expldiesre-
liability of the messages to produce the decoding schedwaédoaver
cost.

e An alternative approach for measuring the number of effecti
iterations which provides insight into the computationaktcand
effectiveness of the algorithms considered.

e Analyses of the computational complexity and fundamential a
vantages of the proposed and existing algorithms.

The remainder of this paper is structured as follows: Se@im-
troduces the notation and the model of the LDPC system. @ecti
3 reviews the recursions employed by the SPA and the RBP al-
gorithms, introduces the alternative measurement of gratibns
performed in the IDS schemes and explains the rationalehier t
work described in this paper. In Section 4, the proposedRBH-
algorithm is detailed. Section 5 presents the simulationlystand
the discussion of the results. Section 6 concludes the paper

2 LDPC System Model

A general LDPC coding system is considered in this work, asvsh
in Fig. 1 a), where a message represented byl thek vectorm is
encoded to the length x n code word vectok, subjected to the

channel such that the decoder operates on the vettoproduce an
estimate of the code wor@l

In the decoder, a message passing algorithm works with attéa
graph that corresponds to the parity-check matrix of theec&dich
graph, known as a Tanner graph, is shown in Fig. 1 b), wheheas t
corresponding parity-check matrix is given by
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The number of rows in the matrix that corresponds to the check
nodes in the graph is defined as— k, whereas the number of
columns that refers to the variable nodes is defined.athe av-
erage number of entries in a row and column are labéleahdd,,,
respectively.

3 BP Decoding, RBP Scheduling and Effective
Iterations

BP decoding is the most prominent approach for decoding LDPC
codes. And the most popular BP decoding techniques are the SP
and the Min-sum. Moreover, scheduling can be used in cotipmc
with these two techniques to accelerate their convergdnoghat
follows, we make a review of the SPA with the RBP techniques.

3.1 BP Decoding and RBP Scheduling

In SPA, the messages are exchanged between the variabléeand t
check nodes of the Tanner graph and are updated by the fojowi
recursions:

(k)

uglf)_,,“j = 2tanh ™ H tanh (ij/ - ))7 (2)
3 EN (ei)\i
i EN (vj)\i

where the messagegvaj is calculated at the check nodes. This

message computation is based on the parity constraints afattie

and pq(fjilc) denotes the messages calculated at the variable nodes
and exchanged with the check nodes. The notaki@n., ) refers to

the neighbourhood of node,, i.e., the set of nodes connectedip

by an edge. The quantit®t\b corresponds to the sgt excluding the
element.

The log-likelihood ratio (LLR) for the a posteriori probéitbes
corresponds to the input to the decoder and is based on thieedc
codeword bit from the channel,; , and the estimate for the nodg
is taken from the sign of the final LLR for that node as desctibg

k+1 k
€N (vj)

(4)

In the RBP decoding approach, the message passing algorithm
iterates in individual check-to-variable message updatstead of
updating all nodes of one or both types, as occurs with the &BP
the standard BP algorithms, respectively. In the binargieerof the
RBP algorithm, the next message to be updated is selecteldeby t
message residuals according to:

(k)

He; —V;

() (k—1)

7"( ) = |Mcq,—>vj — Hei—v; | (5)
The RBP algorithm assigns only the message update withripesta
residual and stores all other message updates for possiblie fu-
ture iterations. With this approach, messages leaving énahle
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Fig. 2: The main recursions of the RBP strategy.

node v; that receive the assigned check-to-variable message are
updated. The algorithm then computes new residuals at altkch

often indistinguishable from those carried out for the ragss ex-
changed. Furthermore, the message computations must bevitbn
up-to-date information and cannot be computed in previoessage
exchanges. This suggests the adoption of an alternatieetiotf de-
coding iteration measure. The modified decoding iteragatefined

as the point in the processing of the IDS-based algorithmhétiw

the number of check node message updates computed is equal to
that of the standard BP and LBP schemes. With this modified de-
coding iteration measure a single iteration of each schetaedard

BP and IDS-type) requires the same number of check node egdat
resulting in a comparable computational complexity.

= A - RBP - modified iterations
—6— BP - flooding
A —#— BP - |ayered
—%— RBP - classic iterations

\ay
5 i i i MAAMAAALAAAA A AL L A AAAS
30 35 40

10 15 20 25
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Fig. 3: Modified/classic decoding iterations for a regular LDPC
code withn = 480, d:. = 3 andd, = 6.

