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1

Introduction

1.1

Overview

As an active area of research in the broad field of signal processing, array

signal processing focuses on the problem of estimating signal parameters from

data collected over the spatial aperture of an array of sensors, in which the

sensors are placed at distinct spatial locations. The estimation task is usually

associated with the extraction of desired information from impinging signals

in the presence of noise and interference. The sensor array deals with the

estimation problem by exploiting the spatial separation of the sensor elements

to capture the propagating wavefronts, which emanate from energy-radiating

sources. Common signal parameters of interest to be estimated are the signal

content itself, the directions of arrival of the signals, and their power. To

obtain this information, the sensor array data are processed using statistical

and adaptive signal processing techniques. These techniques include parameter

estimation and adaptive filtering applied to array signal processing. The

fundamental set of principles and techniques for sensor array signal processing

is applicable in many areas [1, 2], including wireless communications, radar,

sonar, biomedicine, seismology and astronomy.

Two of the most relevant topics within array signal processing are beamforming

and direction of arrival (DOA) estimation [1], which present unavoidable

challenges when designing wireless communications systems. Both tasks start

with the records of radiating wavefronts impinging on sensor arrays at a given

instant to form an observation vector which is used to build a sample covariance

matrix which becomes the basis of the processes.

In a straightforward way, the first topic, i.e., beamforming or spatial filtering,

which is the first topic above mentioned, can be defined as the process of

properly weighting signals from a particular direction for emphasizing them

and attenuating the interferences, which can be done differently. In the former



Chapter 1. Introduction 17

approach, the weighting applied to the received signal at each sensor element

is fixed and data-independent. In the latter, termed adaptive beamforming,

that weighting is continuously adapted to track changes in the system and

rejects interference. The adaptive algorithms used to adjust the weights for

each sensor element are designed by optimizing certain criteria according to

the given properties. One of the most relevant design criteria in practice is

the constrained minimum variance (CMV) approach [4], which only involves

the knowledge of the array geometry and the angle of the desired signal.

The CMV optimality criterion minimizes the total beamformer output power

while constraining the array response in the direction of the desired signal

to be constant. Due to its simplicity and effectiveness much effort has been

devoted over the past few decades to devise efficient adaptive algorithms in

order to realize a practical beamformer design [1,3,5]. In the class of adaptive

algorithms, the least-mean squares (LMS) method [5] as a representative of the

low-complexity stochastic gradient techniques makes use of gradient vectors for

the iterative computation of the weights and yields an acceptable performance

in many applications. However, its efficacy strongly depends on the step size

and the eigenvalue spread of the covariance matrix, resulting in an insufficient

convergence performance for certain scenarios [3]. An alternative method is

the recursive least squares (RLS) algorithm [5], which is independent of the

eigenvalue spread and thus achieves fast convergence speed. However, its main

drawbacks are numerical instability and a relatively high complexity.

The DOA estimation, the latter of the mentioned most relevant topics within

array signal processing, has the purpose of determining the angle of arrival

of a given spatially propagating signal relative to the antenna array. To

this end, the spatial separation of multiple sensor elements is exploited to

obtain the location of the energy-radiating source. The result of the estimation

procedure is subsequently used for the beamforming to steer the beam towards

this specific direction, in order to capture or radiate maximal power. With

the field of applications involving DOA estimation constantly expanding,

numerous direction finding techniques have been devised over the past few

decades [1,6]. The most well-known parameter estimation strategies discussed

here can be classified into three main categories, namely conventional [7],

subspace-based [8–11, 13, 15], and maximum likelihood (ML) methods [14].

The concept of the conventional DOA estimation algorithms relies on the

beamforming principle. These techniques successively steer the main beam

in all possible look directions and measure the output power [10], which

is recorded in the form of a pseudo spectrum over the angle range. The

largest peaks in the pseudo spectrum are associated with the DOA estimates.
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The most prominent approach within this class is Capon’s method [7] based

on the CMV criterion [4]. It minimizes the power induced by interfering

signals and noise while keeping the gain towards the look direction fixed.

Although the implementation of the conventional techniques is simple, they

suffer from lack of angular resolution and demand a large number of sensors

to improve their accuracies. The class of subspace-based methods exploits

a spectral decomposition of the covariance matrix to achieve high-resolution

DOA estimates. Among the most relevant techniques are the multiple signal

classification (MUSIC) [8], its extension Root-MUSIC [9], the estimation of

signal parameters via rotational invariance techniques (ESPRIT) [10], its

enhancement, namely Unitary ESPRIT [11, 12], the auxiliary vector filtering

(AVF) [13] and conjugate gradient (CG) [15, 16] algorithms developed for

direction finding. The MUSIC-type and the ESPRIT-type algorithms exploit

the eigen-structure of the covariance matrix, allowing a decomposition of the

observation space into a signal subspace and a complementary noise subspace.

Specifically, MUSIC scans over the possible angle range and makes use of the

orthogonality of the subspaces to obtain a pseudo spectrum with increased

resolution. Its extension, termed Root-MUSIC, when applied to uniform linear

arrays avoids the exhaustive search for peaks by applying a polynomial rooting

technique. The ESPRIT-type algorithms avoid the exhaustive peak search

by dividing the sensor array into two identical subarrays and benefit from

the uniform displacement of the subarrays. The Unitary ESPRIT uses the

fact that the phase factors representing the displacement lie on the unit

circle. More recent algorithms like AVF and CG iteratively generate an

extended non-eigen-based signal subspace containing the true signal subspace

and the scanning vector itself, termed extended Krylov signal subspace.

The DOA estimates are determined by the search for the collapse of the

extended signal subspace as the scanning vector belongs to it. While the AVF

algorithm adopts auxiliary vectors to form the extended signal subspace, the

CG method applies residual vectors and can be considered as an extension

of the AVF technique. Both approaches provide high-resolution estimates

for closely spaced sources at a low signal-to-noise ratio, and a small sample

size. ML-type methods, which were some of the first techniques developed

for DOA estimation, are based on a parametric approach. They effectively

exploit the underlying data model, resulting in sufficiently high accuracy that

is superior to the conventional and subspace-based methods, especially in low

SNR conditions, or when the number of signal samples or data records are

small. However, the efficiency comes at the expense of the computational

intensity as a multidimensional search is required, which makes ML-type
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methods less attractive than subspace-based algorithms. An iterative approach

to limiting the computational effort is the alternating projection technique [14],

which transforms the optimization problem into a sequence of one-dimensional

optimization problems. Non-linear arrays is a current research field dealing

with structures combining two or more ULAs with increasing intersensor

spacing for boosting the M − 1 number of sources that can be resolved with

a M element ULA using traditional subspace based methods like MUSIC.

One of these structures, termed nested array, makes possible the increase of

the degrees of freedom of ULA subspace-based methods from O (N) physical

sensors to O (N)2. However its initial formulation and later related works are

restricted to uncorrelated sources. The inherent saving of sensors at the expense

of significant number of samples will be exploited by our MS-KAI-MUSIC

method to resolve closely-spaced sources.

1.2

Motivation

As discussed in the previous section, the large computational effort demanded

to ensure ML-type methods’ better accuracy than conventional and subspace-

based ones made the former less popular than the latter. Conventional tech-

niques like Capon’s method and its extension root-Capon are subjected to lack

of angular resolution and demand a large number of sensors to reach higher

resolution. The MUSIC-type techniques, whose variance approaches the CRB

for uncorrelated signals, is one of the subspace-based methods that yields high-

resolution DOA estimates, however they require an accurate hard peak search,

which relies on the size of the search step. Despite its extension Root-MUSIC

avoids the costly peak search by using a polynomial rooting technique, both

techniques suffer from low levels of angular resolution for closely spaced sources

at low signal-to-noise ratios, and at small sample sizes. The ESPRIT-type and

its unitary version, also classified as high-resolution subspace methods, take

advantage of centro-symmetric array configurations. They prevent long peak

searches and are computationally more efficient than MUSIC and Conven-

tional types, however they also deal with loss of resolution as a result of the

closeness of the sources. Despite their better performance than conventional

and eigenstructure techniques like Capon, MUSIC, ESPRIT and their vari-

ations, CG and AVF algorithms, which are based on non-eigenvector bases,

are handicapped by computational complexity like in the first two preceding

methods. While Capon and MUSIC require long peak searches, Krylov signal

subspace for AVF and CG algorithms is built for each search angle. All parame-
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ter estimation strategies mentioned previously have drawbacks that constitute

a fertile area for research and innovation. Two of them lead to advancements

to be pursued. The first is the attenuation of the computational complexity

of algorithms, mainly for high-resolution direction finding tasks. The second

one is the enhancement of the accuracy of high-resolution direction finding

techniques by exploiting prior knowledge, which is the subject of this thesis.

1.3

Contributions

It is known that most of conventional methods for direction finding suffer from

poor accuracy when subjected to scenarios characterized by closely spaced

sources and or correlated sources. In the last years, some approaches to

overcome this lack of accuracy have exploited the prior knowledge of signal

directions coming from static users and base stations. However, this concept

is restricted to available known directions of arrival. In this context, the main

contributions of this thesis can be summarized as follows:

• A new concept of a priori knowledge applied to direction finding, which

replaces the traditional available known DOAs so far employed with

previous estimates obtained on line. This idea was incorporated to the

proposed algorithms and their extensions. As expected, the achieved

accuracy of the method is dependent on the accuracy of the initial

estimates.

• A new approach to estimating the covariance matrix by a refinement

process that iteratively reduces its by-products, which occur in the finite

sample region. This concept is complemented by a reshaped covariance

matrix analysis, which shows that at the earliest iteration the MSE of

the data covariance matrix free of these side effects is less than or equal

to the MSE of the original one.

• Formulation of a new method, termed multi-step knowledge-aided itera-

tive (MS-KAI), for increasing the accuracy of existent algorithms based

on the combination of the previous concepts. This method, initially em-

ployed with ULAs to collect impinging signals to be processed by ES-

PRIT and CG algorithms, was extended to non-uniform linear arrays

of the two-level nested class processed by the MUSIC algorithm. The

method can be further extended to other types of non-linear arrays.

MS-KAI-ESPRIT algorithm performs well when tested under multiple
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uncorrelated sources and small number of samples, and despite the in-

herent degradation in its accuracy resulting from using highly correlated

sources, its performance can also be considered good under these condi-

tions.

MS-KAI-CG and its version equipped with forward-backward averaging

(MS-KAI-CG-FB) show good performance when applied to two uncorre-

lated and two strongly correlated sources, respectively. To this end, both

versions require a sufficient number of samples. Preliminary studies have

shown that for a number of sources superior to two, their performances

are not satisfactory, which is a consequence of poor effectiveness of the

original CG algorithm in providing MS-KAI-CG and MS-KAI-CG-FB

with initial accurate estimates.

MS-KAI-MUSIC applied to a two-level nested array under a scenario

of two uncorrelated closely-spaced sources provides a significant gain

in terms of probability of resolution when compared to the original

MUSIC and the original Nested-MUSIC. In terms of RMSE, its gain

is marginal but consistent. In summary, the results lead us to conclude

that the proposed techniques have excellent potential for applications

with sufficiently large data records in large-scale antenna systems, radar

and other large sensor arrays. The heavy computational burden inherent

to the MS-KAI method, which is a consequence of nested loops and

multiple matrices products needed, is a point to be considered in future

works.

1.4

Thesis Outline

This thesis is organized as follows:

Chapter 2

We start this chapter by formulating the problem of source localization using a

system model based on uniform linear arrays. Based on such model, we discuss

several existing source localization methods and some of their limitations,

which leads us to strive for improvements in the accuracy of current techniques

or formulate more precise ones. We also examine the fundamentals of prior

knowledge and an effective preliminary idea to upgrade the accuracy of

conventional algorithms by employing knowledge obtained on line. At the end

of this chapter, we examine a non-uniform linear array model composed of two
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levels, termed Nested Array, which will be the basis for the algorithm proposed

in the last chapter.

