

Information Theory and Channel Coding

Prof. Rodrigo C. de Lamare CETUC, PUC-Rio, Brazil delamare@cetuc.puc-rio.br

III. Channel capacity

- In this chapter, we study channel capacity and examine several implications of the capacity theorem of Shannon.
- In particular, we examine the fundamental limit of how much information can be transmitted over a channel given some key parameters.
- We present mathematical models of discrete and continuous channels and explore how these models can describe realistic channels.
- We introduce the concept of mutual information and its relation to entropy and the channel capacity of both discrete and continuous channels.

A. Discrete memoryless channels

- Communication channels represent the medium over which signals are transmitted.
- In particular, communication channels introduce amplitude and phase distortions in the transmitted signals.
- Modelling communication channels is key because they can be simulated and their capacities can be computed.
- In this section, we will focus our attention on discrete memoryless channels using the concepts of random variables, probability and discrete memoryless sources.

• Let us consider a discrete memoryless channel (DMC) model as

$$
\mathcal{X} \begin{cases} X_0 & x \\ X_1 & \xrightarrow{\qquad} p(y_k|x_j) \end{cases} \longrightarrow \begin{cases} Y_0 & Y_1 \\ Y_1 & \xrightarrow{\qquad} Y_1 \\ Y_{K-1} \end{cases} \mathcal{Y} \longrightarrow \begin{cases} X_0 & \xrightarrow{\qquad} Y_0 \\ Y & \xrightarrow{\qquad} Y_{K-1} \end{cases}
$$

• The model can be written as

$$
y = x + n,
$$

where n represents the noise.

• The model is discrete because y and x take on discrete values.

The mathematical description of discrete memoryless channels (DMCs) include:

• The input and output alphabets described by

$$
\mathcal{X} = \{X_0, X_1, \dots, X_{J-1}\} \text{ and } \mathcal{Y} = \{Y_0, Y_1, \dots, Y_{K-1}\}
$$

• The set of transition probabilities given by

$$
p(y_k|x_j) = P(y_k = Y_k | x_j = X_j), \quad \text{for all } j \text{ and } k
$$

where $0 \le p(y_k|x_i) \le 1$ for all j and k.

• The channel can be completely characterized by the set of all transition probabilities as compactly described by

$$
\boldsymbol{P} = \begin{bmatrix} p(y_0|x_0) & p(y_1|x_0) & \dots & p(y_{K-1}|x_0) \\ p(y_0|x_1) & p(y_1|x_1) & \dots & p(y_{K-1}|x_1) \\ \vdots & \vdots & \ddots & \vdots \\ p(y_0|x_{J-1}) & p(y_1|x_{J-1}) & \dots & p(y_{K-1}|x_{J-1}) \end{bmatrix}
$$

• A key property that applies to the set of transition probabilities is

$$
\sum_{k=0}^{K-1} p(y_k|x_j) = 1, \quad \text{for all } j
$$

• The input x of the DMC is modelled by the probability

$$
p(x_j) = P(x_j = X_j),
$$
 $j = 0, 1, ..., J - 1$

where $P\big(x_j = X_j\big)$ is the probability of an event.

• The joint probability mass function (pmf) of the input x and the ouput y of the DMC is described by

$$
p(x_j, y_k) = P(x_j = X_j, y_k = Y_k)
$$

=
$$
P(y_k = Y_k | x_j = X_j) P(x_j = X_j)
$$

=
$$
p(y_k | x_j) p(x_j)
$$

• The joint pmf is key as it contains the transition and input probabilities.

• The channel output is described by the pmf given by

$$
p(y_k) = P(y_k = Y_k)
$$

= $\sum_{j=0}^{J-1} P(y_k = Y_k | x_j = X_j) P(x_j = X_j)$
= $\sum_{j=0}^{J-1} p(y_k | x_j) p(x_j), k = 0, 1, ..., K - 1$

• With the mathematical quantities that constitute the structure of DMCs it possible to fully characterize them.

