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Abstract: Low-density parity-check (LDPC) codes have excellent performance for a wide range of applications at reasonable com-
plexity. LDPC codes with short blocks avoid the high latency of codes with large block lengths, making them potential candidates
for ultra reliable low-latency applications of future wireless standards. In this work, a novel informed dynamic scheduling (IDS)
strategy for decoding LDPC codes, denoted reliability-based residual belief propagation (Rel-RBP), is developed by exploiting the
reliability of the message and the residuals of the possible updates to choose the messages to be used by the decoding algorithm.
A different measure for each iteration of the IDS schemes is also presented, which underlies the high cost of those algorithms
in terms of computational complexity and motivates the development of the proposed strategy. Simulations show that Rel-RBP
speeds up the decoding at reduced complexity and results in error rate performance gains over prior work.

1 Introduction

Low-density parity-check (LDPC) codes, invented by Gallager [1],
have been widely adopted in industry standards in recent years in-
cluding IEEE 802.11ad (WI-FI) [2], IEEE 802.16e (WiMAX) [3],
DVB-S2 [4], IEEE 802.3an (Ethernet) [5] and for enhanced mobile
broadband applications of the 5th generation of wireless communi-
cations systems. In recent standards, codes with shorter blocks have
been proposed, rather than codes with larger blocks as originally
advocated for LDPC codes. This is key for the adoption of these
codes in future wireless systems and applications such as ultra re-
liable low-latency (URLL) for machine-type communications [6],
as the decoding time required by codes with large blocks might re-
sult in unacceptable latency. The structure of the LDPC codes are
amenable to low complexity decoding, whereas the computational
cost of encoding can be reduced with the help of structured graphs
[7–9]. Indeed, cost-effective encoding and decoding of LDPC codes
can be an important element that contributed to the energy efficiency
of future networks.

The decoding of LDPC codes based on message passing performs
very well for large blocks. However, the decoding may experience
performance degradation in the presence of cycles found in codes
with short blocks. Designs for short blocks [10–12] may be used to
mitigate the effects of cycles and improve the performance of LDPC
codes by modifying the graph used in the decoding. Another issue
with message-passing decoding for LDPC codes in situationswith
strict requirements on latency and energy consumption [6],is the
need for many decoding iterations of the standard belief-propagation
type algorithms [1, 13–16] such as the sum-product algorithm (SPA)
[1] and the minimum-sum algorithm (Min-sum) [13]. The compu-
tational burden of the decoding task can be reduced by introducing
approximations to the recursions of SPA as in Min-sum at the cost
of error rate degradation. The Min-sum algorithm can be enhanced
by introducing correction factors in the check node update approxi-
mation, through a multiplicative normalization update factor [15] or
an additive offset update factor [14]. In such case, the computational

cost per iteration is smaller but the number of required decoding it-
erations remains the same. In order to accelerate the convergence
of decoding algorithms, techniques based on reweighting [17–19]
and scheduling [20–24, 27–30] have been studied in the last few
years. Reweighting techniques apply scaling factors to thecheck
node update to address the overconfidence introduced by messages
exchanged in the presence of cycles. In contrast, scheduling strate-
gies exploit the status of the messages exchanged in the graph to
determine the next update of message and which message update
brings the highest gain.In particular, dynamic scheduling techniques
are suitable for short-block LDPC codes because such codes exhibit
a larger number of short cycles and a smaller girth than large-block
LDPC codes, which are known to affect the performance of message
passing algorithms [12].

In the context of scheduling techniques, the introduction of the
residual belief propagation (RBP) [20], the node-wise BP (NW-
BP) [24] and the sequential Layered Belief Propagation (LBP) [21]
algorithms have motivated a number of studies and further improve-
ments. RBP uses the largest residual obtained from the absolute
value of the difference between the messages exchanged between
nodes and the message to be updated. LBP employs the most recent
message in the graph by performing updates in a serial ratherthan
parallel manner. The informed dynamic scheduling (IDS) schemes
[20, 22–24] offer a substantially enhanced performance in terms
of convergence speed and error rate, while requiring a significantly
higher computational cost due to the extra operations needed to com-
pute residual, many of which are discarded and recomputed when the
status of the messages in the graph changes (i.e., when a message
is updated, the residuals of the messages affected in the following
iteration must be recomputed).