Chapter3

In this chapter, we describe a new subspace-based method for DOA estimation

for direction-of-arrival (DOA) estimation of signals originating from far-field

sources, termed Multi-Step KAI ESPRIT (MS-KAI-ESPRIT), which itera-

tively reduces the disturbance factors of the estimated data covariance matrix

and incorporates prior knowledge which is gradually obtained on line. An anal-

ysis of the MSE of the reshaped data covariance matrix is carried out along

with comparisons between computational complexities of the proposed and ex-

isting algorithms. Simulations focusing on closely-spaced sources, where they

are uncorrelated and correlated, illustrate the improvements achieved.

Chapter4

In this chapter, we extend the approach taken for the subspace-based ESPRIT

to a Krylov subspace-based method, referred to as multi-step knowledge-

aided iterative conjugate gradient (CG) (MS-KAI-CG). We also develop a

version of MS-KAI-CG provided with forward-backward averaging, denoted

by MS-KAI-CG-FB, that is suitable for correlated signals. Differently from

existing knowledge-aided methods, which exploit known DOAs to improve the

estimation of the covariance matrix of the input data, the proposed MS-KAI-

CG algorithms exploit knowledge of the structure of the forward-backward

smoothed covariance matrix and its perturbation terms and the gradual

incorporation of prior knowledge, which, similarly to MS-KAI-ESPRIT, is

obtained on line. Simulation results employing uncorrelated and correlated

closely spaced sources illustrate the improvement achieved by the proposed

method and the influence of its iterations on its performance.

Chapter5

This chapter expands even more the concept of the multi-step knowledg-aided

method described in the two preceding chapters. Now, the method, which

was no longer restricted to ULA based methods, is widened even further

in order to embrace a non-uniform linear array like a two-level nested one.

Now, differently of the two previous chapters, which are dedicated to ESPRIT

and CG, we develop this method applying it to MUSIC algorithm, calling it

multi-step knowledge-aided iterative nested MUSIC (MS-KAI-MUSIC). The

proposed method refines the augmented sample covariance matrix, which is

also obtained by exploiting a difference co-array structure and its properties,
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and the gradual incorporation of prior knowledge, which, similarly to MS-

KAI-CG and MS-KAI-ESPRIT, is obtained on line. Simulations show that

MS-KAI-MUSIC significantly outperforms existing techniques.

Chapter 6

In this chapter, conclusions of this work are presented and future directions

for this research topic are discussed.

1.5

Notations

In all expressions and equations of this thesis, lowercase non-bold letters

represent scalar values, whereas bold lowercase and upper case letters represent

vectors and matrices, respectively. (·)∗, (·)T , (·)−1 and (·)H denote the complex

conjugate operator, the transpose operator, the matrix inversion operator and

the Hermitian transpose operator, respectively. |·| , ‖ · ‖2 and ‖ · ‖F denote the

absolutely value of a scalar, the Euclidean norm of a vector and the Frobenius

norm of a matrix, respectively. vec (·) stands for the vectorization function, ⊙

represents the Khatri-Rao product,  [·] denotes the expectations and Tr (·)

and diag (·) denote the trace and the diagonal entry of a matrix, respectively.

An identity matrix of size (·) is represented by I(·).
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2

Literature Review

2.1

Introduction

This Chapter briefly reviews direction finding basics and existing algorithms,

which form the basis for the development of new techniques for DOA estima-

tion. In direction finding basics, we will describe the sensor array processing

and its main geometries, a discrete-time sensor array model and the concept of

beamforming . Thereafter, we revisit some of the most used estimation tech-

niques for DOA estimation. Thus, we shortly examine the maximum likelihood

technique, the Capon algorithm, which can be considered the most significant

of the conventional class of direction finding methods, and the subspace based

methods, including the Krylov subspace-based one, termed Conjugate Gra-

dient (CG). Lastly, we review the theoretical foundations of the use of prior

knowledge for sensor array signal processing.

2.1.1

Sensor Array Processing

Sensor array processing aims to process data collected at sensor elements

in order to extract useful information, suppress interference and estimate

parameters. In order to extract information such as the location of a signal

source or the content of the signal, we often have to deal with the presence

of the signal and interference. A single sensor with the ability to spatially

discriminate signals coming from different directions can carry out this task.

Such single-sensor systems can process signals using a continuous spatial extent

known as aperture using a parabolic dish. The signals are reflected in the

aperture in such a way that signals from the direction in which the dish is

pointed are emphasized. The ability of a sensor to perform spatial processing is

known a directivity and is governed by the shape and physical characteristics of
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its geometric structure. However a single sensor system has several limitations.

Since this sensor relies on mechanical pointing for directivity, it can only

extract signals from only one direction at a time. Such sensor cannot adapt

its response, which would require physically changing the aperture, in order to

reject potentially strong interferers.

An array of sensors has the ability to overcome these shortcomings of a

single sensor. The signals received by a sensor array can be combined in

such a way that a particular direction is emphasized. However, since the

direction in which the array points is almost independent of its orientation,

the sensors can be combined in distinct ways so as to emphasize different

directions and signals of interest. For this reason, multiple signals can be

extracted simultaneously through separate signal processing operations per

signal. Spatial signals propagate through space and arrive at an array of sensors

that spatially samples the waveforms. A processor then collects the data from

the sensor array in order to extract information.

The propagation of spatial signals is governed by the wave equation. For

electromagnetic signals the wave equation can be deduced from Maxwell’s

equations, while for sound waves the solution is governed by the basic laws of

acoustics. However, in either case, for a propagating wave emitted by a source

at r0, one solution is a single-frequency wave given by

s(t, r) =
A

‖ r − r0 ‖2

e −j 2 π fc (t −
‖ r − r0 ‖2

c
), (2-1)

where A is the complex amplitude, ‖r‖ represents the range or distance

from the origin, fc is the carrier frequency of the wave and c is the speed

of propagation of the wave. It can be ignored the singularity of the source

s(t, r0) = ∞, and the equation suppresses the dependencies on elevation and

azimuth angles, since the wave propagates radially from the source. The signals

travel in time, where the spatial propagation is determined by the direct

coupling between space and time in order to satisfy the wave propagation.

The wavelength of the propagating wave is given by λ = c
fc

, where c is the

speed of the light. Our development relies on further assumptions. We assume

that the propagating signals are produced by a point source, which means

that the size of the source is small with respect to the distance between the

source and the sensors that measure the signals. Another assumption is that

the source is in the far field, which means it is at a sufficiently large distance to

the the sensor array so that the spherically propagating wave can be reasonably

approximated by a plane wave. In order to transmit and receive signals in space,
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a designer must employ modulation and demodulation operations that allow

the transmission of signals s(t using carrier waves centered at the frequency fc

and the processing of those signals with the extraction of sufficient statistics

in discrete-time form x [i], as illustrated in Fig. 2.1.

Figure 2.1: Analog-Digital converter

2.1.1.1

Standard Geometries

A sensor array can be organized with M sensors placed according to a

particular geometry that affects its radiating properties. The most common

array geometries are the uniform linear array (ULA), the uniform circular

array (UCA) and the uniform planar array (UPA). In what follows, without

loss of generality, we will describe several properties of the first and the

latest geometries which are the most often used in practice. They receive

signal waveforms whose components at each sensor are delayed replicas of

the associated signal waveform.

Uniform Linear Array

Consider a plane wavefront with the waveform s(t) impinging on a ULA

of M sensors at an angle θ, as illustrated in the Fig. 2.2.

The incident angle on the array is known as the direction of arrival (DOA)

of the signal. Since in a ULA all elements are equally spaced, the signal is

given by any two successive sensors with a time delay given by τ = d sin(θ)
c

,

where d is the spacing between sensor elements and d sin(θ) is the distance

in propagation for the signal s(t) to reach successive sensors. As a result, the

delay of the mth with respect to the first element in the sensor array is given

by τm = (m − 1) d sin(θ)
c

.

By multiplying the signal s(t) by the carrier e−j 2 π fc and using the first sensor

as a reference, we obtain s1(t) = s(t) e−j 2 π fc t.
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Figure 2.2: Uniform Linear Array

The generalization of the above result to the mth sensor yields sn(t) =

s(t)e−j 2 π fc τn = s(t)e−j 2 π fc (m−1)
d sin(θ)

c = s(t)e−j 2 π (n−1)
d sin(θ)

λ , where λ = c
fc

,

and we can write the received signal for the ULA as

x [i] =




1

e−j 2 π
d sin(θ)

λ

...

e−j 2 π (M−1)
d sin(θ)

λ




s [i] + n [i] = a (θ) s [i] + n [i] (2-2)

where the [Mx1] vector a (θ) is the steering vector of the ULA and n [i] is the

noise vector.

Uniform Planar Array

Let us now consider a signal that impinges on a UPA of M = M1 x M2

sensors at an azimuth angle φ and at an elevation angle θ as depicted in the

Fig. 2.3. The distances between the sensors are d1 and d2.

Figure 2.3: Uniform Planar Array

In this situation, the azimuth and elevation angles of the waveform s(t) are the

DOAs of the signal. The delay introduced in the (m1, m2)
th sensor is given by

τ
m1, m2 =

m1 d1
c

sin(θ) cos(φ) +
m2 d2

c
sin(θ) sin(φ)

where m1 and m2 are the indexes of the

sensors.
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After multiplication by e−j 2 π fc , the signal s(t) that arrives at the

(m1, m2)
th sensor is given by s(m1, m2)(t) = s(t) e−j 2 π fc τm1, m2 =

s(t) e−j 2 π
m1 d1

λ
sin(θ) cos(φ) +

m2 d2
λ

sin(θ) sin(φ). The received signal for the UPA

can be writen as

x [i] =




1

e−j 2 π
m1 d1

λ
sin(θ) cos(φ) +

m2 d2
λ

sin(θ) sin(φ)

...

e−j 2 π
(M1−1) d1

λ
sin(θ) cos(φ) +

(M2−1) d2
λ

sin(θ) sin(φ)




s [i] + n [i]

= a (θ, φ) s [i] + n [i] (2-3)

where the [Mx1] vector a (θ, φ) is the steering vector of the UPA and n [i] is

the noise vector.

Other geometries such as sparse arrays and volumetric arrangements (3D)

can be used by system designers. Besides, it is also possible to employ or

form distributed arrays composed of single sensor and subarrays, which offer

an advantage in terms of manufacturing. UPAs are used for large systems in

radar.

Concerning the spacing of elements d and (d1 , d2 ), the former for ULAs and

the latter for UPAs, it is customary to set them to λ
2

to avoid coupling effects.

However, the use of compact antenna arrays is often associated with closely

spaced elements ( λ
2
, λ

4
, λ

8
, etc), which requires extra care with the couple

effects.

2.1.1.2

Discrete-time Models

This subsection aims to deal with discrete-time models for arbitrary sensor

arrays that have the objective of extracting a desired signal embedded in

interference. The models are general and can be used for any sensor array

geometry, as illustrated in Fig.2.4.

The schematic above considers an arbitrary sensor array that aims to extract

the desired signal sd(t) in the presence of (D − 1) interfering signals. The

sensor array has M elements and processes the incoming signal, resulting in
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Figure 2.4: Sensor array geometry for discrete-time models

the following discrete model:

x [i] = sd [i] a (θd, φd) +
D∑

k=1, k Ó=d

sk [i] a (θk, φk) + n [i]

= A (θ, φ) s [i] + n [i] (2-4)

where the [Mx1] vectors a (θd, φd) correspond to the array responses of the

signals and the [MxD] matrix A (θ, φ) contains all the steering vectors. The

discrete-time desired signal sd [i] is perturbed by the (D − 1) interfering signals

sk [i], k Ó= d, k = 1 , 2 , · · · , D, and these D impinging signals are represented

by the [Dx1] vector s [i]. The [Mx1] noise vector n [i] is assumed to be drawn

from complex Gaussian random variables with zero mean and variance σ2
n.

