
Information Theory and Channel Coding

Prof. Rodrigo C. de Lamare

CETUC, PUC-Rio, Brazil

delamare@cetuc.puc-rio.br

mailto:delamare@cetuc.puc-rio.br

II. Source coding

• Source coding corresponds to the compression of data and information
theory describes the ultimate limits of data compression.

• Shannon established this fundamental limit which corresponds to the
entropy of the source in 1948 through the source coding theorem.

• We first consider lossless source coding techniques that do not lead to
any loss of information.

• Then we examine lossy compression approaches that are often used in
multimedia but which imply loss of information.

This chapter deals with source coding techniques and is structured as:

A. Fundamentals

B. Source coding theorem

C. Prefix coding

D. Huffman coding

E. Lempel-ziv coding

F. Quantisation

A. Fundamentals

• Source coding is the process of representing data generated by a
discrete source in an efficient manner.

• In this context, the knowledge of the statistics of the source can help
the encoding and increase the efficiency.

• In our exposition, we will assume the following:

o Use of binary codewords.

o The source code is uniquely decodable.

o The source has an alphabet with K symbols, i.e., 𝜉 = {𝑠0, 𝑠1, … , 𝑠𝐾−1 }.

o The kth symbol 𝑠𝑘 occurs with probability 𝑝𝑘, 𝑘 = 0,1,… , 𝐾 − 1.

o The binary codeword 𝒄𝑘 assigned to symbol 𝑠𝑘 has length 𝑙𝑘 in bits.

• A general source coding scheme is illustrated as follows:

• The average codeword length is given by

where the above corresponds to the average number of bits used to encode
the source symbols.

Discrete
Memoryless

Source

Source
encoder

bits lpl
1K

0k

kk






𝑠𝑘 𝒄𝑘

𝑙𝑘 bits

• Efficiency of source coding:

where lmin is smallest possible value of the codeword.

• How do we obtain lmin?

The first theorem of Shannon: “The source coding theorem”

,min

l

l


B. The source coding theorem

• Given a discrete memoryless source with entropy 𝐻(𝜉), the average
codeword length for any lossless encoding scheme is bounded by

• The entropy H(ξ) is the fundamental limit of compression, i.e., the limit
to the average number of bits per source symbol required to represent
a discrete memoryless source.

• In a source encoding scheme, when 𝑙𝑚𝑖𝑛 = 𝐻(𝜉), the efficiency is given
by

)(Hl 

𝜂 =
𝐻 𝜉

ҧ𝑙

Shannon, Claude Elwood (July 1948). "A Mathematical Theory of
Communication" (PDF). Bell System Technical Journal. 27 (3): 379–423.

https://en.wikipedia.org/wiki/Claude_Elwood_Shannon
https://web.archive.org/web/19980715013250/http:/cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
https://en.wikipedia.org/wiki/Bell_System_Technical_Journal

Example 1

Consider the following symbols and probabilities associated with a discrete
memoryless source and the codes employed.

a) Compute the entropy of the source

b) Calculate the average codeword length and the efficiency of the codes

Source symbols Probabilities Code

𝑠0 0.5 0

𝑠1 0.25 10

𝑠2 0.15 110

𝑠3 0.1 111

Solution:

a) 𝐻 𝜉 = σ𝑘=0
𝐾−1𝑝𝑘𝑙𝑜𝑔2

1

𝑝𝑘
= 0.5 × 1 + 0.25 × 2 + 0.15 × 𝑙𝑜𝑔2

1

0.15
+ 0.1 ×

𝑙𝑜𝑔2 10 = 1.7427 bits

b) ҧ𝑙 = σ𝑘=0
𝐾−1𝑝𝑘𝑙𝑘 = 0.5 × 1 + 0.25 × 2 + 0.15 × 3 + 0.1 × 3 = 1.75 bits

𝜂 =
𝐻 𝜉

ҧ𝑙
= 99.59 %

C. Prefix coding

• Since sources often exhibit some form of redundancy, it is possible to
increase the transmission efficiency through data compression.

• Data compression could be of two forms:

o Lossless -> with no loss of information

o Lossy -> with loss of information

• Prefix coding can obtain na average codeword length ҧ𝑙 that could
become arbitrarily close to the entropy 𝐻 𝜉 .

• Let us consider a discrete memoryless source with alphabet 𝜉 =
𝑠0, 𝑠1, … , 𝑠𝐾−1 with probabilities 𝑝0, 𝑝1, … , 𝑝𝐾−1 .

• We assume that the codewords are uniquely decodable and the prefix
condition

• Any sequence that contains the initial part of the codeword is a prefix.

