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III. Channel capacity

• In this chapter, we study channel capacity and examine several implications
of the capacity theorem of Shannon.

• In particular, we examine the fundamental limit of how much information
can be transmitted over a channel given some key parameters.

• We present mathematical models of discrete and continuous channels and
explore how these models can describe realistic channels.

• We introduce the concept of mutual information and its relation to entropy
and the channel capacity of both discrete and continuous channels.



A. Discrete memoryless channels

• Communication channels represent the medium over which signals are 
transmitted.

• In particular, communication channels introduce amplitude and phase
distortions in the transmitted signals. 

• Modelling communication channels is key because they can be simulated
and their capacities can be computed.

• In this section, we will focus our attention on discrete memoryless
channels using the concepts of random variables, probability and
discrete memoryless sources.



• Let us consider a discrete memoryless channel (DMC) model as

𝒳

𝑋0
𝑋1
⋮
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⋮
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𝒴

• The model can be written as

𝑦 = x + n,  

where n represents the noise.

• The model is discrete because 𝑦 and x take on discrete values.

𝑝 𝑦𝑘|𝑥𝑗

𝑥 𝑦

AlphabetAlphabet



The mathematical description of discrete memoryless channels (DMCs) 
include:

• The input and output alphabets described by

𝒳 = 𝑋0, 𝑋1, … , 𝑋𝐽−1 and 𝒴 = 𝑌0, 𝑌1, … , 𝑌𝐾−1

• The set of transition probabilities given by

𝑝 𝑦𝑘|𝑥𝑗 = P 𝑦𝑘 = 𝑌𝑘 𝑥𝑗 = 𝑋𝑗 , for all 𝑗 and 𝑘

where 0 ≤ 𝑝 𝑦𝑘|𝑥𝑗 ≤ 1 for all 𝑗 and 𝑘.



• The channel can be completely characterized by the set of all transition
probabilities as compactly described by

𝑷 =

𝑝 𝑦0|𝑥0 𝑝 𝑦1|𝑥0 … 𝑝 𝑦𝐾−1|𝑥0
𝑝 𝑦0|𝑥1

⋮
𝑝 𝑦1|𝑥1 …
⋮ ⋱

𝑝 𝑦𝐾−1|𝑥1
⋮

𝑝 𝑦0|𝑥𝐽−1 𝑝 𝑦1|𝑥𝐽−1 … 𝑝 𝑦𝐾−1|𝑥𝐽−1

• A key property that applies to the set of transition probabilities is

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘|𝑥𝑗 = 1, for all 𝑗



• The input 𝑥 of the DMC is modelled by the probability

𝑝 𝑥𝑗 = 𝑃 𝑥𝑗 = 𝑋𝑗 , 𝑗 = 0,1, … , 𝐽 − 1

where 𝑃 𝑥𝑗 = 𝑋𝑗 is the probability of an event.

• The joint probability mass function (pmf) of the input 𝑥 and the ouput 𝑦
of the DMC is described by

𝑝 𝑥𝑗 , 𝑦𝑘 = 𝑃 𝑥𝑗 = 𝑋𝑗 , 𝑦𝑘 = 𝑌𝑘

= 𝑃 𝑦𝑘 = 𝑌𝑘|𝑥𝑗 = 𝑋𝑗 𝑃 𝑥𝑗 = 𝑋𝑗
= 𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗

• The joint pmf is key as it contains the transition and input probabilities. 



• The channel output is described by the pmf given by

𝑝 𝑦𝑘 = 𝑃 𝑦𝑘 = 𝑌𝑘

= σ𝑗=0
𝐽−1𝑃 𝑦𝑘 = 𝑌𝑘|𝑥𝑗 = 𝑋𝑗 𝑃 𝑥𝑗 = 𝑋𝑗

= σ𝑗=0
𝐽−1

𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗 , 𝑘 = 0,1, … , 𝐾 −1

• With the mathematical quantities that constitute the structure of
DMCs it possible to fully characterize them. 



Example 1

Consider a binary symmetric channel with 𝐽 = 𝐾 = 2. 

Since the channel is symmetric the probability of receiving a 1 if a 0 was
sent is the same as the probability of receiving a 0 if a 1 was sent. This is
known as the conditional probability of error and given by 𝑝.

a) Describe in a diagram the binary symmetric channel and all its 
probabilities.

b) Compute the input, transition and output probabilities.



a) The binary symmetric channel (BSC) of this problem deals with 𝐽 = 2
inputs, namely, 𝑥0 = 0 and 𝑥1 = 1.