A particular case of this model for a ULA is described by

x [i] = sd [i] a (θd) +
D∑

k=1, k Ó=d

sk [i] a (θk) + n [i] (2-5)

= A (θ) s [i] + n [i] (2-6)

where a (θk) are the steering vectors of a ULA for k = 1 , 2 , · · · , D. As

described by these models, a sensor array system depends on the structure

of the array, the DOAs θk (and φk) and the processing required to extract

desired information for retrieving sd [i]. Except as otherwise specified in this

work, our study on beamforming algorithms to extract sd [i] from x [i] will be

done by assuming the knowledge of θk (and φk). Then, we will develop direction

finding methods to estimate θk (and φk).
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2.1.1.3

Beamforming

In many applications, the desired information to be extracted from an array of

sensors is the content of a spatially propagating signal from a certain direction.

The content may be a message contained in the signal, such as communications

applications, or merely the existence of the signal, as in radar and sonar

systems. to this end, we want to linearly combine the signals from all the

sensors with a certain weighting, so as to examine signals arriving from a

specific angle. This operation is known as beamforming and is illustrated in

Fig. 2.5.

Figure 2.5: Beamforming

The weighting process emphasizes signals from a particular direction while

attenuating those from other directions and can be thought as forming a

beam. In this sense, a beamformer is a spatial filter that places nulls in the

direction of interfering signals. Beamforming can also be viewed as an electronic

steering since the weights wm, m = 1 , 2 , · · · , M are applied using digital signal

processing following the reception of the signal for the purpose of steering the

array in a particular direction.

The output is formed by a weighted combination of signals from the N elements

of the sensor array, as follows:

y [i] =
M∑

m=1

w∗
mxm [i]

= wHx [i] (2-7)
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where w = [w1 w2 · · · wM ]T is the [Mx1] vector of beamforming weights,

which must be computed by an algorithm.

An important concept for beamforming techniques is that of beam response,

which is the response of a beamformer  as a function of the θ. This beam

response can be computed by applying it to a set of array steering vectors a (θ)

from all possible angles as given by

B (θ) = wH a (θ) , (2-8)

where θmin ≤ θ ≤ θmax

Optimum beamformer

An improved concept of the previously described weighting process, which is

classified optimum, consider methods that employ the statistics of the data

to derive the beamforming weights. In particular, we refer to optimum beam-

formers as those that optimize a certain criterion based on the knowledge

of the statistics of the data and we refer to adaptive beamformers as the

techniques that employ estimates of the statistics of the data.

The optimum beamformer can be derived based on a signal model for a ULA,

containing interference in addition to the desired signal and noise, as given in

equation 2-6, as follows

x [i] = sd [i] a (θd) +
D∑

k=1, k Ó=d

sk [i] a (θk) + n [i] , (2-9)

where sd [i] is the desired signal and, as a result, its signal vector s [i]. Moreover,

the desired power received by the element is expressed by E [|sd [i]|2 ] = σ2
s .

The interference-plus-noise component of the signal is defined as xj+n [i] =

j [i] + n [i], which are both modeled as zero-mean stochastic processes. The

interference has spatial correlation according to the angles of the contributing

interferers, while the noise is spatially uncorrelated and has zero mean and

variance σ2
n. As a result, the correlation matrix is given by

R = E [x[i] xH [i]] = σ2
s a (θd) aH (θd) + Rj + Rn, (2-10)

where Rj = E
[
j[i] jH [i]

]
and Rn = E [n[i] nH [i]] are the interference and the

noise correlation matrices, respectively. The interference-plus-noise correlation
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matrix is the sum of these latter two matrices, that is to say Rj+n =

Rj + Rn, where Rn = E [n[i] nH [i]] = σ2
nI, since the noise is assumed spatially

uncorrelated.

The signal-to-interference-plus-noise ratio (SINR) at the beamformer output

is described by

SINRout =
E

[
wH s[i] sH [i] w

]

E [wH x[i] xH [i] w]
=

wH Rs w

wH Rj+n w
(2-11)

where Rs = E
[
s[i] sH [i]

]
is the desired signal correlation matrix.

By minimizing the interference-plus-noise power at the beamformer output,

that is, Rj+n w, while keeping the desired signal response wH Rs w. This

results in the optimization problem, as follows:

min wH Rj+n w subjected to wHa (θd) = constant (2-12)

The solution to this optimization problem is known as minimum-variance dis-

tortionless response (MVDR) beamformer. The MVDR beamformer maximizes

the SINR by matching the response of signals impinging on the array from a

direction a (θd) and can be considered an optimum spatial filter. As in prac-

tice Rj+n is difficult to be obtained, the standard MVDR is formulated by

replacing Rj+n with R and employing a similar optimization.

The MVDR beamformer optimization with R is given by

min wH R w subjected to wHa (θd) = 1 (2-13)

and its solution can be obtained with the method of Lagrange multipliers,

which results in the desired weight vector

wo =
R−1 a (θd)

aH (θd) R−1 a (θd)
(2-14)

The minimum variance associated to the preceding solution can be obtained

by substituting wo into the cost function [5]

J (wo) = wH
o R wo, (2-15)

resulting in the power spectrum in Eq.(2-16), also known as Capon’s spatial

spectrum.
J (wo) =

1

aH (θd) R−1 a (θd)
= PCap (θd) (2-16)
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2.1.2

Maximum Likelihood estimation

Maximum Likelihood-type method (ML) is one of the first techniques devel-

oped for DOA estimation. As mentioned in 1.1, ML is based on a parametric

approach. Despite its computational intensity that makes it less attractive

then other conventional methods, ML estimation plays an essential role in

DOA estimation by providing the Cramer-Rao lower bound (CRLB), which is

a measure against which any algorithm can be compared.

Let us consider the signal model given in Eq. (2-6) as follows:

x [i] = sd [i] a (θd) +
D∑

k=1, k Ó=d

sk [i] a (θk) + n [i] (2-17)

= sd [i] a (θd) + j [i] + n [i] , (2-18)

where it is assumed that the interference j [i] has known statistics, the steering

vectors a (θd) are assumed linearly independent, and the noise is obtained from

a complex Gaussian random process of mean equal to zero and variance σ2
n with

the samples of the noise being statistically independent.

The derivation of the ML estimator employs the joint probability density

function (pdf) of the data x [i] given the parameter θd, as described by

px|θd
(x [i] | θd) =

1

πN det (R)
exp ( − (x [i]

− sd [i] a (θd))H R−1 (x [i] − sd [i] a (θd))
)

(2-19)

where N is the number of snapshots. The ML estimator computes

θ̂d = arg max
θd

px|θd
(x [i] | θd) (2-20)

which is equivalent to maximizing the logarithm of px|θd
(x [i] , θd), as follows:
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θ̂d = arg max
θd

ln px|θd
(x [i] , θd)

= arg min
θd

(
(x [i] − sd [i] a (θd))H R−1 (x [i] − sd [i] a (θd))

)

= arg max
θd

[
|aH (θd) R−1 x [i] |2

aH (θd) R−1 a (θd)

]
(2-21)

The function

PML (θd) =
|aH (θd) R−1 x [i] |2

aH (θd) R−1 a (θd)
, (2-22)

which is inside the braces of (2-21), is the ML estimate of the incoming data

x [i]. The DOA estimate is the angle associated with the maximum of PML (θd).

Despite the optimality of the ML approach, it is impractical in most situations

because the algorithm requires a search to find the peaks of PML (θd) in a dense

grid with small angular spacing.

2.1.2.1

Cramer-Rao lower bound

As mentioned in 2.1.2, the measure of the ML estimation procedure is the

CRLB, which is very useful to give a designer how accurate a DOA estimator

can be. From estimation theory, we know that the variance C of an unbiased

estimate of θ̂d is greater than or equal to its CRLB (CCR), that is to say

C
(
θ̂d

)
≥ CCR

(
θ̂d

)
, J −1

dd (2-23)

where J −1
dd is the d th diagonal entry of the inverse of the Fisher information

matrix J whose (i, j)th element is given by

J ij = − 

[
δ2

δθi δθj

[
ln px|θd

(x | θ)
]]

, (2-24)

where  [·] means the expectation operator.

Using the signal model for a ULA with m sensors and computing the preceding

partial derivatives, we can obtain the CRLB [17] for D = 1 signal.

C
(
θ̂d

)
≥

6 σ2
n

σ2
s m (m2 − 1 ) (k d)2 sin θd

=
6

SNR m (m2 − 1 ) (k d)2 sin θd

(2-25)
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where SNR = σ2
s

σ2
n

contributes to decreasing the CRLB as it increases. The

number of sensors also contributes to a reduction of the CRLB. More specific

CRLB in matrix forms taking into account the variation of the number of

snapshots are studied in [18].

2.1.3

Capon algorithm

In 2.1.1.3 it was discussed the MVDR beamformer which is identical to the

Capon’s method. In order to estimate the DOA, we compute the Eq. 2-16 over

the whole range of θd and locate its peaks as described by

θ̂d = arg max
θd

PCap (θd) , d = 1 , 2 , · · · , D (2-26)

where the cost of the required search depends on the angle spacing.

Among the disadvantages of Capon’s method are that it requires a search,

it fails for correlated signals and provides poor resolution for closely spaced

sources. These drawbacks can be seen in a scenario in which a ULA with 10

sensors inter-element spaced by ∆ = λc

2
receives two impinging uncorrelated

complex Gaussian signals with equal power. The sources are separated by

2.8o, at (88.6o, 91.4o), and the number of available snapshots is N=40. The

probability of resolution obtained using 100 trials is depicted in Fig. 2.6.

In order to have better comparisons, we use the same scenario for the

performance analysis of all algorithms.

2.1.3.1

Root-Capon

An approach that circumvent the need for a search and improve the perfor-

mance of the Capon’s method is to employ a root version of the algorithm.

This is limited to the case of a ULA. In the root-Capon algorithm, we consider

the spatial spectrum given by

Proot−Cap (θd) =
1

aH (θd) R−1 a (θd)
=

1

C (θd)
(2-27)

where C (θd) = aH (θd) R−1 a (θd) is the null spectrum.
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Figure 2.6: Probability of resolution versus SNR, 2 uncorrelated sources, 2.8
degrees, ULA-10 sensors, 40 snapshots, 100 runs

The algorithm constructs the null spectrum and computes the its zd roots,

d = 1 , 2 , · · · , D, inside and closest to the unit circle. Then, we have

θ̂d = sin−1

[(
λ

2 π d

)
arg zd

]
(2-28)

2.1.4

MUSIC

The Multiple signal Classification (MUSIC) algorithm proposed by [8] in 1979

is a popular high resolution based on eigenstructure technique. The main idea

behind this DOA algorithm is that of performing eigenvalue decomposition of

the correlation matrix, separating it into two subspaces: signal subspace and

the noise subspace. Since the signal subspace is spanned by the array steering

vector of the received signals, this makes the steering vector orthogonal to the

noise subspace. Therefore, the product of the array steering vector and the

noise subspace is a null for a particular angle of arrival.

