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Abstract

This thesis investigate advanced algorithms for robust adaptive beamforming. A lit-

eratur survey is carried out along with a development of a number of innovative algo-

rithms, which include algorithms based on the Constrained Constant Modulus design

criterion, low-complexity algorithms using a joint optimization strategy based on the

Modified Conjugate Gradient and algorithms based on the Low-Complexity Mismatch

Estimation (LOCME). In addition an algorithm for distributed beamforming is devel-

oped which is based on the Pseudo-SNR.

The worst-case optimization based constrained constant moduls algorithm has been

developed, which exploits the constant modulus property of the desired signal. In

addition, a condition has been found which garantiees convexity of the problem. An

alternative study has been done for the choice of the worst-case parameter. Simulations

show that the performance is significantly improved compared to the existing approach.

The low-complexity methods termed Robust Constrained Constant Modulus based

on Modified Conjugate Gradient Algorithms and the Robust Constrained Constant

Modulus based on Modified Conjugate Gradient Algorithm are proposed. The new

methods use a constraint which is very similar to the worst-case constraint. Instead of

convex optimization tools, the algorithms use a recursive joint optimization strategy

including a modified conjugate gradient method and the adjustment for the robust

constraint in parallel. Unlike the convex optimization implementation, this method

exploits previous computations, which reduces the computational complexity by more

than an order of magnitude. Simulations show that the proposed methods perform

equivalently or outperform the existing methods.

A more advanced method is given by the proposed Low-Complexity Mismatch Esti-

mation (LOCME). This method estimates the imprecisely known array steering vector

via a projection into a predefined subspace. The LOCME method is proposed within 4

different algorithms using robust constrained minimum variance and robust constrained

constant modulus design criteria. Besides the solutions based on convex optimization

also its low-complexity counterparts are presented. The simulations show superior

performances of all proposed algorithms close to the optimum.

In addition, an alternative method for distributed beamforming is proposed. The

method is based on the Pseudo-SNR and therefore is related to the maximum signal

to noise ratio (MSNR) approach. Unlike the MSNR approach the new method al-

lows each relay node to compute its own weight autonomously, requiring a very low



level of network collaboration. As a result, the proposed method benefits from local

channel state information (CSI) which has a significantly higher accuracy compared to

global CSI used in centralized algorithms. The requirement of network collaboration

is significantly lower compared to the minimum mean squared error (MMSE) based

consensus algorithm which results in a higher spectral efficiency. Simulations show a

comparable performance to the MSNR and an improved performance compared to the

MMSE based consensus algorithm.
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1 Introduction 1

1 Introduction

In order to fullfil requirements with limited resources, wireless communications and

other applications have found methods to exploit the spatial domain in a more efficient

way. A remarkable technique in this area is given by beamforming methods. Beam-

forming approaches for multisensor configurations can be used to receive, transmit or

relay signals of interest in the presence of interference and noise. The introduction

is organized to provide the reader with an overview to the whole domain similar to

[GSS+10].

The receive beamforming approach has been established many decades ago and is still

a continuously developing field. It has found many applications in radar, sonar, com-

munications, microphone array speech/audio processing, biomedicine, radio astronomy,

seismology and other areas. In wireless communications, multiantenna techniques have

become a key technology to deal with the increasing number of users and their ever in-

creasing requirements in data rates, which renewed the interest in beamforming in the

last decade. A significant progress has been done in the field of receive beamforming

taking advantage of convex optimization. While the conventional methods are quite

sensitive against mismatches in the so-called array steering vector (ASV), the pre-

sumed signal signature on the sensor array, recently reported algorithms [VGL03] take

that into account due to the worst-case optimization-based method. In this class of

algorithms robust design criteria are reformulated into convex optimization problems

which are finally solved via interior point methods or other appropriate techniques.

Besides the worst-case optimization-based approach probabilistically constrained algo-

rithms [VGR07] have been recently established employing convex optimization. Both

the worst-case optimization-based and the probability constrained approach have been

developed also for the case of multiuser receivers for space-time coded multiple-input

multiple-output (MIMO) systems [RSG05],[RVG06]. Another class of robust beam-

forming algorithms employs designs to obtain an estimate of the array steering vector

with its mismatch [HV08].

Also in the field of transmit beamforming significant progress has been made recently.

The classical transmit beamforming design means a large inner product of the weight
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1 Introduction 2

vector and a single array steering vector of interest while the inner products of the

weight vector and other array steering vectors are small. Different from that, robust

designs employ a set of array steering vectors around the presumed array steering

vector. There are also multiple transmit beamforming approaches [RFLT98],[FN98],

whose weight vectors are jointly designed according to a balanced interference between

different transmissions, or according to an acceptable quality-of-service to each user

and a minimized radiated power. Later these approaches have been extended for their

robust worst-case optimization-based designs [BO01] using convex optimization and

also for their outage probability-constrained design, which provides more flexibility.

In traditional TV and radio broadcast systems the signals are transmitted whether

isotropically or with a fixed beampattern to cover a predefined spatial area, caused

by the fact that the receivers do not provide feedback to the transmitter. Different

from that, modern digital wireless networks, have often access to some level of channel

state information (CSI) at the transmitter. Multicast beamforming can exploit this

knowledge to improve network reach, coverage, quality-of-service, spectral efficiency

and interference.

Relay network beamforming employs a ”virual array” of relay nodes, which retrans-

mits appropriate weighted signals, exploiting different levels of network cooperation

[JJ07]. One approach is based on the amplify and forward protocol, where the relay

network uses adaptive complex-valued relay weights. There are also advanced schemes

where the decode-and-forward protocol can be used. Caused by the fact that the relays

can hardly exchange information, these beamforming methods are performed in a dis-

tributed way. Besides some other methods and concepts the original approach has been

extended for the multiuser scheme, bidirectionality and the filter-and-forward. Often

these difficult designs can be reformulated in a way which allows the exploitation of

convex optimization with an acceptable computational burden.

1.1 Receive Beamforming

The output of the narrowband beamformer is defined as

y = wHx(i), (1.1)

where w ∈ C
M×1 is the complex-valued beamforming weight vector and x(i) ∈ C

M×1

is the array observation vector at the time index i. The array observation vector can
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1 Introduction 3

be modeled as

x(i) = s1(i)a1 +
D
∑

m=2

sm(i)am + n(i), (1.2)

where s1 is the desired signal with its array steering vector a1 ∈ C
M×1, sm and am

correspond to the interference and n(i) denotes the additive noise, assumed to be zero-

mean, complex Gaussian. The signal model can also be written in a more compact

form as

x(i) = As(i) + n(i), (1.3)

where A ∈ C
M×D contains the array steering vectors and s ∈ C

D×1 contains the

signals.

In general the beamforming weights are designed to improve the signal-to-interference-

plus-noise ratio (SINR) at the beamforming output. The SINR is defined as

SINR =
wHRsw

wHRi+nw
, (1.4)

whereRs is the covariance matrix due to the desired signal andRi+n is the interference-

plus-noise-covariance matrix. While the perfect covariance matrices are available the

weight vector according to the optimal SINR can be obtained as [LS06]

wopt = P
{

R−1
i+nRs

}

, (1.5)

where P {.} is the operator which returns the principal eigenvector. In applica-

tions, the true covariance matrices are not available and therefore estimates accord-

ing to training data are used. The sample estimate of the signal covariance ma-

trix is defined as R̂xx,sample = 1
N

∑N

i=1 x(i)x
H(i), while in adaptive algorithms of-

ten the exponentially decayed data window estimate is used which is computed as

R̂xx(i) = µR̂xx(i − 1) + x(i)xH(i). Unlike the sample estimate, the exponentially

decayed data window estimate is asymptotically biased. When Rs can be assmued

to have rank one and the corresponding array steering vector is perfectly known as

a the optimal weight vector can be approximately obtained as the solution to the

optimization problem

min
w

wHR̂xxw s. t. wHa = 1. (1.6)
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1 Introduction 4

Its closed form solution is w = [R̂
−1

xxa]/[a
HR̂

−1

xxa], while its scaled expression w =

R̂
−1

xxa provides the same SINR. In practical scenarios, circumstances like imperfectly

calibrated arrays, local scattering and imprecisely known wavefield propagation cause

a mismatch of the presumed array steering vector a of the desired signal. To avoid

dramatical performance degradations some robust approaches have been developed in

the last decades and the author of this disertation also did which is reported in chapter

2 and chapter 3. The most common way to improve robustness is to add a diagonal

loading to the signal covariance matrix. However, there is no easy and reliable way to

choose the diagonal loading factor which is scenario dependent. Solutions are given by

the worst-case performance based methods, which enjoy a higher grade of theoretical

reliability compared to the traditional diagonal loading approach. Besides this class of

robust beamfoming algorithms numerous others approaches have been developed and

some of them are introduced in the beginning of the second chapter.

Whereas the most critical issue corresponds to the array steering vector mismatch

which can cause the so-called signal self nulling effect, there are also approaches provid-

ing robustness to other kinds of imprecision. The signal covariance tapering technique

gives a solution to widen the nulls in the beampattern of the beamforming weight vec-

tor, which is advantageous in the presence of moving interferers. To achieve this effect

the signal covariance matrix is elementwise multiplied with the taper matrix which is

denoted as T

RT = Rxx ⊙ T , (1.7)

where the most commonly used taper matrix has been reported in [Mai95] as T =
sin(π(l−m)γ)

π(l−m)γ
, l,m = 1...M and γ determines the width of the nulls in the beampattern.

Later it has been shown in [Gue99] that the following method has the equivalent effect

RT = E{[x(i)⊙ e(ω)][x(i)⊙ e(ω)]H}, (1.8)

where e(ω) = [1ejω...ej(M−1)ω]T and ω is a dithering variable with the property ω ∼
U(−γπ, γπ). Another technique providing robustness against moving interferers is

given by the well established generalized sidelobe canceller.

Another remarkable uncertainty is given by scenarios with just a small number of

snapshots as a training data. Recently a solution is reported in [DLS10] where the

author computes a certain level of diagonal loading based on minimizing the mean

squared error (MSE) of a modified estimate of the signal covariance matrix. The
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1 Introduction 5

Table 1.1: Robust Receive Beamforming Principles

Issue: Moving Interferers Small Sample Size Array-Steering-
Vector Mismatch

Impact: Interferer do not Imprecise noise Signal-
match to nulls characteristics Self-Nulling

Popular Matrix-Tapering, Automatically Computed Worst-Case
Methods: Gen. Sidelobe Canceller Diagonal Loading Level Optimization

resulting optimization problem can be cast as

min
α0,β0

E{||R̃xx −Rxx||2}, (1.9)

where Rxx is the true signal covariance matrix and R̃xx = α0I + β0R̂xx with R̂xx as

the sample matrix estimate. Due to the fact that the true signal covariance matrix is

not available the solution can be achieved with the following approximation

α0 = ν̂
ρ̂

||R̂xx − ν̂I||2
(1.10)

β0 = 1− ρ̂

||R̂xx − ν̂I||2
,

where ρ̂ = 1
N2

∑N

i=1 ||x(i)||4 − 1
N
R̂xx and ν̂ = tr(R̂xx)/M . Even though the approach

corresponds to the class of diagonal loading, it is not comparable with the commonly

used techniques against array steering vector mismatch due to the fact that the loading

level is decreasing with the number of training data samples. To give a brief overview,

Table 1.1 summarizes different robust beamfoming schemes with its main properties.

1.2 Transmit Beamforming

Downlink Beamforming

Considering a base station with multiple antennas, transmitting different data streams

to a set of D users, where each is equiped with a single antenna. The transmitted

signal is denoted as

x(i) =
D
∑

m=1

sm(i)wm, (1.11)

Master Thesis Lukas Landau



1 Introduction 6

where sm is the data stream for the user m and wm is the corresponding beamforming

weight vector. Introducing the channel hm, the received signal at user m can be

modeled as

y(i) = hH
mx(i) + nm(i), (1.12)

where n is the additive noise. To obtain appropiate beamforming weight vectors,

the design criterion according to the so-called SINR balancing method can be used. In

that formulation the SINR values corresponding to the users are constrained, while the

overall transmitted power is to be minimized. While the channel vectors are known at

the base station the optimization problem can be cast as

min
wm=1...D

D
∑

m=1

‖wm‖22

s. t.

