
1

Distributed Spectrum Estimation Based on
Alternating Mixed Discrete-Continuous Adaptation
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Abstract—This paper proposes a distributed alternating mixed
discrete-continuous (DAMDC) algorithm to approach the oracle
algorithm based on the diffusion strategy for parameter and
spectrum estimation over sensor networks. A least mean squares
(LMS) type algorithm that obtains the oracle matrix adaptively
is developed and compared with the existing sparsity-aware
and conventional algorithms. The proposed algorithm exhibits
improved performance in terms of mean square deviation and
power spectrum estimation accuracy. Numerical results show that
the DAMDC algorithm achieves excellent performance.

Index Terms—Distributed processing, spectrum estimation,
oracle Algorithm, diffusion-LMS, sparsity-aware algorit hms.

I. I NTRODUCTION

D ISTRIBUTED signal processing strategies are very
promising tools for solving parameter estimation prob-

lems in wireless networks and applications such as sensor
networks [1]–[3]. These techniques can exploit the spatial
diversity available in a network of sensors to obtain increased
estimation accuracy and robustness against sensor failures.

Another set of tools for enhancing the performance of signal
processing algorithms is the exploitation of sparsity, work on
which initially dealt with centralized problems [4]–[11] and,
more recently, has examined distributed techniques [12]–[15],
[17]–[22] in several applications. A common strategy among
the techniques reported so far is the development of adaptive
algorithms such as the least mean squares (LMS) [6], [11],
[13]–[15], [17], [20], [21] and recursive least-squares (RLS)
[8], [9], [18], [21] using different penalty functions. Such
penalty functions perform a regularization that attracts to zero
the elements of the parameter vector with small magnitudes.
The most well-known and successful penalty functions are
the l0-norm [5], [8], thel1-norm [6] and the log-sum penalty
[4], [6]. The optimal algorithm for processing sparse signals
is known as the oracle algorithm [11], which requires an
exhaustive search for the location of the non-zero coefficients
followed by parameter estimation.

With the development and increasing deployment of mobile
networks, the frequency spectrum has become a resource that
should be exploited in a judicious way to avoid interference.
By estimating the power spectrum with spatially distributed
sensors this resource can be planned and properly exploited
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[13], [14], [16]. Diffusion adaptation strategies incorporat-
ing sparsity constraints have been used to solve distributed
spectrum estimation problems in [13] and [14]. However,
prior work on distributed techniques that approach the oracle
algorithm is rather limited, and adaptive techniques that exploit
potential sparsity of signals using discrete and continuous
variables have not been developed so far.

In this work, we propose a sparsity-aware distributed al-
ternating mixed discrete-continuous LMS (DAMDC-LMS)
algorithm based on the diffusion adapt-then-combine (ATC)
protocol. We consider an alternating optimization strategy with
an LMS-type recursion along with a mapping from continuous
to discrete variables, which is used to find the actual non-
zero values, and another LMS-type recursion that performs
continuous adaptation. In particular, the proposed DAMDC-
LMS algorithm is incorporated into a distributed spectrum
estimation strategy. DAMDC-LMS is compared with prior art
in a distributed spectrum estimation application.

This paper is organized as follows. Section II describes
the system model and the problem statement. Section III
presents the proposed DAMDC-LMS algorithm. Section IV
details the proposed algorithm for an application to spectrum
estimation. Section V presents and discusses the simulation
results. Finally, Section VI provides our conclusions.

Notation: In this paper, matrices and vectors are designated
by boldface upper case letters and boldface lower case letters,
respectively. The superscript(.)H denotes the Hermitian op-
erator,‖.‖1 refers to thel1-norm andE[·] denotes expected
value.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Fig. 1. Network topology withN nodes.

We consider a network that is partially connected and
consists ofN nodes that exchange information among them-
selves. Each nodek employs a parameter estimator and has
its neighborhood described by the setNk, as shown in Fig. 1.
The task of parameter estimation is to adjust anM ×1 weight
vectorωk,i at each nodek and timei based on anM×1 input
signal vectorxk,i and ultimately estimate an unknownM ×1
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system parameter vectorω0 [1]. The desired signaldk,i at
each timei and nodek is drawn from a random process and
given by

dk,i = ωH
0 xk,i + nk,i, (1)

wherenk,i is measurement noise.
We consider a distributed estimation problem for a network

in which each agentk has access at each time instant to a
realization of zero-mean spatial data{dk,i,xk,i} [1], [3]. The
goal of the network is to minimize the following cost function:

C(ωk,i) =

N∑

k=1

E[|dk,i − d̂k,i|
2]

=

N∑

k=1

E[|dk,i − ωH
k,ixk,i|

2], for k = 1, 2, . . . , N,

(2)

By solving this minimization problem one can obtain the
optimum solution for the weight vector at each node. For
a network with possibly sparse parameter vectors, the cost
function might also involve a penalty function that exploits
sparsity. In what follows, we present a novel distributed diffu-
sion technique to approach the oracle algorithm and efficiently
solve (2) under sparseness conditions.