In this work, we present a dynamic schedule, named reliability-
based residual belief propagation (Rel-RBP) whose preliminary
results were reported in [25, 26]. The proposed Rel-RBP approach
exploits the reliability of the messages and the residuals of possi-
ble updates to speed up decoding algorithms. We consider a notion
of reliability that corresponds to the magnitude of the log-lihelihood
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Fig. 1: a) A general LDPC coding system. b) A pictorial description
of a Tanner graph.

ratios (LLRs) for log-domain BP algorithms. Using the concept of
reliability with possible message updates, a message is then selected
for update by computing and comparing its residuals as in theRBP
and NW-BP schemes. This approach has two benefits: it limits the
use of the residual, thereby reducing the complexity of the algorithm;
and prioritizes the update of messages with lower incoming reli-
ability, resulting in accelerated convergence due to the update of
information in parts of the graph that did not contributed towards
convergence. Rel-RBP has the key feature that message updates as-
sociated with a large change in the LLRs (i.e. have a large residual)
at nodes with strong beliefs are avoided in order to promote smaller
changes at nodes with unreliable beliefs. Simulations indicate that
Rel-RBP results in substantial gains in the convergence speed of the
decoding algorithm when considering standard decoding iterations.
An analysis of the update rules of Rel-RBP shows that the complex-
ity reduction of the proposed approach makes it more practical than
existing IDS schemes.

The main contributions of this work can be summarized as:

• A novel knowledge-based message passing approach that exploits
the reliability of the messages in the graph for the decodingof LDPC
codes.
• A low-complexity message passing algorithm that exploits the re-
liability of the messages to produce the decoding schedule at a lower
cost.
• An alternative approach for measuring the number of effective
iterations which provides insight into the computational cost and
effectiveness of the algorithms considered.
• Analyses of the computational complexity and fundamental ad-
vantages of the proposed and existing algorithms.

The remainder of this paper is structured as follows: Section 2 in-
troduces the notation and the model of the LDPC system. Section
3 reviews the recursions employed by the SPA and the RBP al-
gorithms, introduces the alternative measurement of the iterations
performed in the IDS schemes and explains the rationale for the
work described in this paper. In Section 4, the proposed Rel-RBP
algorithm is detailed. Section 5 presents the simulation study and
the discussion of the results. Section 6 concludes the paper.

2 LDPC System Model

A general LDPC coding system is considered in this work, as shown
in Fig. 1 a), where a message represented by the1× k vectorm is
encoded to the length1× n code word vectorc, subjected to the

channel such that the decoder operates on the vectorr to produce an
estimate of the code word̂c.

In the decoder, a message passing algorithm works with a bipartite
graph that corresponds to the parity-check matrix of the code. Such
graph, known as a Tanner graph, is shown in Fig. 1 b), whereas the
corresponding parity-check matrix is given by

H =











1 1 0 1 0 1 0 0
0 1 1 1 0 0 0 1
0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 0
1 0 0 0 0 0 1 1











. (1)

The number of rows in the matrix that corresponds to the check
nodes in the graph is defined asn− k, whereas the number of
columns that refers to the variable nodes is defined asn. The av-
erage number of entries in a row and column are labeleddc anddv ,
respectively.

3 BP Decoding, RBP Scheduling and Effective
Iterations

BP decoding is the most prominent approach for decoding LDPC
codes. And the most popular BP decoding techniques are the SPA
and the Min-sum. Moreover, scheduling can be used in conjunction
with these two techniques to accelerate their convergence.In what
follows, we make a review of the SPA with the RBP techniques.

3.1 BP Decoding and RBP Scheduling

In SPA, the messages are exchanged between the variable and the
check nodes of the Tanner graph and are updated by the following
recursions:

µ
(k)
ci→vj = 2 tanh−1

(

∏

j′∈N (ci)\j

tanh
(
µ
(k)
vj′→ci

2

)

)

, (2)

µ
(k+1)
vj→ci = Lj +

∑

i′∈N (vj)\i

µ
(k)
ci′→vj , (3)

where the messageµ(k)
ci→vj is calculated at the check nodes. This

message computation is based on the parity constraints of the code
andµ(k+1)

vj→ci denotes the messages calculated at the variable nodes
and exchanged with the check nodes. The notationN (na) refers to
the neighbourhood of nodena, i.e., the set of nodes connected tona

by an edge. The quantityA\b corresponds to the setA excluding the
elementb.