Let us consider the problem of model order selection, i.e., of estimating the

number of signals D in a ULA with M elements. For this aim, we can take

into account the received data model in Eq. (2-6). Without loss of generality,

we do not consider interferers, which results in the model
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x [i] =
D∑

d=1

sd [i] a (θd) + n [i] (2-29)

= A (θ) s [i] + n [i] (2-30)

where the [MxD] array manifold A (θd) contains the [Mx1] steering vectors

a (θd) of the D signals and the vector s [i] has the D signals. The [Mx1] noise

vector n [i] has spatially uncorrelated samples of a complex Gaussian random

process of zero mean and covariance matrix σ2
n I. The correlation matrix R of

the received data is given by

R = E
[
x [i] xH [i]

]
= A E

[
s [i] sH [i]

]
AH + E

[
n [i] nH [i]

]

= A Rs AH + σ2
n I (2-31)

where the [MxM] R matrix has full rank, σ2
n is the noise power and the Rs has

dimensions [DxD]. The matrix R can be estimated by taking sample averages

as given

R̂ [l] =
1

i

i∑

l=1

x [l] xH [l] (2-32)

and
Rs = E

[
x [i] xH [i]

]
= diag

{
σ2

1 , · · · , σ2
D

}
(2-33)

R has M eigenvalues [λ1, λ2, · · · , λM ] and M associated eigenvectors, making a

subspace Ē = [̄e1 , · · · , ēM ]. Sorting the M eigenvalues from the largest to the

smallest, the subspace Ē can be decomposed into two subspaces:

Ē = [ē1, · · · , ēD ēD+1, · · · , ēM ]

=
[
ĒS ĒN

]
(2-34)

ĒN is the M x [M − D] noise subspace composed of the eigenvectors associated

with noise, whereas ĒS is the [M x D] signal subspace composed of the

eigenvectors associated with the arriving signal.

Due to the orthogonality of the noise subspace and the array steering vector at

the angles of arrival (θ1, θ2, · · · , θD), the matrix product aH (θd) ĒN Ē
H

N a (θd)

is zero for this angles. The reciprocal of this matrix product creates sharp

peaks at the angles of arrival. Thus the MUSIC spatial spectrum is given as

PMU (θd) =
1

‖aH (θd) ĒN Ē
H

N a (θd) ‖
(2-35)
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In order to estimate the DOA, we compute PMU (θd) over the whole range of

θd and locate the peaks as described by

θ̂d = arg max
θd

PMU (θd) , d = 1 , 2 , · · · , D (2-36)

Despite MUSIC performs better than Capon algorithm for closely-spaced

sources in terms of probability and RMSE, its performance in this scenario

is poor, as can be seen in Figs. 2.7 and 2.8.
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Figure 2.7: fig/Probability of resolution versus SNR 2 uncorrelated sources,
2.8 degrees, ULA 10 sensors, 40 snapshots, 100 runs
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Figure 2.8: RMSE versus SNR, 2 uncorrelated sources, 2.8 degrees, ULA 10
sensors, 40 snapshots, 100 runs
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Root-MUSIC

Instead of plotting the spatial spectrum against the angles and searching

for the peaks, this variant of MUSIC algorithm involves finding the roots of

a polynomial. Starting with the spatial spectrum of MUSIC in (2-35), and

defining C = ĒN Ē
H

N , its denominator can be writen as

PMU (θd) =
1

‖aH (θd) C a (θd) ‖
(2-37)

The mth element an (θd) of the array steering vector is defined as

am (θd) = e−j k d m sin(θd), m = 0 , 1 , · · · , M − 1 (2-38)

The denominator, thus can be rewritten as

aH (θd) C a (θd) =
M−1∑

m=0

M−1∑

n=0

e−j k d m sin(θd) Cm n ej k d n sin(θd)

=
N−1∑

l=−(N−1)

Cl ej k d l sin(θd), (2-39)

where Cnm is the entry in the mth row and nth column of C and Cl =
∑

m−n=l Cm n is the sum of the elements along the l th diagonal of C. Letting

z = ej k d sin(θd), Eq.(2-39) simplifies to

D (z) =
M−1∑

l=−M+1

Cl z l (2-40)

The roots of D (z) that lie closest to the unit circle correspond to the poles of

the MUSIC spatial spectrum. These 2 (M − 1 ) roots can be written as

zd = ej arg(zd), d = 1 , 2 , · · · , 2 (M − 1 ) (2-41)

Choosing those roots inside the unit circle whose magnitude are |zd | ≃ 1, and

comparing ej arg(zd) to e−j k d sin(θd), gives

θ̂d = − sin−1

{
arg zd

k d

}
, k =

2 π

λ
(2-42)

2.1.5

ESPRIT

The estimation of signal parameters via rotational invariance (ESPRIT) al-

gorithm [10], reduces the computational and storage requirements of MUSIC

and avoids an exhaustive search. The key idea is to decompose an M element
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array into two identical centro-symetric subarrays, each of them with S ele-

ments. The objective of ESPRIT algorithm is to estimate the angle of arrival

by determining the rotation operator Φ. The separation distance between the

two sensors is assumed to be λ
2
. In this case, the first element in the original

array is the first element of the first subarray whereas the second element of

the original array is the first element in the second subarray. Fig.2.9 shows a

M element linear array and one of the possible configurations.

Figure 2.9: ULA decomposition in ESPRIT algorithm

Let us consider D signals hitting the subarrays. Also letting x1 [i] and x2 [i] be

the received signal in the two subarrays, corrupted by additive Gaussian noise

n1 [i] and n2 [i], respectively.

x1 [i] = A s [i] + n1 [i]

x2 [i] = A Φ s [i] + n2 [i] (2-43)

where x1 [i], x2 [i], n1 [i] and n1 [i] are [Sx1] matrices. A is the [SxD] steering

matrix and the variable Φ is a [DxD] diagonal matrix called rotation operator

Φ = diag
{
ejψ1 , ejψ2 , · · · , ejψD

}
(2-44)

where ψd = −2 k∆ sin θd , d = 1 , 2 , · · · , D and ∆ measured in wavelengths.

From Eq.(2-43), correlation matrices R11 and R22 of the signals in the two

subarrays can be estimated as

R11 = E
[
x1 [i] xH

1 [i]
]

R22 = E
[
x2 [i] xH

2 [i]
]

(2-45)

By eigen-decomposing R11 and R22, we can obtain two signal subspaces Υ1

and Υ2 respectively. Defining a [2Dx2D] matrix C from the two subspaces such
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that

C =


Υ H

1

Υ H
2




[
Υ1 Υ2

]
= ΥC Λ Υ H

C (2-46)

ΥC is a [2Dx2D] matrix obtained by eigenvalue decomposition of C such that

λ1 ≥ λ2 ≥ · · · ≥ λ2D and Λ = diag {λ1 λ2 · · · λ2D} By partitioning ΥC into

four [DxD] submatrices such that

ΥC =


 Υ11 Υ12

Υ21 Υ22,


 (2-47)

the rotation operator can be estimated as Φ = −Υ12 Υ −1
22 . From D eigenvalues

of Φ, angles of arrival can be estimated as

θ̂d = sin−1

{
arg λd

k ∆

}
, k =

2 π

λ
(2-48)

ESPRIT performs better than MUSIC and Capon algorithms for closely-spaced

sources in terms of probability and RMSE, as can be seen in Figs. 2.10 and

2.11.
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Figure 2.10: Probability of resolution versus SNR 2 uncorrelated sources, 2.8
degrees, ULA 10 sensors, 40 snapshots, 100 runs
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Figure 2.11: RMSE versus SNR, 2 uncorrelated sources, 2.8 degrees, ULA 10
sensors, 40 snapshots, 100 runs

2.1.6

Conjugate gradient

Let us now assume that P narrowband signals from far-field sources are

impinging on a uniform linear array (ULA) of M (M > P) sensor elements

with the unknown directions θ = [θ1, . . . , θP ]T . The ith data snapshot of the

(M × 1)-dimensional array output vector can be modeled as

x(i) = A(Θ)s(i) + n(i), i = 1, 2, . . . , N, (2-49)

where s(i) = [s1(i), . . . , sP (i)]T ∈  

P×1 represents the zero-mean source data

vector, n(i) ∈  

M×1 is the vector of white circular complex Gaussian noise with

zero mean and variance σ2
n, and N denotes the number of available snapshots.

The matrix A(Θ) = [a(θ1), . . . , a(θP )] ∈  

M×P contains the array steering

vectors a(θj) corresponding to the nth source, which can be expressed as

a(θn) = [1, ej2π ∆
λc

sin θn , . . . , ej2π(M−1) ∆
λc

sin θn ]T , (2-50)

where n = 1, . . . , P , ∆ denotes the interelement spacing of the ULA and λc is

the signal wavelength.

Using the fact that s(i) and n(i) are modeled as uncorrelated linearly inde-

pendent variables, the M × M signal covariance matrix is calculated by

R = !

[
x(i)xH(i)

]
= A(Θ)RssA

H(Θ) + σ2
nIM , (2-51)

where Rss = ![s(i)sH(i)], which is diagonal if the sources are uncorrelated
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and non-diagonal for partially correlated sources, and  [n(i)nH(i)] = σ2
nIM

with IM being the M × M identity matrix. Since the true signal covariance

matrix is unknown, it must be estimated and a widely-adopted approach is

the sample average formula given by

R̂ =
1

N

N∑

i=1

x(i)xH(i), (2-52)

whose estimation accuracy is dependent on N .

The CG method [15] is used to minimize a cost function, or analogously, to

solve a linear system of equations by approaching the optimal solution step

by step via a line search along successive directions, which are sequentially

determined at each direction [19]. As a result of the application of the CG

algorithm to direction finding, we have a system of equations that is iteratively

solved for w at each search angle:

Rw = b(θ), (2-53)

where R is the covariance matrix and b(θ) is the initial vector defined as

b(θ) =
R a(θ)

‖R a(θ)‖
, (2-54)

where a(θ) is the search vector.

The extended signal subspace of rank P is obtained by means of the CG

algorithm summarized in Table 2.1. The set of orthogonal residual vectors

Table 2.1: Conjugate Gradient Algorithm

w0 = 0, d1 = gcg,0 = b, ρ0 = gH
cg,0gcg,0

for i=1 to P do:

vi = R di

αi = ρi−1 / dH
i vi

wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi

ρi = gH
cg,igcg,i

βi = ρi / ρi−1 = ‖gcg,i‖
2 / ‖gcg,i−1‖

2

di+1 = gcg,i + βidi

end for

form Gcg,P +1(θ) (2-55)

compute PK(θ(n)) (2-57)

find P̂ largest peaks of PK(θ(n)) to obtain

estimates θ̂l of the DOA, l = 1 , 2 , · · · , P
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Gcg,P +1(θ) = [gcg,0(θ), gcg,1(θ), . . . , gcg,P (θ)], (2-55)

where b(θ)= g0(θ) generates the well-known extended Krylov subspace com-

prised of the true signal subspace of dimension P and the search vector

itself. All the residual vectors are normalized except for the last one. If

θ ∈ {θ1, . . . θP }, the initial vector b(θ) lies in the true signal subspace space

spanned by the

[gcg,0(θ), gcg,1(θ), . . . , gcg,P −1(θ)] basis vectors of the extended Krylov subspace.

Therefore, the rank of the generated signal subspace drops from P+1 to P and

we have
gcg,P (θ) = 0, (2-56)

where gcg,P is the last unnormalized residual vector.

In order to exploit this behavior, the proposed KA-CG algorithm makes use

of the spectral function defined in [13]:

PK(θ(n)) =
1

‖gH
cg,P (θ(n))Gcg,P +1(θ(n−1))‖2

, (2-57)

where θ(n)denotes the search angle in the whole angle range {−90o, . . . , 90o}

with θ(n) = n∆o − 90o, where ∆o is the search step and n = 0, 1, . . . , 180o/∆o.

The matrix Gcg,P +1(θ
(n−1)) contains all residual vectors at the (n − 1)th angle

and gcg,P (θ(n)) is the last residual vector calculated at the current search step n.

If θ(n) ∈ {θ1, . . . , θP }, gcg,P (θ(n)) = 0 and we can expect a peak in the spectrum.

Taking into account that R̂ in (2-32) is only a sample average estimate, which

is unknown in practical applications, gcg,P (θ(n)) and Gcg,P +1(θ
(n−1)) become

approximations. Hence the spectral function in (2-57) can just provide very

large values but they do not tend to infinity as for the original covariance

matrix. In this specific scenario, in which the sources are separated by 2.8

degrees CG performs better than MUSIC and Capon algorithms for closely-

spaced sources in terms of probability and RMSE, as can be seen in Figs. 2.10

and 2.11. In spite of performing worse than ESPRIT in this particular scenario,

CG performance tends to overcome ESPRIT one as the space between the

sources becomes smaller and the number of snapshots increases, as can be

seen in the next sections.