III. PROPOSEDDAMDC-LMS A LGORITHM

In this section, we detail the proposed distributed scheme
and DAMDC-LMS algorithm using the diffusion ATC strat-
egy. The proposed scheme for each agentk of the network is
shown in Fig. 2. The output estimate of the proposed scheme
is given by

d̂k,i = ωH
k,iP k,ixk,i = pT

k,iW
∗
k,ixk,i

= xT
k,iW

∗
k,ipk,i = xT

k,iP k,iω
∗
k,i,

(3)

where the parameter vectorωk,i is a column vector ofM
coefficients related to the diagonal matrixW k,i = diag(ωk,i).
The matrixP k,i is a square diagonal matrix withM elements
that is applied to the input vectorxk,i and aims to simulate
the oracle algorithm by identifying the null positions ofω0.

In order to obtain recursions forP k,i andωk,i we compute
the stochastic gradient of the cost function in (2) with respect
to both parameters, where the optimization ofP k,i involves
discrete variables andωk,i deals with continuous variables.
In particular, we develop an alternating optimization approach
using an LMS type algorithm that consists of a recursion for
P k,i and another recursion forωk,i that are employed in an
alternating fashion.

P k,i ωk,i +

AMDC Algorithm

xk,i
d̂k,i

dk,i

ek,i

Fig. 2. Proposed adaptive scheme at nodek.

In order to computeP k,i andωk,i we must solve the mixed
discrete-continuous non-convex optimization problem:

p∗
k,i,ω

∗
k,i = min

pk,i∈IM×1, ωk,i∈CM×1

C(pk,i,ωk,i),

for k = 1, 2, . . . , N,
(4)

where

C(pk,i,ωk,i) =
N∑

k=1

E[|dk,i − pT
k,iW

H
k,ixk,i|

2], (5)

pk,i contains the elements of the main diagonal ofPk,i, and
IM×1 denotes the set ofM -dimensional binary vectors with
values0 and1. Since the problem in (4) is NP-hard, we resort
to an approach that assumespk,i is a real-valued continuous
parameter vector for its computation and then mappk,i to
discrete values. The relations in (3) allow us to compute the
gradient of the cost function with respect topk,i and ωk,i

and their diagonal versionsP k,i andWH
k,i, respectively. The

gradient of the cost function with respect topk,i is given by

∇pk,i
C(pk,i,ωk,i) =

∂

∂pk,i

(

E|dk,i|
2 − (pT

k,iW
∗
k,iE[d∗k,ixk,i])

+ pT
k,iW

∗
k,iE[xk,ix

H
k,iW k,ipk,i]

− E[dk,ix
H
k,i]W k,ipk,i

)

.

(6)

Replacing the expected values with instantaneous values, we
obtain

∇̂pk,i
C(pk,i,ωk,i) =

∂

∂pk,i

(

|dk,i|
2 − pT

k,iW
∗
k,id

∗
k,ixk,i

+ pT
k,iW

∗
k,ixk,ix

H
k,iW k,ipk,i

− dk,ix
H
k,iW k,ipk,i

)

.

(7)

Computing the gradient of the cost function with respect to
pk,i, we obtain

∇̂pk,i
C(pk,i,ωk,i) = d∗k,iW

∗
k,ixk,i − dk,iW

T
k,ix

∗
k,i

+W ∗
k,ixk,ix

H
k,iW k,ipk,i

+W T
k,ix

∗
k,ix

T
k,iW

H
k,ipk,i.

(8)

Grouping common terms, we arrive at

∇̂pk,i
C(pk,i,ωk,i) = −

(

dk,i − xH
k,iW k,ipk,iW k,ixk,i

+ dk,i − xT
k,iW

H
k,ipk,iW

T
k,ix

∗
k,i

)

,
(9)

wherepk,i is a real parameter vector,pk,i = p∗
k,i, pH

k,i =

[p∗
k,i]

T = pT
k,i. SinceW k,i is symmetric, i.e.,W T

k,i = W k,i,
we haveWH

k,i = [W ∗
k,i]

T = [W T
k,i]

∗ = W ∗
k,i. The terms in

(9) represent the sum of a vector and its conjugate:

∇̂pk,i
C(pk,i,ωk,i) = −

((
dk,i − xH

k,iW k,ipk,i

)
W ∗

k,ixk,i

︸ ︷︷ ︸

A

+
(
dk,i − xT

k,iW
H
k,ipk,i

)
W k,ix

∗
k,i

)

︸ ︷︷ ︸

A∗

.