∣

∣wH
k hk

∣

∣

2

∑D

l 6=k |wH
l hk|2 + σ2

k

≥ γk ∀k = 1, ..., D, (1.13)

where σ2
k is the noise power user k is receiving and γk is the desired minimum SINR

for user k. The weight vector can be phase rotated in such a way that wH
k hk is real

valued and positive. As a result the problem can be reformulated as a second order

cone program (SOCP). Since instantaneous CSI is often not available, a more practical

formulation is based on the second order statistics of the channel Rm = E
{

hmh
H
m

}

.

That leads to the following problem

min
wm=1...D

D
∑

m=1

‖wm‖22

s. t.
wH

k Rkwk
∑D

l 6=k |wH
l Rkwl|2 + σ2

k

≥ γk ∀k = 1, ..., D. (1.14)

However, the problem is nonconvex in that formulation. There are different strategies

which allows it to be solved. One of them is based on semidefinite relaxation, where

the problem can be reformulated as a semidefinte programm (SDP).

Multicast Beamforming

In this scheme the base station is broadcasting a single data stream to a set of D users.
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1 Introduction 7

The corresponding SNR-balancing problem can be cast as

min
w

‖w‖2 s. t.
∣

∣wHhm

∣

∣

2 ≥ σ2
mγm ∀m = 1, ..., D (1.15)

where γm is the desired minimum SNR for userm and σ2
m is the variance of the additive

noise. While absorbing the SNR consumption and the noise power level in the channel

expression hm, there is an alternatively max-min-fair formulation:

max
w

min
m∈{1,...,D}

∣

∣wHhm

∣

∣

2
s. t. ‖w‖22 = P, (1.16)

where P is the transmission power. This problem can be NP-hard, especially for the

case of D ≥ M . One strategy is based on semidefinite relaxation. Here
∣

∣wHhm

∣

∣

2
is

replaced by Tr {WRm} and ‖w‖22 is replaced by Tr {W }. The corresponding SDP

can be cast as

max
W

min
m∈{1,...,D}

Tr {WRm} s. t. Tr {W } = P, W ≥ 0, (1.17)

where W ≥ 0 means W is positive semidefinite. The formulation is not an approx-

imation, if rank {W } = 1 holds. In the rank one case the desired weight vector is

simply the principal eigenvector of W . In other cases a rank one approximation due

to W has to be found. However in that case it has been shown, that there are better

approximation strategies compared to the choice of the principal eigenvector.

1.3 Relay Network Beamforming

In this scheme the source and the destination have data transmission using a relay

network of D nodes in between. In this approach the complex channel path gains

between the source and the network nodes are denoted as f1...fD and the weights

between the network and the destination are termed as g1...gD. In the early approaches,

CSI is assumed to be known perfectly at the destination or the relays. Later approaches

are based on second-order statistics of the channels. The signals are weighted at the

relay nodes, which can be described as receive beamforming and transmit beamforming

at the same time.

Following the amplify-and-forward protocol, the signals received at the relay nodes

Master Thesis Lukas Landau



1 Introduction 8

can be modeled as

xm =
√

P0fms+ nm, (1.18)

where P0 is the transmitting power, s is the transmitted symbol and nm is the received

noise at the corresponding relay node. While the relay nodes forward the weighted

signals, finally the received signal at the destination node can be cast as

y =
D
∑

m=1

gmwm(
√

P0fms+ nm) + n0, (1.19)

where wm is the complex relay weight and n0 is the received noise at the destination

node. A reasonable design criterion to design the weight vector is given by the SNR

maximization due to predefined power constraints. IntroducingR = P0 E
{

[f ⊙ g][f ⊙ g]H
}

with g = [g1, ..., gD]
T and f = [f1, ..., fD]

T and Q = σ2
n1E

{

ggH
}

, the beamforming

design can be cast as

max
w

wHRw

σ2
0 +wHQw

s. t. Dmm |wm|2 ≤ Pm∀ m = 1, ..., D, (1.20)

where Dmm corresponds to D = P0 diag
{

E
{

|f1|2
}

, ...,E
{

|fD|2
}}

+ diag {σ2
1, ..., σ

2
D}.

The problem can be simplified using the semidefinite relaxation strategy, while replac-

ing X = wwH and skipping the constraint rank {X} = 1. Finally the optimization

problem can be reformulated in a reduced form as

max
t,X

t

s. t. Tr {RX − tQX} ≥ tσ2
n2

Xmm ≤ Pm/Dmm∀ m = 1, ..., D,X ≥ 0, (1.21)

which is feasible for a fixed value of t, while topt ≥ t holds. Using this relation, topt

can be adjusted and as a result X. According to numerical results, rank {X} = 1

holds, which means the semidefinite relaxation is not an approximation, but there is

still no proof for that observation. However, the method according to equation (1.20)

implies synchronized relay nodes and flat flading channel. In the presence of frequency

selective channels there are two different approaches to take that into account. One

is to employ the filter-and-forward protocol, which includes an FIR filter in the relay

nodes, for compensating the distortions introduced by the channel. Here the burden is
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1 Introduction 9

put on the relay nodes. There are also other approaches which treat the relay network

like an artificial multipath channel with conventional methods known from orthogonal

frequency division multiplex (OFDM) schemes. This strategy implies that the burden

is given to the destination and source node. There are also approaches developed

for the multiuser case. For less or equal than three users, it is proven that involving

semidefinite relaxation leads to the exact solution.
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2 Robust Adaptive Beamforming Algorithms 10

2 Robust Adaptive Beamforming

Algorithms

Besides a review on existing algorithms on robust receive beamforming this chapter

presents the proposed adaptive beamforming algorithm termed worst-case optimization-

based approach using the constrained constant modulus design which exploits the con-

stant modulus property of the desired signal and the proposed low-complexity robust

adaptive beamforming algorithms based on joint-optimization and Modified Conjugate

Gradient (MCG) methods.

2.1 Review

This is a review on a few notable approaches to the design of robust adaptive beam-

forming.

Loaded Sample Matrix Inversion

The most common robust approach is the so-called loaded sample matrix inversion

(loaded-SMI) beamformer [Car88],[CZO87], which includes an additional diagonal load-

ing to the signal covariance matrix. The main problem is how to obtain the optimal

diagonal loading factor. Typically it is chosen as 10 σ2
n, where σ2

n is the noise power.

Eigenvector-Based Approach

Another robust approach is given by the eigenvector-based beamformer [FG94]. Here

the presumed array steering vector is replaced by its projection onto the signal-plus-

interferer subspace. While the signal-plus-interferer subspace has a low rank, the

method provides an array steering vector with improved accuracy. However, the ap-

proach implies that the noise subspace can be identified exactly, which leads to a

limitation in high SNR.
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2 Robust Adaptive Beamforming Algorithms 11

Reduced-Rank Approach

A similar method to the Eigenvector-based approach is given by the reduced-rank

beamforming approach [dLWF10], which avoids an eigen-decomposition and exploits

the low rank, denoted as r, of the signal-plus-interference subspace. The method is

based on the following optimization problem

min
w̄,S

w̄HSHRxxSw̄ (2.1)

s. t. w̄HSHa = 1,

where w̄ ∈ C
r×1 is the reduced rank weigth vector with reduced dimension and the

columns of S ∈ C
M×r span the signal-plus-interference subspace. This optimization

problem can be solved using a joint optimization strategy where the w̄ and S are

adjusted alternately while exchanging information.

Worst-Case Optimization-Based Approach

The popular worst-case performance optimization-based beamformer is based on a

constraint that the absolute value of the array response is always greater or equal to a

constant for all vectors that belong to a predefined set of vectors in the neighborhood

of the presumed vector.

∣

∣wH(a+ e)
∣

∣ =
∣

∣wHa+wHe
∣

∣ ≥ δ, ∀ (e+ a) ∈ A (2.2)

In [VGL03] the set of vectors is a sphere A = {a+ e, ‖e‖2 ≤ ǫ}, where the norm of e

is upper-bounded by ǫ. Therefore the corresponding optimization problem can be cast

as

min
w

wHRxxw

s. t.
∣

∣wH (a+ e)
∣

∣ ≥ δ, ∀ (a+ e) ∈ A(ǫ), (2.3)

where Rxx = E
{

xxH
}

is the covariance matrix of the input signal. While applying

the triangle and the Cauchy-Schwarz inequalities

∣

∣wHa+wHe
∣

∣ ≥
∣

∣wHa
∣

∣−
∣

∣wHe
∣

∣ ≥
∣

∣wHa
∣

∣− ǫ ‖w‖2 , (2.4)

a lower bound can be introduced. The overall problem does not change if wHa under-

goes an arbitary phase rotation and so it is allowed to set the imaginary part to zero
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2 Robust Adaptive Beamforming Algorithms 12

which results in the corresponding convex SOC problem:

min
w

wHRxxw s. t. Re
{

wHa
}

− δ ≥ ǫ ‖w‖2 (2.5)

Im
{

wHa
}

= 0 .

It has been shown that this kind of beamformer is related to the class of diagonal

loading. In [LB05] the set of vectors in the neighborhood can be ellipsoidal as well.

Probability-Constrained Approach

Another notable idea is the probability-constrained approach [VGR07]. Here the con-

straint satisfies operational conditions that are more likely to occur.

min
w

wHRxxw s. t. Pr
{∣

∣wH (a+ e)
∣

∣ ≥ δ
}

≥ p, (2.6)

where Pr denotes the probability operator and p is the desired probability threshold.

Here different assumptions on the statistical characteristics of the mismatch-vector e

lead to different problem formulations. The solutions for the Gaussian probability den-

sity function (pdf) case and the general unknown pdf case are developed in [VGR07].

Robust-Capon-Approach

The robust Capon approach [LS03] is based on an estimation of the array steering

vector, which is assumed as a point in a predefined set. The estimate can be obtained

by solving

max
σ2,a

σ2 s. t. Rxx − σ2aaH ≥ 0, a ∈ ǫM(ā,E), (2.7)

where σ2aaH represents the estimate of the true covariance matrix corresponding to

the signal of interest and the ellipsoidal set ǫM is described with its center the presumed

array steering vector ā and the positive semidefinite matrix E.

ǫM(ā,E) =
{

a ∈ C
M
∣

∣[a− ā]HE[a− ā] ≤ 1
}

(2.8)

The problem can be reduced to

min
a

= aHR−1
xxa s. t. a ∈ ǫM(ā,E) (2.9)
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2 Robust Adaptive Beamforming Algorithms 13

Sequential Quadratic Programming

Another recently developed approach [HV08] identifies the mismatch vector e in the

imprecisely known array steering vector given by a = a(θd) which is a function of the

presumed direction. The approach uses sequential quadratic programming (SQP) to

obtain an estimate with a higher accuracy. In order to do so, the authors compute

C =
∫

Θ
a(θ)aH(θ)dθ, where Θ = [θ1, θ2] represents the range of the angular location of

the desired signal. They also compute its counterpart, defined as C̄ =
∫

Θ̄
a(θ)aH(θ)dθ,

where Θ̄ reprensents the range outside of the angular location of the desired signal. In

addition, P = I −UUH , while U contains the K normalized prinicipal eigenvectors

of C.

With that development the constrained energy maximization problem can be cast

as

min
e

(a+ e)HR−1
xx (a+ e) (2.10)

s. t. P (a+ e) = 0, ‖a+ e‖2 ≤
√
M + δ

aHe = 0, (a+ e)HC̄(a+ e) ≤ ζ,

where ζ = aHC̄a and δ determine the maximum stepsize. The solution of the opti-

mization problem provides an estimate of the array steering vector mismatch. While

the energy has improved, which means (a+e)HR−1
xx (a+e) ≤ aHR−1

xxa, the array steer-

ing vector can be updated as follows a ⇒
√
M a+e

‖a+e‖
2

and the optimization problem

can be solved again.

