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Abstract—In this work, we propose a subspace-based algo-
rithm for DOA estimation which iteratively reduces the dis-
turbance factors of the estimated data covariance matrix and
incorporates prior knowledge which is gradually obtained on line.
An analysis of the MSE of the reshaped data covariance matrix
is carried out along with comparisons between computational
complexities of the proposed and existing algorithms. Simulations
focusing on closely-spaced sources, where they are uncorrelated
and correlated, illustrate the improvements achieved.

I. INTRODUCTION

In array signal processing, direction-of-arrival (DOA) esti-
mation is a key task in a broad range of important applications
including radar and sonar systems, wireless communications
and seismology [1]. Traditional high-resolution methods for
DOA estimation such as the multiple signal classification
(MUSIC) method [2], the root-MUSIC algorithm [3], the
estimation of signal parameters via rotational invariance tech-
niques (ESPRIT) [4] and subspace techniques [5], [6], [7], [8],
[9], [10], [11], [12], [26], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [37], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53],
[54], [55], [56],[57], [58], [59] exploit the eigenstructure of
the input data matrix. These techniques may fail for reduced
data sets or low signal-to-noise ratio (SNR) levels where the
expected estimation error is not asymptotic to the Cramér-
Rao bound (CRB) [60]. The accuracy of the estimates of the
covariance matrix is of fundamental importance in parameter
estimation. Low levels of SNR or short data records can
result in significant divergences between the true and the
sample data covariance matrices. In practice, only a modest
number of data snapshots is available and when the number
of snapshots is similar to the number of sensor array elements,
the estimated and the true subspaces can differ significantly.
Several approaches have been developed with the aim of
enhancing the computation of the covariance matrix [61]-[70]
and for dealing with large sensor-array systems large [71],
[72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82],
[83], [84], [85], [86], [87], [97], [88], [89], [90], [91], [92],
[93], [94], [95], [96], [98], [99], [100], [101], [102], [103],
[104], [105], [106], [111], [108], [109], [110], [111], [112],
[113], [114], [115], [118], [117], [118], [119], [120].

Diagonal loading [61] and shrinkage [62], [63], [64] tech-
niques can enhance the estimate of the data covariance matrix
by weighing and individually increasing its diagonal by a
real constant. Nevertheless, the eigenvectors remain the same,

which leads to unaltered estimates of the signal and noise
projection matrices obtained from the enhanced covariance
matrix. Additionally, an improvement of the estimates of
the covariance matrix can be achieved by employing for-
ward/backward averaging and spatial smoothing approaches
[65], [66]. The former leads to twice the number of the
original samples and its corresponding enhancement. The
latter extracts the array covariance matrix as the average of
all covariance matrices from its sub-arrays, resulting in a
greater number of samples. Both techniques are employed in
signal decorrelation. An approach to improve MUSIC dealing
with the condition in which the number of snapshots and
the sensor elements approach infinity was presented in [67].
Nevertheless, this technique is not that effective for reduced
number of snapshots. Other approaches to deal with reduced
data sets or low SNR levels [68], [70] consist of reiterating the
procedure of adding pseudo-noise to the observations which
results in new estimates of the covariance matrix. Then, the
set of solutions is computed from previously stored DOA
estimates. In [121], two aspects resulting from the computation
of DOAs for reduced data sets or low SNR levels have been
studied using the root-MUSIC technique. The first aspect
dealt with the probability of estimated signal roots taking
a smaller magnitude than the estimated noise roots, which
is an anomaly that leads to wrong choices of the closest
roots to the unit circle. To mitigate this problem, different
groups of roots are considered as potential solutions for the
signal sources and the most likely one is selected [122]. The
second aspect previously mentioned, shown in [123], refers
to the fact that a reduced part of the true signal eigenvectors
exists in the sample noise subspace (and vice-versa). Such
coexistence has been expressed by a Frobenius norm of the
related irregularity matrix and introduced its mathematical
foundation. An iterative technique to enhance the efficacy of
root-MUSIC by reducing this anomaly making use of the grad-
ual reshaping of the sample data covariance matrix has been
reported. Inspired by the work in [121], we have developed
an ESPRIT-based method known as Two-Step KAI-ESPRIT
(TS-ESPRIT) [124], which combines that modifications of the
sample data covariance matrix with the use of prior knowledge
[125]-[131] about the covariance matrix of a set of impinging
signals to enhance the estimation accuracy in the finite sample
size region. In practice, this prior knowledge could be from the
signals coming from known base stations or from static users
in a system. TS-ESPRIT determines the value of a correction
factor that reduces the undesirable terms in the estimation of
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the signal and noise subspaces in an iterative process, resulting
in better estimates.

In this work [132], [133], we present the Multi-Step
KAI ESPRIT (MS-KAI-ESPRIT) approach that refines the
covariance matrix of the input data via multiple steps of
reduction of its undesirable terms. This work presents the
MS-KAI-ESPRIT in further detail, an analysis of the mean
squared error (MSE) of the data covariance matrix free of
undesired terms (side effects), a more accurate study of the
computational complexity and a comprehensive study of MS-
KAI-ESPRIT and other competing techniques for scenarios
with both uncorrelated and correlated signals. Unlike TS-
ESPRIT, which makes use of only one iteration and available
known DOAs, MS-KAI-ESPRIT employs multiple iterations
and obtains prior knowledge on line. At each iteration of MS-
KAI-ESPRIT, the initial Vandermonde matrix is updated by
replacing an increasing number of steering vectors of initial
estimates with their corresponding refined versions. In other
words, at each iteration, the knowledge obtained on line is
updated, allowing the direction finding algorithm to correct the
sample covariance matrix estimate, which yields more accurate
estimates.

In summary, this work has the following contributions:
• The proposed MS-KAI-ESPRIT technique.
• An MSE analysis of the covariance matrix obtained with

the proposed MS-KAI-ESPRIT algorithm.
• A comprehensive performance study of MS-KAI-ESPRIT

and competing techniques.
This paper is organized as follows. Section II describes

the system model. Section III presents the proposed MS-
KAI-ESPRIT algorithm. In section IV, an analytical study of
the MSE of the data covariance matrix free of side-effects
is carried out together with a study of the computational
complexity of the proposed and competing algorithms. In
Section V, we present and discuss the simulation results.
Section VI concludes the paper.

