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_Abstract—This paper proposes a distributed alternating mixed [13], [14], [16]. Diffusion adaptation strategies incorpt
discrete-continuous (DAMDC) algorithm to approach the orale  jng sparsity constraints have been used to solve distdbute
algorithm based on the diffusion strategy for parameter and spectrum estimation problems in [13] and [14]. However,

spectrum estimation over sensor networks. A least mean sqtes - K distributed techni that h thel
(LMS) type algorithm that obtains the oracle matrix adaptively prior work on distributed techniques that approac elorac

is developed and compared with the existing sparsity-aware algorithm is rather limited, and adaptive techniques thptat
and conventional algorithms. The proposed algorithm exhiiis potential sparsity of signals using discrete and contisuou
improved performance in terms of mean square deviation and variables have not been developed so far.
power spectrum e§timation_accuracy. Numerical results she that In this work, we propose a sparsity-aware distributed al-
the DAMDC algom_hm_ achieves exce_”ent performance'_ _ ternating mixed discrete-continuous LMS (DAMDC-LMS)
Index Terms—Distributed processing, spectrum estimation, algorithm based on the diffusion adapt-then-combine (ATC)
oracle Algorithm, diffusion-LMS, sparsity-aware algorithms. protocol. We consider an alternating optimization strateigh
an LMS-type recursion along with a mapping from continuous
|. INTRODUCTION to discrete variables, which is used to find the actual non-
) _ _ zero values, and another LMS-type recursion that performs
ISTRIBUTED signal processing strategies are Venyontinuous adaptation. In particular, the proposed DAMDC-
promising tools for solving parameter estimation proh-\1s aigorithm is incorporated into a distributed spectrum

lems in wireless networks and applications such as seng@fimation strategy. DAMDC-LMS is compared with prior art
networks [1]-[3]. These techniques can exploit the spatig] 5 gistributed spectrum estimation application.
diversity available in a network of sensors to obtain insega T paper is organized as follows. Section Il describes

estimation accuracy and robustness against sensor failure o system model and the problem statement. Section III

Another set of tools for enhancing the performance of Sig”ﬁmlesents the proposed DAMDC-LMS algorithm. Section IV
processing algorithms is the exploitation of sparsity, kvon  yetails the proposed algorithm for an application to spectr
which initially dealt with centralized problems [4]-[11hd, egtimation. Section V presents and discusses the simulatio
more recently, has examined distributed techniques [1BL{ results. Finally, Section VI provides our conclusions.
[17]-{22] in several applications. A common strategy among Notation: In this paper, matrices and vectors are designated
the techniques reported so far is the development of adapty, poldface upper case letters and boldface lower casesgtte
algorithms such as the least mean squares (LMS) [6], [1})spectively. The superscript)’ denotes the Hermitian op-

[13]-{15], [17], [20], [21] and recursive least-squared. 8} erator, ||.||! refers to thel,-norm andE[] denotes expected
[8], [9], [18], [21] using different penalty functions. Sic \5),e.

penalty functions perform a regularization that attraotgero

the elements of the parameter vector with small magnitudes. || SysTeEmM MODEL AND PROBLEM STATEMENT
The most well-known and successful penalty functions are
the lp-norm [5], [8], thel;-norm [6] and the log-sum penalty

[4], [6]. The optimal algorithm for processing sparse sigha

is known as the oracle algorithm [11], which requires an
exhaustive search for the location of the non-zero coeffisie
followed by parameter estimation.

With the development and increasing deployment of mobile
networks, the frequency spectrum has become a resource that
should_ be _exploited in a judicious way to avo_id inte_rfe_rencgig 1. Network topology with nodeg.
By estimating the power spectrum with spatially distrilaite

sensors this resource can be planned and properly exploiteye consider a network that is partially connected and
L . _ _consists ofN nodes that exchange information among them-
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system parameter vectas, [1]. The desired signatl; ; at In order to computd?;, ; andwy, ; we must solve the mixed
each timei and nodek is drawn from a random process andliscrete-continuous non-convex optimization problem:
given by

* * _ . .
& Phir ki = cqand™,, coma CPri Ohi) (@)

fork=1,2,...,N,

H
dri = wy T, + Nk,

whereny ; is measurement noise.
We consider a distributed estimation problem for a networkhere
in which each agent has access at each time instant to a N

realization of zero-mean spatial d&té ;, x«;} [1], [3]. The Cpy i wri) Z Elld; — pl, W a2, (5)
goal of the network is to minimize the following cost functio " P

