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Abstract— This paper proposes distributed adaptive algorithms
based on the conjugate gradient (CG) method and the diffusion
strategy for parameter estimation over sensor networks. We
present sparsity-aware conventional and modified distributed CG
algorithms using /; and log-sum penalty functions. The proposed
sparsity-aware diffusion distributed CG algorithms have an
improved performance in terms of mean square deviation (MSD)
and convergence as compared with the consensus least-mean
square (Diffusion-LMS) algorithm, the diffusion CG algorithms
and a close performance to the diffusion distributed recursive
least squares (Consensus-RLS) algorithm. Numerical results show
that the proposed algorithms are reliable and can be applied in
several scenarios.
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I. INTRODUCTION

Distributed processing has become a very common and
useful approach to extract information in a network by per-
forming estimation of the desired parameters. The efficiency
of the network depends on the communication protocol used
to exchange information between the nodes, as well as the
algorithm to obtain the parameters. Another important aspect
is to prevent a failure in any agent that may affect the operation
and the performance of the network. Distributed schemes
can offer better estimation performance of the parameters as
compared with the centralized approach, based on the principle
that each node communicates with several other nodes and
exploits the spatial diversity in the network [1].

The main strategies for communication in distributed pro-
cessing are incremental, consensus and diffusion. In the in-
cremental protocol, the communication flows cyclically and
the information is exchanged from one node to the adjacent
nodes. In this strategy the flow of information must be preset
at the initialization [2]. The consensus strategy is an elegant
procedure to enforce agreement among cooperating nodes [3].
In the diffusion mechanism, each node communicates with the
rest of the nodes [4] without any enforcement constraint.

In many scenarios, the parameters of unknown systems can
be assumed sparse, containing only a few large coefficients in-
terspersed among many negligible ones [5]. Many studies have
shown that exploiting the sparsity of a system is beneficial to
enhancing the estimation performance [6]. Most of the studies
developed for distributed processing exploiting sparsity focus
on the least-mean square (LMS) and recursive least-squares
(RLS) algorithms using different penalty functions [7]-[10].
These penalty functions perform a regularization that attracts
to zero the coefficients of the parameter vector that are not
associated with the weights of interest. The most well-known

and exploited penalty functions are the ly-norm, the /;-norm
and the log-sum [10].

The conjugate gradient (CG) algorithm has been studied
and developed for distributed processing [12][23]. The faster
learning of CG algorithms over the LMS algorithm and its
lower computational complexity combined with better numer-
ical stability than the RLS algorithm makes it suitable for this
task. However, prior work on distributed CG techniques is
rather limited and techniques that exploit possible sparsity of
the signals have not been developed so far.

In this paper we propose distributed CG algorithms based on
two variants of the diffusion strategy for parameter estimation
over sensor networks. Specifically, we develop standard and
sparsity-aware distributed CG algorithms using the diffusion
protocol and the I; and log-sum penalty functions. The pro-
posed algorithms are compared with recently reported algo-
rithms in the literature. The application scenario in this work
is parameter estimation over sensor networks, which can be
found in many scenarios of practical interest.

This paper is organized as follows. Section II describes the
system model and the problem statement. Section III presents
the proposed distributed CG algorithm conventional and mod-
ified versions. Section IV details the proposed sparsity-aware
distributed diffusion CG algorithm. Section V presents and
discusses the simulation results. Finally, Section VI gives the
conclusions.

II. SYSTEM MODEL AND PROBLEM STATEMENT
A. System Model

The network consists of N nodes that exchange information
between them, where each node represents an adaptive param-
eter vector with neighborhood described by the set Nj. The
main task of parameter estimation is to adjust the unknown
M x1 weight vector wy, of each node, where M is the length
of the filter [3]. The desired signal dy, ; at each time i is drawn
from a random process and given by

dii = whl@p; +ngy (D

where wy is the M x1 system weight vector, @y, ; is the M x1
input signal vector and ny; is the measurement noise. The
output estimate is given by

Yk,i = wkH,ika,i 2

The main goal of the network is to minimize the following
cost function:
N
Cwg,i) = ZE[ldk,i - wkH,ika,im 3)
k=1
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By solving this minimization problem it is possible to obtain
the optimum solution of the weight vector at each node. The
optimum solution for the cost function is given by

wii = Ry by (4)

where Ry, ; = Elzy xil,] is the MxM correlation matrix of
the input data vector xy,;, and by, ; = E[d} ;@] is the M x1
cross-correlation vector between the input data and dy, ;.