II. SYSTEM MODEL

Let us assume that P narrowband signals from far-field
sources impinge on a uniform linear array (ULA) of M (M >
P) sensor elements from directions θ = [θ1, θ2, . . . , θP ]

T .
We also consider that the sensors are spaced from each
other by a distance d ≤ λc

2 , where λc is the signal
wavelength, and that without loss of generality, we have
−π
2 ≤ θ1 ≤ θ2 ≤ . . . ≤ θP ≤ π

2 .
The ith data snapshot of the M -dimensional array output

vector can be modeled as

x(i) = A s(i) + n(i), i = 1, 2, . . . , N, (1)

where s(i) = [s1(i), . . . , sP (i)]
T ∈ CP×1 represents the zero-

mean source data vector, n(i) ∈ CM×1 is the vector of white
circular complex Gaussian noise with zero mean and variance
σ2
n, and N denotes the number of available snapshots.
The Vandermonde matrix A(Θ) = [a(θ1), . . . ,a(θP )] ∈

CM×P , known as the array manifold, contains the array
steering vectors a(θj) corresponding to the nth source, which
can be expressed as

a(θn) = [1, ej2π
d
λc

sin θn , . . . , ej2π(M−1) d
λc

sin θn ]T , (2)

where n = 1, . . . , P . Using the fact that s(i) and n(i) are
modeled as uncorrelated linearly independent variables, the
M ×M signal covariance matrix is calculated by

R = E
[
x(i)xH(i)

]
= ARssA

H + σ2
nIM , (3)

where the superscript H and E[·] in Rss = E[s(i)sH(i)] and
in E[n(i)nH(i)] = σ2

nIM denote the Hermitian transposition
and the expectation operator and IM stands for the M -
dimensional identity matrix. Since the true signal covariance
matrix is unknown, it must be estimated and a widely-adopted
approach is the sample average formula given by

R̂ =
1

N

N∑
i=1

x(i)xH(i), (4)

whose estimation accuracy is dependent on N .

III. PROPOSED MS-KAI-ESPRIT ALGORITHM

In this section, we present the proposed MS-KAI-ESPRIT
algorithm and detail its main features. We start by expanding
(4) using (1) as derived in [121]:

R̂ =
1

N

N∑
i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1

N

N∑
i=1

s(i)sH(i)

}
AH +

1

N

N∑
i=1

n(i)nH(i) +

A

{
1

N

N∑
i=1

s(i)nH(i)

}
+

{
1

N

N∑
i=1

n(i)sH(i)

}
AH

︸ ︷︷ ︸
”undesirableterms”

(5)

The first two terms of R̂ in (5) can be considered as estimates
of the two summands of R given in (3), which represent
the signal and the noise components, respectively. The last
two terms in (5) are undesirable side effects, which can be
seen as estimates for the correlation between the signal and
the noise vectors. The system model under study is based
on noise vectors which are zero-mean and also independent
of the signal vectors. Thus, the signal and noise components
are uncorrelated to each other. As a consequence, for a large
enough number of samples N , the last two terms of (5) tend to
zero. Nevertheless, in practice the number of available samples
can be limited. In such situations, the last two terms in (5)
may have significant values, which causes the deviation of the
estimates of the signal and the noise subspaces from the true
signal and noise subspaces.

The key point of the proposed MS-KAI-ESPRIT algorithm
is to modify the sample data covariance matrix estimate at each
iteration by gradually incorporating the knowledge provided
by the newer Vandermonde matrices which progressively em-
body the refined estimates from the preceding iteration. Based
on these updated Vandermonde matrices, refined estimates of
the projection matrices of the signal and noise subspaces are
calculated. These estimates of projection matrices associated
with the initial sample covariance matrix estimate and the
reliability factor are employed to reduce its side effects and
allow the algorithm to choose the set of estimates that has
the highest likelihood of being the set of the true DOAs. The
modified covariance matrix is computed by computing a scaled
version of the undesirable terms of R̂, as pointed out in (5).
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The steps of the proposed algorithm are listed in Table I.
The algorithm starts by computing the sample data covariance
matrix (4). Next, the DOAs are estimated using the ESPRIT
algorithm. The superscript (·)(1) refers to the estimation task
performed in the first step. Now, a procedure consisting of
n = 1 : P iterations starts by forming the Vandermonde matrix
using the DOA estimates. Then, the amplitudes of the sources
are estimated such that the square norm of the differences
between the observation vector and the vector containing
estimates and the available known DOAs is minimized. This
problem can be formulated [121] as:

ŝ(i) = argmin
s

∥ x(i)− Âs ∥22 . (6)

The minimization of (6) is achieved using the least squares
technique and the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i) (7)

The noise component is then estimated as the difference
between the estimated signal and the observations made by
the array, as given by

n̂(i) = x(i) − Â ŝ(i). (8)

After estimating the signal and noise vectors, the third term
in (5) can be computed as:

V , Â

{
1

N

N∑
i=1

ŝ(i)n̂H(i)

}

= Â

{
1

N

N∑
i=1

(ÂH Â)−1ÂHx(i)

×(xH(i)− xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1

N

N∑
i=1

x(i)xH(i)
(
IM − Q̂A

)}
= Q̂A R̂ Q̂⊥

A, (9)

where
Q̂A , Â (ÂH Â)−1 ÂH (10)

is an estimate of the projection matrix of the signal subspace,
and

Q̂⊥
A , IM − Q̂A (11)

is an estimate of the projection matrix of the noise subspace.
Next, as part of the procedure consisting of n = 1 : P

iterations, the modified data covariance matrix R̂(n+1) is
obtained by computing a scaled version of the estimated terms
from the initial sample data covariance matrix as given by

R̂(n+1) = R̂ − µ (V(n) + V(n)H), (12)

where the superscript (·)(n) refers to the nth iteration per-
formed. The scaling or reliability factor µ increases from 0 to 1
incrementally, resulting in modified data covariance matrices.
Each of them gives origin to new estimated DOAs also denoted
by the superscript (·)(n+1) by using the ESPRIT algorithm, as
briefly described ahead.