N . py.,; contains the elements of the main diagonalRf;, and
Clwii) =Y Elldei — diil*] TMx1 denotes the set af/-dimensional binary vectors with
1 values0 and1. Since the problem in (4) is NP-hard, we resort
H ) to an approach that assumgsg; is a real-valued continuous
Ellde,i —wizral’], for k=1,2,..., N, parameter vector for its computation and then map to
@) discrete values. The relations in (3) allow us to compute the
gradient of the cost function with respect g, ; and wy ;
By solving this minimization problem one can obtain thand their diagonal versionB),; and W;/,, respectively. The

optimum solution for the weight vector at each node. Fgjradient of the cost function with respectpq ; is given by
a network with possibly sparse parameter vectors, the cost

=
Il

I
M=

el
Il
—

8 * *
function might also involve a penalty function that expboity o C(ppsy i) = 5 (Eldk,i|2 _ (pg,iWk,iE[dk,imk,i])
sparsity. In what follows, we present a novel distributefLdi Pri
sion technique to approach the oracle algorithm and effigien +pt Wi Bz, Wh..ip,. ]

solve (2) under sparseness conditions.
@) P - E[dkszl]wkzpm)
Ill. PROPOSEDDAMDC-LMS ALGORITHM (6)

In this section, we detail the proposed distributed scherfR¢Pacing the expected values with instantaneous values, w
and DAMDC-LMS algorithm using the diffusion ATC strat- obtain

egy. The proposed scheme for each adeof the network is ¢ c _ 9 ( d T W* A xr

shown in Fig. 2. The output estimate of the proposed scheme P+ (Pri> i) Py [diil* = P Wi s s

is given by +pk,iWZ,imk,imkH,iWk,ipk,i @)
dyi = wi i Pritri = P Wi iTri 3) - dk,iwgiWk7ipk7i).

T * T *
= @k iWhiPri = ThiPriwis, Computing the gradient of the cost function with respect to
where the parameter vectar; ; is a column vector ofM Dy,i» WE obtain
coefficients related to the diagonal mat¥i, ; = diag(wy ;). R
The matrix Py, ; is a square diagonal matrix with/ elements  Vp, ,C(Py i Wki) = dp ;Wi i@r,i — d W @h
that is applied tp the input v_ec_tork_j and aims_t_o simulate + Wi, im}jiwk P (8)
the oracle algorithm by identifying the null positions ©f.

In order to obtain recursions fdP;, ; andwy, ; we compute
the stochastic gradient of the cost function in (2) with extp Grouping common terms, we arrive at
to both parameters, where the optimization®f ; involves
discrete variables andy ; deals with continuous variables. vpk,ic(pk,i’wk;i) = —(dk,z‘ - wfiWk,iPk Wik,
In particular, we develop an alternating optimization aamh
using an LMS type algorithm that consists of a recursion for
P, ; and another recursion fepy, ; that are employed in an
alternating fashion.

+ Wk zmk zwk sz zpk I

9)
+dkl T 1Wk iPk 1Wk 1mk z)v

wherep,m» is a real parameter vectop,; = pj ;. p,ﬁ{i =
;" = pk .- SinceW . ; is symmetric, i.e. Wi, = Wy,
we haveW !, = [W; ,|" = WL ]* = Wj_. The terms in
9) represent the sum of a vector and its conjugate:

V. C(Prirw,i) = — ((dkz — o Wi ) Wi
A

Fig. 2. Proposed adaptive scheme at néde A*

AMDC Algorithm

(10)



Applying the propertyd + A* = 2R(A), we have IV. DISTRIBUTED SPECTRUMESTIMATION USING THE

N DAMDC-LMS ALGORITHM
Vo, iMSE(pk_’i,wkﬂ-) =2R(A). (12) ) S
’ We now illustrate the use of DAMDC-LMS in distributed

The recursion to update the parameter vegipy is given by spectrum estimation, which aims to estimate the spectrum of
a transmitted signa¢ with NV nodes using a wireless sensor

Pi,it1 = Py, — 1Vp, ,MSE(p; ;, W) (12) network [3], [13], [14]. The power spectral density (PSD) of