B. Problem Statement

We consider a diffusion algorithm for a network where
each agent k has access at each time instant to the realization
{dk.i,xk,;} of zero-mean spatial data {dy ;, xx;} [12]-[16].
For a network with possibly sparse parameter vectors, the
cost function also involves a penalty function which exploits
sparsity. In this case the network needs to solve the following
optimization problem:

N
min Clwe) =) Elldes — wili@nl’]+ flwri) ()

where f(wy ;) is a penalty function that exploits the sparsity in
the parameter vector wy, ;. In the following sections we focus
on distributed diffusion CG algorithms to solve (5)

III. PROPOSED DISTRIBUTED DIFFUSION CG ALGORITHM

In this section, we present the proposed distributed CG
algorithm using the diffusion strategy with a penalty function
that is equal to zero. This corresponds to the diffusion strategy
without the exploitation of sparsity. We first derive the CG
algorithm and then consider the diffusion protocol.

A. Derivation of the CG algorithm

The CG method can be applied to adaptive filtering prob-
lems [11][12][17]. The main objective in this task is to solve
(4). The cost function for one agent is given by

Cog(w) = %wHRw —bw (6)
For distributed processing over sensor networks, we present
the following derivation. The CG algorithm does not need to
compute the matrix inversion of R, which is an advantage
as compared with RLS algorithms. It computes the weights
wy,,; for each iteration j until convergence, i.e., wy ;(j). The
gradient of the method in the negative direction is obtained as
follows [11]:

91.i(7) = 9x.,i(j) — Ryi(j)wr.i(5) (7
Calculating the Krylov subspace [13] through different oper-
ations, the recursion is given by
wri(j) = wki(j — 1) — a(j)py . (J) (8
where p is the conjugate direction vector of g and « is the
step size that minimizes the cost function in (6) by replacing
(7) in (4). Both parameters are calculated as follows:
gl - Vg - 1)
PkH,i(j)Rk,i(j)Pk,i(j)

a(j) ©)

Pri(J) = 91.:(7) + BU)Py.:(4) (10)

The parameter 3 is calculated using the Gram-Schmidt orthog-
onalization procedure [14] as given by

ﬁ(j) _ ng,i(j)gk,i(j)
91— 1)gx:(G — 1)
Applying the CG method to a distributed network the cost
function is expressed based on the information exchanged
between all nodes & = 1,2...,N. Each of the equations

presented so far takes place at each agent during the iterations
of the CG algorithm. Therefore, we have the cost function:

(1)

N
Ceoglwg,i) = % Z wﬁiRk,iwk,i - bﬁiwk,i (12)
k=1
Using the data window with an exponential decay, the resulting
autocorrelation matrix and cross-correlation vector are defined
using the forgetting factor A as given by

H
Ry = ARyi—1 + Tk iy, ;

by = Abyi—1 + d, ;T i

(13)
(14)
In the diffusion strategy, all nodes interact with their neighbors
sharing and updating the system parameter vector. Each node

k is able to run its update simultaneously with the other agents
[1] [4]. Figure 1 illustrates the diffusion strategy.

Fig. 1. Distributed consensus-based network processing.

In diffusion protocols there are two well-known variants
that switch the order of the combination and adaptation steps,
namely, Combine-then-Adapt (CTA) and Adapt-then-Combine
(ATC), each one based on the connectivity among nodes.
These mechanisms perform adaptation and learning at the
same time [3][4].

B. CTA Diffusion Distributed CG algorithm

In the CTA diffusion strategy, the convex combination
term is first evaluated into an intermediate state variable and
subsequently used to perform the weight update [4]. The local
estimation is given by

Pri — E A W] i—1

lENk

5)

where a;; represents the combining coefficients of the data
fusion which should comply with

Z Al = 1, l€Nk7i,V]€.