Fig. 3 illustrates the impact of this choice on the perforoeaof
IDS schemes for the simulated LDPC coding system on the AWGN
channel. For an incrementing number of message updatebe
classic decoding iteration number increments as deschped

z= [Midj (6)

while the modified decoding iteration number increments iasng
by

_ Tk(de —1)(dv — 1)
v [ Md, W ™

nodes that receive those updates. This process is thenteédpea where[a] corresponds the smallest integer larger than

The RBP strategy is illustrated in Fig. 2. An extension of RE&P
algorithm, known as NS-BP [24], works in a similar way but up-
dates all messages from the check node associated withrgesta

residual.

3.2 Effective Decoding Iterations

In this section, we present the concept of effective deapdira-
tions, which helps to establish an equivalence betweertéhations

of IDS schemes and standard BP algorithms that can be useful i
their comparison. In our development, we first define an edgit
iteration. The iterations of standard BP algorithms arevedgnt to
certain points in the processing of IDS decoders. Spedifjcak
have adopted the approach in [24], termed classic iterstiorpro-
vide a reference to the RBP and NS-BP algorithms. Moreover, w
evaluate the performance when the number of message updates
the check node assigned by IDS-based algorithms equalsothat
the standard schemes. This means that all message coropsita
quired for the calculation of the residual are considere@ @sst

of the scheduling strategy examined. However, the extrategdre
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4  Proposed Knowledge-Aided Informed Dynamic
Scheduling

In this section, we describe the proposed knowledge-aitfedned
dynamic scheduling technique and detail its main charisties.

In order to lower the computational complexity of IDS scheme
and to enjoy the excellent decoding speed of those schenees, w
have examined the nodes at which message updates resu# in th
highest performance benefit. In addition, we have also densd

that it would be beneficial if the IDS algorithm could skip thee-
computation and storage of all messages as required by R8P an
NS-BP. By observing the message update behavior of the iiagin

of the operation, (5) reduces to the following:

P 0,) = (8 | ®)

By examining the properties of (2) we notice that this realds as-
sociated with the edge of the graph with the LLR having thellesia
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Fig. 4: Residual values for a codeword produced by a PEG design

with n = 480, k = 256 and operating ak;, /Ny = 3 dB.

magnitude,mgf;LCi |. The magnitude of the LLR is denoted the re-
liability of the message because it provides informationutlihe
confidence level of the message associated with the bit dlthe
node.We have observed the residuals and the reliability of the in-
coming messages and found that the largest residual mesaage
be found at the edges with the smallest incoming reliagditn the
vast majority of the occurrences, as illustrated in the neyw4 We
have also tested the use of an arbitrary number of residlisyda
range from two to ten) but found that using more than two hds no
resulted in further performance gains. Therefore, we haptoied
this observation to reduce the number of computations adueats
required to only two for each message update.

The message updates of the proposed Rel-RBP algorithmrare ca
ried out according to the following procedure: for the chedde
cm, We identify the two incoming messages associated with the
smallest absolute value, i.e., the two incoming messag#s the
smallest reliabilities as given by

(k+1) (k+1) : (k+1)
= min 9
Ky, —em |an1 Sem| neN () [40n e |5 9)
and
k+1 k+1 . k+1
o e i e, = min a1 0)

neN (cm)\n1

For the variable nodes,, andwv,.,, we calculate the variable-node
residual described by

k41 k41 k
e = R, ) e {nma} (A1)
Then, we compute the check-node residual as given by
k41 k+1 k+1 . k41
Re Y =5 85, = min T (12)
ne{ni,n2}
k4
where the variable node; and its related messagé"ﬁm are
stored.
This procedure is conducted again for each= 1, ..., k. Then,

we assign the message update that corresponds to the leingekt
node-residual, which is selected according to:
R+ R (13)

max
me{l,...,k}

Every time a check node, is identified, the associated message
uﬁ’j:gw is assigned, where bothandpgai}gn are the values stored
for ¢, that are calculated according to (11) and (12).

The main steps required in the calculation of the residudhef
check node are shown in Fig. 5, where Fig. 5a) depicts theifaen

tion of the two messages with smallest reliabilities in blieig. 5b)
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Fig. 5: Main steps for computing the reliability-based residual.

illustrates how the outgoing messages on those two idehifiges

are computed and Fig. 5¢) shows the stored variables fockiek

(k+1)

Cm,

(k+1)

node, namely{R, 3 Vngs K v,

b

Algorithm 1 Proposed Rel-RBP Algorithm

1: Initialization

240 S =0,u) = em=1Ln

ip=1

. For each check node,
residual

hw

identify and calculate the maximum

(1) (1)

=Tep—v, = MAXTe,, -0,

R _

Cm

and store the message,, -,
5: while stoppping rule is not satisfietb

6:  Obtain¢, and compute the following:
Rgf+1) = max ”Rgcjl)
m
7:  Propagateuc,—v., and set the appropriate entries of the
vectori, to zero.
8:  Perform a verification of the indicator vecti
9: if sun(ibg == 0 then

100 REFD —¢

11:  eseif sum(¢,) == 1then

12: Apply (9) and (10) with the setsN(c,)\vq and

N (¢p)\(vg N'n1) in the minimization operations, where
vq is the node with nonzero entry of.

