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Algorithms Exploiting Shrinkage for Mismatch

Estimation
Hang Ruan and Rodrigo C. de Lamare

Abstract— This paper proposes low-complexity robust adaptive beam-
forming (RAB) techniques based on shrinkage methods. We firstly review a
Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch
algorithm to estimate the desired signal steering vector mismatch, in which
the interference-plus-noise covariance (INC) matrix is also estimated with a
recursive matrix shrinkage method. Then we develop low complexity adap-
tive recursive versions of stochastic gradient (SG) and conjugate gradient
(CG) to update the beamforming weights, resulting in low-cost robust adap-
tive algorithms. An analysis of the effect of shrinkage on the estimation
procedure is developed along with a computational complexity study of the
proposed and existing algorithms. Simulations are conducted in local scat-
tering scenarios and comparisons to existing RAB techniques are provided.

Keywords—robust adaptive beamforming, shrinkage methods, low com-
plexity methods.

I. INTRODUCTION

Sensor array signal processing techniques and their applica-
tions to wireless communications, sensor networks and radar
have been widely investigated in recent years. Adaptive beam-
forming is one of the most important topics in sensor array sig-
nal processing which has applications in many fields. However,
adaptive beamformers may suffer performance degradation due
to small sample data size or the presence of the desired signal
in the training data. In practical environments, desired signal
steering vector mismatch problems like signal pointing errors
[16], imprecise knowledge of the antenna array, look-direction
mismatch or local scattering may even lead to more significant
performance loss [4].

A. Prior and Related Work

In order to address these problems, robust adaptive beam-
forming (RAB) techniques have been developed in recent years.
Popular approaches include worst-case optimization [4], diago-
nal loading [5], [6], [25], and eigen-decomposition [15], [16].
However, general RAB designs have some limitations such as
their ad hoc nature, high probability of subspace swap at low
SNR and high computational cost [7].

Further recent works have looked at approaches based on
combined estimation procedures for both the steering vector
mismatch and interference-plus-noise covariance (INC) matrix
to improve RAB performance. The worst-case optimization
methods in [4], [21], [22], [23] solve an online semi-definite pro-
gramming (SDP) while using a matrix inversion to estimate the
INC matrix. The method in [10] estimates the steering vector
mismatch by solving an online Sequential Quadratic Program
(SQP) [8], while estimating the INC matrix using a shrinkage
method [10]. Another similar method which jointly estimates
the steering vector using SQP and the INC matrix using a co-
variance reconstruction method [11], presents outstanding per-

formance compared to other RAB techniques. However, their
main disadvantages include the high computational cost asso-
ciated with online optimization programming, the matrix inver-
sion or reconstruction process, and slow convergence.

Our recent work in [14] has introduced a Low-Complexity
Shrinkage-Based Mismatch Estimation (LOCSME) algorithm,
which implements an efficient iterative robust beamforming
method with precise estimation of the steering vector mis-
match. In this method, an extension of the Oracle Approximat-
ing Shrinkage (OAS) method [12] is employed to perform vec-
tor shrinkage estimation of the cross-correlation vector between
the sensor array received data and the beamformer output. The
mismatched steering vector is efficiently estimated without any
costly optimization procedure in a low-complexity sense. Then,
we estimate the desired signal power based on the desired sig-
nal steering vector and the received data. In a subsequent step,
we perform matrix shrinkage to the sample covariance matrix
(SCM), from which the covariance matrix of the desired signal
is computed and subtracted to obtain a further estimated INC
matrix. Then the output signal-to-interference-plus-noise ratio
(SINR) can be computed directly.

B. Contributions

In this work, we firstly develop a stochastic gradient (SG)
adaptive version of the LOCSME technique in [14], denoted
LOCSME-SG, which does not require matrix inversions or
costly recursions to update the beamforming weights adap-
tively. In particular, the SCM is estimated only once using
a knowledge-aided (KA) shrinkage [19], [20] algorithm along
with the computation of the beamforming weights based on the
estimated steering vector through SG recursions. Secondly, we
also develop an adaptive LOCSME technique based on the con-
jugate gradient (CG) adaptive algorithm, resulting in CG type
algorithms, denoted LOCSME-CCG and LOCSME-MCG. Dif-
ferent from LOCSME-SG, the CG type algorithms not only up-
dates the beamforming weights, but can also estimate the mis-
matched steering vector, which sequentially performs the esti-
mation of the mismatched vector by LOCSME in every snap-
shot. An analysis shows that both LOCSME-SG and LOCSME-
CG achieve one degree lower complexity than the original LOC-
SME. Simulations also show an excellent performance which
benefits from the precise estimation provided by the shrinkage
approach. Our contributions are summarized as follows:

• The development of LOCSME type SG and CG algorithms.
• An investigation of the effect of shrinkage on the estimation
accuracy of the algorithms.
• A study of the performance and the complexity of the pro-
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posed and existing algorithms.

The paper is organized as follows. The system model and prob-
lem statement are described in Section II. A review of the LOC-
SME algorithm is provided in Section III whereas Section IV
presents the proposed adaptive LOCSME-SG, LOCSME-CCG
and LOCSME-MCG algorithms. Section V provides the shrink-
age and complexity analyses. Section VI presents the simulation
results. Section VII gives the conclusion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a linear antenna array of M sensors and K narrow-
band signals which impinge on the array. The data received at
the ith snapshot can be modeled as

x(i) = A(θ)s(i) + n(i), (1)

where s(i) ∈ CK×1 are uncorrelated source signals, θ =
[θ1, · · · , θK ]T ∈ RK is a vector containing the directions of
arrival (DoAs), A(θ) = [a(θ1) + e, · · · ,a(θK)] ∈ CM×K

is the matrix which contains the steering vector for each DoA
and e is the steering vector mismatch of the desired signal,
n(i) ∈ CM×1 is assumed to be complex Gaussian noise with
zero mean and variance σ2

n. The beamformer output is

y(i) = wHx(i), (2)

where w = [w1, · · · , wM ]T ∈ CM×1 is the beamformer weight
vector, where (·)H denotes the Hermitian transpose. The op-
timum beamformer is computed by maximizing the signal-to-
interference-plus-noise ratio (SINR) given by

SINR =
σ2
1 |wHa1|

2

wHRi+nw
. (3)

where σ2
1 is the desired signal power, Ri+n is the INC matrix.