In this work, the rank P is assumed to be known, which is an
assumption frequently found in the literature. Alternatively, the
rank P could be estimated by model-order selection schemes

such as Akaike´s Information Theoretic Criterion (AIC) [144]
and the Minimum Descriptive Length (MDL) Criterion [145].

In order to estimate the signal and the orthogonal subspaces
from the data records, we may consider two approaches
[146], [147]: the direct data approach and the covariance
approach. The direct data approach makes use of singular
value decomposition(SVD) of the data matrix X, composed
of the ith data snapshot (1) of the M -dimensional array data
vector:

X =[x(1),x(2), . . . ,x(N)]

=A[s(1), s(2), . . . , s(N)] + [n(1),n(2), . . . ,n(N)]

=A(Θ) S + N ∈ CM×N (13)

Since the number of the sources is assumed known or
can be estimated by AIC[144] or MDL[145] , as previously
mentioned, we can write X as:

X =
[
Ûs Ûn

] [ Γ̂s 0

0 Γ̂n

] [
ÛH

s

ÛH
n

]
, (14)

where the diagonal matrices Γ̂s and Γ̂n contain the P largest
singular values and the M − P smallest singular values,
respectively. The estimated signal subspace Ûs ∈ CM×P

consists of the singular vectors corresponding to Γ̂s and the
orthogonal subspace Ûn ∈ CM×(M−P) is related to Γ̂n. If
the signal subspace is estimated a rank-P approximation of
the SVD can be applied.

The covariance approach applies the eigenvalue decompo-
sition (EVD) of the sample covariance matrix (4), which is
related to the data matrix (13):

R̂ =
1

N

N∑
i=1

x(i)xH(i) =
1

N
XXH ∈ CM×M (15)

Then, the EVD of (15) can be carried out as follows:

R̂ =
[
Ûs Ûn

] [ Λ̂s 0

0 Λ̂n

] [
ÛH

s

ÛH
n

]
, (16)

where the diagonal matrices Λ̂s and Λ̂n contain the P largest
and the M-P smallest eigenvalues, respectively. The estimated
signal subspace Ûs ∈ CM×P corresponding to Γ̂s and the
orthogonal subspace Ûn ∈ CM×(M−P) complies with Γ̂n. If
the signal subspace is estimated a rank-P approximation of the
EVD can be applied. With infinite precision arithmetic, both
SVD and EVD can be considered equivalent. However, as in
practice, finite precision arithmetic is employed, ’squaring’ the
data to obtain the Gramian XXH (15) can result in round-off
errors and overflow. These are potential problems to be aware
when using the covariance approach.

Now, we can briefly review ESPRIT. We start by forming
a twofold subarray configuration, as each row of the array
steering matrix A(Θ) corresponds to one sensor element of
the antenna array. The subarrays are specified by two (s ×M )-
dimensional selection matrices J1 and J2 which choose s
elements of the M existing sensors, respectively, where s is
in the range P ≤ s < M . For maximum overlap, the matrix
J1 selects the first s = M − 1 elements and the matrix J2

selects the last s = M − 1 rows of A(Θ).
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Since the matrices J1 and J2 have now been computed, we
can estimate the operator Ψ by solving the approximation of
the shift invariance equation (17) given by

J1 Ûs Ψ ≈ J2 Ûs. (17)

where Ûs is obtained in (16).
Using the least squares (LS) method, which yields

Ψ̂ = argmin
Ψ

∥ J2Ûs−J1ÛsΨ ∥F=
(
J1 Ûs

)†
J2Ûs, (18)

where ∥ · ∥F denotes the Frobenius norm and (·)† stands for
the pseudo-inverse.

Lastly, the eigenvalues λi of Ψ̂ contain the estimates of the
spatial frequencies γi computed as:

γi = arg (λi) , (19)

so that the DOAs can be calculated as:

θ̂i = arcsin

(
γi λc

2π d

)
(20)

where for (19) and (20) i = 1, · · · ,P.
Then, a new Vandermonde matrix B̂(n+1) is formed by the

steering vectors of those refined estimates of the DOAs. By
using this updated matrix, it is possible to compute the refined
estimates of the projection matrices of the signal Q̂(n+1)

B and
the noise Q̂

(n+1)⊥
B subspaces.

Next, employing the refined estimates of the projection
matrices, the initial sample data matrix, R̂, and the number
of sensors and sources, the stochastic maximum likelihood
objective function U (n+1)(µ) [122] is computed for each
value of µ at the nth iteration, as follows:

U (n+1)(µ) = ln det
(
Q̂

(n+1)
B R̂ Q̂

(n+1)
B

+
Trace{Q̂⊥ (n+1)

B R̂}
M− P

Q̂
(n+1)⊥
B

)
.

(21)

The previous computation selects the set of unavailable
DOA estimates that have a higher likelihood at each itera-
tion. Then, the set of estimated DOAs corresponding to the
optimum value of µ that minimizes (21) also at each nth

iteration is determined. Finally, the output of the proposed MS-
KAI-ESPRIT algorithm is formed by the set of the estimates
obtained at the P th iteration, as described in Table I.

IV. ANALYSIS

In this section, we carry out an analysis of the MSE of the
data covariance matrix free of side effects along with a study
of the computational complexity of the proposed MS-KAI-
ESPRIT and existing direction finding algorithms.

A. MSE Analysis
In this subsection we show that at the first of the P

iterations, the MSE of the data covariance matrix free of side
effects R̂(n+1) is less than or equal to the MSE of that of the
original one R̂. This can be formulated as:

MSE
(
R̂(n+1)

)
≤ MSE

(
R̂
)

(22)

or, alternatively, as

MSE
(
R̂(n+1)

)
−MSE

(
R̂
)
≤ 0 (23)

The proof of this inequality is provided in the Appendix.

