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Textbooks and Assessment

« Textbooks:

o Thomas Cover and Joy Thomas, Elements of Information Theory, 2" Edition,
2006.

o Jorge Moreira and Patrick Farrell, Essentials of Error-Control Coding, 2006,
Wiley.

* Assessment:
o 1 Exam papers (E) on Information Theory.

o 1Project (P) on a topic on Channel Coding chosen by the student in
agreement with the lecturer.

o 8 Lists of exercises (LE) on all topics.
o Final grade (FG) = (E + P + LE)/3



Syllabus

Part I: Information Theory

I. Introduction
o  Fundamental limits
o Uncertainty, information and entropy
TI. Source coding
Prefix coding
Huffman coding
Lempel-Ziv coding
Quantisation
ITT. Channel capacity
o  Continuous and discrete channels
o  Mutual information
o  Channel capacity theorem
IV. Channel coding theorem

V. Rate distortion theory

O
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I. Introduction

« Information theory deals with the mathematical analysis and modelling
of communications systems.

« Tt is a branch of probability theory that focuses on abstract models
and the derivation of bounds and inequalities.

« In this course, we focus on the following fundamental limits:
o Compression
o Transmission
o Reliability



A. Fundamental limits

« Compression ‘ Entropy (H) of a source

« Transmission ‘ Channel capacity (C)
« Reliability ‘ If H < C then a system can

communicate without errors




B. Uncertainty, information and
entropy

« Consider a discrete source illustrated by

(e |— ™

« Let us define the alphabet of this source as

& = {5951, .., Sg 1y with probabilities P(s =s,) = p,, k = 01,..,K—1

« This set of probabilities must satisfy the following

K-1
Z Py=1 =) discrete memoryless
k=0

source



Information

« Givenanevent s = s, which occurs with probability p,, the amount of
information is given by

I(S,) = Iog(lj
Py



Information (continued)

The information using a base-2 logarithm is defined by

I(s,) = Iog{lj bits

k

=-log,(p,), for k=0,1,.---,K-1
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LY Example 1

Compute the amount of information when p, = %

I(s) = log » (X) = ~log 2w



Properties

i) I(s,) = Owhenp, =1
i) I(s) = 0for0 < p, <1

i) I(s,) > I(si) forp, < p;

iv) I(s,s) = I(s,) + I(si) if s,and s; are statistically independent



Entropy
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« The entropy is defined as the average information content measure per
symbol of a source as described by

H(E) =E[I(s,)] = Zpkl(sk)

K-1
= pklogz(ij bits,

k=0 Py

where ¢ is the alphabet
I(s,) is the information content and
p, is the symbol probability for k = 0,1,...,K — 1

and the entropy depends only on the probabilities of the
symbols in ¢,



C. Properties of Entropy

« Consider the discrete memoryless source previously defined.

« The entropy H(¢) of this source is bounded as follows:
0<H(¢) <log,K
* Properties:
i) H() = 0if and only if p, = 1 (no uncertainty)

1

i) H() = log; K if and only if p, = = for all k (maximum uncertainty)



Proof

« Because p, < 1 each term of p, log, (1/p,) in H(¢) is always non
negative. Therefore, we have

HE) =0

« Noting that p, log, (1/p,) = 0if p,=0 or p, = 1 we have that H(¢) = 0 if
p, = 1for any k and the remaining probabilities p, = 0, for j # k.

« This completes the first part of the proof that

H(E) =0



Proof (continued)

* TInorder to obtain the upper bound H(¢) < log,K we adopt the following
strategy:

1\

y=x-1
« Consider the inequality logx < x—1, x = 0 %
/%y= log x

 Consider 2 probability distributions given by {p,,p;, ...,px 1} and
{q0.q91, -, qx 1} and the alphabet & = {s,,s,,..,sx ,} of a discrete
memoryless source.