Even if the method provides an array steering vector estimate with high accuracy,

it implies a matrix inversion and most notably a multiple optimization problem which

is not desirable for real time applications.
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2.2 Worst-Case Criterion using the CCM Design

Unlike the worst-case optimzation-based approach [VGL03] combined with the con-

strained minimum variance design criterion this section describes the proposed worst-

case optimization-based approach using the constrained constant modulus [dLSN05]

design criterion (WC-CCM), which provides a better performance exploiting the con-

stant modulus property of the desired signal. Besides the design development and its

implementation this section includes an additional analysis about the adjustment of

the ǫ parameter in the robust constraint function and the analysis of the optimization

problem. As a result a condition has been found which garanties convexity of the

problem. The content of this section is published by the author in [LdLH11b].

2.2.1 Proposed Design

The proposed beamformer is based on the worst-case approach. In case of the minimum

variance design it can be derived from the following optimization problem

min
w

wHRxxw s. t. Re
{

wHa
}

− δ ≥ ǫ ‖w‖2 (2.11)

Im
{

wHa
}

= 0 , (2.12)

where ǫ is the level of steering vector mismatch, which is assumed as known a priori.

The proposed beamformer uses the constant modulus criterion, which takes advantage

of the knowledge of the signal amplitude of the desired user, instead of the minimum

variance design criterion. Its objective function is defined by

J = E
{

(

|y|2 − γ
)2
}

, (2.13)

where γ ≥ 0 which is a parameter related to the energy of the signal. A closed-

form solution which will minimize the constant modulus cost function appears to be

impossible because it is a fourth-order function with a more complicated structure

[LS06]. However, the optimization problem can be solved iteratively. Therefore the

constant modulus cost function can be written as follows

J = E
{

|y|2wHxxHw − γy∗wHx− γxHwy + γ2
}

. (2.14)
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Reformulating (2.14) leads to the equivalent expression

Ĵ = wHE
{

|y|2 xxH
}

w − 2γ Re
{

wHE {y∗x}
}

, (2.15)

where y denotes the output which is computed with the previously computed weight

vector. In combination with the worst-case constraint, the proposed WC-CCM design

can be cast as the following optimization problem

min
w

wHRaw − 2γ Re
{

dHw
}

(2.16)

s. t. wHa− δ ≥ ǫ ‖w‖2 and Im
{

wHa
}

= 0, (2.17)

whereRa = E
{

|y|2 xxH
}

and d = E {y∗x} are estimated from the previous snapshots,

which will be explained in the next section.

2.2.2 Proposed SOC Implementation and Adaptive Algorithm

The first part in this subsection describes how to implement the SOC program and

in the second part the adaptive algorithm to adjust the weights of the beamformer

according to the WC-CCM design is presented.

2.2.2.1 SOC Implementation

In this subsection we follow the approach in [VGL03] and present the SOC impemen-

tation of the proposed WC-CCM design. Introducing a scalar variable τ , an equivalent

problem to equation (2.17) can be formulated

min
τ,w

τ s. t. wHRH
acRacw − 2γ Re

{

dHw
}

≤ τ

Re
{

wHa
}

− δ ≥ ǫ ‖w‖2
Im
{

wHa
}

= 0, (2.18)
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where RH
acRac = Ra is the Cholesky factorization. Introducing the real-valued matrix

and the real-valued vectors given by

R̆ac =

[

Re {Rac} − Im {Rac}
Im {Rac} Re {Rac}

]

d̆ = [Re {d}T , Im {d}T ]T

ă = [Re {a}T , Im {a}T ]T

ā = [Im {a}T ,−Re {a}T ]T

w̆ = [Re {w}T , Im {w}T ]T ,

the problem can be rewriten as

min
τ,w̆

τ s. t. w̆T R̆
T

acR̆acw̆ − 2γ d̆
T
w̆ ≤ τ

w̆T ă− δ ≥ ǫ ‖w̆‖2
w̆T ā = 0. (2.19)

The quadratic constraint can be converted in an equivalent SOC constraint, which

leads to the following optimization problem

min
τ,w̆

τ s. t.
1

2
+ γd̆

T
w̆ +

τ

2
≥
∥

∥

∥

∥

∥

[

1
2
− γd̆

T
w̆ − τ

2

R̆acw̆

]∥

∥

∥

∥

∥

2

w̆T ă− δ ≥ ǫ ‖w̆‖2
w̆T ā = 0. (2.20)

For the implementation, let us define

p = [1,0T ]T ∈ R
(2M+1)×1

u = [τ, w̆T ]T ∈ R
(2M+1)×1

f = [1/2, 1/2,0T ,−δ,0T , 0]T ∈ R
(4M+4)×1

F T =























1
2

γd̆
T

−1
2

−γd̆
T

0 R̆ac

0 ă

0 ǫI

0 ā























∈ R
(4M+4)×(2M+1),
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where I is the identity matrix and 0 is a vector of zeros of compatible dimensions.

Finally, the problem can be formulated as the dual form of the SOC problem (equivalent

to (8) in [Stu98])

min
u

pTu s. t.

f + F Tu ∈ SOC2M+2
1 × SOC2M+1

2 × {0}, (2.21)

where f + F Tu describes a SOC with a dimension 2M + 2, a SOC with a dimension

2M +1 and a zero cone in that order. Finally, the weight vector of the beamformer w

can be put together in the following form

w = [u2, ...,uM+1]
T + j [uM+2, ...,u2M+1]

T (2.22)

Alternatively (2.17) can be solved by using [GB11], which transforms it automatically

in an appropriate form.

2.2.2.2 Adaptive Algorithm

It has already been mentioned that the optimization problem corresponding to the WC-

CCM algorithm design is solved iteratively. As a result, the underlying optimization

problem is to be solved periodically. In this case the proposed adaptive algorithm

solves it at each time instant. For the adaptive implementation we use an exponentially

decayed data window for the estimation of Ra and d given by

R̂a(i) = µR̂a(i− 1) + |y(i)|2 x(i)xH(i) (2.23)

d̂(i) = µd̂(i− 1) + x(i)y∗(i), (2.24)

where µ is the forgetting factor. Each iteration includes a Cholesky factorization and

also a transformation in a real valued problem. Finally, the problem is formulated in

the dual form of the SOC problem and solved with SeDuMi [Stu98]. The adaptive

algorithm structure is detailed in Table 2.1.

Compared to the algorithm based on the minimum variance constraint, the proposed

algorithm increases the dimension of the first SOC from 2M + 1 to 2M + 2.
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Table 2.1: Proposed WC-CCM Algorithm

initialization: R̂a(0) = σ2
nI; d̂(0) = 0;w(0) = a

M

Update for each time instant i = 1,...,N

y(i) = wH(i− 1)x(i)

R̂a(i) = µR̂a(i− 1) + |y(i)|2 x(i)xH(i)

Rac(i) = chol
(

R̂a(i)
)

d̂(i) = µd̂(i− 1) + x(i)y∗(i)

Racr(i) =

[

Re {Rac(i)} − Im {Rac(i)}
Im {Rac(i)} Re {Rac(i)}

]

dr(i) =

[

Re
{

d̂(i)
}T

, Im
{

d̂(i)
}T
]T

p = [1,0T ]T

f = [1/2, 1/2,0T ,−δ,0T , 0]T

F T =



















1
2

γdT
r (i)

−1
2

−γdT
r (i)

0 Racr(i)
0 ă

0 ǫI
0 ā



















min
u

pTu s. t.

f + F Tu ∈ SOC2M+2
1 × SOC2M+1

2 × {0}

w(i) = [u2, ...,uM+1]
T + j [uM+2, ...,u2M+1]

T

2.2.3 Adjustment of the Parameter ǫ

The beamforming weight vector can be defined as

w = c a/M + b, (2.25)

where c is a scalar, and b is orthogonal to a. Using it with the worst-case constraint

leads to

c− δ ≥ ǫ

√

c2

M
+ bHb. (2.26)
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Obviously the following relation holds

c− δ ≥ ǫ

√

c2

M
+ bHb ≥ ǫ

√

c2

M
. (2.27)

Rewriting the relation shows that there is a pole for ǫ =
√
M .

c ≥ δ

1− ǫ/
√
M

(2.28)

In addition, it is mentioned in [LS03] that for ‖a‖2 ≤ ǫ and ‖a‖2 =
√
M there is no

w that satisfies the constraint. Retaining b in (2.26) leads to

c ≥ M δ

M − ǫ2
+

√

Mǫ2bHb−M δ

M − ǫ2
+

(

M δ

M − ǫ2

)2

(2.29)

Since bHb increases with increasing c, the pole is additionally enforced.

Now it is assumed ǫ .
√
M , which leads to c ≫ δ, c − δ ≈ c. In that case, the

constraint (2.26) can be rewritten as

c ≥ ǫ

√

c2

M
+ bHb, (2.30)

in what follows
bHb

c2
=

1

ǫ2
− 1

M
. (2.31)

As a result of (2.31), depending on the choice of ǫ the ratio between the components

of the weight vector defined by (2.25) can be infinitesimal. That corresponds to w ≈
c a/M and a diagonal loading which is above the interferer’s level. Hence, there is

no limitation for the diagonal loading even if ǫ is chosen in the interval [0,
√
M ] for

ǫ, where the constraint can be fulfilled theoretically. Obviously, in case of ǫ close to√
M the ratio bHb

c2
is constrained to a small value, which can lead to a performance

degradation. Without loss of generality, the ratio is already smaller for lower SNR

values, caused by the fact that additional noise reduces the eigenvalue spread of the

signal covariance matrix. That means the relation of the quantities in (2.31) and its

penalty has more impact for higher SNR values. As a consequence it is advantageous

to choose ǫ with respect to the SNR as well as with respect to the assumed mismatch

level.
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2.2.4 Analysis of the Optimization Problem

The objective function for the constant modulus design criterion is

Jcm = E
{

(

|y|2 − γ
)2
}

. (2.32)

To ensure that the constraint wHa = δ + ǫ ‖w‖2 is fulfilled w is replaced by

w =
a

M
(δ + ǫ ‖w‖2) +Bz, (2.33)

where B = null
{

aH
}

and z ∈ C
M−1×1. To obtain a function which does not depend

on ‖w‖2, a quadratic equation needs to be solved.

‖w‖2 = τ =

√

1

M
(δ + ǫ τ)2 + zHz (2.34)

Because the norm is greater than zero the following holds

τ =
ǫ δ

M − ǫ2
+

√

MzHz + δ2

M − ǫ2
+

(

ǫ δ

M − ǫ2

)2

. (2.35)

Therefore, the resulting weight vector is a function of z.

w =
a

M



δ +
ǫ2 δ

M − ǫ2
+ ǫ

√

MzHz + δ2

M − ǫ2
+

(

ǫ δ

M − ǫ2

)2


+Bz (2.36)

Replacing thew in the objective function leads to an equivalent problem to the original:

J = E

{[





aH

M



δ +
ǫ2 δ

M − ǫ2
+ ǫ

√

MzHz + δ2

M − ǫ2
+

(

ǫ δ

M − ǫ2

)2


+ zHBH





xxH





a

M



δ +
ǫ2 δ

M − ǫ2
+ ǫ

√

MzHz + δ2

M − ǫ2
+

(

ǫ δ

M − ǫ2

)2


+Bz



− γ

]2}

(2.37)
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The function is convex, when the Hessian H = ∂
∂zH

(

∂J
∂z

)

is positive semidefinite. The

Hessian corresponding to the objective function is given by

H = 2
∂

∂zH

(

E
{

|y|2 − γ
}) ∂

∂z

(

E
{

|y|2 − γ
})

+2 E
{

|y|2 − γ
} ∂

∂zH

∂

∂z

(

E
{

|y|2 − γ
})

(2.38)

Since it is the product of a vector multiplied with its Hermitian transposed the first

term in (2.38), the Hessian is positive semidefinite. While it is assumed that E
{

|y|2 − γ
}

≥
0 the positive semidefiniteness of H2 =

∂
∂zH

∂
∂z

(

E
{

|y|2 − γ
})

still needs to be shown.