13:  dse

14: Apply (9) and (10) unchanged.

15:  endif

16: For the selected check node,, identify and calculate the
next-largest residudl’,gfﬂ) and store the message, v,

17:  Update eachuy,,—c,, cqg € N (ve)\cp and M, according to
(2) and (3) respectively, and s&f to one in the appropriate
position.

18: for eachc, do

19: Perform verification of the indicator vectés as above

20: Identify and compute the check node residual

Rgljﬂ)
and save the message,—uv,.,vr € N(cq)\ve, keeping
the valuer.

21:  endfor

22:  if the iteration count incrementken

23: Stopping rule: perform parity-checks and stop if all checks

are satisfied or if the maximum iteration count has been
reached.

24:  endif

25: end while
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In order to save computations of residuals when there is mo ne the incoming messages with the smallest reliability, ilee, mes-

incoming information at a check node, we have adopted a sitvipl
nary indicator vector which is represented#y at each check node
cm. The entries off;, correspond to the edges incident @n. The
binary indicator vectoi, is initialized with ones in all entries. An

entry in<,, is set to zero when its corresponding edge has an outgo-

sage on edge. In contrast, the update of Rel-RBP will be dictated
by the message with the second smallest reliability, he.ntessage
on edgee. In this case, we have

|trBP 26 < |URel—RBP,2b|- (16)

ing message assigned and is set to one when an incoming reessag

update is assigned. Then, prior to the use of (9)-(13), thewimng

verification is performed for each check nodei,Jf contains all ze-
ros, therﬂzgkjl)
entry, then the recursions (9)-(13) are applied to the setigés ex-
cluding the edge related with the nonzero entry. Otherwgsgons

(9)-(13) are applied to all edgesat, .

5 Analysis

In this section we analyze the performance and the complekihe
proposed Rel-RBP and existing decoding algorithms.

5.1 Performance Analysis

The convergence of the SPA algorithm for a cycle free graph is

guaranteed. However, for graphs with cycles the convergennot
guaranteed even though message passing decoding algortiem
widely known to perform well in general. The performance ef d
coders is particularly good for graphs with a reduced nundier
short cycles and improved connectivity in the graph stmectin this

section, we analyze and discuss the procedure by which gessa

are passed in the RBP and the proposed Rel-RBP algorithms.

Consider an arbitrary check node with incoming messagds wit
edges labeled as b, ¢, d ande. According to the RBP strategy, at a

given check node we select the message that has the largielstale
In contrast, with the Rel-RBP algorithm we select the messay
the basis of the incoming message reliability as well as thesage
residuals. In the following analysis, we suppose that thesage that

arrives at edge has the lowest reliability and that the message that
arrives at edge has the second lowest reliability. In other words,

there are two possible outcomes to be examined: the firstame-c
sponds to the situation in which the edge associated withatgest

residual isa or e, whereas the second is the scenario in which the

edge with the largest residual couldie or d. In the first scenario,

is set to zero. Ifi,;, contains exactly one nonzero

Thus, we find that at each check node we will obtain

|urBP| < [URel—RBP|; 17)

where the equality will only hold for the first scenario piawsly
described. Since the magnitudes of the messages corresptmel
level of reliability of the bit at the variable node, the fattiat
Rel-RBP can generate messages with larger magnitudes éhex-a
changed in sectors of the graph, which might have LLRs witalkm
magnitudes, can accelerate the convergence of the deddikewill
be corroborated by the numerical simulations in the nextaed/Ve
also note that the reduced number of iterations requiredeiyRIBP
is highly suitable and useful for URLL scenarios and har@éwar-
plementations that cannot deal with large storage reqeinésnfor
residuals and messages.

5.2  Complexity Analysis

Amongst the main motivation factors for the development @fet
decoding algorithms are the decoding latency of standarddiihg)
BP algorithms and the relatively high complexity of the poesly
reported IDS algorithms to choose in a flexible way the messag
to be updated. The computational cost of the decoding tgqaksi
considered in this work is detailed in Table 1 as a functionhef
number of updateg, the number of variable nodes the number
of check node#;, the average degree of check nodesthe average
degree of variable node$, and the total number of edges in the
graph. We note that the figures included in Table | corresportide
computational effort required considering classic iterat and for
each scheduling technique, as described in [30]. When wsiden
the modified decoding iterations, each decoding techniges the
check node update equation the same number of times.