There are also 𝐾 = 2 outputs, namely, 𝑦0 = 0 and 𝑦1 = 1. The BSC can then
be illustrated by

𝑥0 = 0

𝑥1 = 1

𝑦0 = 0

𝑦1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



b) The input probabilities are described by
𝑝 𝑥0 = 𝑃(𝑥0 = 0)

𝑝 𝑥1 = 𝑃(𝑥1 = 1)

The transition probabilities are given by

𝑝 𝑦0|𝑥0 = 1 − 𝑝

𝑝 𝑦1|𝑥1 = 1 − 𝑝

𝑝 𝑦1|𝑥0 = 𝑝

𝑝 𝑦0|𝑥1 = 𝑝

The output probabilities are described by

𝑝 𝑦0 = σ𝑗=0
𝐽−1

𝑝 𝑦0|𝑥𝑗 𝑝 𝑥𝑗 = 𝑝 𝑦0|𝑥0 𝑝 𝑥0 + 𝑝 𝑦0|𝑥1 𝑝 𝑥1 = 1 − 𝑝 𝑝 𝑥0 + 𝑝𝑝 𝑥1

𝑝 𝑦1 =෍

𝑗=0

𝐽−1

𝑝 𝑦1|𝑥𝑗 𝑝 𝑥𝑗 = 𝑝 𝑦1|𝑥0 𝑝 𝑥0 + 𝑝 𝑦1|𝑥1 𝑝 𝑥1 = 𝑝𝑝 𝑥0 + 1 − 𝑝 𝑝 𝑥1

𝑥0 = 0

𝑥1 = 1

𝑦0 = 0

𝑦1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



B. Mutual information

• Let us consider a DMC and the entropy associated with the input 
alphabet 𝐻 𝒳 , which measures the uncertainty about the input 𝑥.

• An important question for DMCs is how to measure 𝐻 𝒳 when
observing 𝑦 ?

• We can investigate this by looking into the concept of conditional
entropy.

DMC 

𝑝 𝑦𝑘|𝑥𝑗

𝑥 𝑦

𝒳 𝒴



• The conditional entropy for a given output 𝑌𝑘 is described by

𝐻 𝒳|𝑦𝑘 = 𝑌𝑘 =෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗|𝑦𝑘 log2
1

𝑝 𝑥𝑗|𝑦𝑘

• If we compute the mean value of 𝐻 𝒳|𝑦𝑘 = 𝑌𝑘 then we obtain the
conditional entropy

𝐻 𝒳|𝒴 = σ𝑘=0
𝐾−1𝐻 𝒳|𝑦𝑘 = 𝑌𝑘 𝑝 𝑦𝑘

= σ𝑘=0
𝐾−1σ𝑗=0

𝐽−1𝑝 𝑥𝑗|𝑦𝑘 𝑝 𝑦𝑘 log2
1

𝑝 𝑥𝑗|𝑦𝑘

= σ𝑘=0
𝐾−1σ𝑗=0

𝐽−1𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗|𝑦𝑘

• The conditional entropy 𝐻 𝒳|𝒴 measures the uncertainty of the
channel after observing the ouput 𝑦.



• The mutual information measures the uncertainty about the input 𝑥 of
the DMC while observing the output 𝑦 of the DMC.

• The mutual information is described by

𝐼 𝒳,𝒴 = 𝐻 𝒳 − 𝐻 𝒳|𝒴 ,

where 𝐻 𝒳 measures the uncertainy of the input 𝑥 and 𝐻 𝒳|𝒴 measures 
the uncertainty of the DMC after observing the ouput 𝑦 of the DMC.

• There is an equivalence of the mutual information if we swap the input 
and the ouput of the DMC, which yields

𝐼 𝒴,𝒳 = 𝐻 𝒴 − 𝐻 𝒴|𝒳 ,



Properties

i) The mutual information 𝐼 𝒳,𝒴 is symmetric, i.e., 

𝐼 𝒳,𝒴 = 𝐼 𝒴,𝒳

ii) The mutual information is always nonnegative, i.e.,

𝐼 𝒳,𝒴 ≥ 0



iii)  The mutual information 𝐼 𝒳,𝒴 is related to the joint entropy of the
input and the output of the channel by

𝐼 𝒳,𝒴 = 𝐻 𝒳 + 𝐻 𝒴 − 𝐻 𝒳,𝒴 ,

𝐻 𝒳,𝒴 = ෍

𝑘=0

𝐾−1

෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗 , 𝑦𝑘



Illustration
𝐻 𝒳,𝒴

𝐻 𝒳
𝐼 𝒳,𝒴

𝐻 𝒴

𝐻 𝒴|𝒳𝐻 𝒳|𝒴



Proof of property i)

We first use the formula for entropy and further manipulate it as follows:

𝐻 𝒳 = σ𝑗=0
𝐽−1𝑝 𝑥𝑗 log2

1

𝑝 𝑥𝑗

= σ𝑗=0
𝐽−1𝑝 𝑥𝑗 log2

1

𝑝 𝑥𝑗
σ𝑘=0
𝐾−1𝑝 𝑦𝑘|𝑥𝑗

= σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗 log2
1

𝑝 𝑥𝑗

= σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑦𝑘 , 𝑥𝑗 log2
1

𝑝 𝑥𝑗

Substituting 𝐻 𝒳 and 𝐻 𝒳|𝒴 into 𝐼 𝒳,𝒴 , we obtain

𝐼 𝒳,𝒴 = 𝐻 𝒳 − 𝐻 𝒳|𝒴

= σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗



Using Bayes’ rule for conditional probabilities, we have

𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗
=
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

Substituting the above relation into 𝐼 𝒳,𝒴 , we obtain

𝐼 𝒳,𝒴 =෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗

=෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

= 𝐼 𝒴,𝒳



Proof of property ii)

Since 𝑝 𝑥𝑗|𝑦𝑘 =
𝑝 𝑦𝑘,𝑥𝑗

𝑝 𝑦𝑘
, we may express the mutual information of the

channel as

𝐼 𝒳,𝒴 =෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗

=෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘 , 𝑥𝑗

𝑝 𝑦𝑘 𝑝 𝑥𝑗

Using the fundamental inequality arising from Jensen’s inequality

σ𝑘=0
𝐾−1𝑝𝑘 log2

𝑞𝑘

𝑝𝑘
≤ 0 , we obtain

𝐼 𝒳,𝒴 ≥ 0



The equality only holds if

𝑝 𝑦𝑘 , 𝑥𝑗 = 𝑝 𝑦𝑘 𝑝 𝑥𝑗

and then we have
𝐼 𝒳,𝒴 = 0

This property shows that we cannot lose information on average by
observing the output of a channel.

Moreover, the mutual information is zero only if the random variables 𝑥
and 𝑦 are statistically independent.



Proof of property iii)

Let us first rewrite the expression of the joint entropy 𝐻 𝒳,𝒴 as

𝐻 𝒳,𝒴 = ෍

𝑘=0

𝐾−1

෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗 , 𝑦𝑘

= ෍

𝑘=0

𝐾−1

෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘 log2
𝑝 𝑥𝑗)𝑝(𝑦𝑘

𝑝 𝑥𝑗 , 𝑦𝑘

+෍

𝑘=0

𝐾−1

෍

𝑗=0

𝐽−1

𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗)𝑝(𝑦𝑘

The first double summation on the right-hand side of the above expression
is the negative of the mutual information, i.e.,  -𝐼 𝒳,𝒴 .



The second term can be manipulated as follows:

σ𝑘=0
𝐾−1σ𝑗=0

𝐽−1𝑝 𝑥𝑗 , 𝑦𝑘 log2
1

𝑝 𝑥𝑗)𝑝(𝑦𝑘
=

= σ𝑗=0
𝐽−1 log2

1

𝑝 𝑥𝑗
σ𝑘=0
𝐾−1𝑝 𝑥𝑗 , 𝑦𝑘 + σ𝑘=0

𝐾−1 log2
1

𝑝(𝑦𝑘)
σ𝑗=0
𝐽−1𝑝 𝑥𝑗 , 𝑦𝑘

= σ𝑗=0
𝐽−1𝑝 𝑥𝑗 log2

1

𝑝 𝑥𝑗
+ σ𝑘=0

𝐾−1𝑝(𝑦𝑘) log2
1

𝑝(𝑦𝑘)

= 𝐻 𝒳 +𝐻 𝒴

Accordingly, we have

𝐻 𝒳,𝒴 = −𝐼 𝒳,𝒴 + 𝐻 𝒳 + 𝐻 𝒴

and
𝐼 𝒳,𝒴 = 𝐻 𝒳 + 𝐻 𝒴 − 𝐻 𝒳,𝒴



C. Capacity of discrete memoryless
channels

• Let us consider a DMC and the entropy associated with the input 
alphabet 𝐻 𝒳 , which measures the uncertainty about the input 𝑥.

• The mutual information of the input 𝑥 and the output 𝑦 of the channel is
given by

𝐼 𝒳,𝒴 =෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑥𝑗|𝑦𝑘

𝑝 𝑥𝑗

=෍

𝑗=0

𝐽−1

෍

𝑘=0

𝐾−1

𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

DMC 

𝑝 𝑦𝑘|𝑥𝑗

𝑥 𝑦

𝒳 𝒴



• The joint pmf between the input and output variables is given by

𝑝 𝑦𝑘 , 𝑥𝑗 = 𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗

• The output probabilities can be computed by

𝑝 𝑦𝑘 =෍

𝑗=0

𝐽−1

𝑝 𝑦𝑘|𝑥𝑗 𝑝 𝑥𝑗 , 𝑘 = 0,1, … , 𝐾 −1

• In order to compute 𝐼 𝒳,𝒴 , we need the input probabilities

𝑝 𝑥𝑗 , 𝑗 = 0,1, … , 𝐽 − 1



• The capacity of a DMC can be computed by maximizing the mutual 
information 𝐼 𝒳, 𝒴 subject to appropriate constraints on 𝑝 𝑥𝑗 .