Assuming that the steering vector a1 is known precisely (a1 =
a(θ1)), then problem (3) can be cast as an optimization problem

minimize
w

wHRi+nw

subject to wHa1 = 1,
(4)

which is known as the MVDR beamformer or Capon beam-
former [1], [2]. The optimum weight vector is given by wopt =

R−1
i+na1

a1
HR−1

i+na1
. Since Ri+n is usually unknown in practice, it can

be estimated by the SCM of the received data as

R̂(i) =
1

i

i∑
k=1

x(k)xH(k), (5)

which results in the Sample Matrix Inversion (SMI) beamformer
wSMI = R̂−1a1

a1
HR̂−1a1

. However, the SMI beamformer requires a
large number of snapshots to converge and is sensitive to steer-
ing vector mismatches [10], [11]. The problem we are inter-
ested in solving is how to design low-complexity robust adap-
tive beamforming algorithms that can preserve the SINR perfor-
mance in the presence of uncertainties in the steering vector of
a desired signal.

III. LOCSME ROBUST BEAMFORMING ALGORITHM

In this section, the LOCSME algorithm [14] is briefly re-
viewed. The basic idea of LOCSME [14] is to obtain a pre-
cise estimate of the desired signal steering vector by exploit-
ing cross-correlation vector between the beamformer output and
the array observation data and then computing the beamforming
weights.

A. Steering Vector Estimation

The cross-correlation between the array observation data and
the beamformer output can be expressed as d = E{xy∗}. With
assumptions that |amw| � |a1w| for m = 2, · · · ,K and that
the signal sources and that the system noise have zero mean
while the desired signal is independent from the interferers and
the noise, d can be rewritten as d = E{σ12aH1 wa1 + nnHw}.
By projecting d onto a predefined subspace [9], which collects
all possible information from the desired signal, the unwanted
part of d can be eliminated. LOCSME also exploits prior knowl-
edge which amounts to providing an angular sector in which the
desired signal is located, say [θ1 − θe, θ1 + θe]. The subspace
projection matrix P is given by

P = [c1, c2, · · · , cp][c1, c2, · · · , cp]H , (6)

where c1, · · · , cp are the p principal eigenvectors of the matrix
C (where p is chosen by the user), which is defined by [8]

C =

θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ. (7)

In order to achieve a better estimation of the steering vector, we
employ the OAS shrinkage technique to obtain a more accurate
estimate of the vector d. Let us define the sample correlation
vector (SCV) in snapshot i as

l̂(i) =
1

i

i∑
k=1

x(k)y∗(k), (8)

and its mean value as

ν̂(i) =
∑

l̂(i)/M. (9)

Then we aim to shrink the SCV towards its mean value ν̂(i),
which yields

d̂(i) = ρ̂(i)ν̂(i) + (1− ρ̂(i))̂l(i), (10)

where ρ̂(i) represents the shrinkage cofficient (ρ̂(i) ∈ (0, 1)).
To find out the optimum ρ̂(i), we minimize the mean square

error (MSE) of E[‖d̂(i)− d̂(i− 1)‖
2
], which leads to

ρ̂(i) =

(1− 2
M )d̂H(i− 1)̂l(i− 1) +

∑
d̂(i− 1)

∑∗
d̂(i− 1)

(i− 2
M )d̂H(i− 1)̂l(i− 1) + (1− i

M )
∑

d̂(i− 1)
∑∗

d̂(i− 1)
.

(11)

Once the correlation vector d̂ is obtained, the steering vector is
estimated by

â1(i) =
Pd̂(i)

‖Pd̂(i)‖2
. (12)
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B. Desired Signal Power Estimation

This subsection will introduce a method to estimate the de-
sired signal power σ2

1 . This can be accomplished by directly
using the desired signal steering vector. Let us rewrite the re-
ceived data as

x(i) = â1(i)s1 +

K∑
k=2

aksk + n(i). (13)

Pre-multiplying the above equation by âH1 (i) and assuming
â1(i) is uncorrelated with the interferers, we obtain

âH1 (i)x(i) = âH1 (i)â1(i)s1 + âH1 (i)n(i). (14)

Taking the expectation of |âH1 (i)x(i)|2, we obtain

E[|âH1 (i)x(i)|2] = E[(âH1 (i)â1(i)s1 + âH1 (i)n(i))∗

(âH1 (i)â1(i)s1 + âH1 (i)n(i))]. (15)

If the noise is statistically independent from the desired signal,
then we have

E[|âH1 (i)x(i)|2] = |âH1 (i)â1(i)|2E[|s1|2]

+ âH1 (i)E[n(i)nH(i)]â1(i), (16)

where E[n(i)nH(i)] represents the noise covariance matrix Rn

which can be replaced by σ2
nIM , where σ2

n is assumed known
here for convenience, otherwise it can be easily estimated by a
specific estimation method. A proper approach is to use a Max-
imum Likelihood (ML) based method as in [24]. A specialized
comparison between the cases when the noise power is assumed
known or estimated is also given in the simulations. Replac-
ing the desired signal power E[|s1|2] by its estimate σ̂2

1(i), the
desired signal power estimate is computed as

σ̂2
1(i) =

|âH1 (i)x(i)|2 − |âH1 (i)â1(i)|σ2
n

|âH1 (i)â1(i)|2
. (17)

Equation (17) has a low complexity (O(M)) and can be directly
implemented if the desired signal steering vector is accurately
estimated and the noise level is known.

