
60 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 1, JANUARY 2014

Robust Adaptive Beamforming Using
a Low-Complexity Shrinkage-Based
Mismatch Estimation Algorithm

Hang Ruan and Rodrigo C. de Lamare

Abstract—In this work, we propose a low-complexity robust
adaptive beamforming (RAB) technique which estimates the
steering vector using a Low-Complexity Shrinkage-Based Mis-
match Estimation (LOCSME) algorithm. The proposed LOCSME
algorithm estimates the covariance matrix of the input data and
the interference-plus-noise covariance (INC) matrix by using
the Oracle Approximating Shrinkage (OAS) method. LOCSME
only requires prior knowledge of the angular sector in which the
actual steering vector is located and the antenna array geometry.
LOCSME does not require a costly optimization algorithm and
does not need to know extra information from the interferers,
which avoids direction finding for all interferers. Simulations show
that LOCSME outperforms previously reported RAB algorithms
and has a performance very close to the optimum.

Index Terms—Covariance matrix shrinkage method, low com-
plexity methods, robust adaptive beamforming.

I. INTRODUCTION

I N APPLICATIONS like wireless communications, audio
signal processing, radar and microphone array processing,

adaptive beamforming has been intensively researched and
developed in the past years. However, under certain circum-
stances, adaptive beamformers suffer a performance degradation
due to several reasons which include short data records, the
presence of the desired signal in the training data, or imprecise
knowledge of the steering vector of the desired signal. In order
to improve the performance of adaptive beamformers in the
presence of steering vector mismatches, RAB techniques have
been developed. Different from the standard designs [1], the
design principles of RAB MVDR beamformers [6] include:
the generalized sidelobe canceller, diagonal loading [4], [5],
eigenspace projection, worst-case optimization [3], [14] and
steering vector estimation with presumed prior knowledge [7],
[8], [15], [16]. However, RAB designs based on these principles
have some drawbacks such as their ad hoc nature, high prob-
ability of subspace swap at low SNR and high computational
cost [7].
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Some recent design approaches have considered combining
different design principles together to improve RAB perfor-
mances. The algorithm which jointly estimates the mismatched
steering vector using Sequential Quadratic Program (SQP) [8]
and the interference-plus-noise covariance (INC) matrix using a
shrinkage method [10] has been reported recently. Later, another
similar approach which jointly estimates the steering vector
using SQP and the INCmatrix using a covariance reconstruction
method [11], presents outstanding performance compared to
other RAB techniques. However, the cost of the algorithm in
[11] is high due to the required matrix reconstruction process.
In this paper, we propose an RAB algorithm with low com-

plexity, which requires very little in terms of prior information,
and has a superior performance to previously reported RAB al-
gorithms. The proposed technique estimates the steering vector
using a Low-Complexity Shrinkage-Based Mismatch Estima-
tion (LOCSME) algorithm. LOCSME estimates the covariance
matrix of the input data and the INC matrix using the Oracle
Approximating Shrinkage (OAS)method. The only prior knowl-
edge that LOCSME requires is the angular sector in which the
desired signal steering vector lies. Given the sector, the sub-
space projection matrix of this sector can be computed in very
simple steps [7]–[11]. In the first step, an extension of the OAS
method [12] is employed to perform shrinkage estimation for
both the cross-correlation vector between the received data and
the beamformer output and the received data covariance ma-
trix. LOCSME is then used to estimate the mismatched steering
vector and does not involve any optimization program, which
results in a lower computational complexity. In a further step,
we estimate the desired signal power using the desired signal
steering vector and the received data. As the last step, a strategy
which subtracts the covariance matrix of the desired signal from
the data covariance matrix estimated by OAS is proposed to ob-
tain the INC matrix. The advantage of this approach is that it
circumvents the use of direction finding techniques for the inter-
ferers, which are required to obtain the INC matrix.
This paper is structured as follows. The system model is de-

scribed in Section II. In Section III, the proposed LOCSME al-
gorithm is presented. Section IV shows and discusses the simu-
lation results. Finally, Section V gives the conclusion.