It can be expressed as a sum H2 =
∑6

k=1H2k and is given by

H2 =E

{[

(

− ǫ

4

(

1√
α

))3(
M

M − ǫ2

)2
aH

M
xxH

(

β
a

M
+Bz

)

zzH

+
ǫ

2

1√
α

(

M

M − ǫ2

)

aH

M
xxH

(

β
a

M
+Bz

)

IM−1

+

(

β
aH

M
+ zHBH

)

xxH a

M

(

− ǫ

4

(

1√
α

))3(
M

M − ǫ2

)2

zzH

+

(

β
aH

M
+ zHBH

)

xxH a

M

ǫ

2

1√
α

(

M

M − ǫ2

)

IM−1

+
ǫ

2

1√
α

(

M

M − ǫ2

)

aH

M
xxH a

M

ǫ

2

1√
α

(

M

M − ǫ2

)

zzH

+

(

ǫ

2

1√
α

(

M

M − ǫ2

)

z
aH

M
+BH

)

xxH

(

a

M

ǫ

2

1√
α

(

M

M − ǫ2

)

zH +B

)

]

,

(2.39)

where α =
(

MzHz+δ2

M−ǫ2
+
(

ǫ δ
M−ǫ2

)2
)

and β =
(

δ + ǫ2 δ
M−ǫ2

+ ǫ
√
α
)

. To show that H2 is

positive semidefinite the following steps are made. Here it is assumed that

aH

M
xxH

(

β
a

M
+Bz

)

≥ 0. (2.40)

This assumption is reasonable as far as the term xHBz is basically the compensating

term of the unwanted contribution of xH
(

β a
M

)

. Under this condition all terms in

the sum of H2 are positive semidefinite except the first term H21 and the third term

H23, where H23 = HH
21. But it can be shown that H21 + H22 and H23 + H24 are

always positive semidefinite. To prove that, the inequality vH(H22)v ≥ vH(−H21)v
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is described as

vH ǫ

2

1√
α

(

M

M − ǫ2

)

aH

M
xxH

(

β
a

M
+Bz

)

IM−1v

≥ zH

(

ǫ

4

(

1√
α

))3(
M

M − ǫ2

)2
aH

M
xxH

(

β
a

M
+Bz

)

zzHz

≥ vH

(

ǫ

4

(

1√
α

))3(
M

M − ǫ2

)2
aH

M
xxH

(

β
a

M
+Bz

)

zzHv, (2.41)

where v is any vector with the length of z and there is an upper bound for v = z.

Since zHz = vHv, the inequality can be reduced to

2α ≥
(

MzHz

M − ǫ2

)

. (2.42)

Replacing α gives the proof for positive semidefiniteness

2

(

MzHz + δ

M − ǫ2
+

(

ǫ δ

M − ǫ2

)2
)

≥
(

MzHz

M − ǫ2

)

, (2.43)

which always holds. The same can be done in an analogous way for the third term

(H23) and the fourth term (H24). To ensure that E
{

|y|2 − γ
}

≥ 0 it can be assumed

that wH (a+ e) ≥ δ, where e is the array steering vector mismatch. Therefore,

γ ≤ δ E
{

|s1|2
}

(2.44)

is a sufficient condition to enforce convexity, where |s1|2 is the power of the desired

user.

2.2.5 Simulations

In the simulations the WC-CCM design is compared to the loaded-SMI [CZO87] the

optimal SINR [LS06] and the worst-case optimization-based constrained minimum vari-

ance algorithm [VGL03]. A uniform linear sensor array is used with M = 10 sensors.

In all simulations is considered |s1| = 1, δ = 1, γ = 1 and µ = 0.995. Besides user

1, the desired signal, there are 4 interferers, the powers (P ) relative to user 1 and di-

rections of arrival (DoA) in degrees of which are detailed in Table 2.2. For time-index

i = 1000 an environmental event is considered.

In the first examples, the SINR performance is shown as a function of ǫ to illustrate
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Figure 2.1: SINR versus ǫ, for different SNRs, perfect ASV, M = 10

Table 2.2: Interference scenario
P (dB) relative to user1 / DoA

snapshot user 1 user 2 user 3 user 4 user 5
1-1000 0/93◦ 13/120◦ 1/140◦ 22/67◦ 10/157◦

1001-2000 0/93◦ 30/120◦ 25/170◦ 4/104◦ 9/68◦

the discussion on the choice of ǫ and to verify the assumption that the constraint of

the worst-case optimization approach has the same behavior when combined with the

CCM design. Each simulation of the worst-case constraint is done with the minimum

variance and with the constant modulus design criteria. Fig. 2.1 shows the SINR

performance when the algorithms work with perfectly known array steering vectors.

As expected, the performance drops down when ǫ is close to
√
M . The simulations

corroborate the analysis and show that the optimal value for ǫ depends on the SNR.

Fig. 2.2 shows the same experiment with an array steering vector mismatch. The
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Figure 2.2: SINR versus ǫ, for different SNRs, local coherent scattering, M = 10

signal steering vector is corrupted by a local coherent scattering (LCS), given by

ă = a+
4
∑

i=1

ejΦiasc (θi) , (2.45)

where Φi is uniformly distributed between zero and 2π and θi is uniformly distributed

with a standard deviation of 2 degrees with the assumed direction as the mean. The

mismatch changes for every realization and is fixed over the snapshots of each simula-

tion trial. As expected, the optimal ǫ is shifted to higher values, compared to Fig. 2.1.

Fig. 2.3 shows the SINR performance over ǫ for different mismatch levels. Here

the mismatch level refers to the standard deviation, where 100% corresponds to 2

degrees. Here the influence of the noise is reduced by setting the SNR to a high

value. It is illustrated how the mismatch impacts the performance of the beamforming

algorithms. Note that for the CCM design, the curves are more flat, which means

this design approach is less sensitive to different mismatch levels. As a conclusion, it

is shown that the optimal ǫ depends on the mismatch as well as the SNR. In what
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Figure 2.3: SINR versus ǫ, different levels of LCS, SNR = 15dB, i=200, M = 10

follows, the mismatch level is simulated with 100% and ǫ = 2.1 for the CMV and for

the CCM design criteria.

In the last part the proposed WC-CCM is compared with the WC-CMV [VGL03],

the loaded-SMI inversion with a diagonal loading factor determined as 10 σ2
n and

the optimal SINR [LS06]. As in the previous section, the mismatch is caused by

local coherent scattering. Fig. 2.4 presents the SINR performance over the snapshots.

For time index i = 1000 the interference scenario changes according to Table 2.2.

This influences the performance and the beamformers adapt to the environment. The

proposed WC-CCM shows a significantly better performance than the WC-CMV and

the loaded-SMI algorithm. Fig. 2.5 shows the SINR performance against the SNR

for i = 500 snapshots. The curves show that the proposed WC-CCM algorithm is

more robust against mismatch problems than the existing WC-CMV and loaded-SMI

agorithms.

Master Thesis Lukas Landau



2 Robust Adaptive Beamforming Algorithms 26

0 500 1000 1500 2000
6

6.5

7

7.5

8

8.5

9

9.5

10

snapshots

S
IN

R
(d

B
)

 

 

Loaded−SMI [CoZO87]

Optimal SINR [LiSt06] p.54

WC−CMV [VoGL03]

Proposed WC−CCM

Figure 2.4: SINR versus snapshots, SNR = 0 dB, local coherent scattering, M = 10

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

15

20

25

SNR (dB)

S
IN

R
 (

d
B

)

 

 

Loaded−SMI [CoZO87]

Optimal SINR [LiSt06] p.54

WC−CMV [VoGL03]

Proposed WC−CCM

Figure 2.5: SINR performance versus SNR, local coherent scattering, i = 500

Master Thesis Lukas Landau



2 Robust Adaptive Beamforming Algorithms 27

2.2.6 Conclusions and Futurework

Conclusion

The author has proposed a robust beamforming algorithm based on the worst case con-

straint and the CCM design criterion. The proposed approach exploits prior knowledge

of the desired signal’s amplitude. The problem can be solved iteratively, where each

iteration is effectively solved by a SOC program. In addition, an alternative study

about the worst-case constraint is considered, which can be useful for the choice of

the parameter ǫ. As a result, the proposed beamformer outperforms the conventional

design especially in high SNR regions. Based on the results it can be expected that

the CCM design criterion can improve also other robust beamforming approaches.

Futurework

The proposed constrained constant modulus algorithm is slightly sensitive against

channel gain fluctuations. This sensitivity could be studied and an extention could

be introduced, which takes that into account.
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2.3 Joint Optimization using Modified Conjugate

Gradient Method

The existing algorithms which use the worst-case optimization-based constraint do

not take advantage of previous computations as the conventioanl SMI beamforming

algorithm solved by the modified conjugate method (MCG) algorithm or the recursive-

least-squares (RLS) algorithm in the so-called on-line mode.

In the next section a robust constraint is shown which is just slightly different compared

to the worst-case optimization-based approaches. As a result the corresponding opti-

mization problem is a quadratically constrained quadratic program (QCQP) instead of

a second order cone (SOC) program. It is shown how to solve the problem with a joint

optimization strategy. The method includes a system of equations which is solved effi-

cently with a modified conjugate gradient algorithm. Finally the complexity is reduced

from more than cubic O(M3.5) to squared O(M2) with the number of sensor elements,

while the SINR performance is equivalent compared to the worst-case optimization-

based approach. The new method is presented in the robust constrained minimum

variance design using the modified conjugate gradient method (RCMV-MCG) and in

the robust constrained constant modulus design using the modified conjugate gradi-

ent method (RCCM-MCG), which exploits the knowledge of the signal energy of the

desired user. The content of this chapter is published by the author in [LdLWH11].

2.3.1 Proposed Design and Joint-Optimization Approach

Robust Constrained Minimum Variance Design

The proposed beamformers are related to the worst case approach, whose performance

is already well established [LS06],[VGL03]. In case of the minimum variance design it

can be transformed in the following optimization problem.

min
w

wHRxxw, s. t. Re
{

wHa
}

− δ ≥ ǫ ‖w‖2 , (2.46)

where Rxx = E
{

x(i)x(i)H
}

is the covariance matrix of the input signal. According

to [LB05] it is sufficient to constrain the real part in the constraint. It has been shown

that this kind of beamformer belongs to the class of diagonal loading schemes [VGL03].

As already mentioned, this problem can be solved by interior point methods while its

complexity is more than cubic with the number of sensor elements. Contrary to that

approach the proposed on-line algorithms take advantage of the previous calculations,
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which leads to a complexity reduction of more than an order of magnitude. In order

to do so, the constraint is slightly modified. Here it is assumed that the use of ǫ̃ ‖w‖22
instead of ǫ ‖w‖2 from the conventional constraint has a comparable impact. Finally,

the proposed design criterion for the minimum variance case is

min
w

wHRxxw, s. t. Re
{

wHa
}

− δ ≥ ǫ̃ ‖w‖22 . (2.47)

Using the method of Lagrange multipliers gives

LCMV (w, λ) = wHRxxw + λ
[

ǫ̃ wHw − Re
{

wHa
}

+ δ
]

, (2.48)

where λ is the Lagrange multiplier. Computing the gradient of (2.48) with respect to

w∗, and equating it to zero leads to

w = (Rxx + ǫ̃λI)−1 λa/2. (2.49)

Because it is not clear how to obtain the Lagrange multiplier in a closed form, here it

is proposed to adjust it in a parallel algorithm. In this joint optimization the Lagrange

multiplier is interpreted as a penalty factor. In this case λ > 0 needs to hold all the

time. The adjustment rises the penalty factor when the constraint is not fullfilled and

decreases it otherwise. In case of a too small penalty the minimum variance design

leads to a non fulfilled constraint. For that we devise the following algorithm

λ(i) = λ(i− 1) + µλ

(

ǫ̃ ‖w(i)‖22 − Re
{

w(i)Ha
}

+ δ
)

, (2.50)

where µλ is the step size. In addition it is reasonable to define boundaries for the

update term.