The log-likelihood ratio (LLR) for the a posteriori probabilities
corresponds to the input to the decoder and is based on the received
codeword bit from the channel,Lj , and the estimate for the nodevj
is taken from the sign of the final LLR for that node as described by

M
(k+1)
j = Lj +

∑

i∈N (vj)

µ
(k)
ci→vj , (4)

In the RBP decoding approach, the message passing algorithm
iterates in individual check-to-variable message updatesinstead of
updating all nodes of one or both types, as occurs with the LBPor
the standard BP algorithms, respectively. In the binary version of the
RBP algorithm, the next message to be updated is selected by the
message residuals according to:

r(µ
(k)
ci→vj ) = |µ

(k)
ci→vj − µ

(k−1)
ci→vj |. (5)

The RBP algorithm assigns only the message update with the largest
residual and stores all other message updates for possible use in fu-
ture iterations. With this approach, messages leaving the variable
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Fig. 2: The main recursions of the RBP strategy.

node vj that receive the assigned check-to-variable message are
updated. The algorithm then computes new residuals at all check
nodes that receive those updates. This process is then repeated.
The RBP strategy is illustrated in Fig. 2. An extension of theRBP
algorithm, known as NS-BP [24], works in a similar way but up-
dates all messages from the check node associated with the largest
residual.

3.2 Effective Decoding Iterations

In this section, we present the concept of effective decoding itera-
tions, which helps to establish an equivalence between the iterations
of IDS schemes and standard BP algorithms that can be useful in
their comparison. In our development, we first define an equivalent
iteration. The iterations of standard BP algorithms are equivalent to
certain points in the processing of IDS decoders. Specifically, we
have adopted the approach in [24], termed classic iterations, to pro-
vide a reference to the RBP and NS-BP algorithms. Moreover, we
evaluate the performance when the number of message updatesin
the check node assigned by IDS-based algorithms equals thatof
the standard schemes. This means that all message computations re-
quired for the calculation of the residual are considered asa cost
of the scheduling strategy examined. However, the extra updates are

often indistinguishable from those carried out for the messages ex-
changed. Furthermore, the message computations must be done with
up-to-date information and cannot be computed in previous message
exchanges. This suggests the adoption of an alternative effective de-
coding iteration measure. The modified decoding iteration is defined
as the point in the processing of the IDS-based algorithm at which
the number of check node message updates computed is equal to
that of the standard BP and LBP schemes. With this modified de-
coding iteration measure a single iteration of each scheme (standard
BP and IDS-type) requires the same number of check node updates,
resulting in a comparable computational complexity.

Fig. 3: Modified/classic decoding iterations for a regular LDPC
code withn = 480, dc = 3 anddv = 6.

Fig. 3 illustrates the impact of this choice on the performance of
IDS schemes for the simulated LDPC coding system on the AWGN
channel. For an incrementing number of message updates,k, the
classic decoding iteration number increments as describedby

x =
⌈ k

Mdc

⌉

, (6)

while the modified decoding iteration number increments as given
by

x =
⌈k(dc − 1)(dv − 1)

Mdc

⌉

, (7)

where⌈a⌉ corresponds the smallest integer larger thana.

