

Information Theory and Channel Coding

Prof. Rodrigo C. de Lamare CETUC, PUC-Rio, Brazil <u>delamare@cetuc.puc-rio.br</u>

Textbooks and Assessment

- Textbooks:
 - Thomas Cover and Joy Thomas, Elements of Information Theory, 2nd Edition, 2006.
 - Jorge Moreira and Patrick Farrell, Essentials of Error-Control Coding, 2006, Wiley.
- Assessment:
 - 1 Exam papers (E) on Information Theory.
 - 1 Project (P) on a topic on Channel Coding chosen by the student in agreement with the lecturer.
 - 8 Lists of exercises (LE) on all topics.
 - Final grade (FG) = (E + P + LE)/3

Part I: Information Theory

- I. Introduction
 - Fundamental limits
 - Uncertainty, information and entropy
- II. Source coding
 - Prefix coding
 - Huffman coding
 - Lempel-Ziv coding
 - Quantisation
- III. Channel capacity
 - Continuous and discrete channels
 - Mutual information
 - Channel capacity theorem
- IV. Channel coding theorem
- V. Rate distortion theory

I. Introduction

- Information theory deals with the mathematical analysis and modelling of communications systems.
- It is a branch of probability theory that focuses on abstract models and the derivation of bounds and inequalities.
- In this course, we focus on the following fundamental limits:
 - Compression
 - Transmission
 - Reliability

communicate without errors

B. Uncertainty, information and entropy

• Consider a discrete source illustrated by

• Let us define the alphabet of this source as

 $\xi = \{s_0, s_1, \dots, s_{K-1}\}$ with probabilities $P(s = s_k) = p_k, k = 0, 1, \dots, K-1$

• This set of probabilities must satisfy the following

Information

• Given an event $s = s_k$ which occurs with probability p_k , the amount of information is given by

$$\mathbf{I}(\mathbf{s}_{k}) = \log\left(\frac{1}{\mathbf{p}_{k}}\right)$$

Information (continued)

• The information using a base-2 logarithm is defined by

$$I(s_k) = \log_2\left(\frac{1}{p_k}\right) \text{ bits}$$
$$= -\log_2(p_k), \text{ for } k = 0, 1, \dots, K-1$$

Example 1

Compute the amount of information when $p_k = \frac{1}{2}$

$$I(s_k) = \log_2\left(\frac{1}{p_k}\right) = -\log_2(p_k)$$

= $-\log_2(\frac{1}{2}) = 1$ bit

Properties

- i) $I(s_k) = 0$ when $p_k = 1$
- ii) $I(s_k) \ge 0$ for $0 \le p_k \le 1$
- iii) $I(s_k) > I(si)$ for $p_k < p_i$
- iv) $I(s_k s_i) = I(s_k) + I(s_i)$ if s_k and s_i are statistically independent

• The entropy is defined as the average information content measure per symbol of a source as described by

$$H(\xi) = E[I(s_k)] = \sum_{k=0}^{K-1} p_k I(s_k)$$
$$= \sum_{k=0}^{K-1} p_k \log_2\left(\frac{1}{p_k}\right) \text{ bits,}$$

where ξ is the alphabet

 $I(s_k)$ is the information content and p_k is the symbol probability for k = 0, 1, ..., K - 1and the entropy depends only on the probabilities of the symbols in ξ .

C. Properties of Entropy

- Consider the discrete memoryless source previously defined.
- The entropy $H(\xi)$ of this source is bounded as follows:

 $0 \le H(\xi) \le \log_2 K$

• Properties:

i) $H(\xi) = 0$ if and only if $p_k = 1$ (no uncertainty)

ii) $H(\xi) = \log_2 K$ if and only if $p_k = \frac{1}{K}$ for all k (maximum uncertainty)

Proof

• Because $p_k \le 1$ each term of $p_k \log_2(1/p_k)$ in $H(\xi)$ is always non negative. Therefore, we have

$H(\xi) \ge 0$

- Noting that $p_k \log_2 (1/p_k) = 0$ if $p_k = 0$ or $p_k = 1$ we have that $H(\xi) = 0$ if $p_k = 1$ for any k and the remaining probabilities $p_j = 0$, for $j \neq k$.
- This completes the first part of the proof that

 $H(\xi) \ge 0$

- In order to obtain the upper bound $H(\xi) \leq \log_2 K$ we adopt the following strategy:
- Consider the inequality $\log x \le x 1, x \ge 0$

• Consider 2 probability distributions given by $\{p_0, p_1, \dots, p_{K_1}\}$ and $\{q_0, q_1, \dots, q_{K_1}\}$ and the alphabet $\xi = \{s_0, s_1, \dots, s_{K_1}\}$ of a discrete memoryless source.