𝑐𝑘1 𝑐𝑘2
𝑐𝑘𝑖𝑘 𝑐𝑘𝑖+1 𝑐𝑘𝑖+2 𝑐𝑘𝑙𝑘… ...

𝑖𝑘

𝑙𝑘

Prefix with length 𝑖𝑘 bits

Codeword with length 𝑙𝑘 bits

Example 2

Consider the following symbols and probabilities associated with a discrete
memoryless source and the codes employed.

Analyze the codes and determine if they are prefix codes.

Source
symbols

Probabilities Code A Code B Code C

𝑠0 0.5 0 0 0

𝑠1 0.25 1 10 01

𝑠2 0.15 00 110 011

𝑠3 0.1 11 111 0111

Solution:

Code A is not a prefix code since the bit 0, the codeword for 𝑠0, is a prefix
of 00, the codeword for 𝑠2. Likewise, the codeword for 𝑠1, the bit 1, is a
prefix of 11, the codeword for 𝑠3.

For similar reasons, code C is also not a prefix code.

Code B is a prefix code as all the prefixes of the codewords are unique.

Decoding of prefix codes

• The decoder of prefix codes inspects the beginning of a sequence and
decodes one codeword at each time instant.

• Specifically, we employ a decision tree for code B described by

𝑠0

𝑠1

𝑠2

𝑠3

0

0

0

1

1

1

Initial
state

Properties

i) Uniquely decodable

ii) Kraft-McMillan inequality

෍

𝑘=0

𝐾−1

2−𝑙𝑘 ≤ 1

Assuming binary codewords, the lengths of the codewords must always
satisfy the above inequality.

Example 3

Consider the following symbols and codes produced by a discrete
memoryless source.

Describe in detail the decoding of the sequence s = {1 0 1 1 1 1 1 0 0 0}

Source
symbol

Code

𝑠0 0

𝑠1 10

𝑠2 110

𝑠3 111

Solution:

The sequence s = {1 0 1 1 1 1 1 0 0 0} produces the sequence of symbols
given by

𝑠1𝑠3𝑠2𝑠0𝑠0

The decoding can be performed by inspecting the sequence of bits and
matching to the codewords in the table.

DecoderSequence Symbols

Kraft-McMillan inequality

• Let us consider a discrete memoryless source with alphabet 𝜉 =
𝑠0, 𝑠1, … , 𝑠𝐾−1 with probabilities 𝑝0, 𝑝1, … , 𝑝𝐾−1 .

• Let us also assume that we have 𝐾 binary codewords 𝒄𝑘 , 𝑘 = 0,1, … , 𝐾 − 1
with lengths 𝑙0, 𝑙1, … , 𝑙𝐾−1 .

• The codeword lengths must satisfy the Kraft-McMillan inequality

෍

𝑘=0

𝐾−1

2−𝑙𝑘 ≤ 1

• The inequality shows that one can constructo a prefix code 𝒄𝑘 , 𝑘 =
0,1, … , 𝐾 − 1, with lengths −log2 𝑝𝑘.

Proof

• Let us consider a prefix code in a tree (remember the decoding of prefix
codes) and let

𝑙𝑚𝑎𝑥 = max 𝑙0, … , 𝑙𝐾−1

• By expanding the tree such that all branches have depth 𝑙𝑚𝑎𝑥, we obtain a
codeword with depth 𝑙𝑘 with 2𝑙𝑚𝑎𝑥−𝑙𝑖 branches.

• Since the sets of branches associated with codewords are disjoint, the
total number of branches associated with codewords is less than 2𝑙𝑚𝑎𝑥.

• Therefore, we have

෍

𝑘=0

𝐾−1

2𝑙𝑚𝑎𝑥−𝑙𝑘 ≤ 2𝑙𝑚𝑎𝑥

• By manipulating the terms, we obtain the Kraft-McMillan inequality

2𝑙𝑚𝑎𝑥 ෍

𝑘=0

𝐾−1

2−𝑙𝑘 ≤ 2𝑙𝑚𝑎𝑥

෍

𝑘=0

𝐾−1

2−𝑙𝑘 ≤ 1

Implications of the Kraft-McMillan
inequality

• The average codeword length ҧ𝑙 is bounded by

𝐻 𝜉 ≤ ҧ𝑙 < 𝐻 𝜉 + 1

• The lower bound is satisfied with equality if 𝒄𝑘 is produced by the
source with probability

𝑝𝑘 = 2−𝑙𝑘 ,

where 𝑙𝑘 is the length of the designated codeword. This leads to optimal
codes.