Example 1

Consider a binary symmetric channel with $J = K = 2$.

Since the channel is symmetric the probability of receiving a 1 if a 0 was sent is the same as the probability of receiving a 0 if a 1 was sent. This is known as the conditional probability of error and given by p .

- a) Describe in a diagram the binary symmetric channel and all its probabilities.
- b) Compute the input, transition and output probabilities.

a) The binary symmetric channel (BSC) of this problem deals with $J = 2$ inputs, namely, $x_0 = 0$ and $x_1 = 1$.

There are also $K = 2$ outputs, namely, $y_0 = 0$ and $y_1 = 1$. The BSC can then be illustrated by

b) The input probabilities are described by $p(x_0) = P(x_0 = 0)$ $p(x_1) = P(x_1 = 1)$

The transition probabilities are given by $p(y_0|x_0) = 1 - p$ $p(y_1|x_1) = 1 - p$ $p(y_1|x_0) = p$ $p(y_0|x_1) = p$

The output probabilities are described by $p(y_0) = \sum_{j=0}^{J-1} p(y_0|x_j)p(x_j) = p(y_0|x_0)p(x_0) + p(y_0|x_1)p(x_1) = (1-p)p(x_0) + pp(x_1)$ $p(y_1) = \sum$ $j=0$ $J-1$ $p(y_1|x_j)p(x_j) = p(y_1|x_0)p(x_0) + p(y_1|x_1)p(x_1) = pp(x_0) + (1-p)p(x_1)$

B. Mutual information

• Let us consider a DMC and the entropy associated with the input alphabet $H(x)$, which measures the uncertainty about the input x.

- An important question for DMCs is how to measure $H(X)$ when observing y ?
- We can investigate this by looking into the concept of conditional entropy.

• The conditional entropy for a given output Y_k is described by

$$
H(\mathcal{X}|y_k = Y_k) = \sum_{j=0}^{J-1} p(x_j|y_k) \log_2 \left[\frac{1}{p(x_j|y_k)} \right]
$$

• If we compute the mean value of $H(X|y_k = Y_k)$ then we obtain the conditional entropy

$$
H(\mathcal{X}|\mathcal{Y}) = \sum_{k=0}^{K-1} H(\mathcal{X}|y_k = Y_k) p(y_k)
$$

= $\sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j|y_k) p(y_k) \log_2 \left[\frac{1}{p(x_j|y_k)} \right]$
= $\sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2 \left[\frac{1}{p(x_j|y_k)} \right]$

• The conditional entropy $H(X|Y)$ measures the uncertainty of the channel after observing the ouput y .

- The mutual information measures the uncertainty about the input x of the DMC while observing the output y of the DMC.
- The mutual information is described by

 $I(X, Y) = H(X) - H(X|Y)$,

where $H(x)$ measures the uncertainy of the input x and $H(x|y)$ measures the uncertainty of the DMC after observing the ouput y of the DMC.

• There is an equivalence of the mutual information if we swap the input and the ouput of the DMC, which yields

 $I(y, \mathcal{X}) = H(y) - H(y|\mathcal{X}),$

i) The mutual information $I(X, Y)$ is symmetric, i.e.,

 $I(\mathcal{X}, \mathcal{Y}) = I(\mathcal{Y}, \mathcal{X})$

ii) The mutual information is always nonnegative, i.e.,

 $I(\mathcal{X}, \mathcal{Y}) \geq 0$

iii) The mutual information $I(X, Y)$ is related to the joint entropy of the input and the output of the channel by

$$
I(\mathcal{X}, \mathcal{Y}) = H(\mathcal{X}) + H(\mathcal{Y}) - H(\mathcal{X}, \mathcal{Y}),
$$

$$
H(\mathcal{X}, \mathcal{Y}) = \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2 \left[\frac{1}{p(x_j, y_k)} \right]
$$

Proof of property i)

We first use the formula for entropy and further manipulate it as follows:

$$
H(\mathcal{X}) = \sum_{j=0}^{J-1} p(x_j) \log_2 \left[\frac{1}{p(x_j)} \right]
$$

