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Reduced-Rank DOA Estimation Algorithms Based
on Alternating Low-Rank Decomposition

Linzheng Qiu, Yunlong Cai, Rodrigo C. de Lamare, and Minjian Zhao

Abstract—In this work, we propose an alternating low-rank
decomposition (ALRD) approach and novel subspace algorithms
for direction-of-arrival (DOA) estimation. In the ALRD scheme,
the decomposition matrix for rank reduction consists of a set
of basis vectors. A low-rank auxiliary parameter vector is then
employed to compute the output power spectrum. Alternating
optimization strategies based on recursive least squares (RLS),
denoted as ALRD-RLS and modified ALRD-RLS (MARLD-
RLS), are devised to compute the basis vectors and the auxiliary
parameter vector. Simulations for large sensor arrays with both
uncorrelated and correlated sources are presented, showing that
the proposed algorithms are superior to existing techniques.

Index Terms—DOA estimation, low-rank decomposition, pa-
rameter estimation.

I. INTRODUCTION

Array signal processing has been widely used in areas such
as radar, sonar and wireless communications. Many applica-
tions related to array signal processing require the estimation
of the direction-of-arrival (DOA) of the sources impinging on
a sensor array [1]. Among the well-known DOA estimation
schemes are the Capon method and subspace-based algorithms
[2] such as Multiple-Signal Classification (MUSIC) [3] and
Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [4]. The Capon method calculates the
output power spectrum for each scanning angle according to
the constrained minimum variance (CMV) criterion. Then the
estimated DOAs can be obtained by finding the peaks of
the output power spectrum [5]. MUSIC, ESPRIT and their
improved versions [6]–[11] estimate the DOAs by exploiting
the signal and the noise subspaces of the signal correlation
matrix. Due to the eigenvalue decomposition (EVD) and/or
the singular-value decomposition (SVD), MUSIC and ESPRIT
require a high computational cost, especially for large sensor
arrays. The recently proposed subspace-based auxiliary vector
(AV) [12], the conjugate gradient (CG) [13] and the joint iter-
ative optimization (JIO) algorithms [14] employ basis vectors
to build the signal subspace instead of the EVD or the SVD.
However, the iterative construction of the basis vectors yields
a complexity comparable to the EVD. Moreover, the AV and
CG algorithms cannot provide a satisfactory performance for
large sensor arrays with many sources.

L. Qiu, Y. Cai and M. Zhao are with the Department of Information
Science and Electronic Engineering, Zhejiang University, Hangzhou, China,
310027. R. C. de Lamare is with CETUC, PUC-Rio Rua Marques de So
Vicente, 22493-900 Rio de Janeiro, Brazil and University of York, Heslington,
YO10 5DD, York, England, United Kingdom. Email: lzqiu@zju.edu.cn,
ylcai@zju.edu.cn, rcdl500@ohm.york.ac.uk, mjzhao@zju.edu.cn.

This work was supported in part by CNPq and FAPERJ, Brazil, the National
Natural Science Foundation of China under Grants 61471319, Zhejiang
Provincial Natural Science Foundation of China under Grant LY14F010013,
the Fundamental Research Funds for the Central Universities, and the National
High Technology Research and Development Program (863 Program) of
China under Grant 2014AA01A707.

The performance of direction finding algorithms depends
on the data record and the array size. Resorting to larger
data records leads to higher estimation performance. However,
large data records are not always available in wireless envi-
ronments that change rapidly. Nowadays, large sensor arrays
have gained importance for applications such as radar and
future communication systems. Nevertheless, direction finding
for large sensor arrays is associated with high computational
costs. In this regard, the development of low-complexity DOA
estimation algorithms for large sensor arrays and scenarios
with short data records is an important research problem.