C. Estimation of the INC matrix

In this subsection, we describe a method to estimate the INC
matrix that is based on the OAS matrix shrinkage method [12]
and used in LOCSME. First of all, we need the SCM in (5)
as a preliminary estimate for the INC matrix. Then we define
F̂0 = ν̂0I, where ν̂0 = tr(R̂)/M . By minimizing the MSE
described by E[‖R̃(i)− R̃(i− 1)‖2], the following recursion
is employed:

R̃(i) = ρ̂0(i)F̂0(i) + (1− ρ̂0(i))R̂(i), (18)

ρ̂0(i) =

(1− 2
M )tr(R̃(i− 1)R̂(i− 1)) + tr2(R̃(i− 1))

(i− 2
M )tr(R̃(i− 1)R̂(i− 1)) + (1− i

M )tr2(R̃(i− 1))
,

(19)

where ρ̂0(0) must be initialized between 0 and 1 to guarantee
convergence [12]. To exclude the information of the desired sig-
nal from the covariance matrix of the sensor array observation
data, a simple subtraction is considered

R̃i+n(i) = R̃(i)− σ̂2
1(i)â1(i)âH1 (i). (20)

D. Computation of Beamforming Weights

The beamforming weights of LOCSME are computed di-
rectly by

ŵ(i) =
R̃−1
i+n(i)â1(i)

âH1 (i)R̃−1
i+n(i)â1(i)

, (21)

which has a computationally costly matrix inversion R̃−1
i+n(i).

to reproduce the LOCSME algorithm, whose complexity is
O(M3), equations (9)-(12) and (17)-(21) are required. In com-
parison to previously reported RAB algorithms in [7], [8], [10],
[11] with costly online optimization procedures and complexity
O(M3) or higher, LOCSME requires lower cost.

IV. PROPOSED ADAPTIVE ALGORITHMS

In this section, we develop adaptive strategies based on the
LOCSME robust beamforming technique, resulting in the pro-
posed LOCSME-SG, LOCSME-CCG and LOCSME-MCG al-
gorithms. These algorithms are developed for implementation
purposes and are especially suitable for dynamic scenarios. In
these adaptive algorithms, we employ the same recursions as in
LOCSME to estimate the steering vector and the desired sig-
nal power, whereas the estimation procedures of the INC ma-
trix and the beamforming weights are different. In particular,
LOCSME-SG employs a low-cost KA shrinkage method to es-
timate the INC matrix. For LOCSME-SG, LOCSME-CCG and
LOCSME-MCG, the weight vector update equation is derived
from a reformulated optimization problem.

A. LOCSME-SG Adaptive Algorithms

With the estimate of the desired signal power we subtract un-
wanted information of the interferences out from the array re-
ceived data to obtain a modified array observation (MAO) vec-
tor. Consider a simple substraction step as

xi+n(i) = x(i)− σ̂1(i)â1(i). (22)

Then the INC matrix can be estimated by

R̂i+n(i) = xi+n(i)xHi+n(i). (23)

Now, we employ the idea of KA shrinkage method [19], [20] to
help with our INC estimation. By applying a linear shrinkage
model to the INC matrix, we have

R̆i+n(i) = η(i)R0 + (1− η(i))R̂i+n(i), (24)

where R0 is an initial guess for the INC matrix, η(i) is the
shrinkage parameter and η(i) ∈ (0, 1). Here the shrinkage
parameter is expected to be adaptively estimated. Employ-
ing an idea of adaptive filtering [19], [20], it is possible to
set the overall filter output yf (i) equal to [R̆i+n(i)â1(i)]Hx(i)
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which is the linear combination of the outputs from two fil-
ter elements which are y0f (i) = [R0â1(i)]Hx(i) and ŷf (i) =

[R̂i+n(i)â1(i)]Hx(i), which leads to

yf (i) = η(i)y0f (i) + (1− η(i))ŷf (i). (25)

To restrict η(i) to a value greater than 0 and less than 1, a sig-
moidal function is employed:

η(i) = sgm[ε(i)] =
1

1 + e−ε(i)
, (26)

where ε(i) is updated as

ε(i+ 1) = ε(i)− µε
(σε + q(i))

(η(i)|y0f (i)− ŷf (i)|2

+R{(y0f (i)− ŷf (i))ŷ∗f (i)})η(i)(1− η(i)), (27)

where µε is the step size while σε is a small positive constant,
and q(i) is updated as

q(i+ 1) = λq(i)(1− λq)|y0f (i)− ŷf (i)|2, (28)

where λq is a forgetting factor.
Now we resort to an SG adaptive strategy to reduce the com-

plexity required by the matrix inversion. The optimization prob-
lem (4) can be re-expressed as

minimize
w(i)

wH(i)(x(i)xH(i)− σ̂2
1(i)â1(i)âH1 (i))w(i)

subject to wH(i)â1(i) = 1.
(29)

Then we can express the SG recursion as

w(i+ 1) = w(i)− µ ∂L
∂w(i)

, (30)

where L = wH(i)(x(i)xH(i) − σ̂2
1(i)â1(i)âH1 (i))w(i) +

λ(wH(i)â1(i) − 1). By substituting L into the SG equation
(30) and letting wH(i+ 1)â1(i+ 1) = 1, λ is obtained as

λ =
2(σ̂2

1(i)âH1 (i)â1(i)− y(i)xH(i)â1(i))

âH1 (i)â1(i)
. (31)

By substituting λ back into (30) again, the weight update equa-
tion for LOCSME-SG is obtained as

w(i+ 1) = (I− µσ̂2
1(i)â1(i)âH1 (i))w(i)

− µ(σ̂2
1(i)â1(i) + y∗(i)(x(i)− âH1 (i)x(i)â1(i)

âH1 (i)â1(i)
)). (32)

The adaptive SG recursion circumvents a matrix inversion when
computing the weights using (21), which is unavoidable in
LOCSME. Therefore, the computational complexity is reduced
fromO(M3) in LOCSME toO(M2) in LOCSME-SG. The pro-
posed LOCSME-SG algorithm is summarized in Table I.

B. LOCSME-CCG Adaptive Algorithm

In order to introduce CG-based adaptive algorithms, we
specifically divide them into two different algorithms, namely,
LOCSME-CCG and its modified version LOCSME-MCG. In

TABLE I
PROPOSED LOCSME-SG ALGORITHM

Initialize:

C =
θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ

[c1, · · · , cp]: p princical eigenvectors of C
P = [c1, · · · , cp][c1, · · · , cp]H

l̂(0) = 0; w(0) = 1; ρ̂(1) = ρ(0) = 1;

For each snapshot index i = 1, 2, · · · :

l̂(i) = 1
i

i∑
k=1

x(k)y∗(k)

Steering vector mismatch estimation
ν̂(i) =

∑
l̂(i)/M

d̂(i) = ρ̂(i)ν̂(i) + (1− ρ̂(i))̂l(i)

ρ̂(i) =
(1− 2

M
)d̂H (i−1)̂l(i−1)+

∑
d̂(i−1)