2.1.7

Prior knowledge-based direction of arrival estimation

The problem of obtaining more accurate estimates by using prior-knowledge is

closely related to the way of collecting it. The traditional approach to deal with
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Figure 2.12: Probability of resolution versus SNR 2 uncorrelated sources, 2.8
degrees, ULA 10 sensors, 40 snapshots, 100 runs
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Figure 2.13: RMSE versus SNR, 2 uncorrelated sources, 2.8 degrees, ULA 10
sensors, 40 snapshots, 100 runs

this question makes use of available known DOAs to form a known covariance

matrix to be optimally combined with the data covariance matrix, i.e., in a

minimum mean squared error sense, resulting in an enhanced matrix which

can be the basis for several DOA estimation methods. A new preliminary

approach, which we have proposed in [30], instead of using that accessible

known DOAs, makes use of previous estimates. As expected, in order to

have good performance, the method requires that these previous estimates

are sufficiently accurate. To achieve this goal, most methods may require a

significant number of samples to obtain accurate statistical estimates. The
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concept of prior-knowledge obtained on line applied to DOA estimation will

be exploited in the methods discussed in the next chapters.

2.1.7.1

Problem formulation

Despite the numerous parameter estimation techniques developed over the

last decades and their specific properties, advantages and drawbacks, their

estimation accuracy depends on the (M × M) dimensional signal covariance

matrix of the sensor array data vector x(i), which is defined for the ith snapshot

as
R =  

[
x(i)xH(i)

]
, i = 1, . . . , N, (2-58)

where the superscript H and  [·] denote the conjugate transpose and the

statistical expectation respectively, and N is the number of available snapshots.

In practice, the true signal covariance matrix in (2-58) is unknown, but can be

estimated via the widely used sample-average formula given by

R̂ =
1

N

N∑

i=1

x(i)xH(i). (2-59)

Applying the covariance matrix estimate in (2-59), the estimation accuracy is

essentially determined by the data record size N . Thus, in applications where

the number of available sensors M is small, the increase in the number of

snapshots become more significant.

In practical scenarios with low signal-to-noise ratio (SNR), stationary and

non-stationary sources whose DOAs are to be estimated, the knowledge of the

directions of strong consistent users can be effectively exploited in order to

increase the estimation accuracy of non-stationary sources, which enter the

system. The knowledge of previously estimated DOAs can be exploited in the

form of a known covariance matrix C. Knowledge-aided (KA) signal processing

techniques, which make use of a priori knowledge of key parameters of interest

such as the existence of strong interferers, cognitive users and geographical

localization of users [20] have recently gained significant attention [21–25].

In KA techniques, the key issues are how to obtain a priori knowledge

about the parameters of interest and how to exploit them. Prior work on

KA algorithms has considered the design of space-time adaptive processing

(STAP) techniques [21]- [22], [24,25] and beamforming algorithms [23]. These

methods have shown superior performance to conventional approaches that do

not rely on KA techniques when the limited sample support is used in highly

non-stationary environments.
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Let us assume the same system model of 2.1.6. The main idea of prior

knowledge-based direction of arrival estimation is to replace the sample covari-

ance matrix with an enhanced one that linearly combines the original sample

matrix with a known rank deficient matrix. In order to obtain an enhanced

covariance matrix estimate R̃, we assume that the a priori knowledge matrix

C is nonrandom, according to [28], and perform a linear combination of C

and the sample covariance matrix R̂ by applying the weight factors α and β,

which are formulated as
R̃ = αC + βR̂, (2-60)

where the combination factors are constrained to α > 0 and β > 0, and

C is restricted to be positive semidefinite to ensure that R̃ is also positive

semidefinite. Then it is possible to find optimal estimates of the weight factors

α and β, which efficiently combine C and R̂ depending on the scenario. One

of the most common criteria is the minimization of the parameters in a mean

squared error (MSE) sense, that is

min
α,β

MSE =  

[
‖R̃ − R‖2

F

]

s.t. R̃ = αC + βR̂,
(2-61)

where ‖ · ‖F denotes the Frobenius matrix norm. Note that the optimization

problem is solved by minimizing the MSE with respect to the two parameters

α and β, which as expected depend on each other and the unknown true

covariance matrix R. Another widely used criterion to reduce the complexity

of the optimization problem, which can be considered a special case of the

function (2-61), is the optimization described by (2-62):

min
α

MSE =  

[
‖R̃ − R‖2

F

]

s.t. R̃ = αC + (1 − α)R̂
(2-62)

with α being restricted to α ∈ (0, 1) to ensure the positive semi-definiteness

of R̃. Both types of optimization are briefly discussed and applied to the

simulations in the next topics.

2.1.7.2

Computation of the optimal weight factors

Assuming the knowledge of the DOAs of k signals that are impinging on the

array from the known directions θ̄ = [θ1, . . . , θk]T , the a priori covariance

matrix C can be calculated by
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C =
k∑

l=1

a(θl)a
H(θl)σl, (2-63)

where a(θl) is the array steering vector of the lth known DOA and σl is the

power of the lth signal.

Let α0 and β0 denote the optimal values α and β that satisfy (7) and (8). The

estimates α̂0 and β̂0, of α0 and β0, obtained from the available data, can be

compactly expressed by means of two approaches, as follows:

KA-General Linear Combination

In this case, the estimates given in (2-64) and (2-65) are the two weight

factors
β̂o =

γ̂

ρ̂ + γ̂
, (2-64)

α̂o = ν̂(1 − β̂opt), (2-65)

to be applied to 2-60 and γ̂, ν̂, and ρ̂ are defined as

γ̂ = ‖ν̂C − R̂‖2
F , (2-66)

ν̂ =
Tr{CHR̂}

‖C‖2
F

, (2-67)

ρ̂ =
1

N2

N∑

i=1

‖x(i)‖4
F −

1

N
‖R̂‖2

F . (2-68)

KA-Convex Combination

In this case, the estimate given in (2-69) is the the sole weight factor

α̂0 =
ρ̂

ρ̂ + ‖R̂ − C‖2
F

, (2-69)

to be applied to 2-62, and ρ̂ is defined as (2-68).
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2.1.7.3

Knowledge-aided methods

Despite the existence of KA methods combined with classical algorithms

for parameter estimation like MUSIC and ESPRIT, KA methods have not

been combined with high-resolution source localization algorithms like CG

so far. In order to fulfill the expectations of works in this specific field

of research, as a preliminary study, we formulated a new knowledge-aided

parameter estimation technique, termed as KAv-CG [30], that combines the

(CG) algorithm [15,16,27] and a priori knowledge of the directions of arrivals of

source signals. Since KAv-CG follows the same approach employed in MUSIC

and ESPRIT, without loss of generality it can give an idea of how the KAv-

algorithm class works.

Knowledge-aided CG algorithm based on available known DOA

The KAv-CG algorithm, which we developed for complex-valued data, follows

a similar approach to [12] and considers the general case [18], where the

knowledge-aided covariance C (2-63) is rank deficient and the noise power is

assumed to be unknown. This new KAv-CG method also replaces the original

sample covariance matrix with an enhanced covariance matrix, which is a

combination of the original weighted sample covariance matrix and a weighted

knowledge-aided covariance matrix, similarly to the existing KAv applied to

subspace-based methods [12]. KAv-CG can be summarized as shown in Table

2.2.

In order to develop KAv-CG, we make use of the same system model of

2.1.6 also used in 2.1.7.1, in which it is assumed the knowledge of the DOAs

of k signals that are impinging on the array from the known directions

θ̄ = [θ1, . . . , θk]T .

The aim of the proposed KAv-CG algorithm is to exploit a priori knowledge

in the form of the enhanced signal covariance matrix R̃ in (2-60) and process

it using CG algorithm. As can be seen in [18], one can calculate the a priori

covariance matrix C in (2-63) by means of the steering vectors in (2-50) based

on the known directions of impinging signals. The proposed alternative method

is composed of two stages. The first stage encompasses three substeps.The

first substep is to calculate the a priori covariance matrix C, using the

steering vectors of known DOAs. The second substep is to compute the weight
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Table 2.2: Proposed KAv-Conjugate Gradient Algorithm

Inputs:

M , d, λ, N , P

Received vectors x(1), x(2),· · · , x(N)

Prior knowledge → known DOAs: θ1, θ2, · · · ; θk, 1 ≤ k < P

Outputs:

Estimates θ̂k+1 , θ̂k+2 ,· · · , θ̂P

First stage:

compute C (2-63), for the k known DOAs

compute α̂0 (2-69) for convex combination or β̂0 (2-64) and α̂0

(2-65) for general linear combination

compute R̃ (2-61) or (2-62) according to the combination in use as

previously mentioned

Second stage:

w0 = 0, d1 = gcg,0 = b, ρ0 = gH
cg,0gcg,0

for i=1 to P do:

vi = R̃ di

αi = ρi−1 / dH
i vi

wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi

ρi = gH
cg,igcg,i

βi = ρi / ρi−1 = ‖gcg,i‖
2 / ‖gcg,i−1‖

2

di+1 = gcg,i + βidi

end for

form Gcg,P +1(θ) (2-55)

compute PK(θ(n)) (2-57)

find P̂ largest peaks of PK(θ(n)) to obtain

estimates θ̂k of the DOA

DOAs = {θ1, · · · , θk, θ̂k+1 , · · · , θ̂P}

factors according to the combination to be applied. For KA-General Linear

Combination (KA-GLC), the factors are α̂o (2-65) and β̂o and (2-64). In

the case of KA-Convex Combination (KA-CC), α̂0 is given by (2-69). Our

proposed KA-CG algorithm makes use of the latter approach. In both cases,

the covariance matrix to be applied to the first stage of the KA-CG algorithm

is obtained by the sample average formula given in (2-59). The third substep

is to calculate the enhanced covariance matrix R̃ in (2-61) or (2-62) according

to the chosen combination. The last stage includes two substeps. The first is to



Chapter 2. Literature Review 52

compute the estimates by processing the CG algorithm described in 2.1.6 and

2.1. For this purpose, we use the enhanced signal covariance matrix R̃ instead

of the sample covariance matrix R̂ (2-32). The last substep is to form the

solution set containing the subset including the known DOAs and the subset

encompassing the estimates of the unknown DOAs.

Simulations

The simulations of MUSIC, ESPRIT, CG and their knowledge-aided ver-

sions, termed KAv-ESPRIT, KAv-MUSIC and KAv-CG, respectively, are

based upon a scenario with P = 2 two uncorrelated closely-spaced signals

at (89.05, 90.95)◦ impinging on a ULA with M = 12 sensors equally spaced

by half wavelength. The sample matrix (2-59) has been computed with 180

snapshots and the simulated curves are obtained by averaging the results over

200 independent trials. The a priori covariance matrix C has been obtained

using the steering vectors of the second DOA, supposed to be known. In

order to assess the accuracy in terms of probability of resolution, we take into

account the criterion [29], [13], in which two sources with DOA θ1 and θ2 are

said to be resolved if their respective estimates θ̂1 and θ̂2 are such that both∣∣∣θ̂1 − θ1

∣∣∣ and
∣∣∣θ̂2 − θ2

∣∣∣ are less than |θ1 − θ2| /2.

Figure 2.14 depicts the probability of resolution of CG, KAv-CG, MUSIC,

KAv-MUSIC, ESPRIT and KAv-ESPRIT. It can be noticed tha the original

versions are outperformed by their KAv versions, respectively. It can be noticed

that KAv-CG outperforms KAv-ESP in ≃ [0.3 7.0 dB]. The gap between the

corresponding versions make clear the potential of the original versions to

be exploited in terms of probability of resolution. The KAv-versions of CG,

MUSIC and ESPRIT can be viewed as upper bounds of their original versions,

i.e, CG, MUSIC and ESPRIT.