• We can then write the following expression using the natural logarithm:

$$\sum_{k=0}^{K-1} p_k \log_2\left(\frac{q_k}{p_k}\right) = \frac{1}{\log_2} \sum_{k=0}^{K-1} p_k \log\left(\frac{q_k}{p_k}\right)$$

• Using the inequality $\log x \le x - 1$, we have

$$\begin{split} \sum_{k=0}^{K-1} p_k \log_2 \left(\frac{q_k}{p_k} \right) &\leq \frac{1}{\log_2} \sum_{k=0}^{K-1} p_k \left(\frac{q_k}{p_k} - 1 \right) \\ &\leq \frac{1}{\log_2} \sum_{k=0}^{K-1} q_k - p_k \\ &\leq \frac{1}{\log_2} \sum_{k=0}^{K-1} q_k - \sum_{k=0}^{K-1} p_k = 0 \end{split}$$

• Therefore, we have

$$\sum_{k=0}^{K-1} p_k \log_2\left(\frac{q_k}{p_k}\right) \le 0$$

• For $q_k = p_k = 0$ we have

$$\sum_{k=0}^{K-1} p_k \log_2\left(\frac{q_k}{p_k}\right) = 0$$

• For $q_k = 1/K$, k =0,1, ..., K-1 (equiprobable symbols) we have

$$\sum_{k=0}^{K-1} p_k \log_2\left(\frac{1}{p_k}\right) \le \log_2 K$$

• Since the entropy of a discrete memoryless source with equiprobable symbols is given by

$$H(\xi) = \sum_{k=0}^{K-1} q_k \log_2\left(\frac{1}{q_k}\right) = \sum_{k=0}^{K-1} \frac{1}{K} \log_2 K = \log_2 K$$

• We conclude the second part of the proof which states that

$$H(\xi) \leq \log_2 K$$

• The equality is only obtained for equiprobable symbols.

Example 2: Entropy of a binary memoryless source

Consider a binary memoryless source with symbols $s_k,\,k=0,1$ and symbol probabilities p_0 and $p_1=1-p_0$

a) Compute the entropy of the source

$$H(\xi) = \sum_{k=0}^{K-1} p_k \log_2\left(\frac{1}{p_k}\right) = p_0 \log_2\left(\frac{1}{p_0}\right) + p_1 \log_2\left(\frac{1}{p_1}\right)$$
$$= -p_0 \log_2 p_0 - p_1 \log_2 p_1 = -p_0 \log_2 p_0 - (1-p_0) \log_2(1-p_0) \text{ bits}$$

 $H(p_0) = -p_0 \log_2 p_0 - (1 - p_0) \log_2 (1 - p_0)$

b) Plot $H(p_0)$

when
$$p_0 = 0 \longrightarrow H(\xi) = 0$$
 ($x \log x \longrightarrow 0$ when $x \longrightarrow 0$)

when $p_0 = 1 -> H(\xi) = 0$

 $H(\xi)$ is maximum ($H(\xi) = 1$) when $p_0 = p_1 = 1/2$

D. Extension of a Discrete Memoryless Source

• In information theory, it is useful to consider blocks rather individual symbols:

- Consider a block with n successive symbols and K the number of distinct symbols in the source alphabet ξ of the original source.
- We can view each block as being produced by an extended source with a source alphabet ξ^n that has K^n distinct blocks.
- The entropy of the extended source is given by