4 Proposed Knowledge-Aided Informed Dynamic
Scheduling

In this section, we describe the proposed knowledge-aided informed
dynamic scheduling technique and detail its main characteristics.
In order to lower the computational complexity of IDS schemes
and to enjoy the excellent decoding speed of those schemes, we
have examined the nodes at which message updates result in the
highest performance benefit. In addition, we have also considered
that it would be beneficial if the IDS algorithm could skip thepre-
computation and storage of all messages as required by RBP and
NS-BP. By observing the message update behavior of the beginning
of the operation, (5) reduces to the following:

r(µ
(k)
ci→vj ) = |µ

(k)
ci→vj |. (8)

By examining the properties of (2) we notice that this residual is as-
sociated with the edge of the graph with the LLR having the smallest
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Fig. 4: Residual values for a codeword produced by a PEG design
with n = 480, k = 256 and operating atEb/N0 = 3 dB.

magnitude,|µ(k)
vj→ci |. The magnitude of the LLR is denoted the re-

liability of the message because it provides information about the
confidence level of the message associated with the bit valueof the
node.We have observed the residuals and the reliability of the in-
coming messages and found that the largest residual messagecan
be found at the edges with the smallest incoming reliabilities in the
vast majority of the occurrences, as illustrated in the new Fig. 4. We
have also tested the use of an arbitrary number of residual values (a
range from two to ten) but found that using more than two has not
resulted in further performance gains. Therefore, we have exploited
this observation to reduce the number of computations of residuals
required to only two for each message update.

The message updates of the proposed Rel-RBP algorithm are car-
ried out according to the following procedure: for the checknode
cm, we identify the two incoming messages associated with the
smallest absolute value, i.e., the two incoming messages with the
smallest reliabilities as given by

µ
(k+1)
vn1

→cm : |µ
(k+1)
vn1

→cm | = min
n∈N (cm)

|µ
(k+1)
vn→cm |, (9)

and

µ
(k+1)
vn2

→cm : |µ
(k+1)
vn2

→cm | = min
n∈N (cm)\n1

|µ
(k+1)
vn→cm |. (10)

For the variable nodesvn1
andvn2

, we calculate the variable-node
residual described by

r
(k+1)
cm→vn = |µ

(k+1)
cm→vn − µ

(k)
cm→vn |, n ∈ {n1, n2} (11)

Then, we compute the check-node residual as given by

R
(k+1)
cm = r

(k+1)
cm→vx : r

(k+1)
cm→vn = min

n∈{n1,n2}
r
(k+1)
cm→vn , (12)

where the variable nodevx and its related messageµ(k+1)
cm→vx are

stored.
This procedure is conducted again for eachm = 1, . . . , k. Then,

we assign the message update that corresponds to the largestcheck-
node-residual, which is selected according to:

R
(k+1)
ca = max

m∈{1,...,k}
R

(k+1)
cm . (13)

Every time a check nodeca is identified, the associated message
µ
(k+1)
ca→vn is assigned, where bothn andµ(k+1)

ca→vn are the values stored
for ca that are calculated according to (11) and (12).

The main steps required in the calculation of the residual ofthe
check node are shown in Fig. 5, where Fig. 5a) depicts the identifica-
tion of the two messages with smallest reliabilities in blue. Fig. 5b)

Fig. 5: Main steps for computing the reliability-based residual.

illustrates how the outgoing messages on those two identified edges
are computed and Fig. 5c) shows the stored variables for thatcheck
node, namely,{R(k+1)

cm , vn2
, µ

(k+1)
cm→vn2

}.

Algorithm 1 Proposed Rel-RBP Algorithm

1: Initialization
2: µ0

cm → vn = 0, µ0
vn → cm = Ln

3: ib = 1

4: For each check node, identify and calculate the maximum
residual

R
(1)
cm = r

(1)
cm→va = max

n
r
(1)
cm→vn

and store the messageµcm→va

5: while stoppping rule is not satisfieddo
6: Obtaincb and compute the following:

R
(k+1)
cb = max

m
R

(k+1)
cm

7: Propagateµcb→vc , and set the appropriate entries of the
vectorib to zero.

8: Perform a verification of the indicator vectorib:
9: if sum(ib) == 0 then

10: R
(k+1)
cb = 0

11: else if sum(ib) == 1 then
12: Apply (9) and (10) with the setsN (cb)\vq and

N (cb)\(vq ∩ n1) in the minimization operations, where
vq is the node with nonzero entry ofib.

13: else
14: Apply (9) and (10) unchanged.
15: end if
16: For the selected check node,cb, identify and calculate the

next-largest residualR(k+1)
cb and store the messageµcb→vp

17: Update eachµvc→cd , cd ∈ N (vc)\cb andMvc according to
(2) and (3) respectively, and setid to one in the appropriate
position.