Knowledge-aided CG algorithm based on DOAs obtained on line

The previous approaches to process knowledge make use of available known

DOAs to yield thea priori knowledge matrix C, responsible for upgrad-

ing the sample covariance matrix. Now, we will discuss a new approach to

knowledge-aided parameter estimation based on CG algorithm called KA-CG

as mentioned in 2.1.7. This approach, is summarized in Table 2.3 and, simi-

larly to KAv-CG, has been presented in [30]. The main idea of this algorithm,
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Figure 2.14: Probability of resolution of CG, MUSIC, ESPRIT and their
knowledge-aided versions versus SNR with M = 12, N = 180, P = 2, L = 200
runs, unknown uncorrelated sources at (89.05, 90.95)◦

which is composed of three stages, is to process the CG algorithm described

in Table 2.1 twice. The first time in which CG is processed aims to obtain

initial estimates, from which some are considered as if they were true DOAs.

These estimates are the basis for computing the a priori knowledge matrix C

in the second stage. Thus, differently from KAv versions, which make use of

available known DOAs to form C, this procedure can be considered knowledge

acquisition on line since that matrix is calculated by using steering vectors of

previous estimates. The last time in which CG is processed has the purpose

of computing the final DOA estimates making use of the enhanced covariance

matrix estimate R̃ (2-61) or (2-62).

Simulations

Let us now evaluate the performance of our proposed Knowledge-Aided

Conjugate Gradient (KA-CG) algorithm for direction finding and localization

techniques. Specifically, we evaluate the probability of resolution of two ad-

jacent signals. For this purpose, we compare the KA-CG, the KA-ESPRIT

and the KA-MUSIC, where the a priori covariance matrices C (2-63) are

based on estimates, to their original versions and also to their KAv versions,

in which C is constructed with known DOAs. All experiments are based

upon a scenario identical to the simulations used for MUSIC, KAv-MUSIC,

ESPRIT and KAv-ESPRIT, i.e., with P = 2 two uncorrelated closely-spaced

signals at (89.05, 90.95)◦ impinging on a ULA with M = 12 sensors equally
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Table 2.3: Proposed KA-Conjugate Gradient Algorithm

First stage:

w0 = 0, d1 = gcg,0 = b, ρ0 = gH
cg,0gcg,0

for i=1 to P do:

vi = R di

αi = ρi−1 / dH
i vi

wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi

ρi = gH
cg,igcg,i

βi = ρi / ρi−1 = ‖gcg,i‖
2 / ‖gcg,i−1‖

2

di+1 = gcg,i + βidi

end for

form Gcg,P +1(θ) (2-55)

compute PK(θ(n)) (2-57)

find P̂ largest peaks of PK(θ(n)) to obtain

estimates θ̂l of the DOA

Second stage:

compute C (2-63), for θl = θ̂l , l < P

compute α̂0 (2-69) for convex combination or β̂0 (2-64) and α̂0

(2-65) for general linear combination

compute R̃ (2-61) or (2-62) according to the combination in use as

previously mentioned

Last stage:

Repeat the first stage to obtain enhanced estimates of DOA

making use of R̃ instead of R̂

spaced by half wavelength. The sample matrix (2-59) is computed with 180

snapshots and the simulated curves are obtained by averaging the results over

200 independent trials. In order to assess the accuracy in terms of probability

of resolution, we take into account the same criterion described in 2.1.7.3.

In our experiment, we compare the probability of resolution of the KA-CG,

KA-ESPRIT and KA-MUSIC, to their KAv versions, in which the a priori

covariance matrices C (2-63) are obtained from the steering vector of the

second DOA, which is supposed to be known. The covariance matrices C (2-63)

C for KA versions were obtained from the steering vector of the estimate of the

second DOA. The results depicted in Fig.2.15 show the best performance of

each KAv version, in which C is obtained by the configuration with one known

DOA, over its KA version, where C is calculated using one of the estimates.
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Each KAv-version can be considered an upper bound of its KA version. Thus,

it can be noticed that the small area limited by KA-CG and KAv-CG shows

that the former already exploits its potential close to the effective optimal

performance. The gap available to improvements is situated within [-1.9, 1.6]

SNR(dB) where the probability of resolution is lower than 0.88. Differently

from the previous KA-CG case, there is a larger area limited by KA-ESPRIT

and KAv-ESPRIT that is available to enhancements. It can also be seen that

their effective optimal performance (KAv-ESPRIT) is outperformed by both

KAv-CG and KA-CG. The area limited by KA-MUSIC and KAv-MUSIC shows

that most of the potential to be exploited is situated at the lower levels of the

probability of resolution and that the potential of improvement of the KA-

MUSIC is poor at higher ones.
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Figure 2.15: Probability of resolution of the KA versions and KAv versions of
CG, ESPRIT and MUSIC versus SNR with M = 12, N = 180, P = 2, L = 200
runs, unknown uncorrelated sources at (89.05, 90.95)◦
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Multi-Step Knowledge-aided Iterative ESPRIT algorithm

3.1

Introduction

Traditional high-resolution methods for DOA estimation such as the multiple

signal classification (MUSIC) method [8], the root-MUSIC algorithm [9], the

estimation of signal parameters via rotational invariance techniques (ESPRIT)

[10] and other recent subspace techniques [20,31,32] exploit the eigenstructure

of the input data matrix. These techniques may fail for reduced data sets or

low signal-to-noise ratio (SNR) levels where the expected estimation error is

not asymptotic to the Cramér-Rao bound (CRB) [33]. The accuracy of the

estimates of the covariance matrix is of fundamental importance in parameter

estimation. Low levels of SNR or short data records can result in significant

divergences between the true and the sample data covariance matrices. In

practice, only a modest number of data snapshots is available and when the

number of snapshots is similar to the number of sensor array elements, the

estimated and the true subspaces can differ significantly. Several approaches

have been developed with the aim of enhancing the computation of the

covariance matrix [34–43].

Diagonal loading [34] and shrinkage [35–37] techniques can enhance the

estimate of the data covariance matrix by weighing and individually increasing

its diagonal by a real constant. Nevertheless, the eigenvectors remain the same,

which leads to unaltered estimates of the signal and noise projection matrices

obtained from the enhanced covariance matrix. Additionally, an improvement

of the estimates of the covariance matrix can be achieved by employing

forward/backward averaging and spatial smoothing approaches [38, 39]. The

former leads to twice the number of the original samples and its corresponding

enhancement. The latter extracts the array covariance matrix as the average

of all covariance matrices from its sub-arrays, resulting in a greater number of

samples. Both techniques are employed in signal decorrelation. An approach to
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improve MUSIC dealing with the condition in which the number of snapshots

and the sensor elements approach infinity was presented in [40]. Nevertheless,

this technique is not that effective for reduced number of snapshots. Other

approaches to deal with reduced data sets or low SNR levels [41, 43] consist

of reiterating the procedure of adding pseudo-noise to the observations which

results in new estimates of the covariance matrix. Then, the set of solutions is

computed from previously stored DOA estimates. In [44], two aspects resulting

from the computation of DOAs for reduced data sets or low SNR levels have

been studied using the root-MUSIC technique. The first aspect dealt with

the probability of estimated signal roots taking a smaller magnitude than the

estimated noise roots, which is an anomaly that leads to wrong choices of the

closest roots to the unit circle. To mitigate this problem, different groups of

roots are considered as potential solutions for the signal sources and the most

likely one is selected [45]. The second aspect previously mentioned, shown

in [46], refers to the fact that a reduced part of the true signal eigenvectors

exists in the sample noise subspace (and vice-versa). Such coexistence has

been expressed by a Frobenius norm of the related irregularity matrix and

introduced its mathematical foundation. An iterative technique to enhance

the efficacy of root-MUSIC by reducing this anomaly making use of the

gradual reshaping of the sample data covariance matrix has been reported.

Inspired by the work in [44], we have developed an ESPRIT-based method

known as Two-Step KAI-ESPRIT (TS-ESPRIT) [47], which combines that

modifications of the sample data covariance matrix with the use of prior

knowledge [12, 21, 48–50] about the covariance matrix of a set of impinging

signals to enhance the estimation accuracy in the finite sample size region. In

practice, this prior knowledge could be from the signals coming from known

base stations or from static users in a system. TS-ESPRIT determines the

value of a correction factor that reduces the undesirable terms in the estimation

of the signal and noise subspaces in an iterative process, resulting in better

estimates.

In [51], we presented preliminary results of the Multi-Step KAI ESPRIT

(MS-KAI-ESPRIT) approach that refines the covariance matrix of the input

data via multiple steps of reduction of its undesirable terms. This chapter

presents the MS-KAI-ESPRIT in further detail, an analysis of the mean

squared error (MSE) of the data covariance matrix free of undesired terms

(side effects), a more accurate study of the computational complexity and a

comprehensive study of MS-KAI-ESPRIT and other competing techniques for

scenarios with both uncorrelated and correlated signals. Unlike TS-ESPRIT,

which makes use of only one iteration and available known DOAs, MS-KAI-
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ESPRIT employs multiple iterations and obtains prior knowledge on line. At

each iteration of MS-KAI-ESPRIT, the initial Vandermonde matrix is updated

by replacing an increasing number of steering vectors of initial estimates with

their corresponding refined versions. In other words, at each iteration, the

knowledge obtained on line is updated, allowing the direction finding algorithm

to correct the sample covariance matrix estimate, which yields more accurate

estimates.

3.2

Proposed MS-KAI-ESPRIT Algorithm

In this section, we present the proposed MS-KAI-ESPRIT algorithm [52] and

detail its main features. For this purpose we make use of the same system model

described in 2.1.7.1. We start by expanding (2-52) using (2-49), as derived

in [44]:

R̂ =
1

N

N∑

i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1

N

N∑

i=1

s(i)sH(i)

}
AH +

1

N

N∑

i=1

n(i)nH(i)

+ A

{
1

N

N∑

i=1

s(i)nH(i)

}
+

{
1

N

N∑

i=1

n(i)sH(i)

}
AH

︸ ︷︷ ︸
"undesirable terms"

(3-1)

The first two terms of R̂ in (4-20) can be considered as estimates of the two

summands of R given in (2-51), which represent the signal and the noise

components, respectively. The last two terms in (4-20) are undesirable side

effects, which can be seen as estimates for the correlation between the signal

and the noise vectors. The system model under study is based on noise vectors

which are zero-mean and also independent of the signal vectors. Thus, the

signal and noise components are uncorrelated to each other. As a consequence,

for a large enough number of samples N , the last two terms of (4-20) tend

to zero. Nevertheless, in practice the number of available samples can be

limited. In such situations, the last two terms in (4-20) may have significant

values, which causes the deviation of the estimates of the signal and the noise

subspaces from the true signal and noise subspaces.

The key point of the proposed MS-KAI-ESPRIT algorithm is to modify

the sample data covariance matrix estimate at each iteration by gradually

incorporating the knowledge provided by the newer Vandermonde matrices
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which progressively embody the refined estimates from the preceding iteration.

Based on these updated Vandermonde matrices, refined estimates of the

projection matrices of the signal and noise subspaces are calculated. These

estimates of projection matrices associated with the initial sample covariance

matrix estimate and the reliability factor are employed to reduce its side effects

and allow the algorithm to choose the set of estimates that has the highest

likelihood of being the set of the true DOAs. The modified covariance matrix

is computed by computing a scaled version of the undesirable terms of R̂, as

pointed out in (4-20).