• The computation of the capacity can be formulated as the optimization:

𝐶 = max
𝑝 𝑥𝑗

𝐼 𝒳, 𝒴 bits/channel use or bits / transmission

subject to 𝑝 𝑥𝑗 , for all 𝑗 and σ𝑗=0
𝐽−1𝑝 𝑥𝑗 = 1

• The optimization involves the maximization of 𝐼 𝒳,𝒴 by adjusting the
variables 𝑝 𝑥1 , 𝑝 𝑥2 , … , 𝑝 𝑥𝐽−1 subject to appropriate constraints.



Example 2

Consider the BSC illustrated by

a) Compute the capacity of the channel

b) Show how the capacity varies with 𝑝 using a plot.

𝑥0 = 0

𝑥1 = 1

𝑦0 = 0

𝑦1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



We consider the BSC.

We know that the entropy 𝐻 𝒳 is maximized when 𝑝 𝑥0 = 𝑝 𝑥1 =
1

2
, 

where 𝑥0 and 𝑥1 are 0 and 1, respectively.

The mutual information 𝐼 𝒳,𝒴 is similarly maximized as described by

𝐶 = 𝐼 𝒳,𝒴 when 𝑝 𝑥0 = 𝑝 𝑥1 =
1

2
,

where

𝑝 𝑦0|𝑥0 = 1 − 𝑝 = 𝑝 𝑦1|𝑥1
𝑝 𝑦1|𝑥0 = 𝑝 = 𝑝 𝑦0|𝑥1

𝑥0 = 0

𝑥1 = 1

𝑦0 = 0

𝑦1 = 1

1 − 𝑝

1 − 𝑝

𝑝
𝑝



a) By substituting the transition probabilities in 𝐼 𝒳, 𝒴 , we obtain

𝐼 𝒳,𝒴 = σ𝑗=0
𝐽−1σ𝑘=0

𝐾−1𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

With 𝐽 = 𝐾 = 2 and then setting 𝑝 𝑥0 = 𝑝 𝑥1 =
1

2
, we have

𝐶 = max
𝑝 𝑥𝑗

σ𝑗=0
1 σ𝑘=0

1 𝑝 𝑦𝑘 , 𝑥𝑗 log2
𝑝 𝑦𝑘|𝑥𝑗

𝑝 𝑦𝑘

= 𝑝 𝑦0, 𝑥0 log2
𝑝 𝑦0|𝑥0
𝑝 𝑦0

+ 𝑝 𝑦0, 𝑥1 log2
𝑝 𝑦0|𝑥1
𝑝 𝑦0

+𝑝 𝑦1, 𝑥0 log2
𝑝 𝑦1|𝑥0
𝑝 𝑦1

+ 𝑝 𝑦1, 𝑥1 log2
𝑝 𝑦1|𝑥1
𝑝 𝑦1

= 𝑝 𝑦0|𝑥0 𝑝 𝑥0 log2
𝑝 𝑦0|𝑥0

𝑝 𝑦0
+ 𝑝 𝑦0|𝑥1 𝑝 𝑥1 log2

𝑝 𝑦0|𝑥1

𝑝 𝑦0

+𝑝 𝑦1|𝑥0 𝑝 𝑥0 log2
𝑝 𝑦1|𝑥0

𝑝 𝑦1
+ 𝑝 𝑦1|𝑥1 𝑝 𝑥1 log2

𝑝 𝑦1|𝑥1

𝑝 𝑦1

=
1−𝑝

2
log2 2(1 − 𝑝) +

𝑝

2
log2 2𝑝 +

𝑝

2
log2 2𝑝 +

1−𝑝

2
log2 2(1 − 𝑝)

= 1 + plog2 𝑝 + (1 − 𝑝) log2(1 − 𝑝)



b) Using the definition of entropy and their mathematical relations we have the
capacity of the BSC

𝐶 𝑝 = 1 − 𝐻(𝑝),

where H p = −plog2 𝑝 − 1 − 𝑝 log2 1 − 𝑝 .

The channel capacity varies with 𝑝 in a convex manner as shown below.

𝑝

𝐶(𝑝)

0.5 1

0.5

1 When 𝑝 = 0, 𝐶 attains its maximum
value of 1 bit/ channel use

When 𝑝 =
1

2
, 𝐶 attains its minimum

value of 0 bit/ channel use (useless
channel)



D. Differential entropy and mutual 
information for continuous variables

• In this section, we extend the previous concepts to continuous sources
and channels, which are modelled as continuous random variables.