∑∗ d̂(i−1)

(i− 2
M

)d̂H (i−1)̂l(i−1)+(1− i
M

)
∑

d̂(i−1)
∑∗ d̂(i−1)

â1(i) =
Pd̂(i)

‖Pd̂(i)‖2

Desired signal power estimation

σ̂2
1(i) =

|âH1 (i)x(i)|2−|âH1 (i)â1(i)|σ2
n

|âH1 (i)â1(i)|2

Computation of INC matrix
xi+n(i) = x(i)− σ̂1(i)â1(i)

R̂i+n(i) = xi+n(i)xHi+n(i)

R̆i+n(i) = η(i)R0 + (1− η(i))R̂i+n(i)
y0f (i) = [R0â1(i)]Hxi+n(i)

ŷf (i) = [R̂i+n(i)â1(i)]Hxi+n(i)
yf (i) = η(i)y0f (i) + (1− η(i))ŷf (i)
η(i) = 1

1+e−ε(i)

ε(i+ 1) = ε(i)− µε
(σε+q(i))

(η(i)|y0f (i)− ŷf (i)|2

+R{(y0f (i)− ŷf (i))ŷ∗f (i)})η(i)(1− η(i))

q(i+ 1) = λq(i)(1− λq)|y0f (i)− ŷf (i)|2

Computation of beamformer weights
w(i+ 1) = (I− µσ̂2

1(i)â1(i)âH1 (i))w(i)

−µ(σ̂2
1(i)â1(i) + y∗(i)(x(i)− âH1 (i)x(i)â1(i)

âH1 (i)â1(i)
))

End snapshot

the approach of LOCSME-CCG, the SCV l̂(i) is replaced by an
estimate with a forgetting factor λ, which is a constant scalar
less than and close to 1 as

l̂(i) = λ̂l(i− 1) + x(i)y∗(i), (33)

before we employ it into the vector shrinkage method. The INC
matrix is also estimated directly with this forgetting factor as

R̂(i) = λR̂(i− 1) + x(i)xH(i). (34)

In order to derive CG-based recursions we need to reformulate
the cost function that needs to be minimized as follows

minimize
â1(i),v(i)

J = vH(i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))v(i)

−R{âH1 (i)v(i)}, (35)

where v(i) is the CG-based weight vector. In LOCSME-CCG,
we require a run of N iterations in each snapshot. In the nth
iteration, â1,n(i) and vn(i) are updated as follows

â1,n(i) = â1,n−1(i) + αâ1,n(i)pâ1,n(i), (36)
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vn(i) = vn−1(i) + αv,n(i)pv,n(i), (37)

where pâ1,n(i) and pv,n(i) are direction vectors updated by

pâ1,n+1(i) = gâ1,n(i) + βâ1,n(i)pâ1,n(i), (38)

pv,n+1(i) = gv,n(i) + βv,n(i)pv,n(i), (39)

where gâ1,n(i) and gv,n(i) are the negative gradients of the cost
function in terms of â1(i) and v(i), respectively, which are ex-
pressed as

gâ1,n(i) = − ∂J
∂â1,n(i)

= σ̂2
1(i)vn(i)vHn (i)â1,n(i) + vn(i),

(40)

gv,n(i) = − ∂J
∂vn(i)

= gv,n−1(i)− αv,n(i)(R̂(i)− σ̂2
1(i)x(i)xH(i))pv,n(i).

(41)

The scaling parameters αâ1,n(i), αv,n(i) can be obtained by
substituting (36) and (37) into (35) and minimizing with respect
to αâ1,n(i) and αv,n(i), respectively. The solutions are given by

αâ1,n(i) = −
gHâ1,n−1(i)pâ1,n(i)

σ̂2
1(i)pHâ1,n

(i)vn(i)vHn (i)pâ1,n(i)
, (42)

αv,n(i) =
gHv,n−1(i)pv,n(i)

pHv,n(i)(R̂(i)− σ̂2
1(i)â1,n(i)âH1,n(i))pv,n(i)

.

(43)
The parameters βâ1,n(i) and βv,n(i) should be chosen to pro-
vide conjugacy for direction vectors [17], [18] which results in

βâ1,n(i) =
gHâ1,n

(i)gâ1,n(i)

gHâ1,n−1(i)gâ1,n−1(i)
, (44)

βv,n(i) =
gHv,n(i)gv,n(i)

gHv,n−1(i)gv,n−1(i)
. (45)

After â1,n(i) and vn(i) are updated for N iterations, the beam-
forming weight vector w(i) can be computed by

w(i) =
vN (i)

âH1,N (i)vN (i)
, (46)

while the estimated steering vector is also updated to â1,N (i).
Table II summarizes the LOCSME-CCG algorithm.

C. LOCSME-MCG Adaptive Algorithm

In LOCSME-MCG, we let only one iteration be performed
per snapshot[17], [18], which further reduces the complexity
compared to LOCSME-CCG. Here we denote the CG-based
weights and steering vector updated by snapshots rather than
inner iterations as

â1(i) = â1(i− 1) + αâ1
(i)pâ1

(i), (47)

v(i) = v(i− 1) + αv(i)pv(i). (48)

TABLE II
PROPOSED LOCSME-CCG ALGORITHM

Initialize:

C =
θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ

[c1, · · · , cp]: p princical eigenvectors of C
P = [c1, · · · , cp][c1, · · · , cp]H

l̂(0) = 0; R̂(0) = I; w(1) = v0(1) = 1; ρ̂(1) = ρ(0) = 1; λ = 0.98;

For each snapshot index i = 1, 2, · · · :
l̂(i) = λ̂l(i− 1) + x(i)y∗(i)

R̂(i) = λR̂(i− 1) + x(i)xH(i)

Steering vector mismatch estimation
ν̂(i) =

∑
l̂(i)/M

d̂(i) = ρ̂(i)ν̂(i) + (1− ρ̂(i))̂l(i)

ρ̂(i) =
(1− 2

M
)d̂H (i−1)̂l(i−1)+

∑
d̂(i−1)

∑∗ d̂(i−1)

(i− 2
M

)d̂H (i−1)̂l(i−1)+(1− i
M

)
∑

d̂(i−1)
∑∗ d̂(i−1)

â1(i) =
Pd̂(i)

