

Information Theory and Channel Coding

Prof. Rodrigo C. de Lamare CETUC, PUC-Rio, Brazil delamare@cetuc.puc-rio.br

V. Rate distortion theory

- In this chapter, we study rate distortion theory and how to control the level of distortion or loss of information in encoding strategies.
- Typical situations that benefit from rate-distortion theory include those with constraints that force source coding to be lossy.
- For example, a communication channel might impose constraints on the transmission rate, which requires compression beyond the entropy rate.
- For speech and audio signals we often require quantization to obtain a representation in codewords with sufficiently short codelengths.

- In general, we have to deal with rate requirements that inevitably lead to lossy compression, which requires control of the level of distortion.
- In particular, we focus on source coding with a fidelity criterion and situations in which we must perform lossy signal compression.
- We consider a mathematical model of a source coding system and explore how it can benefit from lossy compression.
- We introduce the rate distortion function and develop an approach to computing the rate using constrained optimization of mutual information.

The applications that we are interested include:

a) Source coding:

- o Lossy compression using quantization
- o Source codes that do not represent completely the source

b) Data transmission at a rate greater than the channel capacity, that is, when $R > C$

A. Mathematical model

• Let us consider a DMS defined by an M-ary alphabet and the random variable $x=\{X_i|\ i=1,2,...,M\}$ that produces symbols X_i .

- This alphabet is assumed to produce symbols s_i that are statistically independent with probabilities p_i , $i = 1, 2, ..., M$.
- The symbols of the source are inputs to an encoder that produces Y_i that can be converted into codewords \boldsymbol{c}_j with length l_j bits.

• The average code rate is described by

bits /codeword

- At the output of the encoder, the codewords could also be represented by an N-ary alphabet through the random variable $y = \{Y_j | j = 1, 2, ..., N\}.$
- By the source coding theorem, we have
	- \circ Lossless coding: $R \geq H(x) \rightarrow$ perfect representation of the source
	- \circ Lossy coding: $R < H(x) \rightarrow$ loss of information

B. Rate distortion function

• Consider the joint pdf $p_{xy}(X_i,Y_j)$ that describes the occurrence of symbol X_i at the input of the channel and its output representation Y_i related by

$$
p_{xy}(X_i, Y_j) = p_y(Y_j|X_i)p_x(X_i),
$$

where $\;p_{_{\mathcal{Y}}}(Y_j|X_i)\;$ is the transition probability of the encoder.

• The distortion measure associated to the representation of $X_{\boldsymbol{i}}$ by $Y_{\boldsymbol{j}}$ is given by

 $d(X_i, Y_j)$,

where $d\!\left(X_i, Y_j \right)$ is also referred to as the distortion measure of a single symbol.

- Examples of distortion measures include
	- o Hamming distortion:

$$
d(X_i, Y_j) = \begin{cases} 0, & X_i = Y_j \\ 1, & X_i \neq Y_j \end{cases}
$$

o Squared error distortion:

$$
d(X_i, Y_j) = (X_i - Y_j)^2
$$

o Mean-squared error distortion:

$$
d(X_i, Y_j) = E\left[\left(X_i - Y_j\right)^2\right]
$$

• The average distortion of all possible source symbols and of the encoding representation is described by

$$
\bar{d} = \sum_{i=1}^{M} \sum_{j=1}^{N} p_{x}(X_{i}) p_{y}(Y_{j}|X_{i}) d(X_{i}, Y_{j}),
$$

where \bar{d} is a continuous non negative function of $p_{\mathcal{Y}}(Y_j | X_i)$, which are determined by the encoder/decoder pair.

• The transition probabilities $p_{\mathbf{y}}(Y_i|X_i)$ are said to be D –admissible if and only if $\bar{d} \leq D$, where D is a chosen distortion value.

• The set of all allocations of D –admissible conditional probabilities is given by

$$
P_D = \{ p_y(Y_i | X_i) : \bar{d} \le D \}
$$

• For each set of transition probabilities $p_{\mathcal{Y}}(Y_j | X_i)$, we have the mutual information described by

$$
I(x, y) = \sum_{i=1}^{M} \sum_{j=1}^{N} p_y(Y_j | X_i) p_x(X_i) \log_2 \left(\frac{p_y(Y_j | X_i)}{p_y(Y_j)} \right)
$$
 bits/codeword

• The rate distortion function is defined by

 $R(D) = \min_{\sigma \in \mathcal{F}}$ $p_{\mathcal{Y}}(Y_{i}|X_{i})\in\text{P}_{\text{D}}$ $I(x, y)$ bits/codeword

subject to the constraint

$$
\sum_{j=1}^{N} p_{y}(Y_{i}|X_{i}) = 1, \text{ for } i = 1, 2, ..., M
$$

where $\bar{d} \leq D$ for the computation of $R(D)$ and

 P_D is the set to which $p_y(Y_i|X_i)$ belongs and ensures a distortion D.