 $H(\xi^n) = n H(\xi)$

Joint entropy

• Consider a block of symbols organized in the vector

$$\boldsymbol{s} = [s_1 \quad s_2 \quad \dots \quad s_n]^T$$

• The joint entropy is given by

$$H(s) = \sum p(s) \log \frac{1}{p(s)}$$

= $\sum_{i_1 \ i_2 \ \dots \ i_n} p(s_1 \ s_2 \ \dots \ s_n) \log \frac{1}{p(s_1 \ s_2 \ \dots \ s_n)}$

- Since we are dealing with a DMS the source symbols are statistically independent.
- Hence, the probabilities involved in p(s) are decoupled and p(s) is equal to the product of the probabilities

$$p(\mathbf{s}) = p(s_1)p(s_2) \dots p(s_n)$$

• Therefore, the joint entropy can be rewritten as $H(s) = \sum p(s) \log \frac{1}{p(s)} = H(\xi^n)$ $= \sum_{i_1 \ i_2 \ \dots \ i_n} p(s_1 \ s_2 \ \dots \ s_n) \log \frac{1}{p(s_1 \ s_2 \ \dots \ s_n)}$ $= \sum_{i_1 \ i_2 \ \dots \ i_n} p(s_1) p(s_2) \dots p(s_n) \log \left(\frac{1}{p(s_1)p(s_2)\dots p(s_n)}\right)$ $= \sum_{i_1} p(s_{i_1}) \log \left(\frac{1}{p(s_{i_1})}\right) \sum_{i_2} p(s_{i_2}) \log \left(\frac{1}{p(s_{i_2})}\right) \dots \sum_{i_n} p(s_{i_n}) \log \left(\frac{1}{p(s_{i_n})}\right)$ $= n \sum_{i_1} p(s_{i_1}) \log \left(\frac{1}{p(s_{i_1})}\right) = nH(\xi)$

• Thus, the entropy of the extended source is given by

$$H(\xi^n) = n H(\xi)$$

Example 3: Entropy of an extended source

Consider a discrete memoryless source with alphabet $\xi = \{s_0, s_1, s_2\}$ with symbol probabilities $p_0 = 1/4$, $p_1 = 1/4$ and $p_2 = 1/2$.

a) Compute the entropy

$$H(\xi) = \sum_{k=0}^{K-1} p_k \log_2\left(\frac{1}{p_k}\right) = p_0 \log_2\left(\frac{1}{p_0}\right) + p_1 \log_2\left(\frac{1}{p_1}\right) + p_2 \log_2\left(\frac{1}{p_2}\right)$$
$$= \frac{1}{4} \log_2(4) + \frac{1}{4} \log_2(4) + \frac{1}{2} \log_2(2) = \frac{3}{2} \text{ bits}$$

Consider now an extension of the previous source with 2 symbols in a block as

$$DMS \implies s_k \qquad \bigstar \qquad DMS \implies S_{k1}S_{k2}$$

The alphabet $\xi^2 = \{\sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6, \sigma_7, \sigma_8\}$ corresponds to the sequences of ξ

$$S_0S_0, S_0S_1, S_0S_2, S_1S_0, S_1S_1, S_1S_2, S_2S_0, S_2S_1, S_2S_2$$

with probabilities

$$p_0 = 1/16$$
, $p_1 = 1/16$, $p_2 = 1/8$, $p_3 = 1/16$, $p_4 = 1/16$, $p_5 = 1/8$, $p_6 = 1/8$, $p_7 = 1/8$ and $p_8 = 1/4$.

b) Compute the entropy

$$H(\xi^{2}) = \sum_{k=0}^{8} p_{k} \log_{2} \left(\frac{1}{p_{k}} \right) = \frac{1}{16} \log_{2} (16) + \frac{1}{16} \log_{2} (16) + \frac{1}{8} \log_{2} (8)$$
$$+ \frac{1}{16} \log_{2} (16) + \frac{1}{16} \log_{2} (16) + \frac{1}{8} \log_{2} (8) + \frac{1}{8} \log_{2} (8) + \frac{1}{8} \log_{2} (8) + \frac{1}{4} \log_{2} (4) = 3 \text{ bits}$$
or

$$H(\xi^2) = nH(\xi) = 2\frac{3}{2} = 3bits$$