‖Pd̂(i)‖2

Desired signal power estimation

σ̂2
1(i) =

|âH1 (i)x(i)|2−|âH1 (i)â1(i)|σ2
n

|âH1 (i)â1(i)|2

CCG-based estimations of steering vector
mismatch and beamformer weights
â1,0(i) = â1(i)
gâ1,0(i) = σ̂2

1(i)v0(i)vH0 (i)â1,0(i) + v0(i)

gv,0(i) = â1,0(i)− R̂(i)v0(i)
pâ1,0(i) = gâ1,0(i); pv,0(i) = gv,0(i)

For each iteration index n = 1, 2, · · · , N :

αâ1,n(i) = −
gHâ1,n−1(i)pâ1,n

(i)

σ̂2
1(i)p

H
â1,n

(i)vn(i)vHn (i)pâ1,n
(i)

αv,n(i) =
gHv,n−1(i)pv,n(i)

pHv,n(i)(R̂(i)−σ̂2
1(i)â1,n(i)â

H
1,n(i))pv,n(i)

â1,n(i) = â1,n−1(i) + αâ1,n(i)pâ1,n(i)
vn(i) = vn−1(i) + αv,n(i)pv,n(i)
gâ1,n(i) = σ̂2

1(i)vn(i)vHn (i)â1,n(i) + vn(i)

gv,n(i) = gv,n−1(i)− αv,n(i)(R̂(i)− σ̂2
1(i)x(i)xH(i))pv,n(i)

βâ1,n(i) =
gHâ1,n

(i)gâ1,n
(i)

gH
â1,n−1

(i)gâ1,n−1(i)

βv,n(i) =
gHv,n(i)gv,n(i)

gHv,n−1(i)gv,n−1(i)

pâ1,n+1(i) = gâ1,n(i) + βâ1,n(i)pâ1,n(i)
pv,n+1(i) = gv,n(i) + βv,n(i)pv,n(i)
End iteration

computation of beamformer weights
v0(i+ 1) = vN (i)

w(i) =
vN (i)

âH
1,N

(i)vN (i)

End snapshot

As can be seen, the subscripts of all the quantities for inner iter-
ations are eliminated. Then, we employ the degenerated scheme
to ensure αâ1

(i) and αv(i) satisfy the convergence bound [17]
given by

0 ≤ pHâ1
(i)gâ1

(i) ≤ 0.5pHâ1
(i)gâ1

(i− 1), (49)

0 ≤ pHv (i)gv(i) ≤ 0.5pHv (i)gv(i− 1). (50)

Instead of updating the negative gradient vectors gâ1
(i) and

gv(i) in iterations, now we utilize the forgetting factor to re-
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express them in one snapshot as

gâ1
(i) = (1− λ)v(i) + λgâ1

(i− 1)

+ σ̂2
1(i)αâ1

(i)v(i)vH(i)pâ1
(i)− x(i)xH(i)â1(i), (51)

gv(i) = (1− λ)â1(i) + λgv(i− 1)− αv(i)(R̂(i)

− σ̂2
1(i)â1(i)âH1 (i))pv(i)− x(i)xH(i)v(i− 1). (52)

Pre-multiplying (51) and (52) by pHâ1
(i) and pHv (i), respec-

tively, and taking expectations we obtain

E[pHâ1
(i)gâ1

(i)] = E[pHâ1
(i)(v(i)− x(i)xH(i)â1)(i)]

+ λE[pHâ1
(i)gâ1

(i− 1)]− λE[pHâ1
(i)v(i)]

+ E[αâ1
(i)pHâ1

(i)σ̂2
1(i)v(i)vH(i)pâ1

(i)], (53)

E[pHv (i)gv(i)] = λE[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

− E[αv(i)pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)], (54)

where in (54) we have E[R̂(i)v(i− 1)] = E[â1(i)]. After sub-
stituting (54) back into (50) we obtain the bounds for αv(i) as
follows

(λ− 0.5)E[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

E[pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)]

≤E[αv(i)]

≤ λE[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

E[pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)]

. (55)

Then we can introduce a constant parameter ηv ∈ [0, 0.5] to
restrict αv(i) within the bounds in (55) as

αv(i) =

λ(pHv (i)gv(i− 1)− pHv (i)â1(i))− ηvpHv (i)gv(i− 1)

pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)

.

(56)

Similarly, we can also obtain the bounds for αâ1
(i).

For simplicity let us define E[pHâ1
(i)gâ1

(i − 1)] = A,
E[pHâ1

(i)v(i)] = B, E[pHâ1
(i)x(i)xH(i)â1(i)] = C and

E[pHâ1
(i)σ̂2

1(i)v(i)vH(i)pâ1
(i)] = D. Substituting equation

(53) into (49) gives

λ(B −A)−B + C

D
≤E[αâ1

(i)]

≤λ(B −A)−B + C + 0.5A

D
, (57)

in which we can introduce another constant parameter ηâ1
∈

[0, 0.5] to restrict αâ1
(i) within the bounds in (57) as

E[αâ1
(i)] =

λ(B −A)−B + C + ηâ1
A

D
, (58)

or

αâ1
(i) = [λ(pHâ1

(i)v(i)− pHâ1
(i)gâ1

(i− 1))− pHâ1
(i)v(i)

+ pHâ1
(i)x(i)xH(i)â1(i) + ηâ1

pHâ1
(i)gâ1

(i− 1)]

/[σ̂2
1(i)pHâ1

(i)v(i)vH(i)pâ1
(i)]. (59)

Then we can update the direction vectors pâ1
(i) and pv(i) by

pâ1
(i+ 1) = gâ1

(i) + βâ1
(i)pâ1

(i), (60)

pv(i+ 1) = gv(i) + βv(i)pv(i), (61)

where βâ1
(i) and βv(i) are updated by

βâ1
(i) =

[gâ1
(i)− gâ1

(i− 1)]Hgâ1
(i)

gHâ1
(i− 1)gâ1

(i− 1)
, (62)

βv(i) =
[gv(i)− gv(i− 1)]Hgv(i)

gHv (i− 1)gv(i− 1)
. (63)

Finally we can update the beamforming weights by

w(i) =
v(i)

âH1 (i)v(i)
, (64)

The LOCSME-MCG algorithm is summarized in Table III.
The MCG approach employs the forgetting factor λ and con-
stant η for estimating α(i), which means its performance may
depend on a suitable choice of these parameters. However, it
requires much lower complexity for the elimination of inner re-
cursions compared to CCG and presents a similar performance
in the simulations.