Robust Constrained Constant Modulus Design

In case of constant modulus signals it has been shown that the constant modulus design

performs better than the minimum variance design [dLSN05],[dLHSN08]. Similarly, the

robust approach can be combined with the constrained constant modulus criterion.

The constant modulus cost function is defined by

J = E
{

(

|y|2 − γ
)2
}

. (2.51)

Since it is a fourth order function with a more complicated structure a closed form

solution appears to be not possible. For this reason, the problem is solved iteratively
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which corresponds to the following underlying objective function

Ĵ = wHRaw − 2γ Re
{

dHw
}

, (2.52)

where Ra = E
{

|y|2 xxH
}

and d = E {xy∗} are estimated using the previously com-

puted weight vector. Finally the optimization problem can be cast as

min
w

wHRaw − 2γ Re
{

wHd
}

, (2.53)

s. t. Re
{

wHa
}

− δ ≥ ǫ̃ ‖w‖22 (2.54)

Using the method of Lagrange multipliers gives

LCCM (w, λ) =wHRaw − 2 γ Re
{

wHd
}

+ λ
[

ǫ̃ wHw − Re
{

wHa
}

+ δ
]

. (2.55)

Computing the gradient of (2.55) with respect to w∗, and equating it to zero leads to

w = [Ra + ǫ̃λI]−1 [γd+ λa/2] . (2.56)

The adjustment of the Lagrange multiplier λ can be done in the same way as in the

minimum variance case.

2.3.2 Adaptive Algorithms

To take advantage of the joint optimization approach an on-line modified conjugate

gradient method, with one iteration per snapshot is used to solve the resulting problem.

Its derivation is based on [CW00] and it can be interpreted as an extension of the idea

in [WdL10].

Robust-CMV-MCG

In the algorithm an exponentially decayed data window is used to estimate Rxx

R̂xx(i) = µR̂xx(i− 1) + x(i)xH(i) , (2.57)

where µ is the forgetting factor. According to [Tre02]

Rxx ≃ (1− µ) R̂xx(i) (2.58)
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can be assumed for large i. Replacing Rxx in (2.49), introducing λ̂(i) = λ(i)
1−µ

, leads

to w(i) = [R̂xx(i) + ǫ̃λ̂(i)I]−1λ̂(i)a/2. Let us introduce the CG weight vector v(i)

as follows w(i) = v(i) λ̂(i)
2
. The conjugate gradient algorithm solves the problem by

iteratively updating the CG weight vector

v(i) = v(i− 1) + α(i)p(i), (2.59)

where p(i) is the direction vector and α(i) is the adaptive step size. One way [CW00]

to realize the conjugate gradient method performing one iteration per snapshot is the

application of the degenerated scheme. Under this condition the adaptive step size

α(i) has to fulfill the convergence bound given by

0 ≤ pH(i)g(i) ≤ 0.5 pH(i)g(i− 1). (2.60)

To rearrange (2.60) the negative gradient vector and its recursive expression are con-

sidered as

g(i) =a− [R̂xx(i) + ǫ̃λ̂(i)I]v(i)

=a[1− µ] + µg(i− 1)

− [xxH + ǫ̃(λ̂(i)− µλ̂(i− 1))I]v(i− 1)

− α(i)[R̂xx(i) + ǫ̃λ̂(i)I]p(i) (2.61)

Premultiplying with pH(i), taking the expectation from both sides and considering

p(i) uncorrelated with a, x(i) and v(i− 1) leads to

E
{

pH(i)g(i)
}

≈µE
{

pH(i)g(i− 1)
}

− E {α(i)}E
{

pH(i)[R̂xx(i) + ǫ̃λ̂(i)I]p(i)
}

. (2.62)

Here it is assumed that the algorithm has already converged, which implies a[1−µ]−
[E
{

xxH
}

+ ǫ̃λ̂(i)[1 − µ]I]v(i − 1) = 0, where equation (2.58) is taken into account

and λ̂(i) ≈ λ̂(i − 1). Introducing pR = [R̂xx(i) + ˆλ(i)ǫ̃I]p(i), rearranging (2.62) and

plugging into (2.60) determines the stepsize within its boundaries as follows

α(i) =
[

pH(i)pR

]−1
(µ− η)pH(i)g(i− 1), (2.63)
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where 0 ≤ η ≤ 0.5. The direction vector is a linear combination from the previous

direction vector and the negative gradient.

p(i+ 1) = p(i) + β(i)g(i), (2.64)

where β(i) is computed for avoiding the reset procedure by employing the Polak-Ribiere

approach [Lue84].

β = [gH(i− 1)g(i− 1)]−1[g(i)− g(i− 1)]Hg(i) (2.65)

The proposed algorithm, which is termed Robust-CMV-MCG, is described in Table

2.3.

Table 2.3: Proposed RCMV-MCG Algorithm

v(0) = 0; p(1) = g(0) = a; R̂(0) = δI; λ̂(0) = λ̂(1) = λ̂0

For each time instant i = 1, ..., N

R̂xx(i) = µR̂xx(i− 1) + x(i)xH(i)

pR = [R̂xx(i) + λ̂(i)ǫ̃I]p(i); ν =
[

λ̂(i)− µλ̂(i− 1)
]

ǫ̃

α(i) =
[

pH(i)pR

]−1
(µ− η)pH(i)g(i− 1); (0 ≤ η ≤ 0.5)

v(i) = v(i− 1) + α(i)p(i)

g(i) = [1− µ]a+ µg(i− 1)− α(i)pR

−
(

x(i)xH(i) + νI
)

v(i− 1)

β(i) =
[

gH(i− 1)g(i− 1)
]−1

[g(i)− g(i− 1)]H g(i)

p(i+ 1) = g(i) + β(i)p(i)

w(i) = λ(i)v(i)/2

δλ = µλ[ǫ̃ ‖w(i)‖22 − Re
{

wH(i)a
}

+ δ]

while δλ ≤ −λ(i) or δλ ≥ δλmax

δλ ⇒ δλ/2

end

λ̂(i+ 1) = λ̂(i) + δλ

Note that, for the parallel algorithm to adjust the Lagrange multiplier, we divide

the update-term by 2, if the Lagrange multiplier is outside a predefined range, as it

is described in Table I. The application of the proposed algorithm corresponds to a

computational effort which is quadratic with the number of sensor elements M .
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Robust-CCM-MCG

The adaptive algorithm in case of the constrained constant modulus criterion is devel-

oped analogously to the minimum variance case. The estimates of Ra and d are based

on an exponentially decayed data window.

R̂a(i) = µR̂a(i− 1) + |y(i)|2 x(i)xH(i) (2.66)

d̂(i) = µd̂(i− 1) + x(i)y∗(i) (2.67)

Following the steps, while taking into account that

Ra = [1− µ]R̂a(i) (2.68)

d = [1− µ]d̂(i) (2.69)

leads to the adaptive algorithm. Note, in contrast to the CMV case, here the beam-

forming weight vector is the same as the conjugate gradient weight vector, which means

w = [R̂a+ǫ̃λ̂I]−1[γd̂+λ̂a/2]. The negative gradient vector and its recursive expression

are defined as

g(i) =[γd̂+ λ̂a/2]− [R̂a + ǫ̃λ̂I]w(i)

=µg(i− 1)− α(i)pR −
(

|y(i)|2 x(i)xH(i)
)

w(i− 1)

+ γx(i)y∗(i) + ν [a/ (2ǫ̃)−w(i− 1)] , (2.70)

where ν =
[

λ̂(i)− µλ̂(i− 1)
]

ǫ̃. The proposed algorithm, which is termed Robust-

CCM-MCG, is described in Table 2.4.

2.3.3 Simulations

For the simulations a uniform linear sensor array with 10 sensor elements is considered.

The forgetting factor µ = 0.995 is chosen. The step sizes are µλ(CMV) = 800 and

µλ(CCM) = 100. The update limitation is set to δλmax = 200. For the robust con-

straints ǫ = ǫ̃ = 2.1 holds. According to the different constraint functions, the equality

is a special case for M = 10. For the loaded sample matrix inversion beamformer

(Loaded-SMI) the diagonal loading factor is chosen as 10 σ2
n. Besides the desired user

(user 1) there are 4 interferers, whose relative powers (P) with respect to the desired

user and directions of arrival (DoA) in degrees are detailed in Table 2.5. At i = 1001

the beamformers are confronted with a scenario change.
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Table 2.4: Proposed RCCM-MCG Algorithm

p(1) = g(0) = a; R̂a(0) = δI; d̂(0) = 0;

λ̂(0) = λ̂(1) = λ̂0; w = a/M

For each time instant i = 1, ..., N

R̂a(i) = µR̂a(i− 1) + |y(i)|2 x(i)xH(i)

pR = [R̂a(i) + λ̂(i)ǫ̃I]p(i); ν =
[

λ̂(i)− µλ̂(i− 1)
]

ǫ̃

α(i) =
[

pH(i)pR

]−1
(µ− η)pH(i)g(i− 1); (0 ≤ η ≤ 0.5)

w(i) = w(i− 1) + α(i)p(i)

g(i) = µg(i− 1)− α(i)pR −
(

|y(i)|2 x(i)xH(i)
)

w(i− 1)

+γx(i)y∗(i) + ν [a/ (2ǫ̃)−w(i− 1)]

β(i) =
[

gH(i− 1)g(i− 1)
]−1

[g(i)− g(i− 1)]H g(i)

p(i+ 1) = g(i) + β(i)p(i)

δλ̂ = µλ̂ [̂̃ǫ ‖w(i)‖22 − Re
{

wH(i)a
}

+ δ]

while δλ ≤ −λ̂(i) or δλ ≥ δλmax

δλ ⇒ δλ/2

end

λ̂(i+ 1) = λ̂(i) + δλ

Table 2.5: Interference scenario
P (dB) relative to user1 / DoA(degrees)

snapshot user 1 (desired user) user 2 user 3 user 4 user 5
1-1000 0/93◦ 10/120◦ 5/140◦ 10/150◦ 7/105◦

1001-2000 0/93◦ 30/120◦ 34/170◦ 6/104◦ 9/68◦

The signal steering vector is corrupted by local coherent scattering, where

ă = a+
4
∑

k=1

ejΦkasc (θk) (2.71)

and Φk is uniformly distributed between zero and 2π and θk is uniformly distributed

with the assumed direction as the mean and a standard deviation of 2 degrees [VGL03].

The mismatch changes for every realization and is fixed over the snapshots.

Fig. 2.6 shows the SINR performance over the number of snapshots. The suddenly

appearing performance degradation is caused by the event happening at i = 1001. The

simulation is performed at 0dB SNR. The plot shows the average over 1000 simulation
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Figure 2.6: SINR performance versus number of snapshots, SNR = 0dB

runs. Fig. 2.7 displays the dependency on the SNR. Here the SINR is recorded for

snapshot i = 1500. Fig. 2.8 confirms that our proposed low-complexity method is

comparable to the worst-case optimization based method.