Proof (continued)

«  We can then write the following expression using the natural logarithm:

Snf3 - sy

P ) 109,z Pk
« Using the mequalu‘ry logx < x—1, we have

Shon(3 s B

Py Iog2 k=0 Py

qu Py

Iog2 -

K-1
qu Zpk =
k=0

Iog2



Proof (continued)
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Therefore, we have

For g, = p,=0 we have

o
plog —1=0

Kk
For q,= 1/K, k=0,1, ..., K-1 (equiprobable symbols) we have

K
Zpklogz(p )< log,K



Proof (continued)

 Since the entropy of a discrete memoryless source with equiprobable
symbols is given by
K-1

1
H(&) = qulogz —log, K =log, K
o K
«  We conclude the second part of the proof which states that
H(E) < log,K

« The equality is only obtained for equiprobable symbols.



Example 2: Entropy of a binary
memoryless source

Consider a binary memoryless source with symbols s,, k = 0,1 and symbol
probabilities p,and p;, = 1 —p,

a) Compute the entropy of the source

H(S) = Zpklogz(plj = pologz(ljwliogz(lj

K Po Py
=—Pol0g,p, —p;l0g,p, = —pylog,p, — (1-py)log,(1-p,) bits

H(p,) = —p,log,p, — (1-p,)log, (1-p,)
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b) Plot H(py)

when p, = 0 —> H(¢) = 0(xlogx —> 0 when x —> 0)

when p,

1—> HE) = 0

H(é) is maximum (H(§) = 1) whenp,=p,=1/2

A\




D. Extension of a Discrete
Memoryless Source

In information theory, it is useful to consider blocks rather individual
symbols:

DMS |m==p S, M |oms|oms| .. | oms Sk1 Sk ... Skn
\
!
n
Consider a block with n successive symbols and K the number of distinct
symbols in the source alphabet ¢ of the original source.

We can view each block as being produced by an extended source with a
source alphabet é* that has K™ distinct blocks.

The entropy of the extended source is given by

H(E™) = nH(S)



Joint entropy

« Consider a block of symbols organized in the vector

s = [Sl Sy Sn]T
« The joint entropy is given b

H(s) = 2 p(s) log =

1
=i i, .. i,p(51 S2 -+ Sn)log

p(s1 Sz -~ Sn)

« Since we are dealing with a DMS the source symbols are statistically
independent.

« Hence, the probabilities involved in p(s) are decoupled and p(s) is equal
to the product of the probabilities

p(s) = p(sp(sz) ...p(sn)



« Therefore, the joint entropy can be rewritten as
H(s) = X p(s)log % =H(E™)

1

p(s1 Sz - Sn)

=i i, .. i,p(51 S2 - Sn)log

=% i, . inP(DP(52) ---P(Sn)log( : )

p(s1)p(sz)..p(spn)

=Zilp(5i1)log( ! )Zizp(siz)log( : )...ZinP(Sin)lof%( - )

p(siy) p(si,) p(siy)

= n %, p(si,)log (

1
p(siy)

) = n1®)

« Thus, the entropy of the extended source is given by

HE™) = nH(S)



A Example 3: Entropy of an extended
or source

RIO

Consider a discrete memoryless source with alphabet ¢ = {s,, s;, s,} with
symbol probabilities p, = 1/4,p, = 1/4and p, = 1/2.

a) Compute the entropy

= 1 1 1 1
H(&) =D p.log,| — [=p,log,| — |+p.log,| — |+Pp,log,| —
= Py Po o) P,

1 1 1 3. .
= Z |092(4)+ Z |092(4)+ E IOgZ(Z): E bits
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Consider now an extension of the previous source with 2 symbols in a block as

oMs |==p s P@ [ oms | OMS fmmb  siS

The alphabet & = {0, 0,0, 05, 04 05,0, 0, 05} corresponds to the sequences

of ¢
S50 50515052, 515005151, 5152, 5250, 5251, 525,

with probabilities

p,=1/16,p, =1/16,p, =1/8,p;=1/16,p,=1/16 ,p;=1/8,ps,=1/8,p, =
1/8and pg = 1/4.



b) Compute the entropy

8 1 1 1 1
H(E?) = | — =] 16)+ —1 16)+ =1 8
(&%) kEZO,pk ng[p J T 0g,( )+16 0g, )+8 09,(8)

k

1 1 1 1 1 1 :
T Iogz(16)+E log, (16)+ 5 log, (8)+ 5 log, (8)+ 5 log, (8)+ 3 log, (4) =3 bits

or

H(E%) = nH(¢&) = 2% = 3bits