V. ANALYSIS: SHRINKAGE AND COMPLEXITY

This section investigates the effects of shrinkage approaches
and the computational complexity of the proposed algorithms.
Firstly we rewrite the vector shrinkage recursions into a matrix
shrinkage recursion. Then we employ an eigen-decomposition
approach to examine the eigenvalues dispersion for the vector
shrinkage and matrix shrinkage cases by exploring the MSE [3]
of their eigenvalues, and give reasons why shrinkage gives an
important contribution to the performance. Then we present
a complexity analysis for the proposed algorithms and com-
parisons to the existing RAB algorithms. It is clear that the
proposed algorithms achieve one degree lower complexity than
most of the existing ones.

A. Effects of Shrinkage

First of all, we modify the vector shrinkage formula (10) to
the following full rank matrix form

D̂(i) = ρ̂(i)V̂(i) + (1− ρ̂(i))L̂(i), (65)

where V̂(i), D̂(i) and L̂(i) are all diagonal matrix, having each
of their diagonal entries identical to ν̂(i), elements of the op-
timal shrinkage estimator d̂(i) and elements of the SCV l̂(i),
respectively, whereas all the three matrices have their other en-
tries equal to zero. Associated with (18), it can be seen they
share the same linear shrinkage formula. Now, we carry out
eigenvalue decompositions for every matrix in (10). Since the
eigenvalues of a diagonal matrix are simply its diagonal entries,
the eigenvalues of D̂(i), V̂(i) and L̂(i) can be expressed as

{d̂1(i), · · · , d̂M (i)}, (66)

{ν̂(i), · · · , ν̂(i)}, (67)
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TABLE III
PROPOSED LOCSME-MCG ALGORITHM

Initialize:

C =
θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ

[c1, · · · , cp]: p princical eigenvectors of C
P = [c1, · · · , cp][c1, · · · , cp]H

l̂(0) = 0; R̂(0) = I; w(1) = v(0) = 1; ρ̂(1) = ρ(0) = 1;
λ = 0.95; ηv = ηâ1

= 0.1;
gv(0) = pv(1) = R̂(0)v(1); gâ1

(0) = pâ1
(1) = v(0);

For each snapshot index i = 1, 2, · · · :
l̂(i) = λ̂l(i− 1) + x(i)y∗(i)

R̂(i) = λR̂(i− 1) + x(i)xH(i)

Steering vector mismatch estimation
ν̂(i) =

∑
l̂(i)/M

d̂(i) = ρ̂(i)ν̂(i) + (1− ρ̂(i))̂l(i)

ρ̂(i) =
(1− 2

M
)d̂H (i−1)̂l(i−1)+

∑
d̂(i−1)

∑∗ d̂(i−1)

(i− 2
M

)d̂H (i−1)̂l(i−1)+(1− i
M

)
∑

d̂(i−1)
∑∗ d̂(i−1)

â1(i) =
Pd̂(i)

‖Pd̂(i)‖2

Desired signal power estimation

σ̂2
1(i) =

|âH1 (i)x(i)|2−|âH1 (i)â1(i)|σ2
n

|âH1 (i)â1(i)|2

MCG-based estimations of steering vector
mismatch and beamformer weights
αâ1

(i) = [λ(pHâ1
(i)v(i)− pHâ1

(i)gâ1
(i− 1))− pHâ1

(i)v(i)

+pHâ1
(i)x(i)xH(i)â1(i) + ηâ1

pHâ1
(i)gâ1

(i− 1)]

/[σ̂2
1(i)pHâ1

(i)v(i)vH(i)pâ1
(i)]

αv(i) =
λ(pHv (i)gv(i−1)−pHv (i)â1(i))−ηvpHv (i)gv(i−1)

pHv (i)(R̂(i)−σ̂2
1(i)â1(i)â

H
1 (i))pv(i)

â1(i) = â1(i− 1) + αâ1
(i)pâ1

(i)
v(i) = v(i− 1) + αv(i)pv(i)
gâ1

(i) = (1− λ)v(i) + λgâ1
(i− 1)

+σ̂2
1(i)αâ1

(i)v(i)vH(i)pâ1
(i)− x(i)xH(i)â1(i)

gv(i) = (1− λ)â1(i) + λgv(i− 1)− αv(i)(R̂(i)
−σ̂2

1(i)â1(i)âH1 (i))pv(i)− x(i)xH(i)v(i− 1)

βâ1
(i) =

[gâ1
(i)−gâ1

(i−1)]Hgâ1
(i)

gH
â1

(i−1)gâ1
(i−1)

βv(i) =
[gv(i)−gv(i−1)]Hgv(i)

gHv (i−1)gv(i−1)

pâ1
(i+ 1) = gâ1

(i) + βâ1
(i)pâ1

(i)
pv(i+ 1) = gv(i) + βv(i)pv(i)

Computation of beamformer weights
w(i) =

v(i)

âH1 (i)v(i)

End snapshot

{l̂1(i), · · · , l̂M (i)}, (68)

respectively. Since we have

E[‖L̂(i)− V̂(i)‖
2
]

= E[‖L̂(i)− D̂(i− 1) + D̂(i− 1)− V̂(i)‖
2
]

= E[‖L̂(i)− D̂(i− 1)‖
2
] + E[‖D̂(i− 1)− V̂(i)‖

2
]

+ 2E[〈L̂(i)− D̂(i− 1), D̂(i− 1)− V̂(i)〉]

= E[‖L̂(i)− D̂(i− 1)‖
2
] + ‖D̂(i− 1)− V̂(i)‖

2

+ 2〈E[L̂(i)− D̂(i− 1)], D̂(i− 1)− V̂(i)〉, (69)

where 〈, 〉 denotes the inner product and we have E[L̂(i)] =

D̂(i − 1), then the inner product term in the above equation

equals 0, which yields the following

E[‖L̂(i)− ν̂(i)I‖
2
]− ‖D̂(i− 1)− ν̂(i)I‖

2

= E[‖L̂(i)− D̂(i− 1)‖
2
]. (70)