According to the Fig. 2.6 and Fig. 2.7 the Robust-CMV-MCG algorithm performs

equivalently to [VGL03], and the Robust-CCM-MCG outperforms [VGL03] especially

at high SNR values. Fig. 2.8 confirms the comparable performance of our proposed

low-complexity method to the worst-case optimization based method. In addition,

the Robust-CCM-MCG beamformer shows a higher mean as well as a lower standard

deviation in terms of SINR performance. Note that the constant modulus design

benefits from the knowledge of the constant modulus property of the desired user

signal.
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Figure 2.7: SINR performance versus SNR, i = 1500

2.3.4 Conclusions and Futurework

Conclusion

This section presents the development of low-comlexity robust adaptive beamforming

algorithms, the Robust-CMV-MCG and the Robust-CCM-MCG. They use a constraint

similar to the worst-case optimization based approach. It is shown that the joint

optimization approach allows the exploitation of highly efficient on-line algorithms

like the modified conjugate gradient method which performs just one iteration per

snapshot. As a result the complexity is reduced by more than an order of magnitude

compared to the worst-case optimization based beamformer which is solved with a

second order cone program. The proposed Robust-CCM-MCG algorithm based on the

Constant Modulus design criterion, shows a better performance which takes advantage

of the costant modulus property of the signal amplitude of the desired user.

Futurework

The proposed algorithms are ready to be implemented in a digital hardware.
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Figure 2.8: Probability density function of the output SINR, i = 2000, SNR = 0dB
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3 Low-Complexity Mismatch

Estimation (LOCME) for Robust

Beamforming

In this chapter an advanced method is proposed which adapts on the array steering

vector mismatch. Unlike the existing method [HV08], which has inapplicable com-

putational requirements in a real-time application, the proposed method termed Low-

Complexity Mismatch Estimation (LOCME) requires a low computational burden and

does not even imply an optimization algorithm. The LOCME method describes the

estimation of the array steering vector as the projection onto a predefined subspace

of the correlation between the beamforming output signal and the array observation

vector. The proposed algorithms in this chapter are published in [LdLH11a].

3.1 Proposed Low-Complexity Mismatch Estimation

The LOCME approach is based on the following relations

d = E {xy∗} (3.1)

= E
{

(As+ n) (As+ n)H w
}

, (3.2)

where x is the array observation vector, y represents the output of the beamformer

and A = [a1, ...,aD] contains the array steering vector of the desired user a1 and the

array steering vectors from other impinging signals. The array steering vector can be

modeled as a1 = a(θ1)+e, where a(θ1) is known by the system and e is the mismatch

vector. Furthermore it is assumed that
∣

∣aH
mw
∣

∣≪
∣

∣aH
1 w
∣

∣ for m = 2...D. So, the vector

d can be rewritten as

d = E
{

(As+ n)
(

s∗1a
H
1 w + nHw

)}

, (3.3)
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where a1 is the value to be estimated by the LOCME method. In addition, the desired

signal is assumed to be independent from the noise and the other users, which allows

the following notation

d = E
{

|s1|2 c a1 + nnHw
}

, (3.4)

where c = aH
1 w. Obviously a scaled version of the unknown array steering vector is a

component of d. To eliminate the unwanted part, d can be projected onto a predefined

subspace. Here some prior information can be used. In our example we assume that

the desired array steering vector is a superposition of different array steering vectors

in a predefined range like in [HV08]. Let us consider a range from θ1 ± θE. With that

knowledge we compute a matrix as follows

C =

∫ θ1+θE

θ1−θE

a(θ)aH(θ)dθ. (3.5)

Depending on the application this matrix needs to be recomputed. The K normalized

principal eigenvectors of C form the projection matrix

P = [c1, c2, ..., cK ] [c1, c2, ..., cK ]
H (3.6)

The resulting estimate of the array steering vector is given by

â1 =
√
M

Pd

‖Pd‖2
(3.7)

Since, the proposed technique depends on the fact that the beamformer is already work-

ing, it is reasonable to combine it with already existing robust adaptive beamforming

algorithms like the worst-case optimization based algorithm.

3.2 Proposed Adaptive Agorithms using LOCME

This section presents the LOCME technique using the worst-case optimization based

approach in the constrained minimum variance design, which is a SOCP and also the

LOCME using the robust constrained constant modulus design, which is designed as

a QCQP. In each adaptive algorithm the LOCME method is implemented with the
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following recursions

d̂(i) = µd̂(i− 1) + x(i)y∗(i), (3.8)

â1(i) =
√
M

P d̂(i)
∥

∥

∥P d̂(i)
∥

∥

∥

2

, (3.9)

where P is the projection matrix with rank K given by (3.6) and â1(i) is the estimate

of the array steering vector.

3.2.1 WC-CMV-LOCME

The adaptive worst-case optimization based beamformer [VGL03] using the LOCME

feature is cast as follows

min
w

wHR̂xx(i)w s. t. Re
{

wHâ1(i)
}

− δ ≥ ǫ ‖w‖2
Im
{

wHâ1(i)
}

= 0, (3.10)

where â1(i) is the adaptive LOCME estimate according to (3.9), the signal covari-

ance matrix is replaced by its exponentially decayed data window estimate R̂xx(i) =

µR̂xx(i − 1) + x(i)xH(i) and ǫ is related to the mismatch level. Since the convex

optimization problem does not change compared to [VGL03], it is a SOCP which can

be solved using interior point methods with a complexity of O(M3.5).

3.2.2 RCCM-LOCME

For received signals which are constant modulus, the constant modulus design criterion

[dLHSN08] [dLSN05] exploits the knowledge of the modulus of the desired signal. The

robust constrained constant modulus (RCCM) algorithm can be obtained from the

following optimization problem

min
w

E
{

(

|y|2 − γ
)2
}

s. t. Re
{

wHa
}

− δ ≥ ǫ̃ ‖w‖22 , (3.11)

where γ ≥ 0 is a parameter related to the energy of the desired signal, which is assumed

as known. A closed-form solution is not possible because it is a fourth order function

with a more complicated structure but it can be solved iteratively as follows. While
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the presumed array steering vector is replaced with its LOCME estimate â1(i) (3.9)

the optimization problem can be cast as

min
w

wHR̂a(i)w − 2γ Re
{

d̂
H
(i)w

}

s. t. Re
{

wHâ1(i)
}

− δ ≥ ǫ̃ ‖w‖22 , (3.12)

where R̂a(i) = µR̂a(i − 1) + |y|2 x(i)xH(i), d̂(i) is described in (3.8) and ǫ̃ is the

parameter controlling the robustness. The optimization problem is a convex QCQP

which can be solved using interior point methods with a complexity of O(M3.5).

3.3 LOCME using Algorithms based on the MCG

It is reasonable to combine LOCME with other low-complexity approaches. We inte-

grate the LOCME in the recently developed low-complexity robust algorithms [LdLWH11]

based on joint optimization and modified conjugate gradient [CW00], which reduces

the complexity by more than an order of magnitude to O(M2). Unlike the algorithms

in [LdLWH11], that belong to the class of diagonal loading techniques, the proposed

algorithms employ LOCME. The resulting algorithms are termed the Robust Con-

strained Minimum Variance design based on the Modified Conjugate Gradient using

the LOCME (RCMV-MCG-LOCME) and the Robust Constrained Constant Modu-

lus design based on the Modified Conjugate Gradient Algorithm using the LOCME

(RCCM-MCG-LOCME).

3.3.1 Proposed RCMV-LOCME-MCG

Here the low-complexity algorithm corresponding to the minimum variance criterion,

whose constraint is similar to the worst-case based optimization is presented. It is

based on the optimization problem defined as

min
w

wHR̂xx(i)w s. t. Re
{

wHâ1(i)
}

− δ ≥ ǫ̃ ‖w‖22 , (3.13)

where R̂xx(i) is the exponentially decayed data window estimate of the signal co-

variance matrix and â1(i) is the LOCME estimate from (3.9). Using the method of

Lagrange multipliers, taking the gradient of the Lagrangian with respect to w∗, and
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equating it to zero gives

w =
[

R̂xx(i) + ǫ̃λI
]−1

λâ1(i)/2, (3.14)

which can be effectively solved by on-line algorithms with one iteration per snapshot.

Here we choose a modified conjugate gradient [CW00]. In a parallel algorithm the

Lagrange multiplier λ is adjusted as follows

λ(i) = λ(i− 1) + µλ

[

ǫ̃ ‖w(i)‖22 − Re
{

wH(i)â(i)
}

+ δ
]

, (3.15)

where µλ is the stepsize. The algorithm increases λ in case of a not fullfilled constraint.

Table shows the algorithm.

Table 3.1: Proposed RCMV-MCG-LOCME Algorithm

C =
∫ θ1+θE

θ1−θE
a(θ)aH(θ)

[c1, c2, ..., cK ] = principal eigenvectors(C)

P = [c1, c2, ..., cK ] [c1, c2, ..., cK ]
H

R̂xx(0) = σ2
nI; d̂(0) = 0; λ(0) = λ0

For each time instant i = 1, ..., N

R̂xx(i) = µR̂xx(i− 1) + x(i)xH(i)

d̂(i) = µd̂(i− 1) + x(i)y∗(i)

â1(i) =
√
M Pd(i)

‖Pd(i)‖
2

to solve with an online MCG [CW00]:

w(i) = [R̂xx(i) + ǫ̃λ(i)I]−1λ(i)â1(i)/2

δλ = µλ[ǫ̃ ‖w(i)‖22 − Re
{

wH(i)â1(i)
}

+ δ]
while δλ ≤ −λ(i) or δλ ≥ δλmax

δλ ⇒ δλ/2
end
λ(i+ 1) = λ(i) + δλ

3.3.2 Proposed RCCM-MCG-LOCME

In this section we present the constant modulus design of the low-complexity algorithm

shown in the previous section. The optimization problem is the QCQP of (3.12) but

now it is solved with a low computational effort. Using the method of Lagrange

multipliers, taking the gradient of the Lagrangian with respect to w∗, and equating it
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to zero gives

w =
[

R̂a(i) + ǫ̃λI
]−1 [

d̂(i) + λâ1(i)/2
]

. (3.16)

The solution is obtained in an analogous form to the minimum variance case, which

implies a modified conjugate gradient method with one iteration per snapshot and an

adjustment of the Lagrange multiplier in a parallel algorithm (3.15). The RCCM-

MCG-LOCME algorithm is given in Table 3.2.

Table 3.2: Proposed RCCM-MCG-LOCME Algorithm

C =
∫ θ1+θE

θ1−θE
a(θ)aH(θ)

[c1, c2, ..., cK ] = principal eigenvectors(C)

P = [c1, c2, ..., cK ] [c1, c2, ..., cK ]
H

R̂a(0) = σ2
nI; d̂(0) = 0; λ(0) = λ0; w(0) = a/M

For each time instant i = 1, ..., N

R̂a(i) = µR̂a(i− 1) + |y(i)|2 x(i)xH(i)

d̂(i) = µd̂(i− 1) + x(i)y∗(i)

â1(i) =
√
M Pd(i)

‖Pd(i)‖
2

to solve with an online MCG [CW00]:

w(i) = [R̂a(i) + ǫ̃λ(i)I]−1[d̂(i) + λ(i)â1(i)/2]

δλ = µλ[ǫ̃ ‖w(i)‖22 − Re
{

wH(i)â1(i)
}

+ δ]
while δλ ≤ −λ(i) or δλ ≥ δλmax

δλ ⇒ δλ/2
end
λ(i+ 1) = λ(i) + δλ

3.4 Simulations

In this section the performance of the proposed and existing algorithms is assessed.