• Therefore, we have

෍

𝑘=0

𝐾−1

2−𝑙𝑘 = ෍

𝑘=0

𝐾−1

𝑝𝑘 = 1

Optimal prefix codes

• By chosing codes with a specific relation between their probabilities
and lengths, we can obtain optimal prefix codes that yield

ҧ𝑙 = ෍

𝑘=0

𝐾−1

𝑝𝑘 𝑙𝑘 → 𝐻 𝜉

Proof

• Let us consider the following optimization problem

min ҧ𝑙 = ෍

𝑘=0

𝐾−1

𝑝𝑘 𝑙𝑘

subject to෍

𝑘=0

𝐾−1

2−𝑙𝑘 ≤ 1

• We neglect at first the constraint on integers in 𝑙𝑘 and suppose that the
constraint is an equality.

• We can then rewrite the optimization with constraints using the method of
Lagrange multipliers and considering the Lagrangian

ℒ = ෍

𝑘=0

𝐾−1

𝑝𝑘 𝑙𝑘 + λ ෍

𝑘=0

𝐾−1

2−𝑙𝑘 − 1

• By differentiating the Lagrangian with respect to 𝑙𝑘, we obtain

𝜕ℒ

𝜕𝑙𝑘
= 𝑝𝑘 − λ 2−𝑙𝑘

= 𝑝𝑘 − λ 2−𝑙𝑘 log2 2

• Equating the above to zero (
𝜕ℒ

𝜕𝑙𝑘
= 0), we have

2−𝑙𝑘=
𝑝𝑘

λ log2 2

• Substituting λ into the constraint, we get

λ =
1

log2 2

• Therefore, we obtain the optimal relation between probabilities and
codeword lengths

𝑝𝑘 = 2−𝑙𝑘 and 𝑙𝑘 = − log2 𝑝𝑘

• If we substitute the above relations into ҧ𝑙 = σ𝑘=0
𝐾−1𝑝𝑘 𝑙𝑘 then we obtain

ҧ𝑙 = ෍

𝑘=0

𝐾−1

𝑝𝑘 𝑙𝑘 = ෍

𝑘=0

𝐾−1

𝑝𝑘 − log2 𝑝𝑘

= −෍

𝑘=0

𝐾−1

𝑝𝑘 log2 𝑝𝑘 = 𝐻 𝜉

Further relations

• For optimal prefix codes, the Kraft-McMillan inequality also shows us
that the average codeword length is given by

ҧ𝑙 = ෍

𝑘=0

𝐾−1

𝑝𝑘 𝑙𝑘 = ෍

𝑘=0

𝐾−1

2−𝑙𝑘 𝑙𝑘 = ෍

𝑘=0

𝐾−1
𝑙𝑘
2𝑙𝑘

• The entropy of the source for 𝑙𝑘 = log2 2𝑙𝑘 is then given by

𝐻 𝜉 = ෍

𝑘=0

𝐾−1
1

2𝑙𝑘
log2 2𝑙𝑘 = ෍

𝑘=0

𝐾−1
𝑙𝑘
2𝑙𝑘

= ҧ𝑙

• In this special case, we have 𝐻 𝜉 = ҧ𝑙, which again verified the lower
bound.

• The verification of the upper bound of 𝐻 𝜉 ≤ ҧ𝑙 < 𝐻 𝜉 + 1 can be done
by examining how a prefix code can be matched to an arbitrary source.

• This can be done using an extended code.

• Let ഥ𝑙𝑛 be the average codeword length of a codeword associated with
an extended codeword of 𝑛 symbols, which results in

𝐻 𝜉𝑛 ≤ ҧ𝑙𝑛 < 𝐻 𝜉𝑛 + 1

• Substituting the relation of entropy of an extended code into the above
relation, we obtain

𝑛𝐻 𝜉 ≤ ҧ𝑙𝑛 < 𝑛𝐻 𝜉 + 1

• By dividing the previous expression by 𝑛, we arrive at

𝐻 𝜉 ≤
ҧ𝑙𝑛

𝑛
< 𝐻 𝜉 +

1

𝑛

• If we take the limit when 𝑛 → ∞, we have

lim
𝑛 →∞

ҧ𝑙𝑛
𝑛
= 𝐻 𝜉

• This indicates that with 𝑛 sufficiently large, we have

ҧ𝑙 → 𝐻 𝜉

• However, the above implies na increase in the computational complexity
of decoding.

D. Huffman coding

• Basic ideas:

o To assign to each symbol a code (sequence of bits) approximately equal in
length to the amount of information in the symbol.

o To substitute the set of statistics (probababilities) of the source by a
second simpler set.