TABLE I
PROPOSED MS-KAI-ESPRIT ALGORITHM

Inputs:
M , d , λ, N , P

Received vectors x(1), x(2),· · · , x(N)

Outputs:
Estimates θ̂

(n+1)
1 (µ opt), θ̂

(n+1)
2 (µ opt),· · · , θ̂

(n+1)
P (µ opt)

First step:

R̂ = 1
N

N∑
i=1

x(i)xH(i)

{θ̂(1)1 , θ̂
(1)
2 , · · · , θ̂(1)P } ESPRIT←−−−−−− (R̂, P, d, λ)

Â(1) =
[
a(θ̂

(1)
1 ),a(θ̂

(1)
2 ), · · · ,a(θ̂(1)P )

]
Second step:
for n = 1 : P

Q̂
(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂
(n)⊥
A = IM − Q̂

(n)
A

V(n) = Q̂
(n)
A R̂ Q̂

(n)⊥
A

for µ = 0 : ι : 1

R̂(n+1) = R̂ − µ (V(n) + V(n)H)

{θ̂(n+1)
1 , θ̂

(n+1)
2 , · · · , θ̂(n+1)

P } ESPRIT←−−−−−− (R̂(n+1), P, d, λ)

B̂(n+1) =
[
a(θ̂

(n+1)
1 ),a(θ̂

(n+1)
2 ), · · · ,a(θ̂(n+1)

P )
]

Q̂
(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂
(n+1)⊥
B = IM − Q̂

(n+1)
B

U (n+1)(µ) = ln det (·) ,

(·) =

(
Q̂

(n+1)
B R̂ Q̂

(n+1)
B +

Trace{Q̂⊥ (n+1)
B R̂}

M− P
Q̂

(n+1)⊥
B

)
µ
(n+1)
opt = argmin U (n+1)(µ)

DOAs(n+1) = (∗) ,

(∗) = {θ̂(n+1)
1 (µ opt), θ̂

(n+1)
2 (µ opt),· · · , θ̂

(n+1)
P (µ opt)}

Â(n+1) =
{
a(θ̂

(n+1)

{1 ,··· ,n})
}∪{

a(θ̂
(1)

{1 ,··· ,P}−{1 ,··· ,n})
}

end for
end for

B. Computational Complexity Analysis

In this section, we evaluate the computational cost of
the proposed MS-KAI-ESPRIT algorithm which is compared
to the following classical subspace methods: ESPRIT [4],
MUSIC [2], Root-MUSIC [3], Conjugate Gradient (CG) [138],
Auxiliary Vector Filtering (AVF) [139] and TS-ESPRIT [124].
The ESPRIT and MUSIC-based methods use the Singular
Value Decomposition (SVD) of the sample covariance matrix
(4). The computational complexity of MS-KAI-ESPRIT in
terms of number of multiplications and additions is depicted
in Table II, where τ = 1

ι + 1. The increment ι is defined in
Table I. As can be seen, for this specific configuration used in
the simulations V MS-KAI-ESPRIT shows a relatively high
computational burden with O(Pτ(3M 3 + 8MN 2 )), where τ
is typically an integer that ranges from 1 to 20. It can be
noticed that for the configuration used in the simulations
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(P = 4,M = 40, N = 25) 3M3 and 8MN2 are comparable,
resulting in two dominant terms. It can also be seen that the
number of multiplications required by the proposed algorithm
is more significant than the number of additions. For this
reason, in Table III, we computed only the computational
burden of the previously mentioned algorithms in terms of
multiplications for the purpose of comparisons. In that table,
∆ stands for the search step.

Next, we will evaluate the influence of the number of
sensor elements on the number of multiplications based on
the specific configuration described in Table II. Supposing
P = 4 narrowband signals impinging a ULA of M sensor
elements and N = 25 available snapshots, we obtain Fig. 1.
We can see the main trends in terms of computational cost
measured in multiplications of the proposed and analyzed
algorithms. By examining Fig. 1, it can be noticed that in the
range M = [20 70] sensors, the curves describing the exact
number of multiplications in MS-KAI-ESPRIT and AVF tend
to merge. For M = 40, this ratio tends to 1, i.e. the number
of multiplications are almost equivalent.

TABLE II
COMPUTATIONAL COMPLEXITY - MS-KAI-ESPRIT

Multiplications

P τ [ 10
3
M3 +M2(3P + 2) +M( 5

2
P2 + 1

2
P + 8N2)

MS-KAI +P2( 17
2
P + 1

2
)]

-ESPRIT
(Proposed) +P [2M3 +M2(P) +M( 3

2
P2 + 1

2
P) + P2(P

2
+ 3

2
)]

+2M2(P) +M(P2 − P + 8N2) + P2(8P− 1)

Additions

P τ [ 10
3
M3 +M2(3P− 1) +M( 5

2
P2 − 9

2
P + 8N2)

+P(8P2 − 2P− 5
2
)]

+P [2M3 +M2(P− 2) +M( 3
2
P2 − 1

2
P)− P(P + 1

2
)]

+2M2(P) +M(P2 − 4P + 8N2) + P(8P2 − P− 2)

TABLE III
COMPUTATIONAL COMPLEXITY - OTHER ALGORITHMS

Algorithm Multiplications

MUSIC [2] 180
∆

[M2 +M(2− P)− P] + 8MN2

root-MUSIC[3] 2M3 −M2P + 8MN2

AVF [139] 180
∆

[M2(3P + 1) +M(4P− 2) + P + 2]

+M2N

CG [138] 180
∆

[M2(P + 1) +M(6P + 2) + P + 1] +M2N

ESPRIT[4] 2M2P +M(P2 − 2P + 8N2) + 8P3 − P2

τ [3M3 +M2(3P + 2) +M( 5
2
P2 − 3

2
P + 8N2)

+P2( 17
2
P + 1

2
) + 1]

TS-ESPRIT [124]* +[2M3 +M2(3P) +M( 5
2
P2 − 3

2
P + 8N2)

+P2( 17
2
P + 1

2
)]

V. SIMULATIONS

In this section, we examine the performance of the proposed
MS-KAI-ESPRIT in terms of probability of resolution and
RMSE and compare them to the standard ESPRIT [4], the
Iterative ESPRIT (IESPRIT), which is also developed here
by combining the approach in [121] that exploits knowledge
of the structure of the covariance matrix and its perturbation
terms, the Conjugate Gradient (CG) [138], the Root-MUSIC
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Fig. 1. Number of multiplications as powers of 10 versus number of sensors
for P = 4, N = 25.