The following parameters are choosen: ǫ = ǫ̃ = 2.1, K = 2, M = 10, δλmax = 200, µ =

0.995, µλ(CMV) = 800, µλ(CCM) = 100, δ = 1, γ = 1, |s1|2 = 1, θE = 3 degree. While

the low-complexity solutions, the proposed RCMV-MCG-LOCME algorithm and the

proposed RCCM-MCG-LOCME algorithm, are solved as described in Tables I and II,

the proposed WC-LOCME algorithm and the proposed RCCM-LOCME algorithm are

solved with SeDuMi [?] or alternatively with [GB11]. The algorithms are compared

with the worst-case optimization based approach (WC-CMV) [VGL03] using ǫ = 2.1,

the loaded sample-matrix-inversion (Loaded-SMI) algorithm with 10 σ2
n as the diagonal
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Table 3.3: Interference scenario, P (dB) relative to user1 / DoA(degrees)

user 1 user 2 user 3 user 4 user 5
0/96◦ 13/120◦ 10/140◦ 0/-67◦ 0/157◦
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WC−CMV [VoGL03]

SQP [HaVo08]

Figure 3.1: Beampattern, mismatch due to LCS, SNR = 0 dB, K = 2, D = 5

loading factor, the SQP approach which is implemented as in [HV08] with KSQP = 6

and the optimal solution (Opt-SINR) according to [LS06] p.54. Besides the desired

user (user 1) there are four interferers, the powers (P) relative to user 1 and directions

of arrival (DoA) in degrees of which are detailed in Table 3.3.

In our simulations, the array steering vector mismatch is corrupted due to coherent

local scattering a1 = a+
∑4

l=1 e
jΦlasc (θl), where θl is uniformly distributed with the

presumed direction as the mean and 2 degree standard deviation Φl and is uniformly

distributed in the intervall [0, 2π]. The mismatch changes for every realization and is

fixed over the snapshots.

Fig. 3.1 shows the beampattern of the compared algorithms for a mismatch realiza-

tion. In Fig. 3.2 the average over 500 realizations of the signal to interference-plus-
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noise ratio (SINR) is presented over the snapshots for SNR=0 dB. Here the conver-

gence speed of the proposed algorithms is demonstrated. Note for 500 realizations the

LOCME algorithms always provide above 7 dB SINR for i = 500. Fig. 4.1 shows the

SINR performance over the SNR. The proposed algorithms outperform the existing al-

gorithms especially in high SNR. However, the existing algorithms have an advantage

in terms of resolution.

3.5 Conclusions and Futurework

Conclusions

This section introduces the proposed LOCME method and robust beamforming algo-

rithms. The four proposed algorithms based on the CMV and CCM criterion benefit

from the LOCME feature. All the proposed algorithms outperform the conventional

worst-case optimization based algorithm and the approaches based on the conjugate

gradient method have a reduction in complexity by more than an order of magnitude

compared to the worst-case optimization based approach. LOCME does not require

any additional information from the system (e.g. statistics of the mismatch, ellipsoidal

parameter).

Futurework

• It remains to be explored how to extend the LOCME scheme to provide a higher

reliability in special cases where interferers are close to the desired user. It is an

open problem how to incooperate additional constraints in the design which take

that into account and how to implement it with a low computational effort.

• To make sure that the LOCMEmethod does not adapt on interferers theoretically

the d vector can be obtained while using the output function computed by a

conventional minimum variance beamforming algorithm which is processed in

a parallel way. The resulting performance degradations could be shown in a

simulation.
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Figure 3.3: SINR performance versus SNR, local coherent scattering, i = 500
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4 Beamforming in Relay Networks

Beamforming in relay networks has become an important topic during the last few

years. This part especially focuses on relay networks using single-antenna receivers and

the amplify and forward protocol. This chapter points out issues that are observated

in practical circumstances. The theoretically optimal solution needs to be centrally

processed, which requires extra signalling in the network. In addition the CSI can be

particullary outdated. Robust worst-case optimization based approaches [GKKPO09a]

have been considered for adressing situations with imperfect CSI, but the simulations

show that they do not provide an impact on the average performance. To solve the

CSI mismatch problem collaborative algorithms can be used [JCJ08],[RNB05] where

local CSI is used, which exploits a significantly higher accuracy. The MMSE based

consensus algorithm [Cho11] does not even require any central processing but requires

a significant number of iterations to converge. However, these algorithms are based on

the linear MMSE criterion which is not optimal in a sense of minimizing the BER. In

this chapter a new method based on Pseudo-SNR is proposed. Each relay can compute

its own weight autonomous with a very low requirement of communication between

the relays. The proposed method shows a better performance compared to the MMSE

based Consensus algorithm [Cho11], and its performance is comparable to the MSNR.

4.1 Different Relay Strategies

The existing algorithms use either global channel state information (CSI), its statis-

tics or local CSI. Besides the algorithms based on the maximum signal to noise ratio

(MSNR) , which is described in the example in the introduction, techniques based on

the minimum mean squared error (MMSE), which can provide comparable results have

also been reported. In addition, there is often a power constraint due to the relays

or the whole network. To give a brief overview some remarkable relay strategies with

their properties are summarized in Table 4.1. While the minimum error probability

can be achieved with the relay weights due to the maximum SNR at the receiver there

is no direct relation between the MMSE based design and the error probability but

Master Thesis Lukas Landau



4 Beamforming in Relay Networks 48

Table 4.1: Relay Strategies for Distributed Beamforming

strategy Criterion Power Constraint (PC) CSI
[KS07] MMSE average total PC local CSI
[OP06] MMSE instan. individual PC local CSI

[YK07],[JJ08] MSNR instan. total PC global CSI
[ZWPO09] MSNR instan. individual PC global CSI
[HNSGL08] MSNR average total PC statistics of CSI

its performance is still good and established. The main adavantage of the algorithms

based on local CSI is the significantly higher accuracy of the CSI compared to the

CSI quality in a central processed algorithm. To have a fair comparison this chapter

compares a central processed robust distributed beamforming algoritm [GKKPO09a]

in the presence of CSI mismatch, the recently reported distributed consensus algorithm

[Cho11] in the absence of CSI mismatch and the proposed distributed beamforming

algorithm based on Pseudo-SNR.

4.2 A Consensus Algorithm for Cooperative Relay

Networks

According to the amplify and forward protocol the transmission is divided into two

phases. During the first phase the signal is transmitted to the relay nodes and during

the second phase the signal including noise is forwarded at the relay nodes to the

receiving node. The channels between the transmitter and the D relays are denoted as

f1, ..., fD and the channels between the relays and the receiver are denoted as g1, ..., gD.

The received signal at the mth relay can be cast as

xm =
√

P0fms+ nm, (4.1)

where nm is the received noise at the relay with its variance σ2
m and P0 denotes the

transmission power of the signal. Considering the coefficient αm = f∗
mP0

P0|fm|2+σ2

m1

the

MMSE estimate of the signal at each relay can be expressed as

ŝm = αmxm (4.2)

and its normed notation is given by s̃m = ŝm

E{|ŝm|2} . Using that notation the global for-

mulation of the MMSE design with the total relay power constraint can be formulated
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as

min
w

D
∑

m=1

κmE
{

|s− gmwms̃m|2
}

(4.3)

s. t. ‖w‖2 ≤ PT,

where PT is the total relay power budget. The resulting relay weights are given by

wm =
g∗m

λ
κm

+ |gm|2

√

|fm|2 P 2
0

|fm|2 P0 + σ2
m1

=
g∗m

λ
κm

+ |gm|2
√

γm
γm + 1

√

P0, (4.4)

where λ is the Lagrange multiplier and and γm is the signal to noise ratio at the

corresponding relay node. In addition, there are the design parameters κm, which can

be useful in scenarios where a single relay run out of the available energy. In that case

the corresponding κm need to be choosen to a small value.

Since the computation of the Lagrange multiplier requires global information the

approach can not be applied in a fully distributed way but the consensus algorithm

recently reported in [Cho11] describes a fully distributed solution. In this approach

the relay nodes exchange information with their neighbors without using any central

information. While using the dual decomposition method, each relay solves a certain

suboptimization problem

min
wm

κmE
{

|s− gmwms̃m|2
}

s. t. ‖w‖2 ≤ PT,wm = wq, q ∈ Mm, (4.5)

where Mm is the set of nodes in the neighborhood of the mth relay. The phases of each

relay weight are already determined as the inverse of the channels, which are known at

the node. Therefore it is sufficient to exchange just the absolute values of the weight

vectors. For that case the author in [Cho11] devises an algorithm to adjust the mth

relay node in the following way

wl,m =







g∗m
λm
κm

+|gm|2

(
√

γm
γm+1

√
P0 −

∑
q∈Mm

βm,q,m

2

)

, if m = l

−
∑

q∈Mm
βm,q,l

2λm
, if m 6= l,

(4.6)
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where λm and βm,q can be achieved iteratively as follows

λm(i+ 1) = max
{

0, λm(i) + µλ

(

‖wm‖2 − PT

)}

(4.7)

βm,q(i+ 1) = βm,q(i) + µβ(um − uq), (4.8)

where µλ and µβ are the stepsizes and um = [|w1,m| ... |wD,m|]T.
While the relay weight strategy in equation (4.4) appears to be disadvantageous,

because of the fact that the computed weight is inversely proportional to the channel,

which is not desirable, the consensus algorithm (4.6) converges to a different solution

which shows good performance.

4.3 Worst-Case SNR Maximization

In this subsection the robust distributed beamforming algorithm reported in [GKKPO09a]

is shown. In this approach global CSI at the source node is considered, where the relay

weights are computed. Due to the amplify and forward protocol and including the

relay network the received signal can be modeled as

y =
D
∑

m=1

gmwmlm(fmx+ nm) + n0, (4.9)

where fm is the complex channel gain between the source node and the mth relay

node, while gm represents the channel between the relay node and the destination

and lm = (|fm|2 P0 + σ2
m)

− 1

2 scales the received signals at the relays. Furthermore it is

assumed that the channel gains between the relay nodes and the source node are known

nearly perfectly because they can be directly estimated using training data sequences.

In case of the estimated channel gains between relay nodes and destination node the

uncertainty is significantly higher, because the estimation which is done at the relays

still need to be forwarded to the source node. Therefore the corrupted CSI is modeled

as

g = ĝ +∆g, (4.10)

where ĝ = [ĝ1...ĝD]
T are the channel estimates at the source node and ∆ĝ is the

corresponding error vector. The error is assumed to be a point in the sphere, ∆g ∈ S,

S =
{

∆g, ‖∆g‖2 ≤ Dρ2
}

. (4.11)
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Involving the mismatch, the SNR at the destination node can be cast as

Γ =
P0

∣

∣

∣

∑D

m=1(ĝ +∆g)fmlmwm

∣

∣

∣

2

∑D

m=1 |ĝ +∆g|2 l2m |wm|2 σ2
m + σ2

0

. (4.12)

The corresponding worst-case optimization problem is given by

max
|w|2≤p

min
∆g∈S

Γ, (4.13)

which is a SNR maximization over the relay weights and at the same time a SNR

minimization over the set of CSI mismatch. Because it is a quasi convex optimization

problem the solution can be obtained by repeatly solving

min
|w|2≤p

‖w‖2 s. t.

min
∆g∈S

Γ ≥ γ (4.14)

for defined values for γ (SNR value). The problem in (4.14) can be solved using rank

relaxation and S-Procedure as follows.