II. SYSTEM MODEL

Consider a linear antenna array of sensors and narrow-
band signals received at th snapshot as expressed by

(1)

where presents the uncorrelated source signals,
is the vector containing the directions

of arrivals (DoAs), is
the matrix which contains the steering vector for each DoA and
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is the mismatch of the steering vector of the desired signal,
is assumed to be complex Gaussian noise with

zero mean and variance . The beamformer output is given by

(2)

where is the beamformer weight
vector, where denotes the Hermitian Transpose. The
optimum beamformer can be computed by maximizing the
signal-to-interference-plus-noise ratio (SINR) given by

(3)

Assume that the steering vector is known precisely ( ,
where is the desired signal power and is the INC ma-
trix, then problem (3) can be transformed into an optimization
problem

subject to
(4)

which is known as the MVDR beamformer or Capon beam-
former [1]. The optimum weight vector is given by

. Since is usually unknown in practice, it is es-

timated by the sample covariance matrix (SCM) of the received
data as

(5)

which will result in the Sample Matrix Inversion (SMI) beam-
former . However, the SMI beamformer re-
quires a large number of snapshots and is sensitive to steering
vector mismatches [10], [11].

III. PROPOSED LOCSME ALGORITHM

In this section, the proposed LOCSME algorithm is intro-
duced. The idea of LOCSME is to estimate the steering vector
and the INC matrix separately as in previous approaches. The
estimation of the steering vector is described as the projection
onto a predefined subspace matrix of an iteratively shrinkage-es-
timated cross-correlation vector between the beamformer output
and the array observation. The INC matrix is obtained by sub-
tracting the desired signal covariance matrix from the data co-
variance matrix estimated by the OAS method.

A. Steering Vector Estimation Using LOCSME

The cross-correlation between the array observation vector
and the beamformer output can be expressed as

(6)

We assume that for , all signal
sources and the noise have zero mean, and the desired signal and
every interferer are independent from each other. By substituting

(1) and (2) into (6), we suppose the interferers are sufficiently
canceled such that they fall much below the noise floor and the
desired signal power is not affected by the interference so that
can be rewritten as

(7)

In order to eliminate the unwanted part of and obtain an esti-
mate of the steering vector , can be projected onto a subspace
[9] that collects information about the desired signal. Here the
prior knowledge amounts to providing an angular sector range
in which the desired signal is located, say . The
subspace projection matrix is given by

(8)

where are the principal eigenvectors vectors of the
matrix , which is defined by [8]

(9)

At this point, LOCSMEwill use the OASmethod to compute the
correlation vector iteratively. The aim is to devise a method
that estimates more accurately with the help of the shrinkage
technique. An accurate estimate of can help to obtain a better
estimate of the steering vector. Let us define

(10)

where and . Then, a reasonable
tradeoff between covariance reduction and bias increase can be
achieved by shrinkage of towards [12] and subsequently
using it in a vector shrinkage form, which results in

(11)

which is parameterized by the shrinkage coefficient . If we de-
fine then the goal is to find the optimal value of
that minimizes the mean square error (MSE) of

in the th snapshot, which leads to (12) and (13), shown
at the bottom of the page, where the derivation is shown in the
Appendix and is the sample correlation vector (SCV) given
by

(14)

As long as the initial value of is between 0 and 1, the itera-
tive process in (12) and (13) is guaranteed to converge [12]. Once
the correlation vector is obtained by the above OAS method,
the steering vector is estimated by

(15)

where gives the final estimate of the steering vector.

(12)

(13)
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B. Interference-Plus-Noise Covariance Matrix Estimation

In order to estimate the INCmatrix, the data covariancematrix
(which contains the desired signal) is required. The SCM in (5)
is necessary as a preliminary approximation. In the next step,
similar to using OAS to estimate the cross-correlation vector ,
the SCM is also processed with the OAS method as a further
shrinkage estimation step. Let us define the following quantity

(16)

where . Then, we use the shrinkage form again

(17)

By minimizing the MSE described by ,
we obtain the following recursion

(18)

(19)

Provided that , the iterative process in (18) and
(19) is guaranteed to converge [12]. In order to eliminate the un-
wanted information of the desired signal in the covariancematrix
and obtain the INC matrix, the desired signal power must be
estimated. Let us rewrite the received data as

(20)

Pre-multiplying the above equation by , we have

(21)

Assuming that is uncorrelated with the interferers, we obtain

(22)

Taking the expectation of , we obtain

(23)

If the noise is statistically independent of the desired signal, we
have

(24)

where is the desired signal power which can be replaced by
its estimate , represents the noise covariance matrix
which can be replaced by . Replacing by its estimate

the desired signal power estimate is given by

(25)

As the last step, the desired signal covariancematrix is subtracted
and the INC matrix is given by

(26)

The advantage of this step compared to SMI and existing
methods is that it does not require direction finding and is

TABLE I
PROPOSED LOCSME ALGORITHM

suitable for real-time applications. With the estimates for the
steering vector and the INC matrix, the beamformer is computed
by

(27)

Table I summarizes LOCSME in steps. From a complexity point
of view, the main computational cost is due to the following
steps: SCM of the observation data, OAS estimation for SCM,
norm computations of the covariance matrix and the INC ma-
trix. Each of these steps has a complexity of . Addition-
ally, compared to the previous RAB algorithms in [7], [8], [10]
and [11] which have complexity equal or higher than ,
LOCSME has a lower cost ( ).

