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IV. Channel coding

• In this chapter, we study the need for channel coding, derive the channel
coding theorem and examine implications of the channel coding theorem.

• In particular, we examine the fundamental limit of how reliably information
can be transmitted over a channel given some key parameters.

• We present a mathematical model of a digital communication system and
how it can benefit from channel coding.

• We derive the channel coding theorem of Shannon using an approach based 
on the Markov inequality.

• We then examine implications of the channel coding theorem and how the
probability of error of transmitted symbols can be made arbitrarily small.



A. Digital communications model

• Digital transmission over a channel with capacity 𝐶 involves several
operations such as source coding, channel coding, modulation and decoding.
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• Reliability is an important goal in digital communications that is often 
measured in terms of probability of symbol error 𝑃𝑒.

• In order to obtain reliable communication links and transmission, we 
need to employ channel coding.
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• Channel coding increases the resistance against channel errors in digital 
transmissions.

• The basic idea of channel coding is to introduce redundancy.

• A message 𝒎 with 𝑘 bits is mapped into a codeword 𝒄 with 𝑛 code bits, 
which is then transmitted.

• This redundancy translates into the code rate
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• The receiver must deal with thermal noise often modelled as additive 
Gaussian noise and with the inverse mapping/decoding.

• Fundamental question:

o Is there any channel coding scheme that allows transmission of messages 
with probability of error smaller than a small positive number 𝜖 ?
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B. Channel coding theorem

For a discrete memoryless channel with capacity 𝐶 that transmits information 
at a rate 𝑅 ≤ 𝐶 there exists a coding scheme in which the probability of error 
can be made arbitrarily small, that is, 

𝑃𝑒 → 𝜖

when the block length 𝑛 → ∞. This is known as achievability.

Conversely, if 𝑅 > 𝐶 there is no coding scheme capable of delivering a 𝑃𝑒
arbitrarily small.  This is known as the converse theorem.



Interpretation of the theorem

• For code rate 𝑅 ≤ 𝐶 we can transmit 
information with arbitrarily low 𝑃𝑒.

• The theorem considers random codes 
but powerful channel codes could be 
designed close to capacity.

• Alternatively, a designer could use lower 
rates and approach the Shannon bound.
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C. Proof of the channel coding 
theorem

• Standard proof in textbooks:

o Based on joint typicality -> generation of long sequences with certain 
properties.

o Use of the asymptotic equipartition property (AEP): analog of the law of 
large numbers.

o According to AEP, typical sets of sequences of random variables are 
generated with equally probable elements.

• Our approach: based on Markov’s inequality

Yuval Lomnitz, Meir Feder, “A simpler derivation of the coding theorem”, 
https://arxiv.org/pdf/1205.1389.pdf



• Consider the Markov inequality of a random variable 𝑥 given by

𝑃 𝑥 ≥ 𝑡 ≤
𝐸 𝑥

𝑡

Let us also consider the following assumptions:

• Channel codes are assumed random: 𝒙 = 𝑥1…𝑥𝑛

• Entries of 𝒙 are independent and identically distributed (i.i.d.) random 
variables, which yield the joint pdf

𝑝𝒙 𝑿 =ෑ

𝑖=1

𝑛

𝑝𝑥𝑖(𝑋𝑖)



• System model:

𝒚 = 𝒙 + 𝒏

= [y1…yn]

• The noisy codeword 𝒚 at the output of the channel is random and its 
elements are i.i.d., i.e.,

𝑝𝒚 𝒀 =ෑ

𝑖=1

𝑛

𝑝𝑦𝑖(𝑌𝑖)

• We assume that maximum likelihood decoding is employed:

ෝ𝒙 = argmax 𝑝𝒚|𝒙(𝒀|𝑿)



Probability of error over a set of codes:

• Let 𝑿𝑚, 𝑚 = 1,2, … , 2𝑛𝑅 be the independent codes of 𝒙, 𝒚.