[3], and the MUSIC [2] algorithms. Despite TS-ESPRIT is
based on the knowledge of available known DOAS and the
proposed MS-KAI-ESPRIT does not have access to prior
knowledge, TS-ESPRIT is plotted with the aim of illustrating
the comparisons. For a fair comparison in terms of RMSE
and probability of resolution of all studied algorithms, we
suppose that we do not have prior knowledge, that is to say
that although we have available known DOAs, we compute
TS-ESPRIT as they were unavailable. We employ a ULA
with M=40 sensors, inter-element spacing ∆ = λc

2 and
assume there are four uncorrelated complex Gaussian signals
with equal power impinging on the array. The closely-spaced
sources are separated by 2.4o, at (10.2o, 12.6o, 15o, 17.4o),
and the number of available snapshots is N=25. For TS-
ESPRIT, as previously mentioned, we presume a priori knowl-
edge of the last true DOAS (15o, 17.4o)

In Fig. 2, we show the probability of resolution versus
SNR. We take into account the criterion [141], in which two
sources with DOA θ1 and θ2 are said to be resolved if their
respective estimates θ̂1 and θ̂2 are such that both

∣∣∣θ̂1 − θ1

∣∣∣
and

∣∣∣θ̂2 − θ2

∣∣∣ are less than |θ1 − θ2| /2. The proposed MS-
KAI-ESPRIT algorithm outperforms IESPRIT developed here,
based on [121], and the standard ESPRIT [4] in the range
between −6 and 5dB and MUSIC [2] from −6 to 8.5dB. MS-
KAI-ESPRIT also outperforms CG [138] and Root-Music [3]
throughout the whole range of values. The poor performance
of the latter could be expected from the results for two closed
signals obtained in [121]. When compared to TS-ESPRIT,
which as previously discussed, was supposed to have the
best performance, the proposed MS-KAI-ESPRIT algorithm
is outperformed by the former only in the range between −6
and −2dB. From this last point to 20dB its performance is
superior or equal to the other algorithms.

In Fig. 3, it is shown the RMSE in dB versus SNR, where
the term CRB refers to the square root of the deterministic
Cramér-Rao bound [142]. The RMSE is defined as:

RMSE =

√√√√ 1

L P

L∑
l=1

P∑
p=1

(θp − θ̂p(l))2, (24)

where L is the number of trials.
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The results show the superior performance of MS-KAI-
ESPRIT in the range between −2.5 and 5 dB. From this last
point to 20 dB, MS-KAI-ESPRIT, IESPRIT, ESPRIT and TS-
ESPRIT have similar performance. The only range in which
MS-KAI-ESPRIT is outperformed lies in the range between
−6 and −2.5 dB. From this last point to 20 dB its performance
is better or similar to the others.
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Fig. 2. Probability of resolution versus SNR with P = 4 uncorrelated sources,
M = 40, N = 25, L = 100 runs
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Fig. 3. RMSE and the square root of CRB versus SNR with P = 4
uncorrelated sources, M = 40, N = 25, L = 100 runs

Now, we focus on the performance of MS-KAI-ESPRIT
under more severe conditions, i.e., we analyze it in terms of
RMSE when at least two of the four equal-powered Gaussian
signals are strongly correlated, as shown in the following
signal correlation matrix Rss (25):

Rss = σ2
s

 1 0.9 0.6 0
0.9 1 0.4 0.5
0.6 0.4 1 0
0 0.5 0 1

 . (25)

The signal-to-noise ratio (SNR) is defined as SNR ,
10 log10

(
σ2
s

σ2
n

)
. In Fig. 4, we can see the performance of the

same algorithms plotted in Fig. 3 in terms of RMSE(dB)
versus SNR computed after 250 runs, when the signal corre-
lation matrix is given by (25). As can be seen, the superior
performance of MS-KAI-ESPRIT occurs in the whole range
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Fig. 4. RMSE and the square root of CRB versus SNR with P = 4 correlated
sources, M = 40, N = 25, L = 250 runs

between 4.0 and 12 dB , which can be considered a small
but consistent gain. From 12dB to 20dB MS-KAI-ESPRIT,
TS-ESPRIT, IESPRIT and ESPRIT have similar performance.
The values for which MS-KAI-ESPRIT is outperformed are
in the range between −6.0 and 4.0dB.

In Fig. 5, we have provided further simulations to illustrate
the performance of each iteration of MS-KAI ESPRIT in
terms of RMSE. The resulting iterations can be compared to
each other and to the the original ESPRIT, which corresponds
to the first step of MS-KAI ESPRIT. For this purpose, we
have considered the same scenario employed before, except
for the number of the trials, which is L = 200 runs for
all simulations. In particular, we have considered the case of
correlated sources. From Fig. 6, which is a magnified detail of
Fig. 5, it can be seen that the estimates become more accurate
with the increase of iterations.
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Fig. 5. RMSE for each iteration of MS-KAI ESPRIT,original ESPRIT and
CRB versus SNR with P = 4 correlated sources, M = 40, N = 25,
L = 200 runs

VI. CONCLUSIONS

We have proposed the MS-KAI-ESPRIT algorithm which
exploits the knowledge of source signals obtained on line
and the structure of the covariance matrix and its perturba-
tions. An analytical study of the MSE of this matrix free
of side effects has shown that it is less or equal than the



7

4 5 6 7 8 9 10 11 12 13

−9

−8

−7

−6

−5

−4

SNR(dB)

R
M

S
E

(d
B

)

 

 

CRB

4th iteration(n=P=4)

3rd iteration(n=3)

2nd iteration(n=2)

1st iteration(n=1)

ESPRIT−first step

Fig. 6. RMSE for each iteration of MS-KAI ESPRIT,original ESPRIT and
CRB versus SNR with P = 4 correlated sources, M = 40, N = 25,
L = 200 runs -magnification

MSE of the original matrix, resulting in better performance
of MS-KAI-ESPRIT especially in scenarios where limited
number of samples are available. The proposed MS-KAI-
ESPRIT algorithm can obtain significant gains in RMSE or
probability of resolution performance over previously reported
techniques, and has excellent potential for applications with
short data records in large-scale antenna systems for wireless
communications, radar and other large sensor arrays. The rela-
tively high computational burden required, which is associated
with extra matrix multiplications, the increment ι applied to
reduce the undesirable side effects and the iterations needed to
progressively incorporate the knowledge obtained on line as
newer estimates can be justified for the superior performance
achieved. Future work will consider approaches to reducing
the computational cost.