ZGNk

(16)

In this work the strategy adopted for the a;; combiner is the
Metropolis rule [1] given by

m, if k # [ are linked

Ckl = 1— cry, for k=1,
leNL/k

A7)
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TABLE I
CTA CG ALGORITHM
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TABLE I
ATC CG ALGORITHM

Parameters initialization:
wk’o =0
For each time instant ¢ > 0
For each agent k=1,2, ..., N
Ryi = ARp i1 + @ i@y
b, = Abpi—1 +dj ;@

Phyi = 2o1eN, URWLi—1

W, 1(]) = Pr,i

gk, i(0) = by 1(0) — Ry i (0)wp,i—1
pk,i(0) = gj, ,(0)

For each CG iteration j = 1 until convergence
a(j) = i}{ﬂ(a‘—ngk,i(jfl)

Py, ; () R, ()P, (4)
w,i(3) = wi,i(§ — 1) — a(f)pg,: (4)

9k,i(7) = 95, (5) — () R (3)Py ;G — 1)
W ali(eri()
BG) = gll .(Gi—Dgy,;(G-1)
P, (J) = gk () + B8P (G— 1)
End For
Wi = Wk, i (Jiast)
End for

End for

The distributed CTA CG algorithm based on the derivation
steps obtains the updated weight substituting (15) in (8), giving
as result:

wi,i(J) = wk,i(j — 1) — a(j)py ;(7) (18)

where wy ;(0) = ¢, ; [12]. The rest of the derivation is
based on the solution presented in the previous section and
the pseudo-code is detailed in Table I

The modified CG (MCG) algorithm comes from the con-
ventional CG algorithm previously presented and only requires
one iteration per coefficient update. Specifically, the residual
is calculated using (7) (8) and (13) [11]:

9k = by, — Rkai‘Pk,i
= NGpi—1 — Ok, iB,iDr i1 (19)
g ildi — wil @k

The previous equation (19) is multiplied for the search direc-
tion vector:

H N\ H
Pr.i9ki = APr,i9r,i—1 — ki RiiPy i1

(20)
+pi @ ildr i

- wf,i—lwk7i]
Applying the expected value, considering p;, ;_; uncorrelated
with @y ;, dj; and Pr.is and that the algorithm converges the
last term of (20) can be neglected. The line search to compute
« has to satisfy the convergence bound [11] given by

E[plgi—lgk,i]

Parameters initialization:
WE.o = 0
For each time instant ¢ > 0
For each agent k=1,2, ..., N
Ry, = ARy ;1 + mkzmkHl
b, = Abi—1 +dj @k,
gk, i(0) = by,;(0) — R ;(0)wg,;—1(0)
Pk, i(0) = g4 5(0)
wg,i(0) = wg,i—1
For each CG iteration j = 1 until convergence
a(j) = gt (G—Dgg, i (G—1)
Pﬁi(j)Rk,i(j)Pk,i(]')
wk,i(J) = wki(j — 1) — ()P ; (J)
9k,i(7) = 9r:(5) — a(§) R (3)Pr ;G — 1)
. gkyl(])gkﬂJ)
BU) = Gr G Der GD
Pri(G+1) = g1:() + BGIPri (1)
End For
Wi = 216N, UkWk,i (Jiast)
End for
End for

TABLE III
ATC MCG ALGORITHM

Parameters initialization:
W0 = 0
For each time instant ¢ > 0
For each agent k=1,2, ..., N
Ry =Ry ; 1+ wkzwf,
b,i = Abi—1 +dj @k,

wi,i(J) = P

9,1 =bro

P =9k

Qi = e (A= 05) <n <A

Pr,i = Wk,i—1 — Qk,iPk i

I = )‘gk,i — o iR iPy i1
Fk,i[dr, — Wi, %kl

B = (gk,il_;gk,i—1>Hgk,i
’ Ik,i—19k,i—1
Pr,i = 9k, T Bk,iPr,i—1

End for
w(i) = Djen,, WP
End for

C. ATC Distributed CG algorithm

Similarly to CTA, the ATC protocol switches the order of
the operations. The difference lies in the variable chosen to
update the weight wy, ;. In this case, the update estimate is the
convex combination of the adaptation step. Table II shows the
pseudo code of the ATC strategy. The MCG version for the

E [Pk i—19k, ;] ATC strategy is very similar to the CTA version presented.