• Consider a random variable 𝑥 with the probability density function
𝑝𝑥(𝑋), the differential entropy of 𝑥 is described by

ℎ 𝑥 = න
−∞

∞

𝑝𝑥 𝑋 log2
1

𝑝𝑥(𝑋)
𝑑𝑋

• As in the discrete case, the differential entropy depends only on the 
probability density of the random variable 𝑥.



Example 3

Compute the differential entropy of a random variable with uniform
distribution described by

𝑝𝑥 𝑋 = ቐ
1

𝑎
, 0 < 𝑋 < 𝑎

0, otherwise

1

𝑎

𝑎 𝑋

𝑝𝑥 𝑋



Solution:

ℎ 𝑥 = න
−∞

∞

𝑝𝑥 𝑋 log2
1

𝑝𝑥(𝑋)
𝑑𝑋

= 0׬
𝑎 1

𝑎
log2 𝑎 𝑑𝑋

= log2 𝑎 bits

Note that log2 𝑎 < 0 for 𝑎 < 1.

The entropy of a continuous random variable can be negative unlike the
case for a discrete random variable.



Example 4

Compute the differential entropy of a random variable with Gaussian
distribution described by

𝑝𝑥 𝑋 =
1

2𝜋𝜎2
𝑒
−
𝑋2

2𝜎2

𝑋

𝑝𝑥 𝑋



Solution:

h 𝑥 = ∞−׬

∞
𝑝𝑥 𝑋 ln

1

𝑝𝑥(𝑋)
𝑑𝑋 (nats) 

= ∞−׬−
∞
𝑝𝑥 𝑋 ln 𝑝𝑥(𝑋) 𝑑𝑋

= ∞−׬−
∞
𝑝𝑥 𝑋 −

𝑋2

2𝜎2
− ln 2𝜋𝜎2 𝑑𝑋

=
1

2
ln 2𝜋𝜎2 +

1

2

𝐸 𝑥2

𝜎2

=
1

2
ln 2𝜋𝜎2 +

1

2
ln e

=
1

2
ln 2𝜋𝑒𝜎2 nats

Changing the basis from ln to log2 , we have

h 𝑥 =
1

2
log2 2𝜋𝑒𝜎

2 bits



Relation of differential entropy to 
entropy of discrete variables

• Let us consider the random variable 𝑥 as the limiting form of a discrete
random variable 𝑥𝑘 = 𝑘∆𝑥, 𝑘 = 0,±1,±2,…, where ∆𝑥 → 0.

• In this case, 𝑥 takes on a value in the range 𝑥𝑘, 𝑥𝑘 + ∆𝑥 with
probability given by

𝑝𝑥 𝑋𝑘 ∆𝑥 = න
𝑘∆𝑥

(𝑘+1)∆𝑥

𝑝𝑥 𝑋 𝑑𝑋

• Consider the quantized random variable 𝑥𝑞 described by

𝑥𝑞 = 𝑥𝑘 , 𝑘∆𝑥 ≤ 𝑋𝑞 < (𝑘 + 1)∆𝑥

𝑋

𝑝𝑥(𝑋)

∆𝑥



• Then the probability that 𝑥𝑞 = 𝑋𝑘 is given by

𝑃 𝑥𝑞 = 𝑋𝑘 = 𝑝𝑥 𝑋𝑘 ∆𝑥 = න
𝑘∆𝑥

(𝑘+1)∆𝑥

𝑝𝑥 𝑋 𝑑𝑋

• Let us now compute the entropy of 𝑥𝑘 by letting ∆𝑥 → 0 as follows:

𝐻(𝑥𝑘) = lim
∆𝑥→0

σ𝑘=−∞
∞ 𝑝𝑥 𝑋𝑘 ∆𝑥 log2

1

𝑝𝑥 𝑋𝑘 ∆𝑥

= lim
∆𝑥→0

σ𝑘=−∞
∞ 𝑝𝑥 𝑋𝑘 ∆𝑥 log2

1

𝑝𝑥 𝑋𝑘
− log2∆𝑥 σ𝑘=−∞

∞ 𝑝𝑥 𝑋𝑘 ∆𝑥

= ∞−׬

∞
𝑝𝑥 𝑋 log2

1

𝑝𝑥(𝑋)
𝑑𝑋 − lim

∆𝑥→0
log2∆𝑥 ∞−׬

∞
𝑝𝑥 𝑋 dX

= ℎ(𝑥)− lim
∆𝑥→0

log2∆𝑥



Theorem 1:

The previous development leads to

𝐻(𝑥𝑘) = ℎ(𝑥)− lim
∆𝑥→0

log2∆𝑥

or
ℎ 𝑥 = 𝐻(𝑥𝑘) + lim

∆𝑥→0
log2∆𝑥,

which for ∆𝑥 → 0 results in

ℎ 𝑥 = 𝐻(𝑥𝑘)

and for an arbitrary ∆𝑥 related to 𝑛 quantization bits yields

ℎ 𝑥 = 𝐻(𝑥𝑘) + log2∆𝑥 =𝐻(𝑥𝑘) + 𝑛



Example 5

Compute the entropy for the following cases:

a)  If a random variable 𝑥 has uniform distribution on [0, 1] and we let 
∆𝑥=2−𝑛.

b)  If a random variable 𝑥 has Gaussian distribution with zero mean, 𝜎2 =
100.