(10)



3

Applying the propertyA+A∗ = 2ℜ(A), we have

∇̂pk,i
MSE(pk,i,ωk,i) = 2ℜ(A). (11)

The recursion to update the parameter vectorpk,i is given by

pk,i+1 = pk,i − η∇̂pk,i
MSE(pk,i,W k,i)

= pk,i + 2ηℜ(e∗pk,i
xH
k,iW k,i),

(12)

where the error signal is given by

epk,i
= dk,i − pT

k,iW i−1xk,i. (13)

For the update of the parameter vectorwk,i, we can apply
well-known adaptive algorithms. By computing the gradient
of the cost function with respect tow∗

k,i, we have

∇Cw
∗

k,i
(pk,i,wk,i) = (dk,i − xT

k,iP k,iω
∗
i−1)

∗P k,ixk,i (14)

The following LMS type recursion updates the parameter
vectorωk,i:

ωk,i+1 = ωk,i + µe∗k,iP k,ixk,i, (15)

where the error signal is given byek,i = dk,i−xT
k,iP k,iω

∗
i−1.

The recursions forpk,i and ωk,i using the ATC protocol
[1], [2] for k = 1, 2, . . . , N are then given by

pk,i+1 = pk,i + 2ηℜ(e∗pk,i
xH
k,iW k,i), (16)

ϕk,i+1 = ωk,i−1 + µe∗k,iP k,ixk,i, (17)

ωk,i =
∑

l∈Nk

alkϕl,i, (18)

where (16) and (17) are the adaptation step, and (18) is
the combination step of the ATC protocol. The combining
coefficients of the latter are represented byalk and should
comply with

∑

l∈Nk

alk = 1, l ∈ Nk,i, ∀k. (19)

The strategy adopted in this work for thealk combiner is the
Metropolis rule [1] given by

akl =







1

max{|Nk|,|Nl|}
if k 6= l are linked,

1−
∑

l∈Nk/k

akl, for k = l. (20)

In order to compute the discrete vectorpk,i, we rely on a sim-
ple approach that maps the continuous variables into discrete
variables, which is inspired by the likelihood ascent approach
adopted for detection problems in wireless communications
[23], [24]. The initial value at each node is an all-one vector
(pk,0 = 1 or P k,0 = I). Theωk,i vector is initialized as an
all-zero vector (ωk,0 = 0 or W k,0 = 0). After each iteration
of (16), we obtain discrete values frompk,i using the following
rule for m = 1, . . . ,M :

pmk,i+1 =

{
1, if pmk,i > τ,

0, otherwise,
(21)

whereτ is a threshold used to determine the positions of the
non-zero values of the parameter vectorpk,i. The goal is to
approach the results of the oracle algorithm and an appropriate
value forτ can be obtained experimentally.

IV. D ISTRIBUTED SPECTRUMESTIMATION USING THE

DAMDC-LMS A LGORITHM

We now illustrate the use of DAMDC-LMS in distributed
spectrum estimation, which aims to estimate the spectrum of
a transmitted signals with N nodes using a wireless sensor
network [3], [13], [14]. The power spectral density (PSD) of
the signals at each frequency denoted byΦs(f) is given by

Φs(f) =
M∑

m=1

bm(f)ω0m = bT0 (f)ω0, (22)

where b0(f) = [b1(f), ..., bM (f)]T is the vector of basis
functions evaluated at frequencyf , ω0 = [ω01, ..., ω0M ] is
a vector of weighting coefficients representing the transmit
power of the signals over each basis, andM is the number of
basis functions. ForM sufficiently large, the basis expansion
in (22) can approximate well the spectrum. Possible choices
for the set of basis functions{bm(f)}Mm=1

include rectangular
functions, raised cosines, Gaussian bells and splines [22].

We denote the channel transfer function between a transmit
node conveying the signals and receive nodek at time instant
i byHk(f, i), and thus the PSD of the received signal observed
by node k can be expressed as

Φk(f, i) = |Hk(f, i)|
2Φs(f) + υ2

n,k,

=

M∑

m=1

|Hk(f, i)|
2bm(f)ω0m + υ2

n,k,

= bTk,i(f)ω0m + υ2
n,k.