• The previous optimization leads to the following illustration.

- When the distortion *D* is reduced $\rightarrow R(D)$ increases.
- When the distortion *D* is increased $\rightarrow R(D)$ decreases.

C. Computation of the rate distortion function

• In order to compute the rate distortion function, we consider the transition probabilities $p_{\gamma}(Y_i|X_i)$ and proceed as follows:

- Computation of $R(D)$:
	- \circ Given $d(X_i, Y_j)$.
	- \circ Compute $p_y(Y_i|X_i)$ that minimize $I(x, y)$ subject to constraints:

$$
R(D) = \min_{p_y(Y_i|X_i) \in P_D} I(x, y)
$$
 subject to the constraint $\sum_{j=1}^{N} p_y(Y_i|X_i) = 1$

Example 1

Consider a discrete memoryless source that outputs Gaussian random variables x with zero mean and variance $\sigma^2.$

We consider an encoder that quantizes X and produces $Y = Q(X) = \hat{X}$ through the mean squared error distortion measure given by

a) Compute the rate distortion function $R(D)$.

b) Determine the transition probability that achieves the lower bound of $R(D)$.

Solution:

a) We consider a Gaussian random variable x with zero mean and variance σ^2 , i.e., $x \sim N(0, \sigma^2)$.

By extending the optimization that leads to the computation of the rate distortion function, we obtain

$$
R(D) = \min_{p_{\mathcal{Y}}(Y_i | X_i) \in P_D} I(x, y)
$$

subject to $p_y(Y|X)$: $d(x, y) = E[(x - y)^2] \le D$

We first find a lower bound for the rate distortion function and then prove that this is achievable. $E[(x-y)^2] \le D$, we observe that

$$
I(x,y) = h(x) - h(x|y)
$$

\n
$$
= \frac{1}{2}\log_2 2\pi e \sigma^2 - h(x - y|y) = \frac{1}{2}\log_2 2\pi e \sigma^2 - h(x - \hat{x}|\hat{x})
$$

\n
$$
\geq \frac{1}{2}\log_2 2\pi e \sigma^2 - h(x - \hat{x})
$$

\n
$$
\geq \frac{1}{2}\log_2 2\pi e \sigma^2 - h(N(0, E[(x - y)^2]))
$$

\n
$$
= \frac{1}{2}\log_2 2\pi e \sigma^2 - \frac{1}{2}\log_2 2\pi e E[(x - y)^2]
$$

\n
$$
\geq \frac{1}{2}\log_2 2\pi e \sigma^2 - \frac{1}{2}\log_2 2\pi e D
$$

\n
$$
= \frac{1}{2}\log_2 \frac{\sigma^2}{D}
$$

\n**6 Gaussian distribution**
\n**Gaussian distribution**
\n**Gaussian distribution**

Therefore, we have

$$
R(D) \ge \frac{1}{2} \log_2 \frac{\sigma^2}{D} \text{ bits } \text{/ output}
$$

The rate distortion function for a Gaussian source is illustrated by

In order to find the transition probability $p_{\nu}(Y|X)$ that achieves the lower bound of item a), it is often more convenient to look at $p_{\nu}(X|Y)$ which is sometimes called the *test channel*.

We construct $p_y(X|Y)$ to achieve equality in the bound. If $D \le \sigma^2$, we choose

$$
x = y + w
$$
, where $x \sim N(0, \sigma^2)$, $w \sim N(0, D)$ and $y \sim ?$

and y and w are independent.

We need to find the contribution to the mutual information of y that yields $I(x, y) =$ 1 2 \log_2 $(\begin{array}{cc} \widehat{?} & +D \end{array})$ σ^2 −D \overline{D} = 1 2 \log_2 σ^2 \overline{D}

This requires the distribution of y to be Gaussian with

$$
y \sim N(0, \sigma^2 - D)
$$

The test channel can be illustrated by