In this paper, we present an alternating low-rank1 de-
composition (ALRD) approach for DOA estimation in large
sensor arrays with a large number of sources. In the ALRD
scheme, a subspace decomposition matrix which consists of
a set of basis vectors and an auxiliary low-rank parameter
vector are employed to compute the output power spectrum.
In order to avoid matrix inversions, we develop recursive
least squares (RLS) type algorithms [15] to compute the basis
vectors and the auxiliary parameter vector, which reduces
the computational complexity. The proposed DOA estimation
algorithms are referred to as ALRD-RLS and modified ALRD-
RLS (MALRD-RLS), which employs a single basis vector.
Simulations show that the proposed ALRD-RLS and MALRD-
RLS algorithms achieve superior performance to existing
techniques for large arrays with short data records.

The paper is organized as follows. In Section II, we outline
the system model and the problem of DOA estimation. The
proposed ALRD scheme and algorithms are presented in Sec-
tion III. In Section IV, we illustrate and discuss the simulation
results. Finally, Section V concludes this work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a uniform linear array (ULA) with M omni-
directional sensor elements and suppose that K narrowband
source signals impinge on the ULA from directions θ1, θ2, ...,
θK , respectively, where M is a large number with K � M .
The ith snapshot of the received signal can be expressed by
an M × 1 vector as

r(i) =

K∑
k=1

a(θk)bk(i) + n(i), (1)

where bk(i) is the kth source signal with power σ2
b . The vector

n(i) is noise vector, which is assumed to be temporally and
spatially white Gaussian with zero mean and variance σ2

n. The
array steering vector a(θk) is defined as

a(θk) = [1, e−2πj
ds
λc

cos θk , ..., e−2πj(M−1)
ds
λc

cos θk ]T , (2)

1A low-rank parameter vector arises from the solution of a low-rank system
of equations. This rank also corresponds to the dimension or length of the
parameter vector.
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where (·)T denotes the transpose operation and λc is the signal
wavelength. The parameter ds = λc

2 represents the array inter-
element spacing. Direction finding algorithms aim to estimate
the DOAs θ = [θ1 . . . θK ]T by processing r(i). The correlation
matrix of r(i) is given by

R = E{r(i)rH(i)} =

K∑
k=1

a(θk)Rb,ka
H(θk) + σ2

nIM , (3)

where E{·} denotes expectation, (·)H is the Hermitian op-
erator and IM is an identity matrix with dimension M .
Rb,k = E{bk(i)bHk (i)} is the correlation matrix of the kth
signal. Rn = E{n(i)nH(i)} = σ2

nIM is the correlation matrix
of the noise vector. Note that the exact knowledge of R
is difficult to obtain, thus estimation by sample averages is
employed in practice, which employs R̂ = 1

N

∑N
i=1 r(i)rH(i),

with N being the number of available snapshots.

III. PROPOSED ARLD SCHEME ALRD-RLS AND
MALRD-RLS ALGORITHMS

In this section, we detail the proposed ALRD scheme and
the ALRD-RLS and MALRD-RLS DOA estimation algo-
rithms. The ALRD scheme divides the received vector into
several segments and processes each segment with an indi-
vidual basis vector. The basis vectors constitute the columns
of the decomposition matrix, which performs dimensionality
reduction. Then, a lower dimensional data vector is processed
by the auxiliary parameter vector to construct the output power
spectrum. The ARLD-RLS and the MARLD-RLS algorithms
are based on an alternating optimization procedure of the basis
vectors and the reduced-rank auxiliary parameter vector.
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Fig. 1. Block diagram of the ALRD scheme