Equation (70) can be interpreted in terms of the eigenvalues of
the matrices if we rewrite it as

E[
1

M

M∑
m=1

(l̂m(i)− ν̂(i))2]− 1

M

M∑
m=1

(d̂m(i− 1)− ν̂(i))2

= E[‖L̂(i)− D̂(i− 1)‖
2
]. (71)

Note that in (71), ν̂(i) actually represents the mean value of the
SCV l̂(i) or the diagonal entries of matrix V̂(i). Similarly to
the matrix shrinkage in (18), we can process the same analysis
even though the matrices are no longer diagonal but will lead to
a more general result. Assuming the eigenvalues of the matrices
R̃(i), F̂0(i), and R̂(i) are

{λ1(i), · · · , λM (i)}, (72)

{f1(i), · · · , fM (i)}, (73)

{γ1(i), · · · , γM (i)}, (74)

respectively. Then we have

E[‖R̂(i)− F̂0(i)‖
2
]

= E[‖R̂(i)− R̃(i− 1) + R̃(i− 1)− F̂0(i)‖
2
]

= E[‖R̂(i)− R̃(i− 1)‖
2
] + E[‖R̃(i− 1)− F̂0(i)‖

2
]

+ 2E[〈R̂(i)− R̃(i− 1), R̃(i− 1)− F̂0(i)〉]

= E[‖R̂(i)− R̃(i− 1)‖
2
] + ‖R̃(i− 1)− F̂0(i)‖

2

+ 2〈E[R̂(i)− R̃(i− 1)], R̃(i− 1)− F̂0(i)〉, (75)

where the inner product term equals 0 because of E[R̂(i)] =
R̃(i− 1), which results in

E[‖R̂(i)− F̂0(i)‖
2
]− ‖R̃(i− 1)− F̂0(i)‖

2

= E[‖R̂(i)− R̃(i− 1)‖
2
]. (76)

Noting that F̂0(i) = ν̂0(i)I, then (76) is equivalent to

E[‖R̂(i)− ν̂0(i)I‖
2
]− ‖R̃(i− 1)− ν̂0(i)I‖2

= E[‖R̂(i)− R̃(i− 1)‖
2
], (77)

which can be rewritten in an alternative form as

E[
1

M

M∑
m=1

(γm(i)− ν̂0(i))2]− 1

M

M∑
m=1

(λm(i− 1)− ν̂0(i))2

= E[‖R̂(i)− R̃(i− 1)‖
2
]. (78)
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Because the expectation on the right hand side of equation (71)
and (78) are always non-negative, so we have their left hand side
always equal or larger than 0, which yields

E[
1

M

M∑
m=1

(l̂m(i)−ν̂(i))2] ≥ 1

M

M∑
m=1

(d̂m(i−1)−ν̂(i))2, (79)

E[
1

M

M∑
m=1

(γm(i)− ν̂0(i))2] ≥ 1

M

M∑
m=1

(λm(i− 1)− ν̂0(i))2.

(80)
Since we also know that

E[ν̂(i)] =
1

M

M∑
m=1

d̂m(i− 1), (81)

E[ν̂0(i)] =
1

M

M∑
m=1

λm(i− 1), (82)

which express the expected mean of the eigenvalues of the sam-
pled matrix L̂(i) and R̂(i) in snapshot i, respectively. Then
equations (79) and (80) indicate that the expected MSE of the
eigenvalues of L̂(i) or R̂(i) in snapshot i is always larger or
equal to those of the optimal shrinkage estimator D̂(i − 1) or
R̃(i − 1) obtained from the previous snapshot. In other words,
the eigenvalues of the sampled matrix are more dispersedly dis-
tributed (here we should have d̂1(i−1) > l̂1(i) > 0, d̂m(i−1) <

l̂m(i) and λ1(i− 1) > γ1(i) > 0, λm(i− 1) < γm(i)) based on
their expected mean value than those of the optimal shrinkage
estimator from the last snapshot. Shrinking the sampled matrix
to a matrix with less dispersed eigenvalues can lead to an im-
proved covariance matrix estimator as reported in [13].

B. Complexity Analysis

In this part, we analyze the computational complexity in
terms of flops (total number of additions and multiplications)
required by the proposed RAB algorithms. The proposed RAB
algorithms avoid costly matrix inversion and multiplication pro-
cedures, which are unavoidable in the existing RAB algorithms.
The complexity comparison among different algorithms are
listed in Table IV. It should be noted that LOCSME-CCG has
its complexity dependent on the number of inner iterations N ,
which can be properly selected within the range of 5−10. How-
ever, the LCWC algorithm of [15] also requires N inner itera-
tions per snapshots, which significantly varies in different snap-
shots and is usually much larger than the value of N in the pro-
posed LOCSME-CCG algorithm. It is clear that our proposed
algorithms have one degree lower complexity in terms of the
number of sensors M , which are dominated by O(M2), result-
ing in great advantages when M is large. Fig. 1 gives illus-
trations of the complexity comparison of the listed algorithms,
where the values ofN for [15] and the proposed LOCSME-CCG
are selected as 50 and 10, respectively.

VI. SIMULATION RESULTS

The simulations are carried out under both coherent and inco-
herent local scattering mismatch [6] scenarios. A uniform lin-
ear array (ULA) of M = 12 omnidirectional sensors with half

TABLE IV
COMPLEXITY COMPARISON

RAB Algorithms Flops
LOCSME [14] 4M3 + 3M2 + 20M

RCB [5] 2M3 + 11M2

Algorithm of [10] M3.5 + 7M3 + 5M2 + 3M
LOCME [9] 2M3 + 4M2 + 5M
LCWC [15] N(2M2 + 7M)

LOCSME-SG 15M2 + 30M
LOCSME-CCG 5M2 + 21M +N(8M2 + 32M)
LOCSME-MCG 13M2 + 77M
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LCWC [15]
LOCME [9]
LOCSME−SG
LOCSME−CCG
LOCSME−MCG

Fig. 1. complexity versus number of sensors

wavelength spacing is considered. 100 repetitions are executed
to obtain each point of the curves and a maximum of i = 300
snapshots are observed. The desired signal is assumed to arrive
at θ1 = 10◦ while there are other two interferers impinging on
the antenna array from directions θ2 = 30◦ and θ3 = 50◦. The
signal-to-interference ratio (SIR) is fixed at 0dB. For the opti-
mum scenario in each of the comparisons, we do not consider
the existences of interferers and assume the DoA of the desired
signal is known. However, the noise is still considered. For our
proposed algorithms, the angular sector in which the desired sig-
nal is assumed to be located is chosen as [θ1 − 5◦, θ1 + 5◦] and
the number of eigenvectors of the subspace projection matrix p
is selected manually with the help of simulations. The results
focus on the beamformer output SINR performance versus the
number of snapshots, or a variation of input SNR (−10dB to
30dB).