• The Huffman coding algorithm requires the statistics of the source,
which can be obtained off-line, and approach the entropy of the source.

• It can be easily adapted to extended sources.

Huffman, D. (1952). "A Method for the Construction of Minimum-
Redundancy Codes" (PDF). Proceedings of the IRE. 40 (9): 1098–1101

https://en.wikipedia.org/wiki/David_A._Huffman
http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf
https://en.wikipedia.org/wiki/Proceedings_of_the_IRE

Huffman coding algorithm

i) Source symbols are listed in decreasing order of probability.

ii) The two symbols with lowest probabilities are designated 0 or 1.

iii) The two symbols above are combined into a new symbol with probability
equal to the sum of the original probabilities.

iv) The new symbol is listed with the remaining symbols and their
probabilities.

v) The procedure is repeated until only two symbols remain.

The code is the backward sequence of 0s and 1s obtained from the
symbols.

The Huffman code is not unique but converge to the entropy 𝐻 𝜉

Example 4

Five symbols of the alphabet of a discrete memoryless source and their
probabilities are shown below.

a) Perform the Huffman coding algorithm.

b) Compute the entropy, the average codeword length and the efficiency.

Source symbol Probabilities

𝑠0 0.4

𝑠1 0.2

𝑠2 0.2

𝑠3 0.1

𝑠4 0.1

Solution:

a) Symbols Stage I Stage II Stage III Stage IV

𝑠0 0.4 0.4 0.4 0.6

𝑠1 0.2 0.2 0.4 0.4

𝑠2 0.2 0.2 0.2

𝑠3 0.1 0.2

𝑠4 0.1

0

1

0

1

0

1

0

1

Source
symbol

Probabilities Codes

𝑠0 0.4 00

𝑠1 0.2 10

𝑠2 0.2 11

𝑠3 0.1 010

𝑠4 0.1 011

b) The average codeword length is

ҧ𝑙 = σ𝑘=0
𝐾−1𝑝𝑘 𝑙𝑘 = 0.4 × 2 + 0.2 × 2 + 0.2 × 2 + 0.1 × 3 + 0.1 × 3 = 2.2 bits

The entropy is given by

𝐻 𝜉 = σ𝑘=0
𝐾−1𝑝𝑘𝑙𝑜𝑔2

1

𝑝𝑘

= 0.4 log2 1/0.4 +0.2 log2 1/0.2 + 0.2 log2 1/0.2 +0.1 log2(1/

E. Lempel-Ziv coding

o Invented by Lempel and Ziv in 1977 with extensions in 1978 and then
later.

o It is a lossless universal compression scheme adopted for pdf, gif, zip
and compress, which are widely used nowadays.

o Motivation:

o Huffman coding requires knowledge of the statistics of the source.

o Statistics might change with the source to be compressed.

o Need for a universal lossless compression approach that does not require
the statistics of the source.

Ziv, J.; Lempel, A. (1978). "Compression of individual sequences via variable-rate
coding" (PDF). IEEE Transactions on Information Theory. 24 (5): 530.

http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1978_variable-rate.pdf

o Basic ideas:

o To encode data by splitting or parsing them into sequences or blocks of
symbols of variable length.

o The blocks that are encoded have not been found previously.

o A dictionary with codewords with 𝑙𝑘 bits of fixed length are used to encode
the blocks.

Universal source compression

o We first set the benchmark using the performance of an optimal
compressor that knows the source statistics.

o We construct a universal compression scheme that does not know the
source statistics but is asymptotically optimal.

o Consider the problem of compressing a source sequence 𝒔𝑛 with some
source code.

o For the sake of brevity, we will consider the most common case that
the source code outputs a binary sequence.

o The conclusions carry over to non-binary alphabets easily

o A source code for an n-block sequence 𝒄𝒌 is defined as a mapping from a
source sequence 𝒔𝑛 to a binary sequence of finite length, i.e.,

𝒄𝒌 𝒔𝑛 = 𝑐1𝑐2…𝑐𝑙𝑘,

where 𝑙𝑘 is the length of the output sequence and 𝑐𝑖 ∈ 0,1 .

o For any source sequence and uniquely decodable code, we have

𝐻 𝒔𝑛 ≤ ҧ𝑙 ≤ 𝐻 𝒔𝑛 + 1

o Thus, when we consider a source random process 𝒔, and look at the average
per-symbol description length, we have

lim
𝑛 →∞

𝐸
1

𝑛
ҧ𝑙 (𝒔𝑛) = lim

𝑛 →∞

1

𝑛
𝐻 𝒔𝑛 = 𝐻 𝒔 ,

where 𝐻 𝒔 is the entropy of the random process 𝒔.