A. Proposed ALRD Scheme

The block diagram of the ALRD scheme is depicted in
Fig. 1. The received vector r(i) = [r0(i) . . . rM−1(i)]T is
processed by an M × D decomposition matrix T(i), which
is constructed by a set of I × 1 basis vectors sd(i), where
d ∈ {1, . . . , D}. The D × 1 reduced-rank data vector can be
expressed by

r̄D(i) = TH(i)r(i) =

D∑
d=1

qdd
H
d R(i)s∗d(i), (4)

where qd is a D×1 vector with a one in the dth position and
zeros elsewhere. dd is the M × 1 selection vector to divide
r(i) into D segments, which are defined as:

dd = [ 0 , . . . , 0︸ ︷︷ ︸
µd zeros

, 1 , 0 , . . . , 0︸ ︷︷ ︸
M−µd−1 zeros

]T , (5)

where µd is the selection pattern chosen as µd = (d−1)bMD c.
Then the dth column of T(i) can be described as

td(i) = [ 0 , . . . , 0︸ ︷︷ ︸
µd zeros

, sTd (i) , 0 , . . . , 0︸ ︷︷ ︸
M−µd−I zeros

]T . (6)

The M×I matrix R(i) with the samples of r(i) has a Hankel
structure [16], which is described by

R(i) =


r0(i) r1(i) ... rI−1(i)

...
... ...

...
rM−I(i) rM−I+1(i) ... rM−1(i)
rM−I+1(i) rM−I+2(i) ... 0

...
...

. . .
...

rM−1(i) 0 0 0

 . (7)

After dimensionality reduction, r̄D(i) is processed by a D×1
auxiliary parameter vector ω̄(i) to compute the output power
spectrum. As seen from Fig. 1, sd(i) and ω̄(i) are alternately
optimized according to a prescribed criterion, which is intro-
duced in what follows.

B. Proposed ALRD-RLS DOA Estimation Algorithm
The ALRD-RLS algorithm based on the CMV criterion

solves the optimization problem:

min
ω̄(i),sd(i)

i∑
l=1

αi−l
∣∣ω̄H(i)

D∑
d=1

qdd
H
d R(l)s∗d(i)

∣∣2
subject to ω̄H(i)

D∑
d=1

qdd
H
d Ans∗d(i) = 1

, (8)

where α is a forgetting factor close to but smaller than 1 [15].
An is the M×I Hankel matrix of the scanning steering vector
a(θn) = [a0(θn) . . . aM−1(θn)]T , which is given by

An(i) =


a0(θn) a1(θn) ... aI−1(θn)

...
... ...

...
aM−I(θn) aM−I+1(θn) ... aM−1(θn)
aM−I+1(θn) aM−I+2(θn) ... 0

...
...

. . .
...

aM−1(θn) 0 0 0

 . (9)

The optimization problem in (8) can be solved by the method
of Lagrange multipliers whose Lagrangian is described by

L(i) =

i∑
l=1

αi−l
∣∣ω̄H(i)

D∑
d=1

qdd
H
d R(l)s∗d(i)

∣∣2
+ 2R{λ[ω̄H(i)

D∑
d=1

qdd
H
d Ans∗d(i)− 1]},

(10)

where R{·} selects the real part of the argument. By taking
the gradient of (10) with respect to sd(i), we obtain
∂L(i)

∂sd(i)
=

i∑
l=1

αi−lRH(l)ddq
H
d ω̄(i)ω̄H(i)qdd

H
d R(l)s∗d(i)

+

i∑
l=1

αi−lRH(l)ddq
H
d ω̄(i)ω̄H(i)

D∑
j 6=d

qjd
H
j R(l)s∗j (i)

+ λ∗AH
n ddq

H
d ω̄(i).

(11)
By equating (11) to zero and solving for sd(i), we have

sd(i) = −R−1s,d(i)

D∑
j 6=d

Ps,j(i)− λR−1s,d(i)A
T
nddq

H
d ω̄
∗(i).

(12)
where
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Rs,d(i) =

i∑
l=1

αi−lRT (l)ddq
H
d ω̄
∗(i)ω̄T (i)qdd

H
d R∗(l),

(13)

Ps,j(i) =

i∑
l=1

αi−lRT (l)ddq
H
d ω̄
∗(i)ω̄T (i)qjd

H
j R∗(l)sj(i).