Solution:

a) For a random variable 𝑥 with uniform distribution on [0, 1] and ∆𝑥=2−𝑛, 
we have

𝐻(𝑥𝑘) = ෍

𝑘=−∞

∞

𝑝𝑥 𝑋𝑘 ∆𝑥 log2
1

𝑝𝑥 𝑋𝑘 ∆𝑥
= 𝑛

and 

ℎ 𝑥 = 𝐻(𝑥𝑘) + log2∆𝑥 = 𝑛 − 𝑛 = 0,

which means that 𝑛 bits suffice to describe 𝑥 to an accuracy of n bits.



b)

For a random variable 𝑥 with Gaussian distribution with zero mean and 𝜎2 =
100, we have

ℎ 𝑥 = 𝐻(𝑥𝑘) + log2∆𝑥 =𝐻(𝑥𝑘) + 𝑛

=
1

2
log2 2𝜋𝑒𝜎

2 + n = 5.37bits + n



Joint and conditional entropy: 
extension to vectors

• We can extend the definition of differential entropy to random vectors.

• The joint differential entropy for a random vector 𝒙 = 𝑥1 … 𝑥𝑛 𝑇 is 
defined by

ℎ 𝒙 = න
−∞

∞

𝑝𝒙 𝑿 log2
1

𝑝𝒙(𝑿)
𝑑𝑿

• The conditional differential entropy of two variables 𝑥 and 𝑦 is described by

ℎ 𝑥 𝑦 = න
−∞

∞

න
−∞

∞

𝑝𝑥,𝑦 𝑋, 𝑌 log2
1

𝑝𝑥(𝑋|𝑌)
𝑑𝑋𝑑𝑌

• Since in general 𝑝𝑥 𝑋 𝑌 = 𝑝𝑥,𝑦 𝑋, 𝑌 /𝑝𝑦(𝑌), we can write

ℎ 𝑥 𝑦 = ℎ 𝑥, 𝑦 − ℎ(𝑦)



Example 6

Compute the differential entropy of the random vector 𝒙 = 𝑥1 … 𝑥𝑛 𝑇

whose joint probability density function is

𝑝𝒙 𝑿 =
1

2𝜋
𝑛
2 det(𝑲)

𝑒−
1
2 𝑿−𝒎𝑥

𝑇𝑲−1(𝑿−𝒎𝑥)



Solution:

ℎ 𝒙 = ∞−׬

∞
𝑝𝒙 𝑿 𝑙𝑛

1

𝑝𝒙(𝑿)
𝑑𝑿 (nats)

= ∞−׬−

∞
𝑝𝒙 𝑿 −

1

2
𝑿 −𝒎𝑥

𝑇𝑲−1 𝑿 −𝒎𝑥 − ln 2𝜋
𝑛

2 det 𝑲
1

2 𝑑𝑿

=
1

2
E 𝒙 −𝒎𝑥

𝑇𝑲−1 𝒙 −𝒎𝑥 +
1

2
ln 2𝜋 𝑛 det 𝑲

=
1

2
𝑡𝑟 𝑲𝑲−1 +

1

2
ln 2𝜋 𝑛 det 𝑲

=
1

2
𝑛 ln 𝑒 +

1

2
ln 2𝜋 𝑛 det 𝑲

=
1

2
ln 𝑒𝑛 +

1

2
ln 2𝜋 𝑛 det 𝑲

=
1

2
ln 2𝜋𝑒 𝑛 det 𝑲

By changing the basis of the logarithm, we have

ℎ 𝒙 =
1

2
log2 2𝜋𝑒 𝑛 det 𝑲 bits



E. Mutual information

• Consider a pair of random variables 𝑥 and 𝑦 that can represent the
input and the output of a communication channel.

• The mutual information between 𝑥 and 𝑦 is defined by

𝐼 𝑥, 𝑦 = ∞−׬

∞
∞−׬

∞
𝑝𝑥,𝑦 𝑋, 𝑌 log2

𝑝𝑥(𝑋|𝑌)

𝑝𝑥(𝑋)
𝑑𝑋𝑑𝑌,

where 𝑝𝑥,𝑦 𝑋, 𝑌 is the joint pdf of 𝑥 and 𝑦 , and 𝑝𝑥(𝑋|𝑌) is the conditional
pdf of 𝑥 subject to 𝑦 = 𝑌.