= pp; + 20R(ep, @i W), the signals at each frequency denoted By (f) is given by
where the error signal is given by M .
5(f) = D bm(f)wom = by (f)wo, (22)
epp; = dii — paiwiflmk,i- (13) mZ:1 0
For the update of the parameter vectof, ;, we can apply where by(f) = [bi(f),...,ba(f)]T is the vector of basis
well-known adaptive algorithms. By computing the gradierftinctions evaluated at frequengy wo = [woz, ..., wonr] IS
of the cost function with respect w;, ,, we have a vector of weighting coefficients representing the tramsmi

N . T v power of the signat over each basis, antf is the number of
VCu; , (Pris i) = (i — g i Priwi 1) Prizri (14)  pagis functions. Fon/ sufficiently large, the basis expansion

The following LMS type recursion updates the parametét (22) can approximate well the spectrum. Possible choices
vectorwy, ;: for the set of basis function%bm(j“)}n]‘f:1 include rectangular
functions, raised cosines, Gaussian bells and splines [22]

Wil = Wk,i + peg ; Pr iy i, (15) We denote the channel transfer function between a transmit
where the error signal is given by, ; = dj.; — w;;F,iPk,iwf_l- node conveying the signaland receive nodg at time instant

The recursions fop, ; and wy,; using the ATC protocol 1 by Hi(f,1), and thus the PSD of the received signal observed

[1], [2] for k =1,2,..., N are then given by by node k can be expressed as
N 12 2
Pri1 = P + 20R(ep, 2l ;Wi i), (16) Op(f,i) = |Ij4k(f, DF@s(f) + vy ks
Phiit1 = Whi—1 T peg ; Pr i, i, 17) = Z |Hi(f5 )b (f)wom + V7 ks (23)
m=1
Whi= Y apy; (18) = b7, (F)wom + 02 1.
lEN},

where (16) and (17) are the adaptation step, and (18)W&ereby ;(f) = [ Hi(f,3)|2bm (f)]5=1 andvy ; is the noise
the combination step of the ATC protocol. The combiningower of the receiver at node o
coefficients of the latter are represented gy and should ~ Following the distributed model, at every iteratiorevery

comply with nodek measures the PSD(f,4) presented in (23) oveW.
frequency Sampleﬁj = fmzn : (fmaw _fmin)/Nc : fmamy for
> am =1, 1€ Nii,Vk. (19) j=1,...,N,, the desired signal is given by
lEN},
o o dr.i(j) = bi ;(f; 2 i 24
The strategy adopted in this work for thg. combiner is the ki(7) kalf3)wo + vn i+ ki) (24)
Metropolis rule [1] given by where the last term denotes the observation noise with zero
1 . . mean and variance? .. The noise power? , at the receiver
——————— if k#1[ are linked . o L o
= maz{[Ni[,INi[} N (20) of nodek can be estimated with high accuracy in a preliminary
M=y 1= > ap, fork=1 step using, e.g., an energy estimator over an idle band, and

LNk [k then subtracted from (24). A linear model is obtained from

In order to compute the discrete vecjar;, we rely on a sim- the measurements ové¥. contiguous channels
ple approach that maps the continuous variables into déscre
variables, which is inspired by the likelihood ascent appto dii = Bi,iwo + 1, (25)

adopted for detection problems in wireless communicatiogtere B, ; = [bl,(f;)]Ys, € RY*M, andn,, is a zero
5 5 J7153= ’ )

[23], [24]. The initial value at each node is an all-one vectnean random vector. Then we can introduce the cost function
(pk,O =1or Pk70 = I) The Wi.q vector is initialized as an for each agenk described by
all-zero vector @ o = 0 or W, o = 0). After each iteration

of (16), we obtain discrete values frgm ; using the following ~ C(wk.i) = Elldk,i — By iwk,il?), for k=1,...,N. (26)

rule form =1,..., M: Once we have the cost function, the DAMDC-LMS algorithm
m o _ L it pty >, 21) can _be applied_ by introdu_cing the discrete parameter vector
P,it+1 0, otherwise Dy.; IN (26), which results in

wherer is a threshold used to determine the positions of th@(wk,i,pk,i) = E[|dk_,i—Bk7iPk_,iwk7i|2], fork=1,...,N,
non-zero values of the parameter vectgr,. The goal is to (27)
approach the results of the oracle algorithm and an apgtepriwhere Py ; is the B x B diagonal matrix to exploit the
value for7 can be obtained experimentally. sparsity for a more accurate spectrum estimation. Intrioguc