o An encoding scheme that produces sequences that lead to the above
condition is universal.

o The Huffman code does not fall into this category due to their dependence
on the source distribution.

o However, we will see one celebrated example of such a scheme: the
Lempel-Ziv coding

Lempel-Ziv encoder

o The Lempel-Ziv encoder considers the
following sequence of symbols:

o A sequence or block of symbols after parsing
is obtained

o A dictionary employs binary codewords with 𝑙𝑘
bits to encode the sequence of symbols.

o The Lempel-Ziv algorithm parses the sequence
of symbols.

o The Lempel-Ziv code is the index of the
dictionary that corresponds to 𝑙𝑘 bits.

𝑠0𝑠1𝑠2𝑠3𝑠0𝑠1…𝑠𝑛−1

𝑏0 𝑏1 𝑏0

𝑐1…𝑐𝑙𝑘
𝑙𝑘bits

Lempel-Ziv decoder

o The decoding of the Lempel-Ziv codes requires knowledge of the
dictionary and uses the following principles:

o A pointer is employed to identify the codeword.

o Once the codeword is identified, the original sequence of symbols is
reconstructed.

𝑐1…𝑐𝑙𝑘
𝑙𝑘bits

𝑐1…𝑐𝑙𝑘
𝑙𝑘bits

… 𝑐1…𝑐𝑙𝑘
𝑙𝑘bits

𝑏𝑖

𝑠0𝑠1
symbols

codewords

Example 5

Encode the following sequence using the Lempel-Ziv algorithm.

0100001 1000010100000101000001 100000101000010

Solution:

Parsing the sequence by the rules previously explained results in the following
blocks:

0, 1, 00, 001 , 10, 000, 101, 0000, 01, 010, 00001 , 100, 0001, 0100, 0010,

Clearly, all the blocks are different and each blocks is one of the previous
blocks concatenated with a new source output.

The number of blocks is 15. This mean that, for each blocks, we need 4 bits,
plus an extra bit to represent the new source output.

The preceding sequence is encoded by

0000 0, 0000 1 , 0001 0, 0011 1 , 0010 0, 0011 0, 0101 1 , 0110 0, 0001 1, 1001 0, 1000 1,
0101 0, 0110 1, 1010 0, 0100 0

Dictionary Symbol Codeword

1 0000 0 0000 0

2 0010 1 0000 1

3 0011 00 0001 0

4 0100 001 0011 1

5 0101 10 0010 0

6 0110 000 0011 0

7 0111 101 0101 1

8 1000 0000 0110 0

9 1001 01 0001 1

10 1010 010 1001 0

11 1011 00001 1000 1

12 1100 100 0101 0

13 1101 0001 0110 1

14 1110 0100 1010 0

15 1111 0010 0100 0

This representation can hardly be called a data compression scheme
because a sequence of length 44 has been mapped into a sequence of
length 75.

However, as the length of the original sequence is increased, the
compression role of this algorithm becomes more apparent.

We can prove that for a stationary and ergodic source, as the length of
the sequence increases, the number of bits in the compressed sequence
approaches 𝐻(𝒔).

F. Quantization

o Given a bandlimited signal 𝑥(𝑡) obtained from a wide-sense stochastic
process, we can represent 𝑥(𝑡) using a sequence of samples.

o Quantization
o Discretization of amplitudes of 𝑥𝑘
o Minimization of a distortion

o Lossy compression

Sampling CodingQuantization

Source coding

𝑥(𝑡) 𝑥𝑘 ො𝑥𝑘 𝑐𝑘

o Simple encoding strategy:

ො𝑥𝑘 → 𝒄𝑘

o Rate:

𝑅 = log2𝑁 bits/sample

= log2 𝑙𝑘𝑓𝑠 bits/second

where 𝑙𝑘is the length of the codeword and 𝑓𝑠 is the sampling frequency.