18: for eachcd do
19: Perform verification of the indicator vectorib as above
20: Identify and compute the check node residual

R
(k+2)
cd

and save the messageµcd→vr , vr ∈ N (cd)\vc, keeping
the valuer.

21: end for
22: if the iteration count incrementsthen
23: Stopping rule: perform parity-checks and stop if all checks

are satisfied or if the maximum iteration count has been
reached.

24: end if
25: end while
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In order to save computations of residuals when there is no new
incoming information at a check node, we have adopted a simple bi-
nary indicator vector which is represented byim at each check node
cm. The entries ofib correspond to the edges incident oncm. The
binary indicator vectorim is initialized with ones in all entries. An
entry inim is set to zero when its corresponding edge has an outgo-
ing message assigned and is set to one when an incoming message
update is assigned. Then, prior to the use of (9)-(13), the following
verification is performed for each check node. Ifim contains all ze-
ros, thenR(k+1)

cm is set to zero. Ifim contains exactly one nonzero
entry, then the recursions (9)-(13) are applied to the set ofedges ex-
cluding the edge related with the nonzero entry. Otherwise equations
(9)-(13) are applied to all edges atcm.

5 Analysis

In this section we analyze the performance and the complexity of the
proposed Rel-RBP and existing decoding algorithms.

5.1 Performance Analysis

The convergence of the SPA algorithm for a cycle free graph is
guaranteed. However, for graphs with cycles the convergence is not
guaranteed even though message passing decoding algorithms are
widely known to perform well in general. The performance of de-
coders is particularly good for graphs with a reduced numberof
short cycles and improved connectivity in the graph structure. In this
section, we analyze and discuss the procedure by which messages
are passed in the RBP and the proposed Rel-RBP algorithms.

Consider an arbitrary check node with incoming messages with
edges labeled asa, b, c, d ande. According to the RBP strategy, at a
given check node we select the message that has the largest residual.
In contrast, with the Rel-RBP algorithm we select the message on
the basis of the incoming message reliability as well as the message
residuals. In the following analysis, we suppose that the message that
arrives at edgea has the lowest reliability and that the message that
arrives at edgee has the second lowest reliability. In other words,
there are two possible outcomes to be examined: the first one corre-
sponds to the situation in which the edge associated with thelargest
residual isa or e, whereas the second is the scenario in which the
edge with the largest residual could beb, c or d. In the first scenario,
RBP and Rel-RBP choose the same update message from this node
according to:

|µRBP,1| = |µRel−RBP,1|. (14)

In the second scenario, the message is different and the value will
depend on which edge, i.e.,a or e, is associated with the largest
residual. If the residual with the largest value corresponds to edge
e that has the message with the second smallest reliability atthe
node, then the update of the message will consider the messages that
arrive at edgesa, b, c andd. Conversely, the update of messages
of RBP for the edge with the largest overall residual, i.e., edge b,
will involve the messages that arrive at edgesa, c, d, e. Since the
update of the check nodes employs a recursion with the hyperbolic
tangent function, the message that is updated is influenced by the
smallest absolute value among the messages that arrive at the edges
of interest in this update. In this situation, whose edge is referred as
2a, the message that arrives at edgea has the largest influence on the
update and so the message updated for RBP and Rel-RBP are similar
and given by

|µRBP,2a| ≈ |µRel−RBP,2a|. (15)

Eventually, when the RBP algorithm selects a message to be updated
and such message is not amongst those with the smallest reliabilities
then the proposed Rel-RBP algorithm finds that the residual asso-
ciated with edgea is larger than the residual associated with edge
e. In this case, the updated message for RBP will be governed by

the incoming messages with the smallest reliability, i.e.,the mes-
sage on edgea. In contrast, the update of Rel-RBP will be dictated
by the message with the second smallest reliability, i.e., the message
on edgee. In this case, we have

|µRBP,2b| < |µRel−RBP,2b|. (16)

Thus, we find that at each check node we will obtain

|µRBP| ≤ |µRel−RBP|, (17)

where the equality will only hold for the first scenario previously
described. Since the magnitudes of the messages correspondto the
level of reliability of the bit at the variable node, the factthat
Rel-RBP can generate messages with larger magnitudes that are ex-
changed in sectors of the graph, which might have LLRs with small
magnitudes, can accelerate the convergence of the decoder.This will
be corroborated by the numerical simulations in the next section. We
also note that the reduced number of iterations required by Rel-RBP
is highly suitable and useful for URLL scenarios and hardware im-
plementations that cannot deal with large storage requirements for
residuals and messages.