= $\sum_{j=0}^{J-1} p(x_j) \log_2 \left[\frac{1}{p(x_j)} \right] \sum_{k=0}^{K-1} p(y_k | x_j)$
= $\sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k | x_j) p(x_j) \log_2 \left[\frac{1}{p(x_j)} \right]$
= $\sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k, x_j) \log_2 \left[\frac{1}{p(x_j)} \right]$

Substituting $H(\mathcal{X})$ and $H(\mathcal{X}|\mathcal{Y})$ into $I(\mathcal{X},\mathcal{Y})$, we obtain

$$
I(\mathcal{X}, \mathcal{Y}) = H(\mathcal{X}) - H(\mathcal{X}|\mathcal{Y})
$$

= $\sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k, x_j) \log_2 \left[\frac{p(x_j | y_k)}{p(x_j)} \right]$

Using Bayes' rule for conditional probabilities, we have

$$
\frac{p(x_j|y_k)}{p(x_j)} = \frac{p(y_k|x_j)}{p(y_k)}
$$

Substituting the above relation into $I(X, Y)$, we obtain

$$
I(\mathcal{X}, \mathcal{Y}) = \sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k, x_j) \log_2 \left[\frac{p(x_j | y_k)}{p(x_j)} \right]
$$

=
$$
\sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k, x_j) \log_2 \left[\frac{p(y_k | x_j)}{p(y_k)} \right]
$$

=
$$
I(\mathcal{Y}, \mathcal{X})
$$

Proof of property ii)

Since $p(x_j|y_k) =$ $p(\mathcal{Y}_k, \mathcal{X}_j)$ $p(y_k$, we may express the mutual information of the channel as

$$
I(\mathcal{X}, \mathcal{Y}) = \sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k, x_j) \log_2 \left[\frac{p(x_j | y_k)}{p(x_j)} \right]
$$

=
$$
\sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k, x_j) \log_2 \left[\frac{p(y_k, x_j)}{p(y_k) p(x_j)} \right]
$$

Using the fundamental inequality arising from Jensen's inequality $\sum_{k=0}^{K-1} p_k \log_2 \left| \frac{q_k}{p_k} \right|$ p_k ≤ 0 , we obtain

 $I(\mathcal{X}, \mathcal{Y}) \geq 0$

The equality only holds if

$$
p(y_k, x_j) = p(y_k) p(x_j)
$$

and then we have

 $I(\mathcal{X}, \mathcal{Y}) = 0$

This property shows that we cannot lose information on average by observing the output of a channel.

Moreover, the mutual information is zero only if the random variables x and y are statistically independent.

Proof of property iii)

Let us first rewrite the expression of the joint entropy $H(X, Y)$ as

$$
H(\mathcal{X}, \mathcal{Y}) = \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2 \left[\frac{1}{p(x_j, y_k)} \right]
$$

=
$$
\sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2 \left[\frac{p(x_j) p(y_k)}{p(x_j, y_k)} \right]
$$

+
$$
\sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2 \left[\frac{1}{p(x_j) p(y_k)} \right]
$$

The first double summation on the right-hand side of the above expression is the negative of the mutual information, i.e., $-I(X, Y)$.

The second term can be manipulated as follows:

$$
\sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2 \left[\frac{1}{p(x_j)p(y_k)} \right] =
$$
\n
$$
= \sum_{j=0}^{J-1} \log_2 \left[\frac{1}{p(x_j)} \right] \sum_{k=0}^{K-1} p(x_j, y_k) + \sum_{k=0}^{K-1} \log_2 \left[\frac{1}{p(y_k)} \right] \sum_{j=0}^{J-1} p(x_j, y_k)
$$
\n
$$
= \sum_{j=0}^{J-1} p(x_j) \log_2 \left[\frac{1}{p(x_j)} \right] + \sum_{k=0}^{K-1} p(y_k) \log_2 \left[\frac{1}{p(y_k)} \right]
$$
\n
$$
= H(X) + H(Y)
$$

Accordingly, we have

$$
H(\mathcal{X}, \mathcal{Y}) = -I(\mathcal{X}, \mathcal{Y}) + H(\mathcal{X}) + H(\mathcal{Y})
$$

and

$$
I(\mathcal{X}, \mathcal{Y}) = H(\mathcal{X}) + H(\mathcal{Y}) - H(\mathcal{X}, \mathcal{Y})
$$

C. Capacity of discrete memoryless channels

• Let us consider a DMC and the entropy associated with the input alphabet $H(x)$, which measures the uncertainty about the input x.