Binary codeword

𝑙𝑘 bits

Scalar quantization

o In scalar quantization, each sample is quantized into a level out of a
finite number of levels, which is then encoded into a binary codeword.

o In fact, quantization can be interpreted as a rounding process in which
each sample is rounded to the nearest value from a finite set of levels.

o The set of real numbers ℝ is partitioned into 𝑁 disjoint subsets
denoted by ℛ𝑘 , 1 ≤ 𝑘 ≤ 𝑁, called a quantization region.

o Corresponding to each ℛ𝑘 a quantization level ො𝑥𝑘 is chosen. If the
sample at time 𝑖 𝑥𝑖 belongs to ℛ𝑘 then it is represented by ො𝑥𝑘.

o Then, ො𝑥𝑘 is encoded into a binary codeword and transmitted.

o Given a number of quantized levels, we employ log2𝑁 bits to encode
these levels in binary codewords, resulting in the rate

R = log2𝑁 bits/sample

o As a result, quantization distortion is introduced and can be measured.

o The quantization procedure can be mathematically described by

ො𝑥𝑘 = 𝑄 𝑥𝑘 , for all 𝑥 ∈ ℛ𝑘

o A distortion measure to quantify the loss of information due to
quantization can be employed.

o A widely used distortion measure is the squared error distortion:

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2

= 𝑥 − 𝑄(𝑥) 2 = 𝑒,

where 𝑥 is the sample to be quantized and ො𝑥 = 𝑄(𝑥) is the quantized value.

o Another distortion measure that treats 𝑥 as a random variable is the
mean-square error (MSE) distortion given by

𝐷 = 𝐸 𝑑 𝑥, ො𝑥 = 𝐸 𝑥 − ො𝑥 2

= 𝐸 𝑥 − 𝑄(𝑥) 2 ,

where ො𝑥 = 𝑄 𝑥 is the quantized value.

o The figure below illustrates an eight-level quantization scheme, where
eight regions are defined by ℛ1 = −∞, 𝑎1 , ℛ2 = 𝑎1, 𝑎2 , ℛ3 =
𝑎2, 𝑎3 , ℛ4 = 𝑎3, 𝑎4 , ℛ5 = 𝑎4, 𝑎5 , ℛ6 = 𝑎5, 𝑎6 , ℛ7 = 𝑎6, 𝑎7 and ℛ8 =
𝑎7, ∞ .

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑥

𝑄(𝑥)

ො𝑥1

ො𝑥2

ො𝑥3

ො𝑥4

ො𝑥5

ො𝑥6

ො𝑥7

ො𝑥8

Example 6

Consider a sequence of samples 𝑥𝑘 = {0.8; −0.3; 0.6; 0.9; 0.2;−0.15;−0.7} that
is quantized by a 3-bit scalar quantizer with the quantization levels
contained in the following dictionary:

𝐷 = 1; 0.75; 0.5; 0.25; −0.25;−0.5;−0.75;−1

Compute the quantized sequence ො𝑥𝑘 assuming that the distortion criterion
is the squared error.

The quantized sequence is obtained by computing the squared error
between the samples of 𝑥𝑘 and the quantization levels ො𝑥𝑘 in the dictionary.

𝑥𝑘 = {0.8; −0.3; 0.6; 0.9; 0.2; −0.15;−0.7}

This is carried out by choosing for each sample the quantization level that
yields the smallest squared error:

ො𝑥𝑘 = 𝑄 𝑥𝑘 = argmin𝐷 𝑥 − 𝑄(𝑥) 2

where 𝐷 = 1; 0.75; 0.5; 0.25;−0.25;−0.5; −0.75;−1

The resulting quantized sequence is given by

ො𝑥𝑘 = 0.75;−0.25; 0.5; 1; 0.25;−0.25;−0.75

Types of scalar quantizers

o Uniform: the quantization regions are uniform

o Non-uniform: the quantization regions are non-uniform and should
match the signal’s characteristics.

o Adaptive: can adapt to variations in the signal’s statistics.

o Optimum: requires the pdf of the signal and an iterative numerical
optimization procedure.

Uniform quantization

o Uniform quantizers are the simplest scalar quantizers where the
decision regions are partitioned equally, except for the extreme regions.

o Consider a uniform quantizer with 𝑁 regions of ℝ, where all regions
except ℛ1 e ℛ𝑁, have equal length equal to Δ, known as resolution.

o This means that for all 1 ≤ 𝑖 ≤ 𝑁 − 2, we have Δ = 𝑎𝑖+1 − 𝑎𝑖 and that the

quantization levels are at a distance of
Δ

2
from the boundaries

𝑎1, 𝑎2, … , 𝑎𝑁−1.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑥

𝑄(𝑥)

𝑥ො1

𝑥ො2

𝑥ො3

𝑥ො4

𝑥ො5

𝑥ො6

𝑥ො7

𝑥ො8

o In a uniform quantizer, the MSE distortion is given by

𝐷 = න
−∞

𝑎1

𝑥 − 𝑎1 −
∆

2

2

𝑝𝑥 𝑋 𝑑𝑋 + ෍

𝑖=1

𝑁−2

න
𝑎1+(𝑖−1)∆

𝑎1+𝑖∆

𝑥 − 𝑎1+𝑖∆ −
∆

2

2

𝑝𝑥 𝑋 𝑑𝑋

∆𝑎1+(𝑁−2)׬+
∞

𝑥 − 𝑎1 + 𝑁 − 2 ∆ +
∆

2

2

𝑝𝑥 𝑋 𝑑𝑋,

where 𝐷 is a function of 𝑎1 and ∆.