APPENDIX

Here, we prove the inequality (23) described in Section
IV-A. We start by expressing the MSE of the original data
covariance matrix (4) as:

MSE
(
R̂
)
= E

[
∥R̂−R∥2F

]
. (26)

where R is the true covariance matrix . Similarly, the MSE of
the data covariance matrix free of side effects R̂(n+1) can be
expressed for the first iteration n = 1 by making use of (12),
as follows

MSE
(
R̂(n+1)

) ∣∣
n=1

= MSE
(
R̂(2)

)
= E

[
∥R̂(2) −R∥2F

]
= E

[
∥R̂ − µ (V(1) + V(1)H)−R∥2F

]
= E

[
∥
(
R̂−R

)
− µ (V(1) + V(1)H)∥2F

]
(27)

where for the sake of simplicity, from now on we omit the
superscript (1), which refers to the first iteration. In order
to expand the result in (27), we make use of the following
proposition:

Lemma 1: The squared Frobenius norm of the difference
between any two matrices A ∈ Cm×m and B ∈ Cm×m is
given by

∥A−B∥2F = ∥A∥2F + ∥B∥2F −
(
TrAHB+TrABH

)
(28)

Proof of Lemma 1:
The Frobenius norm of any D ∈ Cm×m matrix is defined [1]
as

∥D∥F =

 m∑
i=1

m∑
j=1

|dij |2
 1

2

=
[
Tr

(
DHD

)] 1
2 (29)

We express D as a difference between two matrices A and B,
both also ∈ Cm×m . Making use of Lemma1 and the properties
of the trace, we obtain

∥A−B∥2F = Tr
[
(A−B)

H
(A−B)

]
= Tr

[(
AH −BH

)
(A−B)

]
= Tr

[(
AHA

)
− Tr

(
AHB

)
− Tr

(
BHA

)
+Tr

(
BHB

)]
= ∥A∥2F + ∥B∥2F −

(
TrAHB+TrABH

)
, (30)

which is the desired result.
Now, assuming that the true R [134] and the data covariance

matrices R̂ [134] are Hermitian and using (27) combined
with Lemma1, the cyclic [135] property of the trace and the
linearity [136] property of the expected value, we get

MSE
(
R̂(2)

)
= E

{
∥R̂−R∥2F + µ2 ∥V + VH∥2F

−Tr

[(
R̂−R

)H

µ
(
V + VH

)]
−Tr

[
µ
(
V +VH

)H (
R̂ + R

)]}
= E

{
∥R̂−R∥2F + µ2 ∥V + VH∥2F

−µTr

[(
R̂−R

)H (
V + VH

)]
−µTr

[(
V +VH

)H (
R̂ + R

)]}
= E

{
∥R̂−R∥2F + µ2 ∥V + VH∥2F

−µTr
[(

R̂−R
) (

V + VH
)]

−µTr
[(
VH +V

) (
R̂ + R

)]}
= E

{
∥R̂−R∥2F + µ2 ∥V + VH∥2F

−µTr
[(

R̂−R
) (

V + VH
)]

−µTr
[(

R̂ + R
) (

V +VH
)]}

= E
{
∥R̂−R∥2F

}
+ µ2E

{
∥V + VH∥2F

}
− 2µE

{
Tr

[(
R̂−R

) (
V + VH

)]}
= MSE

(
R̂
)
+ µ2E

{
∥V + VH∥2F

}
− 2µE

{
Tr

[(
R̂−R

) (
V + VH

)]}
(31)

By moving the first summand of (31) to its first element, we
obtain the intended expression for the difference between the
MSEs of the data covariance matrix free of perturbations and
the original one, i.e.:
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MSE
(
R̂(n+1)

) ∣∣
n=1

−MSE
(
R̂
)
= µ2E

{
∥V +VH∥2F

}
−2µE

{
Tr

[(
R̂−R

) (
V + VH

)]}
.

(32)

Now, we expand the expressions inside braces of the second
member of (32) individually. We start with the first summand

∥V +VH∥2F = ∥V∥2F + ∥VH∥2F +Tr
(
VHVH

)
+

Tr
(
(VH )

H
V
)

= ∥V∥2F + ∥VH∥2F +Tr
(
VHVH

)
+Tr (VV) .

(33)

The equation (33) can be computed by using the projection
matrices of the signal and the noise subspaces and the data
covariance matrix by using (9), (11), the idempotence [1] [135]
of Q̂A and the cyclic property [135] of the trace. Starting with
the computation of its fourth summand, we have

Tr (VV) = Tr
[(

Q̂A R̂ Q̂⊥
A

)(
Q̂A R̂ Q̂⊥

A

)]
= Tr

[
Q̂A R̂

(
IM − Q̂A

)
Q̂A R̂

(
IM − Q̂A

)]
= Tr

[(
Q̂A R̂− Q̂A R̂ Q̂A

)
(
Q̂A R̂− Q̂A R̂ Q̂A

)]
= Tr

[
Q̂A R̂ Q̂A R̂− Q̂A R̂ Q̂A R̂ Q̂A

−Q̂A R̂ Q̂AQ̂A R̂+ Q̂A R̂ Q̂AQ̂A R̂ Q̂A

]
= Tr

(
Q̂A R̂ Q̂A R̂

)
− Tr

(
Q̂A R̂ Q̂A R̂ Q̂A

)
− Tr

(
Q̂A R̂ Q̂AQ̂A R̂

)
+Tr

(
Q̂A R̂ Q̂AQ̂A R̂ Q̂A

)
= Tr

(
Q̂A R̂ Q̂A R̂

)
− Tr

(
Q̂A R̂ Q̂A R̂

)
− Tr

(
Q̂A R̂ Q̂A R̂

)
+Tr

(
Q̂A R̂ Q̂A R̂

)
= 0.