• The mutual information of the input x and the output y of the channel is given by

$$
I(\mathcal{X}, \mathcal{Y}) = \sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k, x_j) \log_2 \left[\frac{p(x_j | y_k)}{p(x_j)} \right]
$$

=
$$
\sum_{j=0}^{J-1} \sum_{k=0}^{K-1} p(y_k, x_j) \log_2 \left[\frac{p(y_k | x_j)}{p(y_k)} \right]
$$

• The joint pmf between the input and output variables is given by

$$
p(y_k, x_j) = p(y_k|x_j)p(x_j)
$$

• The output probabilities can be computed by

$$
p(y_k) = \sum_{j=0}^{J-1} p(y_k|x_j) p(x_j), \qquad k = 0, 1, ..., K-1
$$

• In order to compute $I(X, Y)$, we need the input probabilities

$$
p(x_j)
$$
, $j = 0,1,...,J-1$

- The capacity of a DMC can be computed by maximizing the mutual information $I(\mathcal{X},\mathcal{Y})$ subject to appropriate constraints on $p(x_j).$
- The computation of the capacity can be formulated as the optimization:

 $C = \max$ $p(x_j$ $I(\mathcal{X}, \mathcal{Y})$ bits/channel use or bits / transmission

subject to $p(x_j)$, for all j and $\sum_{j=0}^{J-1} p(x_j) = 1$

• The optimization involves the maximization of $I(X, Y)$ by adjusting the variables $p(x_1)$, $p(x_2)$, ..., $p(x_{i-1})$ subject to appropriate constraints.

Consider the BSC illustrated by

- a) Compute the capacity of the channel
- b) Show how the capacity varies with p using a plot.

We consider the BSC.

We know that the entropy $H(\mathcal{X})$ is maximized when $p(x_0) = p(x_1) = \frac{1}{2}$ 2 , where x_0 and x_1 are 0 and 1, respectively.

The mutual information $I(X, Y)$ is similarly maximized as described by

$$
C = I(X, Y)
$$
 when $p(x_0) = p(x_1) = \frac{1}{2}$,

where

$$
p(y_0|x_0) = 1 - p = p(y_1|x_1)
$$

$$
p(y_1|x_0) = p = p(y_0|x_1)
$$

$$
\begin{aligned}\n\mathbf{M} & \mathbf{S} \mathbf{S} \\
\mathbf{M} & \mathbf{S} \\
\math
$$

b) Using the definition of entropy and their mathematical relations we have the capacity of the BSC

$$
C(p) = 1 - H(p),
$$

where $H(p) = -p \log_2 p - (1 - p) \log_2 (1 - p)$.

The channel capacity varies with p in a convex manner as shown below.

value of 1 bit/ channel use

When $p=\frac{1}{2}$ $\frac{1}{2}$, C attains its minimum value of 0 bit/ channel use (useless channel)

D. Differential entropy and mutual information for continuous variables

- In this section, we extend the previous concepts to continuous sources and channels, which are modelled as continuous random variables.
- Consider a random variable x with the probability density function $p_x(X)$, the differential entropy of x is described by

$$
h(x) = \int_{-\infty}^{\infty} p_x(X) \log_2 \left[\frac{1}{p_x(X)} \right] dX
$$

• As in the discrete case, the differential entropy depends only on the probability density of the random variable x .