A. Mismatch due to Coherent Local Scattering

The steering vector of the desired signal affected by a time-
invariant coherent local scattering effect is modeled as

a1 = p +

4∑
k=1

ejϕkb(θk), (83)

where p corresponds to the direct path while b(θk)(k =
1, 2, 3, 4) corresponds to the scattered paths. The angles θk(k =
1, 2, 3, 4) are randomly and independently drawn in each simu-
lation run from a uniform generator with mean 10◦ and standard
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deviation 2◦. The angles ϕk(k = 1, 2, 3, 4) are independently
and uniformly taken from the interval [0, 2π] in each simulation
run. Notice that θk and ϕk change from trials while remaining
constant over snapshots.

Fig. 2 and Fig. 3 illustrate the performance comparisons of
SINR versus snapshots and SINR versus SNR, respectively, in
terms of the mentioned RAB algorithms in the last section un-
der coherent scattering case. Specifically to obtain Fig. 2, we
assume the noise power is known and select µ = 0.2, µε = 1,
σε = 0.001, λq = 0.99, R0 = 10I for LOCSME-SG, λ = 0.95
for LOCSME-CCG and λ = 0.95, η = 0.2 for LOCSME-MCG.
However, selection of these parameters may vary according to
different input SNR as in Fig. 3. The proposed algorithms out-
perform the other algorithms and are very close to the standard
LOCSME, especially for LOCSME-CCG and LOCSME-MCG.
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Fig. 2. coherent local scattering, SINR versus snapshots
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Fig. 3. coherent local scattering, SINR versus SNR

In Fig. 4, we use an ML-based method to estimate the
noise power in LOCSME, LOCSME-SG, LOCSME-CCG and
LOCSME-MCG in the same scenario of Fig. 2. It is clear that
no noticeable differences between their performance can be ob-
served by comparing Fig. 2 and Fig. 4.
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Fig. 4. coherent local scattering, SINR versus snapshots

B. Mismatch due to Incoherent Local Scattering

In the incoherent local scattering case, the desired signal has
a time-varying signature and the steering vector is modeled by

a1(i) = s0(i)p +

4∑
k=1

sk(i)b(θk), (84)

where sk(i)(k = 0, 1, 2, 3, 4) are i.i.d zero mean complex Gaus-
sian random variables independently drawn from a random gen-
erator. The angles θk(k = 0, 1, 2, 3, 4) are drawn independently
in each simulation run from a uniform generator with mean 10◦

and standard deviation 2◦. This time, sk(i) changes both from
run to run and from snapshot to snapshot.

Fig. 5 and Fig. 6 illustrate the performance comparisons of
SINR versus snapshots and SINR versus SNR, respectively, in
terms of the mentioned RAB algorithms in the last section under
incoherent scattering case. To obtain Fig. 5, we select µ = 0.1,
µε = 5, σε = 0.001, λq = 0.99, R0 = 50I for LOCSME-
SG, λ = 0.99 for LOCSME-CCG and λ = 0.95, η = 0.3 for
LOCSME-MCG. However, we have optimized the parameters
to give the best possible performance at different input SNRs.

Different from the coherent scattering results, all the algo-
rithms have a certain level of performance degradation due to
the effect of incoherent local scattering model, in which case
we have the extra system dynamics with the time variation,
contributing to more environmental uncertainties in the sys-
tem. However, over a wide range of input SNR values, the
proposed algorithms are still able to outperform the other RAB
algorithms. One point that needs to be emphasized is, most of
the existing RAB algorithms experience significant performance
degradation when the input SNR is high (i.e. around or more
than 20dB), which is explained in [11] that the desired signal al-
ways presents in any kind of diagonal loading technique. How-
ever, the proposed algorithms have improved the estimation ac-
curacy, so that the high SNR degradation is successfully avoided
as can be seen in Fig. 5 and Fig. 6.

We assess the SINR performance versus snapshots of the se-
lected algorithms in a specific time-varying scenario which en-
counters moving source signals that are captured with different
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Fig. 6. incoherent local scattering, SINR versus SNR

DoAs in certain snapshots as introduced in Table V. The result
of this scenario is shown in Fig. 7.

In addition, it should also be emphasized that performance
comparisons with the conventional adaptive algorithms (i.e. SG,
CCG or MCG without combined to LOCSME) are not included,
as they are not recognized as RAB algorithms and have much
worse performance in the presence of uncertainties. Actually, as
mentioned in the introduction, it has already been shown that
conventional adaptive beamforming algorithms are extremely
sensitive to the statistical characteristics of the sampled data (i.e.
data size and data accuracy). Especially, when these algorithms
suffer environment uncertainties (i.e. steering vector mismatch),
significant further performance degradation is unavoidable.

TABLE V
CHANGES OF INTERFERERS

Snapshots DoAs
0− 150 θ1 = 10◦, θ2 = 30◦, θ3 = 50◦.

150− 300 θ1 = 15◦, θ2 = 25◦, θ3 = 35◦.
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Fig. 7. incoherent local scattering, time-varying scenario

VII. CONCLUSION

This work proposed low-complexity adaptive RAB algo-
rithms developed from the LOCSME RAB method. In each
of these algorithms, we have derived recursions for the weight
vector update and exploited effective shrinkage methods, both
of which require low complexity without losing any noticeable
performance. Additionally, in the CG-based RAB algorithms
we have enabled the estimation for the mismatch steering vec-
tor inside the CG recursions to enhance the robustness. Both
complexity and performance comparisons are provided and an-
alyzed. Simulation results have shown that the proposed al-
gorithms achieved excellent output SINR performance and are
suitable for operation in high input SNR.
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