We also provide a graphical illustration of the complexisr jt-
eration. Fig. 6 a) illustrates the variation of complexity & fixed

RBP and Rel-RBP choose the same update message from this nodg, e rate and degree distributions and increasing blodjtemhile

according to:
lurBP,1] = [HRe1-RBP,1]- (14)

In the second scenario, the message is different and the valu

depend on which edge, i.ez,0r e, is associated with the largest

residual. If the residual with the largest value correspgotaedge
e that has the message with the second smallest reliabilithieat
node, then the update of the message will consider the mestaag

arrive at edges, b, ¢ andd. Conversely, the update of messages

of RBP for the edge with the largest overall residual, i.dgesb,
will involve the messages that arrive at edges;, d, e. Since the
update of the check nodes employs a recursion with the hgperb
tangent function, the message that is updated is influengetieh
smallest absolute value among the messages that arrive atigies
of interest in this update. In this situation, whose edgefsrred as

2a, the message that arrives at edd®as the largest influence on the
update and so the message updated for RBP and Rel-RBP ala simi

and given by
|4RBP 24| = |tReI—RBP,2al- (15)

Eventually, when the RBP algorithm selects a message todzgeqh
and such message is not amongst those with the smallesiiligéa
then the proposed Rel-RBP algorithm finds that the residssd-a

Fig. 6 b) shows how the complexity changes for the differegrde
distributions provided in Tables 1 and 2 of [31], where therage
check and variable node degrees were used. The number obfuses
the check node update equation (2) is taken as the measuoenef ¢
plexity in both plots. This is justified by the fact that, fbetstandard
BP, the complexity of the check node update is greater thatnoth
the variable node update (3) and thus dominates the overait ¢
plexity. Secondly, Rel-RBP and the standard IDS schemasireeq
the same number of uses of the variable node update perccitzssi
ation, and thus will differ in complexity only in the numberaheck
node updates. Additionally, LBP requires approximately same
number of variable node updates as those IDS schemes, wherea
standard BP requires fewer uses of the variable node upgattien

per iteration.

6 Simulations

In this section, we evaluate the performance of the propeset
existing decoding algorithms using Monte Carlo simulagiom
particular, we consider regular LDPC codes with rBte= 1/2, pa-
rameters of check and variable nodes given(By6) and block
lengthn = 480, irregular LDPC codes with rat® = 1/2 that are

ciated with edge: is larger than the residual associated with edge used by the WiIMAX standard [3] and block length= 576 and
e. In this case, the updated message for RBP will be governed byregular LDPC codes with rat® = 1/2, parameters of check and

IET Research Journals, pp. 1-9
© The Institution of Engineering and Technology 2015



Table 1 Computational complexity required by decoding algorithms.

Algorithm Variable to check Check to variable Message Real-time
node update node update residual comparisons
Standard BP I I 0 0
LBP 1 I 0 0
RBP (dv — )T I (dy — 1)(de — )T (E—1)I/dy
NW-RBP (dv — )T I (dy — 1)(de — )T (E—1)I/dy
Proposed Rel-RBR  (dy — 1)1 I (dv —1)(de = 1)1 | 2(dv — 1)(2(de — 1) + D) + (n— k)T
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Fig. 6: Computational complexity versus a) block length with=
1/2 and b) different degree distributions.

variable nodes given b§3, 6) and block lengthh = 100. We con-
sider an additive white Gaussian noise channel (AWGN) for al
simulations but remark that other channels have also beesid=sred
and no significant difference in the performance hierarcy leen
observed, which motivated us to focus on the AWGN channehier
sake of simplicity. We have chosen as the figure of merit tessthe

—6—BP - flooding
E N =388 —#=—BP _ |ayered
. —%— RBP
107 ~&—NS-BP
—&— Rel -RBP

15 20 25
Classic Iterations

30 35
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A, "FHg
QA Ong ——BP - layered
AA Hgg - A-Rep
b Uog, - B - NS-BP
52 % ElB - ¢ = Rel-RBP

(b)

Fig. 7: a) BER performance versus classic iterations for a regular
code withn = 480 b) BER performance versus modified iterations
for a regular code with = 480.

proposed and existing decoding iterations the bit erra (BER)
performance. Specifically, we have obtained BER curvesnagai
the number of classic iterations, the proposed modified alting
iterations and the signal-to-noise ratio (SNR).
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Fig. 8: a) BER performance versus SNR for a regular code with
n = 480 and a maximum o iterations. b) BER performance ver-
sus SNR for a regular code with = 480 and a maximum oR0
iterations.