For the formulation it is defined w̃m = fmlmwm, G = Diag
{

1
|f1|

2l2
1

, ..., 1
|fD|2l2

D

}

and v

is a phase shifted version of w̃ due to w̃m = vmĝ∗m
|ĝm|

and the real valued (phase shifted)

estimated CSI as g̃ = |ĝ|. Furthermore the phase shifted uncertainty vector is defined

as

∆g̃ =

[

∆g1
ĝ∗1
|ĝ1|

... ∆gD
ĝ∗D
|ĝD|

]T

. (4.15)

Then, the constraint in (4.14) is reformulated as

(g̃ +∆g̃)H Q (g̃ +∆g̃) ≥ γσ2
0, ∀∆g ∈ S, (4.16)

where

Q = P0vv
H − γDiag

{

|v|21 σ2
1

|f1|2
, ...,

|v|2D σ2
D

|fD|2

}

. (4.17)

Master Thesis Lukas Landau



4 Beamforming in Relay Networks 52

While using the S-Procedure the constraint can be written as

[

g̃TQg̃ − γσ2
0 − sDρ2 g̃TQ

Qg̃ Q+ sI

]

� 0, s ≥ 0. (4.18)

Including rank relaxation as V = vvH the optimization problem in (4.14) can be cast

as

min
V �0,s≥0

trace {GV }

s. t.























g̃TQg̃ − γσ2
0 − sDρ2 g̃TQ

Qg̃ Q+ sI



 � 0

pm |fm|2 l2m ≥ V mm, ∀m,

The corresponding solution is the vector which fulfills V = vvH and the resulting

relay weights are given by

wm =
vm(gmfm)

∗

lm |ĝm| |fm|2
. (4.19)

The conditions which garantiee rank 1 solutions are detailed in [GKKPO09b]. To

obtain a consistent comparison of the relay network beamforming algorithms, the total

relay power constraint given by trace {V G} ≤ PT is used instead of the single relay

power from above. The non-robust counterpart can be easily obtained by setting ρ to

a small value.
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4.4 Proposed Consensus Algorithm using Pseudo-SNR

The accuracy of the CSI in systems with dynamically changing channel conditions

especially depends on the age of the measurement data. Therefore it is advantageous

to place the CSI estimation and also the relay weight processing directly on the cor-

responding relay node in combination with a fast consensus method. This section in-

troduces an alternative approach providing a solution to the mentioned requirements.

The method is not directly MSNR based but it shows comparable results.

The design is based on the assumption that the other relays are absence and the total

power would be allocated to the relay of interest. The corresponding SNR expression

can be described as

γ̌m =
P0 |gmfmlmwm|2

|gmlmwm|2 σ2
m + σ2

0

, (4.20)

where lm = (|fm|2 P0 + σ2
m)

− 1

2 normalizes the signal, fm denotes the channel coefficent

between source and the mth relay node,gm denotes the channel coefficent the mth relay

node and the destination node, σ2
m is the relay noise power, σ2

0 is the noise power at

the destination, P0 is the transmitting power and wm is the relay weight. While the

whole power is allocated theoretically to the mth relay, |wm|2

PT

= 1 holds. It can be

added to (4.20) at a suitable place and that allows the following notation

γ̌m =
P0 |gmfmlm|2

|gmlm|2 σ2
m +

σ2

0

PT

, (4.21)

which provides a metric for the quality of the relay node. Introducing a function of

this coefficient, the relay weight can be generally computed as

wm =
(gmfm)

∗

|gmfm|
f (γ̌m) , (4.22)

and in what follows the relay Power |wm|2 is chosen as directly proportional to the

SNR metric as

wm =
√

PT
(gmfm)

∗

|gmfm|

√
γ̌m
η

, (4.23)

where η =
√

∑D

m=1 γ̌m is defined in order to fullfill a total power constraint. The

method implies that the sum of the SNR metric is known by each node which can be
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achieved with a simple consensus algorithm and the computation of the SNR metrics

requires the knowledge about the noise level at the receiver σ2
0. Since both values

can be assumed as just smoothly changing, the adaptation depends on the CSI and

therefore a quick adaptation can be expected. In contrast to the existing Consensus

algorithm based on MMSE criterion the proposed method just need a low numer of

iterations to converge.

One simple method to obtain the sum over all Pseudo-SNR in a collaborative way

is given by the following strategy. Considering that each node has an estimate of all the

Pseudo-SNR values in the network which is given by γ̌m(i) = [γ̌m,1(i), ..., γ̌m(i), ..., γ̌m,D(i)],

where γ̌m(i) denotes its own precisely known Pseudo-SNR and i is the time index. The

set of nodes in the neighborhood of the mth relay node including the node itself is given

by Mm. Once the nodes have exchanged their Pseudo-SNR vectors the estimates can

be updated according to

γ̌m,k(i) =







1
Dm

∑

q∈Mm
γ̌q,k(i− 1) , if k 6= m

γ̌m(i) , if k = m,
(4.24)

where Dm is the number of nodes in the set Mm. The initialization vector is given by

γ̌m(0) = [γ̌m(0), ..., γ̌m(0)].

4.5 Simulations

For all the simulations the channels are considered as independent circular symmetric

complex gaussian random variables with zero mean and unit variance. The step sizes

for the consensus algorithm are choosen as µλ = 0.08 and µβ = 0.05. To compare

the convergence properties of the consensus algorithm and the Pseudo-SNR based

algorithm Figure 4.1 shows the power allocation and the total power as a function of

the iterations for a relay network containing D = 6 nodes. Moreover, the BER has

been simulated. In the simulations QPSK signals are considered. All the algorithms

are subject to the total relay power constraint. Figure 4.3 compares the BER for the

MSNR approach, with ρ = 0 with the Consensus algorithm and with the approach

based on Pseudo-SNR in the presence of perfect CSI.

The CSI mismatch between relay nodes and destination nodes is introduced in Figure

4.4. The mismatch is uniformly distributed in a sphere with radius r = (ρ2D) as it is

described in equation (4.11). Caused by the fact, that the CSI accuracy is significantly

higher for algorithms processed at the relay nodes, here perfect CSI is assumed for
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the Consensus and the Pseudo-SNR based algorithm. The MSNR based approach

is simulated with preknowledge of the mismatch level and also as the non robust

algorithm which means ρ = 0. The simulation shows that especially the averaged

BER performance of the non robust algorithm is comparable and slightly better to

the worst case optimization based one. While perfect CSI for the relay processed

algorithms is assumed, they outperform the MSNR based algorihm from a specific

mismatch level.

4.6 Conclusions and Futurework

Conclusion

In this chapter the Pseudo-SNR based distributed beamforming algorithm is proposed.

Each relay chooses its relay weight based on the SNR for the theoretically absence of

all the other relay nodes. In this method each relay node can directly compute its own

relay weight, using local CSI and a very low level of collaboration with the other nodes.

Because of the fast adaptation and the immediate processing with the measured CSI

the proposed method is an alternative to existing approaches in that field. Even in the

case of the perfect CSI assumption the new method provides comparable performance

compared to the optimium which is given by the MSNR approach which is optimal in

the absense of multiple access interference and performs significantly better than the

MMSE-based consensus algorithm. Furthermore it is demonstrated that the so-called

robust MSNR approach based on worst-case optimization does not provide performance

gain in the averaged BER. As a general conclusion the author advises fast subobtimal

solutions which exploits high accuracy of the CSI instead of optimal solutions computed

with uncertainties in the CSI.

Futurework

• The Pseudo-SNR based approach is introduced for the total relay power con-

straint and for the single relay power constraint it is still to develop.

• The small level of collaboration in the Pseudo-SNR based approach is the joint

computation of the sum of all Pseudo-SNRs. For that particular problem the

best solution still needs to be found. Here it is not clear if a consenus algorithm

or a centralized algorithm is more advantageous.
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• The methods can be compared in a time varying channel conditions to demon-

strate the superiority of the proposed method in a realistic scenario.

• It is not proven that the function which connects the Pseudo-SNR metric with

the resulting relay weight is optimally choosen.

• The deviation to the optimal solution is possibly within a specific bound. This

bound cooresponds to an maximization problem over a constrained parameter set

(CSI), which maximizes the error between the optimal solution and the proposed

suboptimal solution. The maximization problem corresponds possibly itself to a

convex optimization problem, which would imply that the result is a numerical.

The set of nodes which are in the neighboorhood
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5 Conclusions

Receive Beamforming

In practice, circumstances like imprecisely calibration, local coherent scattering, di-

rection errors or unknown wavefield propagation effects leads to a mismatch in the

presumed array steering vector. This can lead to the so-called signal self nulling ef-

fect and dramatical performance degradation. Several robust approaches have been

reported in the last decades and the most remarkable is the worst-case optimization

based approach employing convex optimization. Later more advanced methods have

been published to estimate the array steering vector.

However, this work proposes a set of algorithms which provides better performances

while the computational complexity is more than an order of magnitude lower com-

pared to the existing approaches. The proposed algorithms are published on interna-

tional conferences.

The proposed worst-case optimization based constrained constant modulus beam-

forming algorithm is introduced. It provides robustness against array steering vector

mismatch and exploits the constant modulus property of the desired signal. The algo-

rithm is solved iteratively where each iteration contains a second order cone program.

A condition which garantiees convexity of the optimization problem has been found.

The proposed constrained constant modulus algorithm shows a significant performance

gain compared to its minimum variance design counterpart. In addition an analysis of

the robust constraint discovers a link beween the SNR and the choice the worst-case

parameter.

The proposed low-complexity beamforming algorithms termed the Robust Con-

strained Minimum Variance Algorithm based on the Modified Conjugate Gradient

(RCMV-MCG) and the Robust Constrained Constant Modulus Algorithm based on

the Modified Conjugate Gradient (RCCM-MCG) are introduced. While the algorithms

exploit previous computations the computational complexity is reduced by more than

an order of magnitude compared to the worst-case based algorithms which are sec-

ond order cone programs. The algorithms are based on a joint optimization strategy

including the modified conjugate gradient method which performs just one iteration
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per snapshot and a parallel adjustment to fullfill the robust constraint. The simula-

tions demonstrate that the proposed algorithms perform equivalently or outperform

the worst-case optimization based algorithm.

The proposed robust adaptive beamforming algorithms using Low-Complexity Mis-

match Estimation (LOCME) are introduced. The LOCME method provides a mis-

match estimate of the steering vector which is just known imprecisely by the system.

To achieve the estimate a correlation based rough estimate is projected into a prede-

fined subspace. The new method is shown in four different algorithms. The algorithms

are developed according to the constant modulus design and to the minimum vari-

ance design criteria. While the algorithms can be solved using convex optimzation

toolboxes, their low complexity counterparts are also shown. The simulations of all

the proposed beamforming algorithms show superior performances and outperform the

existing solutions.

Relay Network Beamforming

Relay Network Beamforming algorithms to achieve the optimal BER are based on the

MSNR criterion. However, in practice these BER can not be achieved. Mainly it

is caused by the fact that the available CSI is partially outdated. Some worst-case

optimization based approaches have been reported recently which provides a robust

design against CSI mismatch, but the simulations show that there is no impact on

the average performance. As an alternative some suboptimal MMSE based algorithms

have been reported. Even if they do not have the direct relation to the minimum

BER, they can be applied as a consensus algorithm using local CSI which achieves

a significantly higher accuracy. However, the existing MMSE based approaches are

wether dependend on a centralized processing which is not desirable or the processing

is done using a collaborative algorithm which requires a large number of iterations.

A solution is given by the proposed Pseudo-SNR based approach. Using this approach

each relay node computes its own relay weight autonomous with a very low level of

network collaboration. In the proposed method the relay power is proportional to

the maximum achievable SNR at the destination node in the theoretically absence

of all other relay nodes. The sum over all pseudo-SNRs needs to be computed in a

consensus algorithm, which is expected as nearly constant over time. According to

the simulation the proposed method outclasses the MMSE based consensus algorithm

while the performance is comparable to the MSNR based approach. Introducing a

certain level of CSI mismatch to the centralized MSNR approach the proposed method

provides the best performance.
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Theses

1. Robust beamforming algorithms using the Constrained Constant Modulus crite-

rion can exploit the constant modulus property of the desired signal.

2. The robust adaptive beamforming algorithm using joint optimization strategy

based on the Modified Conjugate Gradient and the parallel adjustment of the

robust constraint performs equivalent to the conventional algorithm based on

second order cone programming and reduces the computational complexity by

more than an order of magnitude.

3. The Low-Complexity Mismatch Estimation (LOCME) method provides an es-

timate of the true array steering vector which projects the correlation of array

observation and beamforming output onto a predefined subspace.

4. Distributed beamforming based on the Pseudo-SNR algorithm, allows each relay

node to compute its own relay weight with a low requirement of network collabo-

ration. The method performs better than the existing consensus algorithm based

on MMSE cirterion and performs comparable to the MSNR based approach.

Ilmenau, den 09. 05. 2011 Lukas Landau
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