The steps of the proposed algorithm are listed in Table 3.1. The algorithm

starts by computing the sample data covariance matrix (2-59). Next, the DOAs

are estimated using the ESPRIT algorithm. The superscript (·)(1) refers to the

estimation task performed in the first step. Now, a procedure consisting of

n = 1 : P iterations starts by forming the Vandermonde matrix using the

DOA estimates. Then, the amplitudes of the sources are estimated such that

the square norm of the differences between the observation vector and the

vector containing estimates and the available known DOAs is minimized. This

problem can be formulated [44] as:

ŝ(i) = arg min
s

‖ x(i) − Âs ‖2
2 . (3-2)

The minimization of (5-15) is achieved using the least squares technique and

the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i) (3-3)

The noise component is then estimated as the difference between the estimated

signal and the observations made by the array, as given by

n̂(i) = x(i) − Â ŝ(i). (3-4)

After estimating the signal and noise vectors, the third term in (4-20) can be
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computed as:

V , Â

{
1

N

N∑

i=1

ŝ(i)n̂H(i)

}

= Â

{
1

N

N∑

i=1

(ÂH Â)−1ÂHx(i)

×(xH(i) − xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1

N

N∑

i=1

x(i)xH(i)
(
IM − Q̂A

)}

= Q̂A R̂ Q̂⊥
A, (3-5)

where
Q̂A , Â (ÂH Â)−1 ÂH (3-6)

is an estimate of the projection matrix of the signal subspace, and

Q̂⊥
A , IM − Q̂A (3-7)

is an estimate of the projection matrix of the noise subspace.

Next, as part of the procedure consisting of n = 1 : P iterations, the modified

data covariance matrix R̂(n+1) is obtained by computing a scaled version of

the estimated terms from the initial sample data covariance matrix as given

by
R̂(n+1) = R̂ − µ (V(n) + V(n)H), (3-8)

where the superscript (·)(n) refers to the nth iteration performed. The scaling

or reliability factor µ increases from 0 to 1 incrementally, resulting in modified

data covariance matrices. Each of them gives origin to new estimated DOAs

also denoted by the superscript (·)(n+1) by using the ESPRIT algorithm, as

briefly described ahead.

The rank P is assumed to be known, which is an assumption frequently found

in the literature. Alternatively, the rank P could be estimated by model-

order selection schemes [53] such as Akaike’s Information Theoretic Criterion

(AIC) [54] and the Minimum Descriptive Length (MDL) Criterion [55].

In order to estimate the signal and the orthogonal subspaces from the data

records, we may consider two approaches [56,57]: the direct data approach and

the covariance approach. The direct data approach makes use of singular value

decomposition(SVD) of the data matrix X, composed of the ith data snapshot
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(2-49) of the M -dimensional array data vector:

X =[x(1), x(2), . . . , x(N)]

=A[s(1), s(2), . . . , s(N)] + [n(1), n(2), . . . , n(N)]

=A(Θ) S + N ∈  

M×N (3-9)

Since the number of the sources is assumed known or can be estimated by

AIC [54] or MDL [55] , as previously mentioned, we can write X as:

X =
[

Ûs Ûn

]

 Γ̂s 0

0 Γ̂n





 ÛH

s

ÛH
n


 , (3-10)

where the diagonal matrices Γ̂s and Γ̂n contain the P largest singular values

and the M − P smallest singular values, respectively. The estimated signal

subspace Ûs ∈  

M×P consists of the singular vectors corresponding to Γ̂s and

the orthogonal subspace Ûn ∈  

M×(M−P) is related to Γ̂n. If the signal subspace

is estimated, a rank-P approximation of the SVD can be applied.

The covariance approach applies the eigenvalue decomposition (EVD) of the

sample covariance matrix (2-59), which is related to the data matrix (3-9):

R̂ =
1

N

N∑

i=1

x(i)xH(i) =
1

N
XXH ∈  

M×M (3-11)

Then, the EVD of (3-11) can be carried out as follows:

R̂ =
[

Ûs Ûn

]

 Λ̂s 0

0 Λ̂n





 ÛH

s

ÛH
n


 , (3-12)

where the diagonal matrices Λ̂s and Λ̂n contain the P largest and the M-P

smallest eigenvalues, respectively. The estimated signal subspace Ûs ∈  

M×P

corresponding to Γ̂s and the orthogonal subspace Ûn ∈  

M×(M−P) complies

with Γ̂n. If the signal subspace is estimated, a rank-P approximation of

the EVD can be applied. With infinite precision arithmetic, both SVD and

EVD can be considered equivalent. However, as in practice, finite precision

arithmetic is employed, ’squaring’ the data to obtain the Gramian XXH (3-11)

can result in round-off errors and overflow. These are potential problems to be

aware when using the covariance approach.

Now, we can briefly review ESPRIT. We start by forming a twofold subarray

configuration, as each row of the array steering matrix A(Θ) corresponds to
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one sensor element of the antenna array. The subarrays are specified by two

(s × M )-dimensional selection matrices J1 and J2 which choose s elements of

the M existing sensors, respectively, where s is in the range P ≤ s < M . For

maximum overlap, the matrix J1 selects the first s = M − 1 elements and the

matrix J2 selects the last s = M − 1 rows of A(Θ).

Since the matrices J1 and J2 have now been computed, we can estimate the

operator Ψ by solving the approximation of the shift invariance equation (3-13)

given by
J1 Ûs Ψ ≈ J2 Ûs, (3-13)

where Ûs is obtained in (3-12).

Using the least squares (LS) method, which yields

Ψ̂ = arg min
Ψ

‖ J2 Ûs − J1 Ûs Ψ ‖F =
(
J1 Ûs

)†
J2 Ûs, (3-14)

where ‖ · ‖F denotes the Frobenius norm and (·)† stands for the pseudo-inverse.

Lastly, the eigenvalues λi of Ψ̂ contain the estimates of the spatial frequencies

γi computed as:
γi = arg (λi) , (3-15)

so that the DOAs can be calculated as:

θ̂i = arcsin

(
γi λc

2π d

)
(3-16)

where for (3-15) and (3-16) i = 1, · · · , P.

Then, a new Vandermonde matrix B̂(n+1) is formed by the steering vectors

of those refined estimates of the DOAs. By using this updated matrix, it is

possible to compute the refined estimates of the projection matrices of the

signal Q̂
(n+1)
B and the noise Q̂

(n+1)⊥
B subspaces.

Next, employing the refined estimates of the projection matrices, the initial

sample data matrix, R̂, and the number of sensors and sources, the stochastic

maximum likelihood objective function U (n+1 )(µ) [45] is computed for each

value of µ at the nth iteration, as follows:

U (n+1 )(µ) = ln det
(

Q̂
(n+1)
B R̂ Q̂

(n+1)
B (3-17)

+
Trace{Q̂

⊥ (n+1)
B R̂}

M − P
Q̂

(n+1)⊥
B

)
. (3-18)

The previous computation selects the set of unavailable DOA estimates that

have a higher likelihood at each iteration. Then, the set of estimated DOAs

corresponding to the optimum value of µ that minimizes (3-18) also at each nth
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iteration is determined. Finally, the output of the proposed MS-KAI-ESPRIT

algorithm is formed by the set of the estimates obtained at the P th iteration,

as described in Table 3.1.

The proposed approach will be investigated further and extended for an

arbitrary number of iterations in the next chapters.

3.3

Analysis

In this section, we carry out an analysis of the MSE of the data covariance

matrix free of side effects along with a study of the computational complexity

of the proposed MS-KAI-ESPRIT and existing direction finding algorithms.

3.3.1

MSE Analysis

In this subsection we show that at the first of the P iterations, the MSE of the

data covariance matrix free of side effects R̂(n+1) is less than or equal to the

MSE of the original one R̂. This can be formulated as:

MSE
(
R̂(n+1)

) ∣∣∣
n=1

≤ MSE
(
R̂

)
(3-19)

or, alternatively, as

MSE
(
R̂(n+1)

) ∣∣∣
n=1

− MSE
(
R̂

)
≤ 0 (3-20)

In what follows, we provide the proof of this inequality.

We start by expressing the MSE of the original data covariance matrix (2-59)

as:

MSE
(
R̂

)
=  

[
‖R̂ − R‖2

F

]
. (3-21)

where R is the true covariance matrix. Similarly, the MSE of the data

covariance matrix free of side effects R̂(n+1) can be expressed for the first
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Table 3.1: Proposed MS-KAI-ESPRIT Algorithm

Inputs:

M , d, λ, N , P

Received vectors x(1), x(2),· · · , x(N)

Outputs:

Estimates θ̂
(n+1 )
1 (µ opt), θ̂

(n+1 )
2 (µ opt),· · · , θ̂

(n+1 )
P (µ opt)

First step:

R̂ = 1
N

N∑
i=1

x(i)xH(i)

{θ̂
(1)
1 , θ̂

(1)
2 , · · · , θ̂

(1)
P } ESPRIT←−−−−−− (R̂, P, d, λ)

Â(1) =
[
a(θ̂

(1 )
1 ), a(θ̂

(1 )
2 ), · · · , a(θ̂

(1 )
P )

]

Second step:

for n = 1 : P

Q̂
(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂
(n)⊥
A = IM − Q̂

(n)
A

V(n) = Q̂
(n)
A R̂ Q̂

(n)⊥
A

for µ = 0: ι : 1

R̂(n+1) = R̂ − µ (V(n) + V(n)H)

{θ̂
(n+1)
1 , θ̂

(n+1)
2 , · · · , θ̂

(n+1)
P } ESPRIT←−−−−−− (R̂(n+1), P, d, λ)

B̂(n+1) =
[
a(θ̂

(n+1 )
1 ), a(θ̂

(n+1 )
2 ), · · · , a(θ̂

(n+1 )
P )

]

Q̂
(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂
(n+1)⊥
B = IM − Q̂

(n+1)
B

U (n+1 )(µ) = ln det


Q̂

(n+1)
B R̂ Q̂

(n+1)
B +

Trace{Q̂
⊥ (n+1)
B R̂}

M − P
Q̂

(n+1)⊥
B




µ
(n+1)
opt = arg min U (n+1 )(µ)

DOAs(n+1) = {θ̂
(n+1 )
1 (µ opt), θ̂

(n+1 )
2 (µ opt),· · · , θ̂

(n+1 )
P (µ opt)}

Â(n+1) =
{
a(θ̂

(n+1 )
{1 ,··· ,n})

} ⋃ {
a(θ̂

(1 )
{1 ,··· ,P} − {1 ,··· ,n})

}

end for

end for
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iteration n = 1 by making use of (5-21), as follows

MSE
(
R̂(n+1)

) ∣∣∣
n=1

= MSE
(
R̂(2)

)

=  

[
‖R̂(2) − R‖2

F

]

=  

[
‖R̂ − µ (V(1) + V(1)H) − R‖2

F

]

=  

[
‖

(
R̂ − R

)
− µ (V(1) + V(1)H)‖2

F

]
(3-22)

where for the sake of simplicity, from now on we omit the superscript (1), which

refers to the first iteration. In order to expand the result in (3-22), we make

use of the following proposition:

Lemma 1: The squared Frobenius norm of the difference between any two

matrices A ∈ !

m×m and B ∈ !

m×m is given by

‖A − B‖2
F = ‖A‖2

F + ‖B‖2
F −

(
Tr AHB + Tr ABH

)
(3-23)

Proof of Lemma 1:

The Frobenius norm of any D ∈ !

m×m matrix is defined [1] as

‖D‖F =




m∑

i=1

m∑

j=1

|dij|
2




1
2

=
[
Tr

(
DHD

)] 1
2 (3-24)

We express D as a difference between two matrices A and B, both also ∈ !

m×m.

Making use of Lemma1 and the properties of the trace, we obtain

‖A − B‖2
F = Tr

[
(A − B)H (A − B)

]

= Tr
[(

AH − BH
)

(A − B)
]

= Tr
[(

AHA
)

− Tr
(
AHB

)
− Tr

(
BHA

)
+ Tr

(
BHB

)]

= ‖A‖2
F + ‖B‖2

F −
(
Tr AHB + Tr ABH

)
, (3-25)

which is the desired result.

