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Textbooks and Assessment

• Textbooks:
o Thomas Cover and Joy Thomas, Elements of Information Theory, 2nd Edition, 

2006.

o Jorge Moreira and Patrick Farrell, Essentials of Error-Control Coding, 2006, 
Wiley.

• Assessment:
o 1 Exam papers (E) on Information Theory.

o 1 Project (P) on a topic on Channel Coding chosen by the student in 
agreement with the lecturer.

o 8 Lists of exercises (LE) on all topics.

o Final grade (FG) = (E + P + LE)/3



Syllabus

Part I: Information Theory

I. Introduction
o Fundamental limits

o Uncertainty, information and entropy

II. Source coding
o Prefix coding 

o Huffman coding

o Lempel-Ziv coding

o Quantisation

III. Channel capacity
o Continuous and discrete channels

o Mutual information

o Channel capacity theorem

IV. Channel coding theorem

V. Rate distortion theory



I. Introduction

• Information theory deals with the mathematical analysis and modelling
of communications systems.

• It is a branch of probability theory that focuses on abstract models
and the derivation of bounds and inequalities.

• In this course, we focus on the following fundamental limits:

o Compression

o Transmission

o Reliability



A. Fundamental limits

• Compression Entropy (H) of a source

• Transmission Channel capacity (C)

• Reliability If 𝐻 ≤ 𝐶 then a system can

communicate without errors



B. Uncertainty, information and
entropy

• Consider a discrete source illustrated by

• Let us define the alphabet of this source as

𝜉 = {𝑠0, 𝑠1, … , 𝑠𝐾 − 1} with probabilities 𝑃(𝑠 = 𝑠𝑘) = 𝑝𝑘, 𝑘 = 0,1, … , 𝐾 − 1

• This set of probabilities must satisfy the following
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Information

• Given an event 𝑠 = 𝑠𝑘 which occurs with probability 𝑝𝑘, the amount of
information is given by
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Information (continued)

• The information using a base-2 logarithm is defined by
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Example 1

Compute the amount of information when 𝑝𝑘 = ½

𝐼 𝑠𝑘 = log 2
1

𝑝𝑘
= − log 2 𝑝𝑘

= − log 2 ½ = 1 bit



Properties

i) 𝐼(𝑠𝑘) = 0 when 𝑝𝑘 = 1

ii) 𝐼(𝑠𝑘) ≥ 0 for 0 ≤ 𝑝𝑘 ≤ 1

iii) 𝐼(𝑠𝑘) > 𝐼(𝑠𝑖) for 𝑝𝑘 < 𝑝𝑖

iv) 𝐼(𝑠𝑘𝑠𝑖) = 𝐼(𝑠𝑘) + 𝐼(𝑠𝑖) if 𝑠𝑘 and 𝑠𝑖 are statistically independent



Entropy

• The entropy is defined as the average information content measure per 

symbol of a source as described by

where 𝜉 is the alphabet

𝐼(𝑠𝑘) is the information content and

𝑝𝑘 is the symbol probability for 𝑘 = 0,1, … , 𝐾 − 1

and the entropy depends only on the probabilities of the

symbols in 𝜉.
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C. Properties of Entropy

• Consider the discrete memoryless source previously defined. 

• The entropy 𝐻(𝜉) of this source is bounded as follows:

• Properties:

i) 𝐻(𝜉) = 0 if and only if 𝑝𝑘 = 1 (no uncertainty)

ii)  𝐻(𝜉) = log2 𝐾 if and only if 𝑝𝑘 =
1

𝐾
for all 𝑘 (maximum uncertainty)
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Proof

• Because 𝑝𝑘 ≤ 1 each term of 𝑝𝑘 log2 (1/𝑝𝑘) in 𝐻(𝜉) is always non
negative.  Therefore, we have

𝐻(𝜉) ≥ 0

• Noting that 𝑝𝑘 log2 (1/𝑝𝑘) = 0 if pk = 0 or pk = 1 we have that 𝐻(𝜉) = 0 if
𝑝𝑘 = 1 for any k and the remaining probabilities 𝑝𝑗 = 0, for 𝑗 ≠ 𝑘.

• This completes the first part of the proof that

𝐻(𝜉) ≥ 0



Proof (continued)

• In order to obtain the upper bound 𝐻(𝜉) ≤ log2𝐾 we adopt the following
strategy:

• Consider the inequality log 𝑥 ≤ 𝑥 − 1,  𝑥 ≥ 0

• Consider 2 probability distributions given by {𝑝0, 𝑝1, … , 𝑝𝐾 − 1} and
{𝑞0, 𝑞1, … , 𝑞𝐾 − 1} and the alphabet 𝜉 = {𝑠0, 𝑠1, … , 𝑠𝐾 − 1} of a discrete
memoryless source.

y = x-1

y = log x



Proof (continued)

• We can then write the following expression using the natural logarithm:

• Using the inequality log 𝑥 ≤ 𝑥 − 1, we have
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Proof (continued)

• Therefore, we have

• For qk = pk=0 we have

• For qk = 1/K, k =0,1, ..., K-1 (equiprobable symbols) we have
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Proof (continued)

• Since the entropy of a discrete memoryless source with equiprobable
symbols is given by

• We conclude the second part of the proof which states that

𝐻(𝜉) ≤ log2𝐾

• The equality is only obtained for equiprobable symbols.
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Example 2: Entropy of a binary
memoryless source

Consider a binary memoryless source with symbols 𝑠𝑘, 𝑘 = 0,1 and symbol
probabilities 𝑝0 and 𝑝1 = 1 − 𝑝0

a) Compute the entropy of the source
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b) Plot H(p0)

when 𝑝0 = 0 −> 𝐻(𝜉) = 0 (𝑥 log 𝑥 −> 0 when 𝑥 −> 0)

when 𝑝0 = 1 −> 𝐻(𝜉) = 0

𝐻(𝜉) is maximum (𝐻(𝜉) = 1) when 𝑝0 = 𝑝1 = 1/2
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D. Extension of a Discrete
Memoryless Source

• In information theory, it is useful to consider blocks rather individual
symbols:

• Consider a block with 𝑛 successive symbols and 𝐾 the number of distinct
symbols in the source alphabet ξ of the original source.

• We can view each block as being produced by an extended source with a
source alphabet 𝜉𝑛 that has 𝐾𝑛 distinct blocks.

• The entropy of the extended source is given by

𝐻(𝜉𝑛) = 𝑛 𝐻(𝜉)
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Joint entropy

• Consider a block of symbols organized in the vector 

𝒔 = 𝑠1 𝑠2 … 𝑠𝑛 𝑇

• The joint entropy is given by

𝐻 𝒔 = σ𝑝 𝒔 log
1

𝑝 𝒔

= σ𝑖1 𝑖2 … 𝑖𝑛 𝑝 𝑠1 𝑠2 … 𝑠𝑛 log
1

𝑝 𝑠1 𝑠2 … 𝑠𝑛

• Since we are dealing with a DMS the source symbols are statistically 
independent.

• Hence, the probabilities involved in 𝑝 𝒔 are decoupled and 𝑝 𝒔 is equal 
to the product of the probabilities

𝑝 𝒔 = 𝑝 𝑠1 𝑝(𝑠2)…𝑝(𝑠𝑛)



• Therefore, the joint entropy can be rewritten as

𝐻 𝒔 = σ𝑝 𝒔 log
1

𝑝 𝒔
= 𝐻 𝜉𝑛

= σ𝑖1 𝑖2 … 𝑖𝑛 𝑝 𝑠1 𝑠2 … 𝑠𝑛 log
1

𝑝 𝑠1 𝑠2 … 𝑠𝑛

= σ𝑖1 𝑖2 … 𝑖𝑛 𝑝 𝑠1 𝑝(𝑠2)…𝑝(𝑠𝑛) log
1

𝑝 𝑠1 𝑝 𝑠2 …𝑝 𝑠𝑛

= σ𝑖1
𝑝 𝑠𝑖1 log

1

𝑝 𝑠𝑖1
σ𝑖2

𝑝 𝑠𝑖2 log
1

𝑝 𝑠𝑖2
…σ𝑖𝑛

𝑝 𝑠𝑖𝑛 log
1

𝑝 𝑠𝑖𝑛

= 𝑛σ𝑖1
𝑝 𝑠𝑖1 log

1

𝑝 𝑠𝑖1
= nH 𝜉

• Thus, the entropy of the extended source is given by

𝐻(𝜉𝑛) = 𝑛 𝐻(𝜉)



Example 3: Entropy of an extended
source

Consider a discrete memoryless source with alphabet 𝜉 = {𝑠0, 𝑠1, 𝑠2} with
symbol probabilities 𝑝0 = 1/4, 𝑝1 = 1/4 and 𝑝2 = 1/2.

a) Compute the entropy
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Consider now an extension of the previous source with 2 symbols in a block as  

The alphabet 𝜉2 = {𝜎0, 𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6, 𝜎7, 𝜎8} corresponds to the sequences
of 𝜉

𝑠0𝑠0, 𝑠0𝑠1, 𝑠0𝑠2, 𝑠1𝑠0, 𝑠1𝑠1, 𝑠1𝑠2, 𝑠2𝑠0, 𝑠2𝑠1, 𝑠2𝑠2

with probabilities

𝑝0 = 1/16, 𝑝1 = 1/16, 𝑝2 = 1/8 , 𝑝3 = 1/16 , 𝑝4 = 1/16 , 𝑝5 = 1/8 , 𝑝6 = 1/8 , 𝑝7 =

1/8 and 𝑝8 = 1/4.
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b) Compute the entropy
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