(A —0.5) < Elog,] <
E[p}gi_1Rk-,ipk,i—1} E[pk,i 1
(21)
H
Pk,i9k,i
ki =N (22)
Pi i RyiPy;

where (A —0.5) <7 < A. The Polak-Ribiere method [11] for
the computation of S5 is given by

- gk,i—l)Hgk,i
gﬁigk,i

(gk,i

Brei = (23)

Ry.ipy, T ble III shows the details of the ATC MCG algorithm taking

Tnto account the considerations previously discussed.

IV. PROPOSED SPARSITY-AWARE DIFFUSION CG

Based on the previous development of distributed CG algo-
rithms, this section presents the proposed distributed sparsity-
aware diffusion CG algorithms using !; (ZA) and log-sum
(RZA) norm penalty functions.
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TABLE IV
SPARSITY-AWARE ATC CG ALGORITHM

Parameters initialization:
wk’O =0
For each time instant ¢ > 0
For each agent k=1,2, ..., N
Ryi = ARp i1 + @ i@y
b, = Abpi—1 +dj ;@
gk, (0) = by,;(0) — Ry, ;(0)wg,;—1(0)
wg,i(0) = w1
For each CG iteration j = 1 until convergence
a(j) = 9t (G—1gg,:(G—1)
Pﬁi(j)Rk,i(j)pk:,i(j)
wi,i(4) = wk,i(j — 1) — a(f)py,:(5)

95,:(3) = 95,;(G) — a(F) Re s (1)P ;G — 1)
N gkl(])gkn(J)
BU) = Gr G Der GD
PG+ 1) = g5,:(5) + BG)Pk,:(5)
End For
. )
Whyi = Do1enN,, WkWh,i(Jiast) — P ,9(‘,{1 2)
End for

End for

A. ZA and RZA CG algorithms
The cost function in this case is given by

Coa(wk,i) = Zw;“kaz—b Wea+ f1, (24

where f; denotes the 11 penalty function and is defined by

fr=rpllwri()]: (25)
Applying the partial derivative of the penalty function gives

—_— = ) = |wk,i]? ’ 2
a(wy,) $9U@ED) =107 g = 0, (20)

When the logarithmic penalty function f5 instead f; is used
in the cost function, we have

f2 —leog

The partial derivative of the penalty function applied with
respect to wy, , is described by

a(f1)
8((«);;’2.)

In both cases these sparsity-aware algorithms attract to zero
the values of the parameter vector which are very small or
are not useful. This results in an algorithm with a faster
convergence and lower MSD values as can be seen in the
following sections. Using the penalty functions (26) and (28),
we obtain the sparsity-aware algorithms with the CTA and
ATC strategies. Table IV shows the sparsity-aware method for
the ACT protocol. In case of CTA, the same steps applied
with the ZA or RZA penalty functions to the steps previously
presented in Section III are carried out.

Wk l|) (27)

_ sgn(wWk.q) 28)
1+ ellws,illa

B. ZA and RZA Modified CG algorithms

The ATC and CTA MCG algorithms are very similar as
presented in previous section, including the penalty functions.
In the ATC strategy, the generation of the first state resulting
from the adaptation step, is used in the final update.

- Asilomar 2015, November 8 — 11”1, 2015, Pacific Grove, CA

C. Computational Complexity

The Table V shows the computational complexity of all
diffusion distributed methods proposed in terms of additions
and multiplications.