(34)

Taking into account that the data covariance matrix R̂ and the
estimate of the projection matrix of the noise subspace Q̂⊥

A
are Hermitian, we can evaluate the third summand of (33) as

follows:

Tr
(
VHVH

)
= Tr

[(
Q̂A R̂ Q̂⊥

A

)H (
Q̂A R̂ Q̂⊥

A

)H
]

= Tr

{[(
Q̂⊥

A

)H

R̂H Q̂H
A

] [(
Q̂⊥

A

)H

R̂H Q̂H
A

]}
= Tr

{[
Q̂⊥

A R̂ Q̂A

] [
Q̂⊥

A R̂ Q̂A

]}
= Tr

{[(
IM − Q̂A

)
R̂ Q̂

A

] [ (
IM − Q̂A

)
R̂ Q̂

A

]}
= Tr

{[
R̂ Q̂A − Q̂A R̂ Q̂A

] [
R̂ Q̂A − Q̂A R̂ Q̂A

]}
= Tr

{
R̂ Q̂A R̂ Q̂A − R̂ Q̂AQ̂A R̂ Q̂A

−Q̂A R̂ Q̂A R̂ Q̂A + Q̂A R̂ Q̂AQ̂A R̂ Q̂A

}
= Tr

(
R̂ Q̂A R̂ Q̂A

)
− Tr

(
R̂ Q̂AQ̂A R̂ Q̂A

)
− Tr

(
Q̂A R̂ Q̂A R̂ Q̂A

)
+Tr

(
Q̂A R̂ Q̂AQ̂A R̂ Q̂A

)
= Tr

(
R̂ Q̂A R̂ Q̂A

)
− Tr

(
R̂ Q̂A R̂Q̂A

)
− Tr

(
Q̂A R̂ Q̂A R̂

)
+Tr

(
Q̂A R̂ Q̂A R̂

)
= 0. (35)

By using (29), we can expand the first and the second
summands of (33) as follows:

∥V∥2F + ∥VH∥2F = Tr
(
VHV

)
+Tr

((
VH

)H
VH

)
= Tr

(
VHV

)
+Tr

(
VVH

)
= Tr

(
VVH

)
+Tr

(
VVH

)
= 2Tr

(
VVH

)
. (36)

Equation (36) can be expressed in terms of the projection
matrices of the signal and the noise subspaces and the data
covariance, in a similar way as for the third and fourth
summands of (33), as follows:

2Tr
(
VVH

)
= 2Tr

[(
Q̂A R̂ Q̂⊥

A

)(
Q̂A R̂ Q̂⊥

A

)H
]

= 2Tr

{
Q̂AR̂

(
IM − Q̂A

) [
Q̂AR̂

(
IM − Q̂A

)]H}
= 2Tr

{(
Q̂AR̂− Q̂AR̂Q̂A

)(
Q̂AR̂− Q̂AR̂Q̂A

)H
}

= 2Tr
{
Q̂AR̂R̂Q̂A − Q̂AR̂Q̂AR̂

−Q̂AR̂Q̂AR̂Q̂A + Q̂AR̂Q̂AQ̂AR̂
}

= 2
{
Tr

(
Q̂AR̂R̂Q̂A

)
− Tr

(
Q̂AR̂Q̂AR̂

)
−Tr

(
Q̂AR̂Q̂AR̂Q̂A

)
+Tr

(
Q̂AR̂Q̂AQ̂AR̂

)}
= 2

{
Tr

(
Q̂AQ̂AR̂R̂

)
− Tr

(
Q̂AR̂Q̂AR̂

)
−Tr

(
Q̂AR̂Q̂AR̂

)
+Tr

(
Q̂AR̂Q̂AR̂

)}
= 2

{
Tr

(
Q̂AQ̂AR̂R̂

)
− Tr

(
Q̂AR̂Q̂AR̂

)}
(37)

From (33), (34), (35), (36) and (37), we obtain the first
summand of (32), as follows:

µ2E
{
∥V +VH∥2F

}
= 2µ2E

{
Tr

(
Q̂AQ̂AR̂R̂

)
−Tr

(
Q̂AR̂Q̂AR̂

)}
(38)
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In order to finish the expansion of the expressions inside braces
of the second member of (32), now we deal with its second
summand, in which we make use of the cyclic property [135]
of the trace and the idempotence [1] [135] of Q̂A.

Tr
[(

R̂−R
) (

V +VH
)]

=
{
Tr

(
R̂−R

)
[
Q̂A R̂ Q̂⊥

A +
(
Q̂A R̂ Q̂⊥

A

)H
]}

= Tr
{(

R̂−R
) [

Q̂AR̂
(
IM − Q̂A

)
+
(
Q̂AR̂

(
IM − Q̂A

))H
]}

= Tr
{(

R̂−R
) [

Q̂AR̂− Q̂AR̂Q̂A

+
(
Q̂AR̂− Q̂AR̂Q̂A

)H
]}

= Tr
{(

R̂−R
) [

Q̂AR̂− Q̂AR̂Q̂A + R̂Q̂A − Q̂AR̂Q̂A

]}
= Tr

{
R̂Q̂AR̂+ R̂R̂Q̂A − 2R̂Q̂AR̂Q̂A

−RQ̂AR̂−RR̂Q̂A + 2RQ̂AR̂Q̂A

}
= Tr R̂Q̂AR̂+Tr R̂R̂Q̂A − 2Tr R̂Q̂AR̂Q̂A

− TrRQ̂AR̂− TrRR̂Q̂A + 2TrRQ̂AR̂Q̂A

= Tr Q̂AR̂R̂+Tr Q̂AR̂R̂− 2Tr Q̂AR̂Q̂AR̂

− TrRQ̂AR̂− Tr Q̂ARR̂+ 2Tr Q̂ARQ̂AR̂

= 2Tr Q̂AR̂R̂− 2Tr Q̂AR̂Q̂AR̂− TrRQ̂AR̂

− Tr Q̂ARR̂+ 2Tr Q̂ARQ̂AR̂

= 2Tr Q̂AQ̂AR̂R̂− 2Tr Q̂AR̂Q̂AR̂− TrRQ̂AQ̂AR̂

− Tr Q̂AQ̂ARR̂+ 2Tr Q̂ARQ̂AR̂ (39)