IV. SIMULATIONS

In our simulations, a uniform linear array (ULA) of
omnidirectional sensors with a spacing of half wavelength

is considered. Three source signals include the desired signal
which is presumed to arrive at and two interferers
which are impinging on the antenna array from directions

and . The signal-to-interference ratio (SIR) is fixed
at 20 dB. Only one iteration is performed per snapshot and we
employ snapshots and 100 repetitions to obtain each point
of the curves. The beamformer computed with LOCSME is com-
pared to existing beamformers in terms of the output SINR. For
the beamformers of [7], [8], [10], [11] and the beamformer with
LOCSME, the angular sector is chosen as and

principal eigenvectors are used. The number of eigenvec-
tors of the subspace projectionmatrix is selectedmanually with
the help of simulations. For the beamformers of [7], [8], [10] and
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Fig. 1. SINR versus snapshots.

[11] which also require an optimization technique, the CVX soft-
ware is used. The SINR performance versus snapshots and SNR
of the algorithms is shown in Figs. 1 and 2 and the number of
snapshots is 50 for the SINR versus SNR plots. The average ex-
ecution time of the algorithms in [7], [8], [10] and [11] is around
0.3 sec/snapshot, while LOCSME only requires 0.021 sec/snap-
shot.

A. Mismatch due to Coherent Local Scattering

In this case, the steering vector of the desired signal is affected
by a local scattering effect and modeled as

(28)

where corresponds to the direct path while
corresponds to the scattered paths. The angles
are randomly and independently drawn in each simulation run
from a uniform generator with mean and standard deviation
. The angles are independently and uniformly

taken from the interval in each simulation run. Notice that
and change from trials while remaining constant over snap-

shots [3]. Figs. 1(a) and 2(a) illustrate the SINR performance
versus snapshots and SNR under the coherent scattering case.
LOCSME outperforms the other algorithms and is close to the
optimum SINR.

B. Mismatch due to Incoherent Local Scattering

In the incoherent local scattering case, the desired signal has
a time-varying signature and the steering vector is modeled by

(29)

where are i.i.d zero mean complex
Gaussian random variables independently drawn from a random
generator. The angles are drawn indepen-
dently in each simulation run from a uniform generator with
mean and standard deviation . This time, changes
both from run to run and from snapshot to snapshot. Figs. 1(b)
and 2(b) depict the SINR performance versus snapshots and
SNR. Compared to the coherent scattering results, all the
algorithms have a performance degradation due to the effect
of incoherent local scattering. However, LOCSME is able to
outperform the remaining robust beamformers over a wide

Fig. 2. SINR versus SNR.

range of input SNR. The reason for the improved performance
of LOCSME is the combined use of accurate estimates of the
INC matrix and of the steering vector mismatch.
Further testing with a larger number of antenna array elements

indicates that the performance of all algorithms degrades (e.g.
LOCSME has around 2 dB degradation when ). In ad-
dition, inappropriate choice for the angular sector in which the
desired signal is assumed to be located will lead to obvious per-
formance degradation.

V. CONCLUSION

We have proposed LOCSME that only requires prior knowl-
edge of the angular sector of the desired signal and is less costly
than existing methods. Simulation results have shown that
LOCSME outperforms prior art in both coherent local scattering
and incoherent local scattering cases.

APPENDIX

Derivation of : Equation (12) can be rewritten in an alter-
native way in matrix version as .
By using (10), then the shrinkage intensity can be computed
from the following optimization problem

subject to (30)

Since , the objective function in (30) can
be rewritten as

[13]. The optimal value of is obtained as the
solution to a problem that does not depend on as given by

, which can be solved by computing

the partial derivative of the argument with respect to and
equating the terms to zero. By substituting the optimal value of

into (30), computing the partial derivative of the argument
with respect to , equating the terms to zero and solving for
, we obtain

(31)

By further Gaussian assumptions as in [12], replacing by
its estimate and the data sample number by the snapshot
index , equation (13) can be obtained.
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