• Consider the event 𝐸𝑚 where 𝑿𝑚 leads to the inequality on the a 
posteriori probability

𝑃𝒚|𝒙 𝒀 𝑿𝑚 ≥ 𝑃𝒚|𝒙 𝒀 𝑿

• Therefore, we have

𝑃 𝐸𝑚 𝑋, 𝑌 = 𝑃 𝑃𝒚|𝒙 𝒀 𝑿𝑚 ≥ 𝑃𝒚|𝒙 𝒀 𝑿 𝒀 , 𝑿



• Further developing the previous expression, we obtain

𝑃 𝐸𝑚 𝑋, 𝑌 = 𝑃 𝑃𝒚|𝒙 𝒀 𝑿𝑚 ≥ 𝑃𝒚′|𝒙 𝒀 𝑿 𝒀 , 𝑿
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• Using the union bound, the probability of error conditioned on 𝒙, 𝒚 is 
bounded by

𝑃𝑒|𝑥,𝑦 ≤ 𝑃 ራ

𝑖=1

2𝑛𝑅

𝐸𝑚|𝑿, 𝒀

≤ 2𝑛𝑅𝑃 𝐸𝑚|𝑿, 𝒀

≤ 2𝑛𝑅
𝑃𝒚 𝒀

𝑃𝒚 |𝒙 𝒀 𝑿



• Then, we analyse the behaviour of 𝑃𝑒|𝑥,𝑦 for the DMC channel.

• Using the law of large numbers, we have

1
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𝑛
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≜ −𝐼 𝑥, 𝑦 , bits

where 𝑥, 𝑦 are two random variables that are distributed according to 
𝑝𝑦 |𝑥 𝑌 𝑋 𝑝𝑥(𝑋). 



• From the law of large numbers, it follows that for any 𝜖, 𝛿 > 0 there is a 
sufficiently large 𝑛 such that with probability (1 − 𝜖) we have

1

𝑛
log2

𝑃𝑦 𝑌

𝑃𝑦 |𝑥 𝑌 𝑋
≤ 𝛿 − 𝐼(𝑥, 𝑦)

• When the above expression is satisfied then we have

𝑃𝑒|𝑥,𝑦 ≤ 2𝑛𝑅2𝑛 𝛿−𝐼 𝑥,𝑦

= 2−𝑛𝑅(𝐼 𝑥,𝑦 −𝛿−𝑅)



• The expression 𝑃𝑒|𝑥,𝑦 can be averaged to obtain a bound on the
probability of symbol error 𝑃𝑒

• The probability of symbol error 𝑃𝑒 is limited by the union bound which is
given by

𝑃𝑒 ≤ 𝜖 + 2−𝑛𝑅 𝐼 𝑥,𝑦 −𝛿−𝑅 ,

which can be made arbitrarily small if 𝑅 < 𝐼 𝑥, 𝑦 or equivalently 𝑅 ≤ C for
small 𝜖 and 𝛿

• For 𝑛 → ∞ with 𝑅 fixed, we have

𝑃𝑒 ≤ 𝜖



D. Implications of the channel coding 
theorem

• Let us consider a repetition code used for digital transmission over a
BSC with crossover probability 𝑝 = 10−2.

• For such a BSC with probability 𝑝 = 10−2 the capacity is given by

𝐶 = 1 − 𝑝 log2 𝑝 − 1 − 𝑝 log2 1 − 𝑝

= 0.9192

• Using the channel coding theorem, we know that for 𝜖 > 0 and 𝑅 <
0.9192 there exists a channel code with 𝑛 sufficiently large, code rate
𝑅 and a decoding algorithm that results in

𝑃𝑒 ≤ 𝜖



Illustration

• For 𝜖 = 10−8, we have
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• Consider a repetition code that works as follows:

o Each bit of the message 𝒎 is repeated multiple times.

o For each bit (0 or 1) we repeat it 𝑛 times, where 𝑛 = 2𝑚 + 1 and 𝑛 is an odd 
integer.

• The decoding of such code employs the majority logic decoding principle 
that works as follows:

o If the number of 1s  ≥ the number of 0s → the decoder decides for 1

o If the number of 1s  < the number of 0s → the decoder decides for 0



• The probability of symbol error is given by

𝑃𝑒 = ෍

𝑖=𝑚+1

𝑛
𝑛
𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖 ,

where 𝑝 is the crossover probability of the BSC channel.

• The probability of error is often used as a figure of merit and 
measured against the SNR or another useful quantity.



Performance

• The performance of the repetition code can be illustrated by measuring 
the probability of error  𝑃𝑒 against the code rate 𝑅.
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