Compute the differential entropy of a random variable with uniform distribution described by

Solution:

$$
h(x) = \int_{-\infty}^{\infty} p_x(X) \log_2 \left[\frac{1}{p_x(X)} \right] dX
$$

$$
= \int_{0}^{a} \frac{1}{a} \log_2 a \, dX
$$

$$
= \log_2 a \text{ bits}
$$

Note that $\log_2 a < 0$ for $a < 1$.

The entropy of a continuous random variable can be negative unlike the case for a discrete random variable.

Example 4

Compute the differential entropy of a random variable with Gaussian distribution described by

$$
p_x(X) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{X^2}{2\sigma^2}}
$$

$$
h(x) = \int_{-\infty}^{\infty} p_x(X) \ln \left[\frac{1}{p_x(X)} \right] dX \text{ (nats)}
$$

\n
$$
= -\int_{-\infty}^{\infty} p_x(X) \ln p_x(X) dX
$$

\n
$$
= -\int_{-\infty}^{\infty} p_x(X) \left[-\frac{X^2}{2\sigma^2} - \ln \sqrt{2\pi \sigma^2} \right] dX
$$

\n
$$
= \frac{1}{2} \ln 2\pi \sigma^2 + \frac{1}{2} \frac{E[x^2]}{\sigma^2}
$$

\n
$$
= \frac{1}{2} \ln 2\pi \sigma^2 + \frac{1}{2} \ln e
$$

\n
$$
= \frac{1}{2} \ln 2\pi e \sigma^2 \text{ nats}
$$

Changing the basis from ln to $log₂$, we have

$$
h(x) = \frac{1}{2} \log_2 2\pi e \sigma^2
$$
 bits

Relation of differential entropy to entropy of discrete variables

- Let us consider the random variable x as the limiting form of a discrete random variable $x_k = k\Delta x$, $k = 0, \pm 1, \pm 2, ...$, where $\Delta x \rightarrow 0$.
- In this case, x takes on a value in the range $[x_k, x_k + \Delta x]$ with probability given by $p_{\mathfrak{X}}(X)$

$$
p_{x}(X_{k})\Delta x = \int_{k\Delta x}^{(k+1)\Delta x} p_{x}(X)dX
$$

 \boldsymbol{X}

 Δx

 \overline{a}

• Consider the quantized random variable x_q described by

$$
x_q = x_k, \qquad k\Delta x \le X_q < (k+1)\Delta x
$$

• Then the probability that $x_q = X_k$ is given by

$$
P(x_q = X_k) = p_x(X_k) \Delta x = \int_{k \Delta x}^{(k+1)\Delta x} p_x(X) dX
$$

• Let us now compute the entropy of x_k by letting $\Delta x \to 0$ as follows:

$$
H(x_k) = \lim_{\Delta x \to 0} \sum_{k=-\infty}^{\infty} p_x(X_k) \Delta x \log_2 \left(\frac{1}{p_x(X_k)\Delta x} \right)
$$

=
$$
\lim_{\Delta x \to 0} \left[\sum_{k=-\infty}^{\infty} p_x(X_k) \Delta x \log_2 \left(\frac{1}{p_x(X_k)} \right) - \log_2 \Delta x \sum_{k=-\infty}^{\infty} p_x(X_k) \Delta x \right]
$$

=
$$
\int_{-\infty}^{\infty} p_x(X) \log_2 \left(\frac{1}{p_x(X)} \right) dX - \lim_{\Delta x \to 0} \log_2 \Delta x \int_{-\infty}^{\infty} p_x(X) dX
$$

=
$$
h(x) - \lim_{\Delta x \to 0} \log_2 \Delta x
$$

or

Theorem 1:

The previous development leads to

$$
H(x_k) = h(x) - \lim_{\Delta x \to 0} \log_2 \Delta x
$$

$$
h(x) = H(x_k) + \lim_{\Delta x \to 0} \log_2 \Delta x,
$$

which for $\Delta x \rightarrow 0$ results in

$$
h(x) = H(x_k)
$$

and for an arbitrary Δx related to n quantization bits yields

$$
h(x) = H(x_k) + \log_2 \Delta x = H(x_k) + n
$$

Example 5

Compute the entropy for the following cases:

a) If a random variable x has uniform distribution on $[0, 1]$ and we let $\Delta x = 2^{-n}.$

b) If a random variable x *has G*aussian distribution with zero mean, $\sigma^2 =$ 100.