5.2 Complexity Analysis

Amongst the main motivation factors for the development of novel
decoding algorithms are the decoding latency of standard (flooding)
BP algorithms and the relatively high complexity of the previously
reported IDS algorithms to choose in a flexible way the messages
to be updated. The computational cost of the decoding techniques
considered in this work is detailed in Table 1 as a function ofthe
number of updatesI , the number of variable nodesn, the number
of check nodesk, the average degree of check nodesdc, the average
degree of variable nodesdv and the total number of edges in the
graph. We note that the figures included in Table I correspondto the
computational effort required considering classic iterations and for
each scheduling technique, as described in [30]. When we consider
the modified decoding iterations, each decoding technique uses the
check node update equation the same number of times.

We also provide a graphical illustration of the complexity per it-
eration. Fig. 6 a) illustrates the variation of complexity for a fixed
code rate and degree distributions and increasing block length while
Fig. 6 b) shows how the complexity changes for the different degree
distributions provided in Tables 1 and 2 of [31], where the average
check and variable node degrees were used. The number of usesof
the check node update equation (2) is taken as the measure of com-
plexity in both plots. This is justified by the fact that, for the standard
BP, the complexity of the check node update is greater than that of
the variable node update (3) and thus dominates the overall com-
plexity. Secondly, Rel-RBP and the standard IDS schemes require
the same number of uses of the variable node update per classic iter-
ation, and thus will differ in complexity only in the number of check
node updates. Additionally, LBP requires approximately the same
number of variable node updates as those IDS schemes, whereas
standard BP requires fewer uses of the variable node update equation
per iteration.

6 Simulations

In this section, we evaluate the performance of the proposedand
existing decoding algorithms using Monte Carlo simulations. In
particular, we consider regular LDPC codes with rateR = 1/2, pa-
rameters of check and variable nodes given by(3, 6) and block
lengthn = 480, irregular LDPC codes with rateR = 1/2 that are
used by the WiMAX standard [3] and block lengthn = 576 and
regular LDPC codes with rateR = 1/2, parameters of check and
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Table 1 Computational complexity required by decoding algorithms.

Algorithm Variable to check Check to variable Message Real-time
node update node update residual comparisons

Standard BP I I 0 0
LBP I I 0 0
RBP (dv − 1)I I (dv − 1)(dc − 1)I (E − 1)I/dv

NW-RBP (dv − 1)I I (dv − 1)(dc − 1)I (E − 1)I/dv
Proposed Rel-RBP (dv − 1)I I (dv − 1)(dc − 1)I 2(dv − 1)(2(dc − 1) + 1)I + (n− k)I

(a)

(b)

Fig. 6: Computational complexity versus a) block length withR =
1/2 and b) different degree distributions.

variable nodes given by(3, 6) and block lengthn = 100. We con-
sider an additive white Gaussian noise channel (AWGN) for all
simulations but remark that other channels have also been considered
and no significant difference in the performance hierarchy has been
observed, which motivated us to focus on the AWGN channel forthe
sake of simplicity. We have chosen as the figure of merit to assess the

(a)

(b)

Fig. 7: a) BER performance versus classic iterations for a regular
code withn = 480 b) BER performance versus modified iterations
for a regular code withn = 480.

proposed and existing decoding iterations the bit error rate (BER)
performance. Specifically, we have obtained BER curves against
the number of classic iterations, the proposed modified deocoding
iterations and the signal-to-noise ratio (SNR).
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(a)

(b)

Fig. 8: a) BER performance versus SNR for a regular code with
n = 480 and a maximum of5 iterations. b) BER performance ver-
sus SNR for a regular code withn = 480 and a maximum of20
iterations.