(14)
Substituting (12) into (8), we obtain the Lagrange multiplier:

λ =

D∑
j 6=d

qHj ω̄(i)dHd A∗nsj(i− 1)− 1−
∏∏∏

(i)R−1
s,d(i)

D∑
j 6=d

Ps,j(i)∏∏∏
(i)R−1

s,d(i)
∏∏∏H

(i)
,

(15)
where

∏∏∏
(i) = qHd ω̄(i)dHd A∗n. Based on (12) and (15), we

obtain the dth basis vector sd(i).
Next we consider the update of R−1s,d(i). By applying the

matrix inversion lemma [15] to (13), we obtain

gs,d(i) =
R−1
s,d(i− 1)RT (i)dd

αβ + dHd R∗(i)R−1
s,d(i− 1)RT (i)dd

, (16)

R−1s,d(i) = α−1R−1s,d(i−1)−α−1gs,d(i)dHd R∗(i)R−1s,d(i−1),
(17)

where β = (qHd ω̄
∗(i)ω̄T (i)qd)

−1. As with Ps,j(i), we obtain
it through iterations:

Ps,j(i) = αPs,j(i−1)+RT (i)ddq
H
d ω̄∗(i)ω̄T (i)qjd

H
j R∗(i)sj(i).

(18)
By employing (12)-(18), we can update sd(i) for d ∈
{1, . . . , D}. Given the values of sd(i), we can compute
ω̄(i). Defining ā(i) =

∑D
d=1 qdd

H
d Ans∗d(i) and r̄D(l) =∑D

d=1 qdd
H
d R(l)s∗d(i), (8) can be modified as

min
ω̄(i)

i∑
l=1

αi−l
∣∣ω̄H(i)r̄D(l)

∣∣2 subject to ω̄H(i)ā(i) = 1.

(19)
Solving for ω̄(i), we have

gD(i) =
R−1D (i− 1)r̄D(i)

α+ r̄HD(i)R−1D (i− 1)r̄D(i)
, (20)

R−1D (i) = α−1R−1D (i−1)−α−1gD(i)r̄HD(i)R−1D (i−1), (21)

ω̄(i) =
R−1D (i)ā(i)

āH(i)R−1D (i)ā(i)
, (22)

where R−1D (i) =
∑i
l=1 α

i−lr̄D(l)r̄HD(l). Based on the pre-
vious derivations, we calculate the output power for each
scanning angle θn:

P (θn) =

i∑
l=1

αi−l
∣∣ω̄H(i)r̄D(l)

∣∣2 =
1

āH(i)R−1D (i)ā(i)
. (23)

By selecting the peaks of the output power spectrum, we can
obtain the estimated values of the DOAs. The ALRD-RLS
algorithm is summarized in Table I.

C. Proposed MALRD-RLS DOA Estimation Algorithm
By examining the structure of the ALRD scheme, we

can reduce its computational cost by using a single basis
vector in the decomposition matrix. From this observation,
we devise a modified version of the ALRD-RLS algorithm,
i.e., the MALRD-RLS algorithm. Specifically, the column-
s of the decomposition matrix T(i) in the MALRD-RLS

TABLE I
THE ALRD-RLS DOA ESTIMATION ALGORITHM.

1 Set N and α
2 For each scanning angle θn do
3 Initialize R−1

s,d(0), Ps,j(0), sd(0), ω̄(0)

4 For each snapshot i (i = 1, . . . , N ) do
5 For each basis d (d = 1, . . . , D) do
6 Update sd(i) based on (12)-(18)
7 Update ω̄(i) based on (20)-(22)
8 Calculate the output power P (θn) = (āH(N)R−1

D (N)ā(N))−1

9 Estimate the DOA θ̂ = arg maxθn P (θn)

algorithm are formed by the same basis vector s(i), i.e.,
td(i) = [ 0 , . . . , 0︸ ︷︷ ︸