Channel

𝑥 𝑦



• The conditional differential entropy of two variables 𝑥 and 𝑦 is 
described by

ℎ 𝑥 𝑦 = න
−∞

∞

න
−∞

∞

𝑝𝑥,𝑦 𝑋, 𝑌 log2
1

𝑝𝑥(𝑋|𝑌)
𝑑𝑋𝑑𝑌

• Since in general 𝑝𝑥 𝑋 𝑌 = 𝑝𝑥,𝑦 𝑋, 𝑌 /𝑝𝑦(𝑌), we can write

ℎ 𝑥 𝑦 = ℎ 𝑥, 𝑦 − ℎ(𝑦)

• These relations are useful to compute the mutual information in 
practical situations.



Properties of mutual information

i) 𝐼 𝑥, 𝑦 = 𝐼 𝑦, 𝑥 (symmetry)

ii) 𝐼 𝑥, 𝑦 ≥ 0 (non negativity)

iii) 𝐼 𝑥, 𝑦 = ℎ 𝑥 − ℎ 𝑥 𝑦

= ℎ 𝑦 − ℎ(𝑦|𝑥)

• The proofs are similar to those of mutual information with discrete
variables.



Example 7

Compute the mutual information between the input 𝑥 and the output 𝑦 of
the channel

when both 𝑥 and 𝑦 are drawn from Gaussian random variables with zero 
mean and variance 𝜎2 and the covariance matrix of 𝒖 = 𝑥 𝑦 𝑻

𝑲 = 𝐸 𝒖 −𝒎𝑢 𝒖 −𝒎𝑢
𝑇 =

𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2
,

where 𝒎𝑢 is the mean vector of 𝒖.

Channel

𝑥 𝑦



Solution:

The differential entropies of the input 𝑥 and the output 𝑦 of the channel
are

ℎ 𝑥 =
1

2
log2 2𝜋𝑒 𝜎2 = ℎ(𝑦)

The joint differential entropy is given by

ℎ 𝑥, 𝑦 = ∞−׬

∞
∞−׬

∞
𝑝𝑥,𝑦 𝑋, 𝑌 log2

1

𝑝𝑥(𝑋|𝑌)
𝑑𝑋𝑑𝑌

=
1

2
log2 2𝜋𝑒 2 det 𝑲

=
1

2
log2 2𝜋𝑒 2σ4(1 − 𝜌2)



Therefore, the mutual information is described by

𝐼 𝑥, 𝑦 = ℎ 𝑥 − ℎ 𝑥 𝑦

= ℎ 𝑥 + ℎ 𝑦 − ℎ(𝑥, 𝑦)

=
1

2
log2 2𝜋𝑒 𝜎2 +

1

2
log2 2𝜋𝑒 𝜎2 −

1

2
log2 2𝜋𝑒 2σ4(1 − 𝜌2)

=
1

2
log2 (1 − 𝜌2), 

where ℎ 𝑥 𝑦 = ℎ 𝑥, 𝑦 − ℎ(𝑦)



F. Capacity of Gaussian channels

• The information capacity of Gaussian channels is the maximum of the 
mutual information between the input and the output of the channel.

• To this end, we need to consider all distributions on the input that 
satisfy a power constraint 𝑃.

• Mathematically, the information capacity of Gaussian channels with 
power constraint 𝑃 is given by

𝐶 = max
𝑝𝑥(𝑋)

𝐼 𝑥, 𝑦

subject to 𝐸 𝑥2 ≤ 𝑃

Channel

𝑥 𝑦



Channel capacity theorem 
(Shannon, 1948)

The information capacity of a continuous channel bandlimited to 𝐵 Hz
perturbed by additive white Gaussian noise (AWGN) with power spectral

density
𝑁0

2
is given by

𝐶 = 𝐵 log2 1 +
𝑃

𝑁0𝐵
, bits/ s

where 𝑃 is average transmit power.

This theorem shows that given 𝑃 and 𝐵 we can transmit information at a
rate of 𝐶 bits per second.



Computation of the information 
capacity

• In order to solve the optimization problem given by

𝐶 = max
𝑝𝑥(𝑋)

𝐼 𝑥, 𝑦

subject to 𝐸 𝑥2 ≤ 𝑃

• We first consider the channel model described by

𝑦 = 𝑥 + 𝑛,

where 𝑛 is AWGN with zero mean and variance 𝜎2.