(23)

wherebTk,i(f) = [|Hk(f, i)|2bm(f)]Mm=1 andυ2
n,k is the noise

power of the receiver at nodek.
Following the distributed model, at every iterationi every

nodek measures the PSDΦk(f, i) presented in (23) overNc

frequency samplesfj = fmin : (fmax−fmin)/Nc : fmax, for
j = 1, ..., Nc, the desired signal is given by

dk,i(j) = b
T
k,i(fj)ω0 + υ2

n,k + nk,i(j), (24)

where the last term denotes the observation noise with zero
mean and varianceσ2

n,j . The noise powerυ2
n,k at the receiver

of nodek can be estimated with high accuracy in a preliminary
step using, e.g., an energy estimator over an idle band, and
then subtracted from (24). A linear model is obtained from
the measurements overNc contiguous channels

dk,i = Bk,iω0 + nk,i, (25)

whereBk,i = [bTk,i(fj)]
Nc

j=1
∈ RNc×M , andnk,i is a zero

mean random vector. Then we can introduce the cost function
for each agentk described by

C(ωk,i) = E[|dk,i −Bk,iωk,i|
2], for k = 1, . . . , N. (26)

Once we have the cost function, the DAMDC-LMS algorithm
can be applied by introducing the discrete parameter vector
pk,i in (26), which results in

C(ωk,i,pk,i) = E[|dk,i−Bk,iP k,iωk,i|
2], for k = 1, . . . , N,

(27)
where P k,i is the B × B diagonal matrix to exploit the
sparsity for a more accurate spectrum estimation. Introducing
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the matrixP k,i for exploiting sparsity in the recursions (16),
(17) and (18), we obtain fork = 1, 2, . . . , N :

Adaptation







pk,i+1 = pk,i + 2ηℜ(e∗pk,i
BH

k,iW k,i−1)

pmk,i+1
=

{
1, if pmk,i > τ, for m = 1, . . . ,M,

0, otherwise,
ϕk,i+1 = ωk,i−1 + µe∗k,iP k,iBk,i,

(28)

Combination
{

ωk,i =
∑

l∈Nk
alkP k,iϕl,i. (29)

The positions inpk,i with ones indicate the information con-
tent at each node and sample of the signal. With this approach,
we can identify the positions of the non-zero coefficients of
the frequency spectrum and achieve performance similar to
that of the oracle algorithm as seen in the following section.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the
DAMDC-LMS algorithm for distributed spectrum estimation
using sensor networks, where DAMDC-LMS is compared with
existing algorithms. The results are shown in terms of the mean
square deviation (MSD), power and PSD estimation.

We consider a network with20 nodes for estimating the
unknown spectrumω0 and set the threshold toτ = 1, which
according to our studies obtained the best performance for
the scenarios under evaluation. Each iteration corresponds
to a time instant. The results are averaged over 100 runs.
The nodes scan100 frequencies over the frequency axis,
which is normalized between0 and 1, and useM = 50
non−overlapping rectangular basis functions to model the
expansion of the spectrum [19]. The basis functions have
amplitudes equal to1. We assume that the unknown spectrum
ω0 is examined over 8 basis functions, leading to a sparsity
ratio of S = 8/50. The power transmitted over each basis
function is set to0.7 mW and noise variance is set to0.001.
For distributed spectrum estimation, we have compared the
proposed DADMC-LMS algorithm, the oracle ATC-LMS, the
RZA-ATC-LMS [13], thel0-ATC-LMS [13], ACS [14] and the
standard ATC-LMS algorithms with the parameters optimized.
We first measure the performance of the algorithms in terms
of MSD as shown in Fig. 3. The results show that DAMDC-
LMS outperforms standard and sparsity-aware algorithms and
exhibits performance close to that of the oracle algorithm,
provided that the step sizes are appropriately adjusted.

In a second example, we assess the PSD estimation per-
formance of the algorithms. Fig. 4 shows that the DAMDC-
LMS algorithm is able to accurately estimate the spectrum
consistently with the oracle algorithm.

In order to verify the adaptation performance of DAMDC-
LMS, in Fig. 5 we evaluate the behavior of the PSD estimates
over an initially busy channel (the16-th channel in this case)
that ceases to be busy after500 iterations, by comparing
the results achieved by the DAMDC-LMS and the oracle
algorithms. We consider the same settings of the previous
example. The transmit power is set to0.20 mW. We notice that
DADMC-LMS is able to more effectively track the spectrum
as compared to the oracle algorithm due to its rapid learning.
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VI. CONCLUSION

In this work, we have proposed a distributed sparsity-aware
algorithm for spectrum estimation over sensor networks. The
proposed DADMC-LMS algorithm outperforms previously
reported algorithms. Simulations have shown that DADMC-
LMS can obtain lower MSD values and faster convergence
than prior art and close to that of the oracle algorithm.
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