o In order to design an optimal uniform quantizer, we differentiate 𝐷
with respect to these variables and find the values that minimize 𝐷.

o If we assume that 𝑝𝑥 𝑋 is an even function of 𝑥 then the optimal
quantizer will have symmetry properties.

o Therefore, for even 𝑁, we will have

𝑎𝑖 = −𝑎𝑁−𝑖 = −
𝑁

2
− 𝑖 ∆, for 1 ≤ 𝑖 ≤

𝑁

2

𝑎𝑁
2

= 0 and ො𝑥𝑖 = ො𝑥𝑁+1−𝑖 , for 1 ≤ 𝑖 ≤
𝑁

2

o In this case, the distortion 𝐷 is given by

𝐷 = න
−∞

−
𝑁
2−1 ∆

𝑥 − ො𝑥1
2𝑝𝑥 𝑋 𝑑𝑋 + 2෍

𝑖=1

𝑁
2−1

න
−
𝑁
2+𝑖 ∆

−
𝑁
2+𝑖+1 ∆

𝑥 − ො𝑥𝑖+1
2𝑝𝑥 𝑋 𝑑𝑋

o In these cases, minimization of distortion is often done by numerical
techniques.

o The table below shows the optimal quantization level spacing for a zero-
mean unit variance Gaussian random variable when ො𝑥𝑖 are chosen as mid-
points of the quantization regions

Number of levels (N) Resolution ∆ MSE (𝑫)

1 - 1.0

2 1.596 0.3634

4 0.9957 0.1188

8 0.5860 0.03744

16 0.3352 0.01154

J. Max, “Quantizing for Minimum Distortion,” IEEE Trans. Information Theory,
vol. 6, no. 1, pp. 7-12, March 1960.

Example 7

Consider a signal 𝑥(𝑡) modelled as a Gaussian stochastic process with zero

mean and power spectral density 𝑆𝑥 = ቊ
2, 𝑓 < 100𝐻𝑧
0, otherwise

.

The signal is sampled at the Nyquist rate and each sample is quantized
using an eight level uniform quantizer with 𝑎1 = −60, 𝑎2 = −40, 𝑎3 = −20,
𝑎4 = 0, 𝑎5 = 20, 𝑎6 = 40, 𝑎7 = 60, ො𝑥1 = −70, ො𝑥2 = −50, ො𝑥3 = −30, ො𝑥4 = −10,
ො𝑥5 = 10, ො𝑥6 = 30, ො𝑥7 = 50 and ො𝑥8 = 70.

a) What is the resulting rate?

b) Compute the MSE distortion

Solution:

a) The Nyquist rate is given by

𝑓𝑠 = 2𝑓max = 200 𝐻𝑧

Each sample is a zero-mean Gaussian random variable with variance

𝜎2 = 𝐸 𝑥𝑖
2 = 𝑅𝑥 0 = න

−∞

∞

𝑆𝑥 𝑓 𝑑𝑓 =න
− 100

100

2𝑑𝑓 = 400

Since each sample is quantized to 8 levels, we have that log2 8 = 3 bits are
suficiente to encode each sample. Therefore, the rate is

𝑅 = log2 8 𝑓𝑠 = 600 bits/s

b) To find the MSE distortion, we evaluate

𝐷 = 𝐸 𝑥 − ො𝑥 2 = න
−∞

∞

𝑥 − 𝑄 𝑥
2
𝑝𝑥 𝑋 𝑑𝑋 =෍

𝑖=1

8

න
ℛ𝑖

𝑥 − 𝑄(𝑥) 2𝑝𝑥 𝑋 𝑑𝑋

= න
−∞

𝑎1

𝑥 − ො𝑥1
2𝑝𝑥 𝑋 𝑑𝑋 +෍

𝑖=2

7

න
𝑎𝑖−1

𝑎𝑖

𝑥 − ො𝑥𝑖
2𝑝𝑥 𝑋 𝑑𝑋 + න

𝑎7

∞

𝑥 − ො𝑥8
2𝑝𝑥 𝑋 𝑑𝑋

= 33.4

Signal-to-quantization noise ratio

o If the random variable 𝑥 is quantized using Q(𝑥) than the signal-to-
quantization noise ratio (SQNR) is defined by