Solution:

a) For a random variable x with uniform distribution on $[0,1]$ and $\Delta x{=}2^{-n}$, we have

$$
H(x_k) = \sum_{k=-\infty}^{\infty} p_x(X_k) \, \Delta x \, \log_2 \left(\frac{1}{p_x(X_k) \Delta x} \right) = n
$$

and

$$
h(x) = H(x_k) + \log_2 \Delta x = n - n = 0,
$$

which means that n bits suffice to describe x to an accuracy of n bits.

b)

For a random variable x with Gaussian distribution with zero mean and $\sigma^2 =$ 100, we have

$$
h(x) = H(xk) + \log_2 \Delta x = H(xk) + n
$$

$$
= \frac{1}{2} \log_2 2\pi e \sigma^2 + n = 5.37 \text{bits} + n
$$

Joint and conditional entropy: extension to vectors

- We can extend the definition of differential entropy to random vectors.
- The joint differential entropy for a random vector $\boldsymbol{x} = \begin{bmatrix} x_1 & ... & x_n \end{bmatrix}^T$ is defined by

$$
h(x) = \int_{-\infty}^{\infty} p_x(X) \log_2 \left[\frac{1}{p_x(X)} \right] dX
$$

The conditional differential entropy of two variables x and y is described by

$$
h(x|y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{x,y}(X,Y) \log_2 \left[\frac{1}{p_x(X|Y)} \right] dX dY
$$

Since in general $p_x(X|Y) = p_{x,y}(X,Y)/p_y(Y)$, we can write

$$
h(x|y) = h(x, y) - h(y)
$$

Example 6

Compute the differential entropy of the random vector $x = [x_1 \quad ... \quad x_n]^T$ whose joint probability density function is

$$
p_{x}(X) = \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{\det(K)}} e^{-\frac{1}{2}(X-m_{x})^{T}K^{-1}(X-m_{x})}
$$

$$
h(x) = \int_{-\infty}^{\infty} p_x(X) \ln \left[\frac{1}{p_x(X)} \right] dX \quad \text{(nats)}
$$

\n
$$
= -\int_{-\infty}^{\infty} p_x(X) \left(-\frac{1}{2} (X - m_x)^T K^{-1} (X - m_x) - \ln(2\pi)^{\frac{n}{2}} \det(K)^{\frac{1}{2}} \right) dX
$$

\n
$$
= \frac{1}{2} \mathbb{E}[(x - m_x)^T K^{-1} (x - m_x)] + \frac{1}{2} \ln(2\pi)^n \det(K)
$$

\n
$$
= \frac{1}{2} tr[KK^{-1}] + \frac{1}{2} \ln(2\pi)^n \det(K)
$$

\n
$$
= \frac{1}{2} n \ln e + \frac{1}{2} \ln(2\pi)^n \det(K)
$$

\n
$$
= \frac{1}{2} \ln e^n + \frac{1}{2} \ln(2\pi)^n \det(K)
$$

\n
$$
= \frac{1}{2} \ln(2\pi e)^n \det(K)
$$

By changing the basis of the logarithm, we have

$$
h(x) = \frac{1}{2} \log_2(2\pi e)^n \det(K)
$$
 bits

E. Mutual information

• Consider a pair of random variables x and y that can represent the input and the output of a communication channel.

• The mutual information between x and y is defined by

$$
I(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{x,y}(X,Y) \log_2 \left[\frac{p_x(X|Y)}{p_x(X)} \right] dX dY,
$$

where $p_{x,y}(X, Y)$ is the joint pdf of x and y, and $p_x(X|Y)$ is the conditional pdf of x subject to $y = Y$.