the matrix P;, ; for exploiting sparsity in the recursions (16),

(17) and (18), we obtain fok =1,2,...., N: A\ R =
-0y —O— Oracle-ATC-LMS ||
* H IDfATCfLMS
Priy1 = Pr; + 2H§R(€pk,in7iWk_,i,1) sl R e |
. 1, if pm. >7, form=1,.... M 2ol , : : : ACS [14]
Adaptatio moo ' ki~ yeeey M, \
PREORY Prity { 0, otherwise g sl
Prit1 — Pki—1 + Mez,iPk,in,ia g ol
(28)
36 A A A A A 2
Combmamon{ Wi = ZleNk akPr,ipy ;- (29) il > :
The positions inp,, ; with ones indicate the information con- -asf §=9=_._.__._9_ o
tent at each node and sample of the signal. With this approach e
we can identify the positions of the non-zero coefficients of iterations

the frequency spectrum and achieve performance similar;f& 53.>< %SB f(;:R‘;'it”_b%t%dxsfgfgur eft'?gtfq'ofgrap"ﬁg’_zl?ﬂ?'
. . . . - ll — 9. s Plg — 9- ) - 1
that of the oracle algorithm as seen in the following sectiorg — 5, 3,5 = 50, ¢ = 0.1, SNR = 30dB, r = 1 and § = 8/50.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the ° 5D
DAMDC-LMS algorithm for distributed spectrum estimation S (R It
using sensor networks, where DAMDC-LMS is compared with ol [ || T8 Orecearcimg | |

existing algorithms. The results are shown in terms of thaime [ ]
square deviation (MSD), power and PSD estimation.

We consider a network witl20 nodes for estimating the
unknown spectrunw, and set the threshold to = 1, which
according to our studies obtained the best performance for
the scenarios under evaluation. Each iteration correspond
to a time instant. The results are averaged over 100 runs.
The nodes scari00 frequencies over the frequency axis, % o1 0z 03 04 0s
which is normallzed betweeq an.d L, anq useM = 50 Fig. 4. Distributed spectrum estiFrrrelqs;??gn. Parametgrs: 0.45, n = 0.5 x
non—overlapping rectangular basis functions to model thg-s g =3 %105, =1, f =50 and S = 8/50.
expansion of the spectrum [19]. The basis functions have
amplitudes equal ta. We assume that the unknown spectrum
wy Is examined over 8 basis functions, leading to a sparsity
ratio of S = 8/50. The power transmitted over each basis 0 True-specirum
function is set td).7 mW and noise variance is set 6a001. 028 e Oracteatc-Lus]
For distributed spectrum estimation, we have compared the e
proposed DADMC-LMS algorithm, the oracle ATC-LMS, the
RZA-ATC-LMS [13], thely-ATC-LMS [13], ACS [14] and the
standard ATC-LMS algorithms with the parameters optimized
We first measure the performance of the algorithms in terms
of MSD as shown in Fig. 3. The results show that DAMDC- 005
LMS outperforms standard and sparsity-aware algorithnas an I
exhibits performance close to that of the oracle algorithm,
provided that the step sizes are appropriately adjusted. 00% 200 400 A 600 300 1000

In a second example, we assess the PSD estimation Ref-5  poyer spectrum tracking. Parametgrss 0.45, 7 = 0.5 x 103
formance of the algorithms. Fig. 4 shows that the DAMDCy,, =3 x 1075, 8= 50, 7 = 1 and S = 8/50.
LMS algorithm is able to accurately estimate the spectrum
consistently with the oracle algorithm.

In order to verify the adaptation performance of DAMDC-
LMS, in Fig. 5 we evaluate the behavior of the PSD estimates V1. CONCLUSION
over an initially busy channel (th&-th channel in this case)
that ceases to be busy aftéf0 iterations, by comparing In this work, we have proposed a distributed sparsity-aware
the results achieved by the DAMDC-LMS and the oraclelgorithm for spectrum estimation over sensor networke Th
algorithms. We consider the same settings of the previoppoposed DADMC-LMS algorithm outperforms previously
example. The transmit power is sett@0 mW. We notice that reported algorithms. Simulations have shown that DADMC-
DADMC-LMS is able to more effectively track the spectruniMS can obtain lower MSD values and faster convergence
as compared to the oracle algorithm due to its rapid learnirthan prior art and close to that of the oracle algorithm.
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