µd zeros

, sT (i) , 0 , . . . , 0︸ ︷︷ ︸
M−µd−I zeros

]T . Subsequently,

r̄D(i) = QR(i)s∗(i), where Q =
∑D
d=1 qdd

H
d . Therefore,

the optimization problem solved by the MALRD-RLS algo-
rithm is given by

min
ω̄(i),s(i)

i∑
l=1

αi−l
∣∣ω̄H(i)QR(l)s∗(i)

∣∣2
subject to ω̄H(i)QAns∗(i) = 1

. (24)

This problem can be solved by following the same procedure
as in the ALRD-RLS algorithm. Firstly, we construct the
Lagrangian function as

L(i) =

i∑
l=1

αi−l
∣∣ω̄H(i)QR(l)s∗(i)

∣∣2
+ 2R{λ[ω̄H(i)QAns∗(i)− 1]}

. (25)

Secondly, we take the gradient of (25) with respect to s(i),
set the result to zero and solve for s(i). The update equation
of s(i) is given by

s(i) =
R−1s (i)AT

nQT ω̄∗(i)

ω̄T (i)QA∗nR−1s (i)AT
nQT ω̄∗(i)

, (26)

where Rs(i) =
∑i
l=1 α

i−lRT (l)QT ω̄∗(i)ω̄T (i)QR∗(l).
The matrix R−1s (i) can be computed as:

gs(i) =
R−1s (i− 1)RT (i)QT ω̄∗(i)

α+ ω̄T (i)QR∗(i)R−1s (i− 1)RT (i)QT ω̄∗(i)
,

(27)
R−1
s (i) = α−1R−1

s (i− 1)− α−1gs(i)ω̄
T (i)QR∗(i)R−1

s (i− 1).
(28)

Next, we discuss the update of ω̄(i). By redefining ā(i) =
QAns∗(i), the cost function for the update of ω̄(i) is the
same as that in (19). Hence ω̄(i) can also be constructed by
(20)-(22) in the MALRD-RLS algorithm.

TABLE II
THE MALRD-RLS DOA ESTIMATION ALGORITHM.

1 Set N and α
2 For each scanning angle θn do
3 Initialize R−1

s (0), s(0), ω̄(0)
4 For each snapshot i (i = 1, . . . , N ) do
5 Update s(i) based on (26)-(28)
6 Redefine ā(i) = QAns∗(i) and update ω̄(i) based on (20)-(22)
7 Calculate the output power P (θn) = (āH(N)R−1

D (N)ā(N))−1

8 Estimate the DOA θ̂ = arg maxθn P (θn)

After the update of s(i) and ω̄(i), we calculate the output
power spectrum based on (23). The peaks of the power
spectrum are the estimated DOAs. A brief summary of the
MALRD-RLS algorithm is illustrated in Table II.
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D. Computational Complexity
Here we detail the computational complexity of the pro-

posed ALRD-RLS and MALRD-RLS algorithms and several
existing DOA estimation algorithms. ESPRIT uses an EVD of
R, which has complexity of O(M3). MUSIC employs both
the EVD and grid search, resulting in a cost of O(M3 +
(180/4)M2), with4 being the search step. Matrix inversions
and grid searches are essential for Capon, whose complexity
is O(M3 + (180/4)M2). For the AV and CG algorithms, the
construction of the basis vectors leads to a complexity which
is higher than that of the ESPRIT algorithm [12] [13]. The
JIO-RLS algorithm has a cost of O((180/4)N(M2 + D2)),
with D being the length of the reduced-rank received vector.
ALRD-RLS avoids the EVD, the matrix inversion and the
construction of the transformation matrix, and the update of
D basis vectors and an auxiliary parameter vector requires
O((180/4)N(DI2+D2)). MALRD-RLS only uses one basis
vector and costs O((180/4)N(I2 +D2)). The computational
complexity of the analyzed algorithms is depicted in Table III.
Even in a large sensor array, I and D are small numbers, with
I � M and D � M , the cost of ALRD-RLS and MALRD-
RLS can be less than those of the existing algorithms.

TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITY.

Algorithm Complexity
ESPRIT [4] O(M3)
MUSIC [3] O(M3 + (180/4)M2)
Capon [5] O(M3 + (180/4)M2)
AV [12] O((180/4)KM2)
CG [13] O((180/4)KM2)

JIO-RLS [14] O((180/4)N(M2 +D2))
ALRD-RLS O((180/4)N(DI2 +D2))

MALRD-RLS O((180/4)N(I2 +D2))

IV. SIMULATIONS

In this section, we evaluate the ALRD-RLS and MALRD-
RLS algorithms through simulations. A ULA with M = 60
elements is adopted in the experiments. K = 15 narrowband
source signals impinge on the ULA from directions θk, k ∈
{1, · · · ,K}, with 2 of them being correlated and the others
uncorrelated. The separation between θk and θk+1 is assumed
to be 3o. The correlated sources are generated as follows:

b1 ∼ N (0, σ2
b ) and b2(i) = %b1(i) +

√
1− %2e(i), (29)

where e ∼ N (0, σ2
b ). % is the correlation coefficient fixed as

0.7 in this work. We assume that a small number of snapshots
are available and set N = 20 in the simulations. The source
signals are modulated by a binary phase shift keying (BPSK)
scheme, 13 out of 15 sources have powers σ2

b = 1, one with
power σ2

b = 2, another with power σ2
b = 4. The search step

is chosen as 0.3◦ for the algorithms based on grid search. In
each experiment, L = 100 independent Monte Carlo runs are
conducted to obtain the curves.

In the first experiment we assess the effects of D and I
in terms of root mean square error (RMSE) performance of
the proposed algorithms, which is calculated as RMSE =√

1
LK

∑L
l=1

∑K
k=1(θ̂k,l − θk,l)2 . We investigate the RMSE of

the ALRD-RLS and MALRD-RLS algorithms with an input
signal-to-noise ratio (SNR) of 5dB. Simulation result in Fig.
2 shows that the performance gets better for both the ALRD-
RLS and MALRD-RLS algorithms as D and I become larger.

Nevertheless, when D is greater than 7, the performance gain
becomes negligible, especially for MALRD-RLS. Considering
that larger D and I lead to a higher computational cost, we
choose I = 12, D = 5 for both algorithms to achieve an
attractive tradeoff between performance and complexity.
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Fig. 2. RMSE versus I for different Ds for proposed algorithms. (a)
ALRD-RLS (b) MALRD-RLS

We then evaluate the RMSE performance of the analyzed
algorithms. We compare ALRD-RLS and MALRD-RLS with
MUSIC, ESPRIT, Capon, CG, AV and the JIO-RLS algo-
rithms. We set the parameters for JIO-RLS to D = 5 and
α = 0.998. For MALRD-RLS and ALRD-RLS, we choose
I = 12, D = 5, α = 0.998. From Fig. 3, MALRD-RLS pro-
vides a superior RMSE performance with the lowest threshold
SNR and the lowest RMSE level in high SNRs, followed by
ALRD-RLS, MUSIC, JIO-RLS, Capon and ESPRIT. The AV
and CG algorithms present poor performance for large-scale
sensor arrays. Note that MUSIC, ESPRIT, Capon, AV and CG
require forward backward averaging (FBA) [17], [18] to ensure
satisfactory performance for correlated signals.
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Fig. 3. RMSE versus input SNR.

V. CONCLUSION

In this paper, we have proposed the ALRD scheme and
the ALRD-RLS and MALRD-RLS subspace DOA estimation
algorithms based on alternating optimization. The proposed
algorithms are suitable for large sensor arrays and have a
lower computational cost than existing techniques. Simulation
results show that MALRD-RLS and ALRD-RLS outperform
previously reported algorithms.
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