By using (39), we can straightforwardly write the second
summand of the second member of (32) in terms of the
projection matrices of the signal and the noise subspaces and
the data covariance matrix as follows:

− 2µE
{
Tr

[(
R̂−R

) (
V + VH

)]}
= −2µE

{
2Tr Q̂AQ̂AR̂R̂− 2Tr Q̂AR̂Q̂AR̂− TrRQ̂AQ̂AR̂

−Tr Q̂AQ̂ARR̂+ 2Tr Q̂ARQ̂AR̂
}

= −4µE
{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 2µ

{
−TrE

[
RQ̂AQ̂AR̂

]
− TrE

[
Q̂AQ̂ARR̂

]
+2TrE

[
Q̂ARQ̂AR̂

]}
= −4µE

{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 2µ

{
−TrRQ̂AQ̂AE

[
R̂
]
− Tr Q̂AQ̂ARE

[
R̂
]

+2Tr Q̂ARQ̂AE
[
R̂
]}

(40)

Now, by using (38) and (40), and assuming that E
[
R̂
]

is an

unbiased estimate of R̂, i.e., E
[
R̂
]
= R, we can rewrite (32)

as follows:

MSE
(
R̂(n+1)

) ∣∣
n=1

−MSE
(
R̂
)
= µ2E

{
∥V +VH∥2F

}
− 2µE

{
Tr

[(
R̂−R

) (
V + VH

)]}
= 2µ2E

{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 4µE

{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 2µ

{
−TrRQ̂AQ̂AR− Tr Q̂AQ̂ARR

+2Tr Q̂ARQ̂AR
}

= 2µ2E
{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 4µE

{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 2µ

{
−2TrRQ̂AQ̂AR+ 2Tr Q̂ARQ̂AR

}
= 2µ2E

{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 4µE

{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 4µ

{
Tr Q̂AQ̂ARR− Tr Q̂ARQ̂AR

}
=

(
2µ2 − 4µ

)
E
{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
− 4µ

{
Tr Q̂AQ̂ARR− Tr Q̂ARQ̂AR

}
(41)

Next, we will discuss equation (41). For this purpose, we
assume that the estimate of the projection matrix of the signal
subspace Q̂A [1], the true R [134] and the data covariance
matrices R̂ [134] are Hermitian. For the next steps we will
make use of the following Theorem which is proved in [137]:

Theorem 1: For two Hermitian matrices A and B of the
same order,

Tr (AB)
2k ≤ Tr

(
A2kB2k

)
, (42)

where k is in integer.

By replacing A with Q̂A and B with R̂ in (42) and also
considering k = 1 , we have

Tr
(
Q̂AR̂

)2

≤ Tr
(
Q̂2

AR̂
2
)

∴ Tr Q̂AR̂Q̂AR̂ ≤ Tr Q̂AQ̂AR̂R̂

⇒ Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂ ≥ 0 (43)

Similarly, making A = Q̂A and B = R for k = 1, we
obtain

Tr
(
Q̂AR

)2

≤ Tr
(
Q̂2

AR
2
)

∴ Tr Q̂ARQ̂AR ≤ Tr Q̂AQ̂ARR

⇒ Tr Q̂AQ̂ARR− Tr Q̂ARQ̂AR ≥ 0 (44)

Next, we analyze the behavior of the expressions −4µ and(
2µ2 − 4µ

)
based on the reliability factor µ ∈ [0 1], as defined

in (12). In order to illustrate the case being studied, we assume
that both expressions are continuous functions as depicted
in Fig. 7. It can be seen in it that in the range [0 1] both
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Fig. 7. Behavior of
(
2µ2 − 4µ

)
and −4µ for µ ∈ [0 1]

expressions assume values f(µ) ≤ 0, i.e.:

For µ ∈ [0 1] :

{(
2µ2 − 4µ

)
≤ 0

− 4µ ≤ 0
(45)

Now, we can consider the traces which form the subtraction
in (43) as different random variables y (ω) and x (ω), i.e.:

Tr Q̂AQ̂AR̂R̂ = y (ω)

Tr Q̂AR̂Q̂AR̂ = x (ω)

}
, ∀ ω ∈ Ω. (46)

In addition, we can suppose that there is a random variable
z (ω) always greater than zero, i.e., z (ω) ≥ 0, so that

z (ω) = y (ω)− x (ω) ≥ 0, ∀ ω ∈ Ω (47)

Taking the expectation of (47) and applying its properties of
linearity and monotonicity [136], [140], we obtain

E [z (ω)] = E [y (ω)− x (ω)] ≥ 0, (48)

which, by making use of (46), results in

E [z (ω)] = E [y (ω)− x (ω)]

= E
{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
≥ 0 (49)

Next, we can combine the inequalities (45) with (49) to
compute the second member of (41), for µ ∈ [0 1].

For its first summand, we combine (45) and (49), as follows:{
E
{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
≥ 0(

2µ2 − 4µ
)
≤ 0, µ ∈ [0 1],

(50)

to obtain in a straightforward way(
2µ2 − 4µ

)
E
{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
≤ 0 (51)

Similarly, we can compute its second member, by combining
(45) and (44), as described by{

Tr Q̂AQ̂ARR− Tr Q̂AR̂Q̂AR̂ ≥ 0

− 4µ ≤ 0, µ ∈ [0 1],
(52)

to obtain also straightforwardly the expression given by

− 4µ
{
Tr Q̂AQ̂ARR− Tr Q̂ARQ̂AR

}
≤ 0 (53)

By combining the inequalities (51) and (53) with (41), we
have

MSE
(
R̂(n+1)

) ∣∣
n=1

−MSE
(
R̂
)

=
(
2µ2 − 4µ

)
E
{
Tr Q̂AQ̂AR̂R̂− Tr Q̂AR̂Q̂AR̂

}
︸ ︷︷ ︸

≤ 0

−4µ
{
Tr Q̂AQ̂ARR− Tr Q̂ARQ̂AR

}
︸ ︷︷ ︸

≤ 0

(54)

∴ MSE
(
R̂(n+1)

) ∣∣
n=1

−MSE
(
R̂
)
≤ 0 (55)

which is the desired result.
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