• We  then work out the mutual information expression as follows:

𝐼 𝑥, 𝑦 = ℎ 𝑦 − ℎ(𝑦|𝑥)



• The mutual information expression can be simplified as

𝐼 𝑥, 𝑦 = ℎ 𝑦 − ℎ(𝑦|𝑥)

= ℎ 𝑦 − ℎ(𝑥 + 𝑛|𝑥)

= ℎ 𝑦 − ℎ(𝑛|𝑥)

= ℎ 𝑦 − ℎ 𝑛 ,

which takes into account that 𝑥 and n are statistically independent.

• Next, we need to compute the differential entropies ℎ 𝑦 and ℎ 𝑛 .

• The differential entropy of the AWGN noise is given by

ℎ 𝑛 =
1

2
log2 2𝜋𝑒𝜎2



• Now, we need to compute the variance of 𝑦, which is given by

𝜎𝑦
2 = 𝐸 𝑦2

= 𝐸 𝑥 + 𝑛 2 = 𝐸 𝑥2 + 𝐸 𝑛2 = 𝑃 + 𝜎2

• The differential entropy of 𝑦 is expressed by

ℎ 𝑦 =
1

2
log2 2𝜋𝑒𝜎𝑦

2

=
1

2
log2 2𝜋𝑒 𝑃 + 𝜎2



• The capacity is the maximum of the mutual information subject to the 
power constraint, which is taken  into account in ℎ 𝑦 , and yields

Ct = max 𝐼 𝑥, 𝑦 = ℎ 𝑦 − ℎ 𝑛

=
1

2
log2 2𝜋𝑒 𝑃 + 𝜎2 −

1

2
log2 2𝜋𝑒𝜎2

=
1

2
log2

𝑃+𝜎2

𝜎2

=
1

2
log2 1 +

𝑃

𝜎2
bits / transmission

• We note that the maximization of ℎ 𝑦 requires that 𝑦 be Gaussian as 
Gaussian random variables have the largest differential entropy.



• The capacity can also be expressed per unit of time by considering that 
𝐾 samples have been transmitted over 𝑇 seconds, which results in

C =
K

T
Ct =

K

T

1

2
log2 1 +

𝑃

𝜎2

=
2BT

T

1

2
log2 1 +

𝑃

𝜎2

= 𝐵 log2 1 +
𝑃

𝑁0𝐵
bits / second

• In the above expression, which has been derived by Shannon, we make 
use of K = 2BT samples, where 𝐵 is the bandwidth.



G. Implications of the channel 
capacity theorem 

• In an ideal system, we transmit at a rate equal to 𝑅𝑏 = 𝐶 bits /s.

• If we take into account 𝑃 = 𝐸𝑏𝐶, where 𝐸𝑏 is the transmit energy per 
bit, we have 

𝐶

𝐵
= log2 1 +

𝑃

𝑁0𝐵
= log2 1 +

𝐸𝑏𝐶

𝑁0𝐵

• The spectral efficiency is the ratio of energy per bit by power spectral 
density is given by

𝐸𝑏

𝑁0
=

2
𝐶
𝐵−1
𝐶

𝐵

𝐸𝑏

𝑁0
(dB)

𝑅𝑏
𝐵

𝑅𝑏 < 𝐶

𝑅𝑏 > 𝐶



i) When 𝐵 → ∞
𝐸𝑏

𝑁0
approaches

𝐸𝑏
𝑁0 ∞

= lim
𝐵→∞

𝐸𝑏
𝑁0

=
1

log2 𝑒
= −0.693 or −1.6 dB

The capacity limit is then given by

𝐶∞ = lim
𝐵→∞

C =
P

N0
log2e Shannon limit



Proof

Since log2 1 + 𝑥 = 𝑥 𝑙𝑜𝑔2 1 + 𝑥
1

𝑥 and lim
𝑥→∞

1 + 𝑥
1

𝑥 = 𝑒, we have

𝐶

𝐵
= log2 1 +

𝑃

𝑁0𝐵

=
𝐶

𝐵

𝐸𝑏

𝑁0
log2 1 +

𝐶

𝐵

𝐸𝑏

𝑁0

𝑁0𝐵

𝐶𝐸𝑏

We can then simplify the above as 

𝐸𝑏
𝑁0

log2 1 +
𝐶

𝐵

𝐸𝑏
𝑁0

𝑁0𝐵
𝐶𝐸𝑏

= 1

If 
𝐶

𝐵
→ ∞ or 𝐵 → ∞ then we obtain

𝐸𝑏
𝑁0

=
1

log2e
= 0.693



ii) Capacity bound 𝑅𝑏 = 𝐶

• When 𝑅𝑏 ≤ 𝐶 → error-free transmission is possible

• When 𝑅𝑏 > 𝐶 → error-free transmission is not possible

𝐸𝑏

𝑁0
(dB)

𝑅𝑏
𝐵

𝑅𝑏 < 𝐶

𝑅𝑏 > 𝐶