SQNR =
𝐸 𝑥2

𝐸 𝑥 − 𝑄(𝑥) 2 =
𝑃𝑥
𝑃𝑒

o The quantization noise power is given by

𝑃𝑒 = lim
𝑇 →∞

1

𝑇
න
−
𝑇
2

𝑇
2
𝐸 𝑥 − 𝑄(𝑥) 2 𝑑𝑡

o The signal power is given by

𝑃𝑥 = lim
𝑇 →∞

1

𝑇
න
−
𝑇
2

𝑇
2
𝐸 𝑥2(𝑡) 𝑑𝑡

Example 8

Compute the SQNR for the quantization scheme of the previous example.

Solution:

Since we have 𝑃𝑥 = 400 and 𝑃𝑒 = 𝐷 = 33.4, we obtain

SQNR =
𝐸 𝑥2

𝐸 𝑥 − 𝑄(𝑥) 2
=
𝑃𝑥
𝑃𝑒

=
400

33.4

In dB, we have

SQNR𝑑𝐵 = 10 log 10SQNR = 10.78 dB

Vector quantization

o The idea of vector quantization is to employ blocks of samples of length
𝑛 and design the quantizer in the 𝑛-dimensional Euclidean space.

o This translates into improved performance if the samples are
correlated.

o Let us assume that the quantization regions in the 𝑛-dimensional
Euclidean space are denoted by ℛ𝑖, 1 ≤ 𝑖 ≤ 𝐾.

o These 𝐾 regions partition the n-dimensional space and each block of
samples of length 𝑛 is denoted by the n-dimensional vector 𝒙 ∈ ℝ𝑛.

Gray, R.M. (1984). "Vector Quantization". IEEE ASSP Magazine. 1 (2): 4–
29.

o Vector quantization works as follows:

If 𝒙 ∈ ℛ𝑖

Then ෝ𝒙𝒊 = 𝑄 𝒙

o Since there are a total of 𝐾 quantized values, log2𝐾 bits are enough to
represent these values.

o This means that we require log2𝐾 bits per 𝑛 source outputs, which
yields the rate

𝑅 =
log2 𝐾

𝑛
bits / sample

o An example of a vector quantizer with 𝑛 = 2 is given below.

o The optimal vector quantizer of dimension 𝑛 and 𝐾 levels chooses the
regions ℛ𝑖 and the quantized values ෝ𝒙𝑖 such that the resulting distortion is
minimized.

o Therefore, we employ the following criteria for an optimal vector quantizer
design:

i) Region ℛ𝑖 is the set of all points in the n-dimensional space that are closer
to ෝ𝒙𝑖 than any other ෝ𝒙𝑗 , for j ≠ 𝑖, i.e.,

ℛ𝑖 = 𝒙 ∈ ℝ: 𝒙 − ෝ𝒙𝑖
2 < 𝒙 − ෝ𝒙𝑗

2
, ∀ j ≠ 𝑖

ii) ෝ𝒙𝑖 is the centroid of the region ℛ𝑖, i.e.,

ෝ𝒙𝑖 =
1

𝑃 𝒙 ∈ ℛ𝑖
න…න

ℛ𝑖

𝑿𝑝𝒙 𝑿 𝑑𝑿

o In the design of optimal vector quantizers, we start with a given set of
quantization regions.

o Then, we obtain the optimal quantized vectors for these regions
(criterion ii)).

o We repartition the space (criterion i)) and iterate until the changes in
the distortion D are negligible.

o Algorithms such as LBG and k-means are used for this purpose and have
found applications in multimedia and machine learning.

o For a vector quantizer with fixed 𝑛, the rate per vector is given by

𝐵 = log2𝐾 bits/vector

o The rate per sample is described by

𝑅 =
𝐵

𝑛
=
log2𝐾

𝑛
bits/sample

Example 9

Consider a sequence of 20 samples of a speech signal that is sampled at
the Nyquist rate using a scalar quantizer. The number of bits per sample
has to be equal to or greater than 1.

a) Compute the rate of a PCM encoder (ITU G,.711) that uses 8 bits /
sample

b) Compute the rate of a vector quantizer that employs 10 bits / vector.

Solution:

a) The rate of PCM is

𝑅 = 8 bits/sample
= 𝑙𝑘𝑓𝑠 = 8 𝑥 8000 = 64 𝑘𝑏𝑝𝑠

b) The rate of the vector quantizer is

𝑅 =
log2 𝐾

𝑛
=

10

20
= 0.5 bits /sample

= 0.5 x 8000 = 4kbps