• The conditional differential entropy of two variables x and y is described by

$$
h(x|y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{x,y}(X,Y) \log_2 \left[\frac{1}{p_x(X|Y)} \right] dX dY
$$

• Since in general $p_x(X|Y) = p_{x,y}(X,Y)/p_y(Y)$, we can write

$$
h(x|y) = h(x, y) - h(y)
$$

• These relations are useful to compute the mutual information in practical situations.

Properties of mutual information

- i) $I(x, y) = I(y, x)$ (symmetry)
- ii) $I(x, y) \ge 0$ (non negativity)

iii)
$$
I(x, y) = h(x) - h(x|y)
$$

$$
= h(y) - h(y|x)
$$

• The proofs are similar to those of mutual information with discrete variables.

Example 7

Compute the mutual information between the input x and the output y of the channel

when both x and y are drawn from Gaussian random variables with zero mean and variance σ^2 and the covariance matrix of $\boldsymbol{u} = [x \ y]^T$

$$
\boldsymbol{K} = E[(\boldsymbol{u} - \boldsymbol{m}_u)(\boldsymbol{u} - \boldsymbol{m}_u)^T] = \begin{bmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{bmatrix},
$$

where m_u is the mean vector of u.

Solution:

The differential entropies of the input x and the output y of the channel are

$$
h(x) = \frac{1}{2}\log_2(2\pi e)\sigma^2 = h(y)
$$

The joint differential entropy is given by

$$
h(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{x,y}(X,Y) \log_2 \left[\frac{1}{p_x(X|Y)} \right] dX dY
$$

=
$$
\frac{1}{2} \log_2 (2\pi e)^2 \det(K)
$$

=
$$
\frac{1}{2} \log_2 (2\pi e)^2 \sigma^4 (1 - \rho^2)
$$

Therefore, the mutual information is described by

$$
I(x, y) = h(x) - h(x|y)
$$

= $h(x) + h(y) - h(x, y)$
= $\frac{1}{2}$ log₂(2 πe) σ ² + $\frac{1}{2}$ log₂(2 πe) σ ² - $\frac{1}{2}$ log₂(2 πe)² σ ⁴(1 - ρ ²)
= $\frac{1}{2}$ log₂ (1 - ρ ²),

where $h(x|y) = h(x, y) - h(y)$

F. Capacity of Gaussian channels

• The information capacity of Gaussian channels is the maximum of the mutual information between the input and the output of the channel.

- To this end, we need to consider all distributions on the input that satisfy a power constraint P .
- Mathematically, the information capacity of Gaussian channels with power constraint P is given by

$$
C = \max_{p_x(X)} I(x, y)
$$

subject to $E[x^2] \leq P$

Channel capacity theorem (Shannon, 1948)

The information capacity of a continuous channel bandlimited to B Hz perturbed by additive white Gaussian noise (AWGN) with power spectral density $\frac{N_0}{2}$ 2 is given by

$$
C = B \log_2 \left(1 + \frac{P}{N_0 B} \right), \quad \text{bits/s}
$$

where P is average transmit power.

This theorem shows that given P and B we can transmit information at a rate of C bits per second.

Computation of the information capacity

In order to solve the optimization problem given by

 $C = \max$ $p_X(X)$ $I(x, y)$

subject to $E[x^2] \leq P$

• We first consider the channel model described by

 $v = x + n$.

where n is AWGN with zero mean and variance $\sigma^2.$

• We then work out the mutual information expression as follows:

$$
I(x, y) = h(y) - h(y|x)
$$

• The mutual information expression can be simplified as

$$
I(x, y) = h(y) - h(y|x)
$$

= h(y) - h(x + n|x)
= h(y) - h(n|x)
= h(y) - h(n),

which takes into account that x and n are statistically independent.