We illustrate the BER performance versus the classic and mod
ified decoding iterations of the proposed and existing diecpd
techniques in Fig. 7. The results of Fig. 7 a) indicate thahwi
the classic measure Rel-RBP has excellent performancesiorad
number of iterations, outperforming the RBP decoding sehéhith
a larger number of iterations, RBP and NS-BP outperform &R
by a small margin. Conversely, the results of Fig. 7 b) shatwith
the modified decoding iterations Rel-RBP outperforms thePRB
the NS-BP, the LBP and the BP decoding algorithms. In additio
it should be mentioned that the complexity of Rel-RBP is gign
cantly lower than the other decoders as highlighted by thdifired
decoding iterations that make the decoding cost more eviden

107 T T T T
—6— BP - flooding
=t BP _ |ayered
=%~ RBP - Mod. Iters.
+={~" Rel.-RBP - Mod. lters. ||
—&— Rel.-RBP - Classic Iters.
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10

Il
20
[terations

Fig. 9: BER performance versus iterations for the WIMAX irregular
code withn = 576.

20, respectively. The results of Fig. 8 a) show that for 5 ifers
Rel-RBP outperforms RBP using the classic iterations. Iriqa
lar, the BER curves with the modified decoding iterationsaatk
that for an equivalent computational complexity Rel-RBRpet-
forms the standard BP and the RBP algorithms. It should bednot
that classic and modified iterations of the standard BP arfd ai
equivalent. The results of Fig. 8 b) for a maximum of 20 itienag
illustrates that with the classic iterations RBP is sligliiktter than
Rel-RBP. However, with the modified decoding iterations-RBIP
outperforms the remaining decoding algorithms.

The BER performance against the number of iterations is show
in Fig. 9 a) for irregular LDPC codes of the WIMAX standardngsi
both classic and modified decoding iterations. The propdseld
RBP algorithm outperforms the other decoding algorithmth whe
classic decoding iterations for a small number of iteratiand con-
verges to the same level of BER as the RBP algorithm. If weidens
the modified decoding iterations then Rel-RBP outperforrd® R
while requiring a significantly lower computational comytg.

In the next examples, we examine a scenario that is envisaged
for super dense networks and URLL applications, where tharmél
coding aspects are significantly constrained in terms ofprde:
tional cost and latency. For this reason, the use of coddsshibrt
blocks and a small number of decoding iterations is consitlen
particular, we study the performance of regular LDPC codik w
parameters3,6) and block lengthn = 100 using the proposed
Rel-RBP and existing decoding algorithms. The results &gpw
the BER performance against the number of iterations and SNR
are illustrated in Fig. 10. The curves shown in 10 a) are obthi
for SNR = E}, /Ny = 4.5 dB and for a maximum of 20 iterations,
and indicate that the BER performance of Rel-RBP is supéoior
RBP for a small number of iterations and much superior todsteh
BP for up to 20 iterations, which suggests that the proposeld R
RBP algorithm is an excellent choice for URLL applicatiofitie
plots shown in Fig. 10 b) illustrate the BER performance asfai
SNR using a maximum o decoder iterations for the proposed
and existing algorithms, and show that Rel-RBP achievedés
performance together with RBP when considering classiatitens,

In Fig. 8 we present the BER performance against the SNR of the outperforming by a substantial margin the standard BP dlgor

proposed and existing techniques for the regular LDPC catle w
n = 480 using a fixed maximum number of iterations equab snd
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When considering the modified iterations, Rel-RBP is sigaifily
better than RBP and standard BP.
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Fig. 10: a) BER performance versus iterations for the regular LDPC
code withn = 100 and a maximum o20 iterations. b) BER perfor-
mance versus SNR for the regular LDPC code with 100 and a

maximum of6 iterations.

7 Conclusions

In this paper, we have introduced a way of measuring decatling
erations for IDS techniques that is useful for comparisorppses

and developed an improved knowledge-based dynamic sdhgdul
scheme, denoted Rel-RBP, based on the reliability of thed &R
changed in the message passing. Rel-RBP has been showieieach
improved performance with reduced complexity with respedhe
RBP and NS-BP schemes, resulting in very fast convergence to
low levels of BER using LDPC codes with short blocks. The pro-
posed Rel-RBP algorithm may contribute to addressing gerih
requirements of latency and energy efficiency of future \ege

systems.
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