TABLE V

COMPUTATIONAL COMPLEXITY OF DIFFUSION CG ALGORITHMS

Method Additions Multiplications
CTA-CG L(M? +2M) L(2M? + 4M)
+LJ(2M? +6M —3) | +LJ(3M? +4M — 1)
ATC-CG L(M?+3M —1) L(2M? 4 3M)
+LJ(M? +6M —3) | +LJ(3M?% +4M —1)
CTA-MCG L(3M? + 9M — 4) L(AMZ +9M — 1)
ATC-MCG L(4M? + 9M — 3) L(6M?* +8M — 1)
ZA-CTA-CG L(M? +3M) L(2M? + 5M)
+LJ(2M? +6M —3) | +LJ(3M? 4+ 4M — 1)
ZA-ATC-CG L(M? +3M) L(2M? + 5M)
+LJ(2M? +6M —3) | +LJ(3M? +4M — 1)
7ZA-CTA-MCG L(3M? +10M —4) (4M? +10M — 1)
ZA-ATC-MCG L(4M? + 10M — 3) (6M2 +9M — 1)
RZA-CTA-CG L(M? +2M) L(2M? + 4M)
+LJ(2M? +8M —3) | +LJ(3M? +6M — 1)
RZA-ATC-CG L(M?+3M —1) L(2M? 4 3M)
+LJ(2M? +8M —3) | +LJ(3M? +6M — 1)
RZA-CTA-MCG | L(3MZ +11M — 4) L(4M? +11M — 1)
RZA-ATC-MCG | L(4M? + 11M - 3) L(6M? +10M — 1)

It can be seen that the complexity of the modified versions
is lower than the conventional methods

V. SIMULATIONS RESULTS

In this section, we evaluated the proposed distributed dif-
fusion CG algorithms and compare them with existing algo-
rithms. The results are based on the mean square deviation
MSD of the network. We consider a network with 20 nodes
and 1000 iterations per run. Each iteration corresponds to a
time instant. The results are averaged over 100 experiments.
The length of the filter is 10 and the variance of the input signal
1, which has been modeled as a complex Gaussian noise and
the SNR is 30 dB.

A. Comparison between standard and sparsity-aware CTA
distributed CG algorithms

For the standard CTA CG version, the system parameter
vector was randomly set. In the case of the sparsity-aware
algorithms it was set to two values equal to one and the
remaining values were set to zero. After all the iterations, the
performance of each algorithm in terms of MSD is shown
in Fig. 2. The results show that the sparsity-aware versions
outperforms the standard versions and the best results are
obtained for the RZA versions. At the same time the MCG
algorithms have a better performance than the standard ones.

B. Comparison between sparsity-aware ATC distributed CG
algorithms.

The same configuration used before was set for CTA
strategy. Fig. 3 below shows the performance of the results
in the simulations. Fig. 4 shows the comparison between
the consensus and diffusion algorithms with RZA. It can be
observed that the diffusion ATC CG algorithm has a faster
convergence as compared to the CTA and consensus strategy,
as well as the MSD value at steady state.
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—&— ModCTA-CG
" —=— ZA ModCTACG
0 —P— RZA 0dCTA-CC
—B— CTALC
ZA-CTA-CG
—¥— RZACTA-CG

— £ = 1]
——
-50
-60
0 100 200 300 400 500 600 700 800 900

iterations

Fig. 2. MSD of the network against the iterations number for distributed CTA
standard and sparsity-aware CG versions with A = 0.99, prz 4 = 0.5%x1074,
pza = 1072, e =0.1, v = 1072, 5 = 2/10. Number of CG iterations
J = 5. For modified versions A\ = 0.95, n = 0.55 ,pz4 = 0.7 % 104,
przA =02%1073, ¢ =0.1,y= 1072, S = 2/10.

—F— ModATCLG
—k— ZAModATCCG
3 —P— RZA-MOGATCCG ||
—6— ATG-CG
—&—ZAATCCO
—E— RZA-ATC-CG

o 100 200 300 400 500 600 700 800 900
iterations

Fig. 3. MSD of the network against the iteration’s number for distributed
ATC and sparse-aware CG versions with A = 0.99, pza = 0.5 % 104,
przA = 9%107%, ¢ = 0.1,y = 101, S = 2/10. Number of CG iterations
J = 5. For modified versions A = 0.95, n = 0.55 ,pz4 = 0.4 % 104,
pza=03%10"3,¢=0.1,y=10"1, S =2/10.

VI. CONCLUSIONS

In this work we proposed distributed CG algorithms for
parameter estimation over sensor networks as well as the
modified versions of them. The proposed ATC diffusion CG
algorithms have a faster convergence than the CTA. The ATC
strategy outperforms both consensus[ref] and CTA protocols.
In all cases, the modified versions obtained the low MSD val-
ues and faster convergence rate. Simulations have shown that
the proposed distributed CG algorithms are suitable techniques
for adaptive parameter estimation problems.
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