- Next, we need to compute the differential entropies $h(y)$ and $h(n)$.
- The differential entropy of the AWGN noise is given by

$$
h(n) = \frac{1}{2} \log_2(2\pi e \sigma^2)
$$

• Now, we need to compute the variance of y , which is given by

$$
\sigma_y^2 = E[y^2] \n= E[(x+n)^2] = E[x^2] + E[n^2] = P + \sigma^2
$$

• The differential entropy of y is expressed by

$$
h(y) = \frac{1}{2}\log_2(2\pi e \sigma_y^2)
$$

= $\frac{1}{2}\log_2(2\pi e(P + \sigma^2))$

• The capacity is the maximum of the mutual information subject to the power constraint, which is taken into account in $h(y)$, and yields

$$
C_t = \max I(x, y) = h(y) - h(n)
$$

= $\frac{1}{2}$ log₂ $\left(2\pi e(P + \sigma^2)\right) - \frac{1}{2}$ log₂ $\left(2\pi e\sigma^2\right)$
= $\frac{1}{2}$ log₂ $\left(\frac{P + \sigma^2}{\sigma^2}\right)$
= $\frac{1}{2}$ log₂ $\left(1 + \frac{P}{\sigma^2}\right)$ bits / transmission

• We note that the maximization of $h(y)$ requires that y be Gaussian as Gaussian random variables have the largest differential entropy.

• The capacity can also be expressed per unit of time by considering that K samples have been transmitted over T seconds, which results in

$$
C = \frac{K}{T}C_t = \frac{K1}{T2}\log_2\left(1 + \frac{P}{\sigma^2}\right)
$$

= $\frac{2BT1}{T2}\log_2\left(1 + \frac{P}{\sigma^2}\right)$
= $B\log_2\left(1 + \frac{P}{N_0B}\right)$ bits / second

• In the above expression, which has been derived by Shannon, we make use of $K = 2BT$ samples, where *B* is the bandwidth.

G. Implications of the channel capacity theorem

- In an ideal system, we transmit at a rate equal to $R_b = C$ bits /s.
- If we take into account $P = E_b C$, where E_b is the transmit energy per bit, we have

$$
\frac{C}{B} = \log_2\left(1 + \frac{P}{N_0 B}\right) = \log_2\left(1 + \frac{E_b C}{N_0 B}\right)
$$

• The spectral efficiency is the ratio of energy per bit by power spectral density is given by

$$
\frac{E_b}{N_0} = \frac{2^{\frac{C}{B}-1}}{\frac{C}{B}}
$$

i) When $B \to \infty$ $\frac{E_b}{N}$ N_{0} approaches

$$
\left(\frac{E_b}{N_0}\right)_{\infty} = \lim_{B \to \infty} \left(\frac{E_b}{N_0}\right)
$$

$$
= \frac{1}{\log_2 e} = -0.693 \text{ or } -1.6 \text{ dB}
$$

is then given by

The capacity limit is then given by

$$
C_{\infty} = \lim_{B \to \infty} C = \frac{P}{N_0} \log_2 e
$$
 Shannon limit

Proof

Since $\log_2(1 + x) = x \log_2((1 + x))$ 1 \overline{x}) and lim $x \rightarrow \infty$ $1 + x$ 1 $\overline{\overline{x}} = e$, we have

$$
\frac{C}{B} = \log_2 \left(1 + \frac{P}{N_0 B} \right)
$$

$$
= \frac{C E_b}{B N_0} \log_2 \left(1 + \frac{C E_b}{B N_0} \right)^{\frac{N_0 B}{CE_b}}
$$

We can then simplify the above as

$$
\frac{E_b}{N_0} \log_2 \left(1 + \frac{C}{B} \frac{E_b}{N_0} \right)^{\frac{N_0 B}{CE_b}} = 1
$$

If $\frac{C}{D}$ $\frac{c}{B} \rightarrow \infty$ or $B \rightarrow \infty$ then we obtain

$$
\frac{E_b}{N_0} = \frac{1}{\log_2 e} = 0.693
$$

ii) Capacity bound $R_b = C$

- When $R_b \leq C \rightarrow$ error-free transmission is possible
- When $R_b > C \rightarrow$ error-free transmission is not possible