We illustrate the BER performance versus the classic and mod-
ified decoding iterations of the proposed and existing decoding
techniques in Fig. 7. The results of Fig. 7 a) indicate that with
the classic measure Rel-RBP has excellent performance for asmall
number of iterations, outperforming the RBP decoding scheme. With
a larger number of iterations, RBP and NS-BP outperform Rel-RBP
by a small margin. Conversely, the results of Fig. 7 b) show that with
the modified decoding iterations Rel-RBP outperforms the RBP,
the NS-BP, the LBP and the BP decoding algorithms. In addition,
it should be mentioned that the complexity of Rel-RBP is signifi-
cantly lower than the other decoders as highlighted by the modified
decoding iterations that make the decoding cost more evident.

In Fig. 8 we present the BER performance against the SNR of the
proposed and existing techniques for the regular LDPC code with
n = 480 using a fixed maximum number of iterations equal to5 and

Fig. 9: BER performance versus iterations for the WIMAX irregular
code withn = 576.

20, respectively. The results of Fig. 8 a) show that for 5 iterations
Rel-RBP outperforms RBP using the classic iterations. In particu-
lar, the BER curves with the modified decoding iterations indicate
that for an equivalent computational complexity Rel-RBP outper-
forms the standard BP and the RBP algorithms. It should be noted
that classic and modified iterations of the standard BP and LBP are
equivalent. The results of Fig. 8 b) for a maximum of 20 iterations
illustrates that with the classic iterations RBP is slightly better than
Rel-RBP. However, with the modified decoding iterations Rel-RBP
outperforms the remaining decoding algorithms.

The BER performance against the number of iterations is shown
in Fig. 9 a) for irregular LDPC codes of the WIMAX standard using
both classic and modified decoding iterations. The proposedRel-
RBP algorithm outperforms the other decoding algorithms with the
classic decoding iterations for a small number of iterations and con-
verges to the same level of BER as the RBP algorithm. If we consider
the modified decoding iterations then Rel-RBP outperforms RBP,
while requiring a significantly lower computational complexity.

In the next examples, we examine a scenario that is envisaged
for super dense networks and URLL applications, where the channel
coding aspects are significantly constrained in terms of computa-
tional cost and latency. For this reason, the use of codes with short
blocks and a small number of decoding iterations is considered. In
particular, we study the performance of regular LDPC codes with
parameters(3, 6) and block lengthn = 100 using the proposed
Rel-RBP and existing decoding algorithms. The results showing
the BER performance against the number of iterations and SNR
are illustrated in Fig. 10. The curves shown in 10 a) are obtained
for SNR = Eb/N0 = 4.5 dB and for a maximum of 20 iterations,
and indicate that the BER performance of Rel-RBP is superiorto
RBP for a small number of iterations and much superior to standard
BP for up to 20 iterations, which suggests that the proposed Rel-
RBP algorithm is an excellent choice for URLL applications.The
plots shown in Fig. 10 b) illustrate the BER performance against
SNR using a maximum of5 decoder iterations for the proposed
and existing algorithms, and show that Rel-RBP achieves thebest
performance together with RBP when considering classic iterations,
outperforming by a substantial margin the standard BP algorithm.
When considering the modified iterations, Rel-RBP is significantly
better than RBP and standard BP.
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(a)

(b)

Fig. 10: a) BER performance versus iterations for the regular LDPC
code withn = 100 and a maximum of20 iterations. b) BER perfor-
mance versus SNR for the regular LDPC code withn = 100 and a
maximum of6 iterations.

7 Conclusions

In this paper, we have introduced a way of measuring decodingit-
erations for IDS techniques that is useful for comparison purposes
and developed an improved knowledge-based dynamic scheduling
scheme, denoted Rel-RBP, based on the reliability of the LLRs ex-
changed in the message passing. Rel-RBP has been shown to achieve
improved performance with reduced complexity with respectto the
RBP and NS-BP schemes, resulting in very fast convergence to
low levels of BER using LDPC codes with short blocks. The pro-
posed Rel-RBP algorithm may contribute to addressing stringent
requirements of latency and energy efficiency of future wireless
systems.
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