Now, assuming that the true R [5] and the data covariance matrices R̂ [5] are

Hermitian and using (3-22) combined with Lemma1, the cyclic [58] property

of the trace and the linearity [59] property of the expected value, we get

MSE
(
R̂(2)

)
=  

{
‖R̂ − R‖2

F + µ2 ‖V + VH‖2
F

− Tr
[(

R̂ − R
)H

µ
(
V + VH

)]

− Tr
[
µ

(
V + VH

)H (
R̂ + R

)]}
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=  

{
‖R̂ − R‖2

F + µ2 ‖V + VH‖2
F

−µ Tr
[(

R̂ − R
)H (

V + VH
)]

−µ Tr
[(

V + VH
)H (

R̂ + R
)]}

=  

{
‖R̂ − R‖2

F + µ2 ‖V + VH‖2
F

−µ Tr
[(

R̂ − R
) (

V + VH
)]

−µ Tr
[(

VH + V
) (

R̂ + R
)]}

=  

{
‖R̂ − R‖2

F + µ2 ‖V + VH‖2
F

−µ Tr
[(

R̂ − R
) (

V + VH
)]

−µ Tr
[(

R̂ + R
) (

V + VH
)]}

=  

{
‖R̂ − R‖2

F

}
+ µ2

 

{
‖V + VH‖2

F

}

− 2µ 
{
Tr

[(
R̂ − R

) (
V + VH

)]}

= MSE
(
R̂

)
+ µ2

 

{
‖V + VH‖2

F

}

− 2µ 
{
Tr

[(
R̂ − R

) (
V + VH

)]}
(3-26)

By moving the first summand of (3-26) to its first element, we obtain the in-

tended expression for the difference between the MSEs of the data covariance

matrix free of perturbations and the original one, i.e.:

MSE
(
R̂(n+1)

) ∣∣∣
n=1

− MSE
(
R̂

)
= µ2

 

{
‖V + VH‖2

F

}

− 2µ 
{
Tr

[(
R̂ − R

) (
V + VH

)]}
. (3-27)

Now, we expand the expressions inside braces of the second member of (3-27)

individually. We start with the first summand

‖V + VH‖2
F = ‖V‖2

F + ‖VH‖2
F + Tr

(
VHVH

)

+ Tr
(
(VH )

H
V

)

= ‖V‖2
F + ‖VH‖2

F + Tr
(
VHVH

)
+ Tr (VV) . (3-28)

The equation (3-28) can be computed by using the projection matrices of the

signal and the noise subspaces and the data covariance matrix by using (5-18),

(3-7), the idempotence [1] [58] of Q̂A and the cyclic property [58] of the trace.
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Starting with the computation of its fourth summand, we have

Tr (VV) = Tr
[(

Q̂A R̂ Q̂⊥
A

) (
Q̂A R̂ Q̂⊥

A

)]

= Tr
[
Q̂A R̂

(
IM − Q̂A

)
Q̂A R̂

(
IM − Q̂A

)]

= Tr
[(

Q̂A R̂ − Q̂A R̂ Q̂A

)

(
Q̂A R̂ − Q̂A R̂ Q̂A

)]

= Tr
[
Q̂A R̂ Q̂A R̂ − Q̂A R̂ Q̂A R̂ Q̂A

−Q̂A R̂ Q̂AQ̂A R̂ + Q̂A R̂ Q̂AQ̂A R̂ Q̂A

]

= Tr
(
Q̂A R̂ Q̂A R̂

)
− Tr

(
Q̂A R̂ Q̂A R̂ Q̂A

)

− Tr
(
Q̂A R̂ Q̂AQ̂A R̂

)

+ Tr
(
Q̂A R̂ Q̂AQ̂A R̂ Q̂A

)

= Tr
(
Q̂A R̂ Q̂A R̂

)
− Tr

(
Q̂A R̂ Q̂A R̂

)

− Tr
(
Q̂A R̂ Q̂A R̂

)
+ Tr

(
Q̂A R̂ Q̂A R̂

)
= 0. (3-29)

Taking into account that the data covariance matrix R̂ and the estimate of

the projection matrix of the noise subspace Q̂⊥
A are Hermitian, we can evaluate

the third summand of (3-28) as follows:

Tr
(
VHVH

)
= Tr

[(
Q̂A R̂ Q̂⊥

A

)H (
Q̂A R̂ Q̂⊥

A

)H
]

= Tr
{[(

Q̂⊥
A

)H
R̂H Q̂H

A

] [(
Q̂⊥

A

)H
R̂H Q̂H

A

]}

= Tr
{[

Q̂⊥
A R̂ Q̂A

] [
Q̂⊥

A R̂ Q̂A

]}

= Tr
{[(

IM − Q̂A

)
R̂ Q̂

A

] [ (
IM − Q̂A

)
R̂ Q̂

A

]}

= Tr
{[

R̂ Q̂A − Q̂A R̂ Q̂A

] [
R̂ Q̂A − Q̂A R̂ Q̂A

]}

= Tr
{
R̂ Q̂A R̂ Q̂A − R̂ Q̂AQ̂A R̂ Q̂A

−Q̂A R̂ Q̂A R̂ Q̂A + Q̂A R̂ Q̂AQ̂A R̂ Q̂A

}

= Tr
(
R̂ Q̂A R̂ Q̂A

)
− Tr

(
R̂ Q̂AQ̂A R̂ Q̂A

)

− Tr
(
Q̂A R̂ Q̂A R̂ Q̂A

)
+ Tr

(
Q̂A R̂ Q̂AQ̂A R̂ Q̂A

)

= Tr
(
R̂ Q̂A R̂ Q̂A

)
− Tr

(
R̂ Q̂A R̂Q̂A

)

− Tr
(
Q̂A R̂ Q̂A R̂

)
+ Tr

(
Q̂A R̂ Q̂A R̂

)
= 0. (3-30)

By using (3-24), we can expand the first and the second summands of (3-28)
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as follows:

‖V‖2
F + ‖VH‖2

F = Tr
(
VHV

)
+ Tr

((
VH

)H
VH

)

= Tr
(
VHV

)
+ Tr

(
VVH

)

= Tr
(
VVH

)
+ Tr

(
VVH

)

= 2 Tr
(
VVH

)
. (3-31)

Equation (3-31) can be expressed in terms of the projection matrices of the

signal and the noise subspaces and the data covariance, in a similar way as for

the third and fourth summands of (3-28), as follows:

2 Tr
(
VVH

)
= 2 Tr

[(
Q̂A R̂ Q̂⊥

A

) (
Q̂A R̂ Q̂⊥

A

)H
]

= 2 Tr
{

Q̂AR̂
(
IM − Q̂A

) [
Q̂AR̂

(
IM − Q̂A

)]H
}

= 2 Tr
{(

Q̂AR̂ − Q̂AR̂Q̂A

) (
Q̂AR̂ − Q̂AR̂Q̂A

)H
}

= 2 Tr
{
Q̂AR̂R̂Q̂A − Q̂AR̂Q̂AR̂

−Q̂AR̂Q̂AR̂Q̂A + Q̂AR̂Q̂AQ̂AR̂
}

= 2
{
Tr

(
Q̂AR̂R̂Q̂A

)
− Tr

(
Q̂AR̂Q̂AR̂

)

− Tr
(
Q̂AR̂Q̂AR̂Q̂A

)
+ Tr

(
Q̂AR̂Q̂AQ̂AR̂

)}

= 2
{
Tr

(
Q̂AQ̂AR̂R̂

)
− Tr

(
Q̂AR̂Q̂AR̂

)

− Tr
(
Q̂AR̂Q̂AR̂

)
+ Tr

(
Q̂AR̂Q̂AR̂

)}

= 2
{
Tr

(
Q̂AQ̂AR̂R̂

)
− Tr

(
Q̂AR̂Q̂AR̂

)}
(3-32)

From (3-28), (3-29), (3-30), (3-31) and (3-32), we obtain the first summand of

(3-27), as follows:

µ2
 

{
‖V + VH‖2

F

}
= 2µ2

 

{
Tr

(
Q̂AQ̂AR̂R̂

)
− Tr

(
Q̂AR̂Q̂AR̂

)}
(3-33)

In order to finish the expansion of the expressions inside braces of the second

member of (3-27), now we deal with its second summand, in which we make

use of the cyclic property [58] of the trace and the idempotence [1] [58] of Q̂A.
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Tr
[(

R̂ − R
) (

V + VH
)]

=
{

Tr
(
R̂ − R

) [
Q̂A R̂ Q̂⊥

A +
(
Q̂A R̂ Q̂⊥

A

)H
]}

= Tr
{(

R̂ − R
) [

Q̂AR̂
(
IM − Q̂A

)

+
(
Q̂AR̂

(
IM − Q̂A

))H
]}

= Tr
{(

R̂ − R
) [

Q̂AR̂ − Q̂AR̂Q̂A

+
(
Q̂AR̂ − Q̂AR̂Q̂A

)H
]}

= Tr
{(

R̂ − R
) [

Q̂AR̂ − Q̂AR̂Q̂A + R̂Q̂A − Q̂AR̂Q̂A

]}

= Tr
{
R̂Q̂AR̂ + R̂R̂Q̂A − 2R̂Q̂AR̂Q̂A

−RQ̂AR̂ − RR̂Q̂A + 2RQ̂AR̂Q̂A

}

= Tr R̂Q̂AR̂ + Tr R̂R̂Q̂A − 2 Tr R̂Q̂AR̂Q̂A

− Tr RQ̂AR̂ − Tr RR̂Q̂A + 2 Tr RQ̂AR̂Q̂A

= Tr Q̂AR̂R̂ + Tr Q̂AR̂R̂ − 2 Tr Q̂AR̂Q̂AR̂

− Tr RQ̂AR̂ − Tr Q̂ARR̂ + 2 Tr Q̂ARQ̂AR̂

= 2 Tr Q̂AR̂R̂ − 2 Tr Q̂AR̂Q̂AR̂ − Tr RQ̂AR̂

− Tr Q̂ARR̂ + 2 Tr Q̂ARQ̂AR̂

= 2 Tr Q̂AQ̂AR̂R̂ − 2 Tr Q̂AR̂Q̂AR̂ − Tr RQ̂AQ̂AR̂

− Tr Q̂AQ̂ARR̂ + 2 Tr Q̂ARQ̂AR̂ (3-34)

By using (3-34), we can straightforwardly write the second summand of the

second member of (3-27) in terms of the projection matrices of the signal and

the noise subspaces and the data covariance matrix as follows:

− 2µ 
{
Tr

[(
R̂ − R

) (
V + VH

)]}

= −2µ 
{
2 Tr Q̂AQ̂AR̂R̂ − 2 Tr Q̂AR̂Q̂AR̂ − Tr RQ̂AQ̂AR̂

− Tr Q̂AQ̂ARR̂ + 2 Tr Q̂ARQ̂AR̂
}

= −4µ 
{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 2µ
{
− Tr 

[
RQ̂AQ̂AR̂

]
− Tr 

[
Q̂AQ̂ARR̂

]

+2 Tr 
[
Q̂ARQ̂AR̂

]}

= −4µ 
{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 2µ
{
− Tr RQ̂AQ̂A 

[
R̂

]
− Tr Q̂AQ̂AR 

[
R̂

]

+2 Tr Q̂ARQ̂A 

[
R̂

]}
(3-35)
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Now, by using (3-33) and (3-35), and assuming that  

[
R̂

]
is an unbiased

estimate of R̂, i.e.,  
[
R̂

]
= R, we can rewrite (3-27) as follows:

MSE
(
R̂(n+1)

) ∣∣∣
n=1

− MSE
(
R̂

)

= µ2
 

{
‖V + VH‖2

F

}

− 2µ 
{
Tr

[(
R̂ − R

) (
V + VH

)]}

= 2µ2
 

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 4µ 
{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 2µ
{
− Tr RQ̂AQ̂AR − Tr Q̂AQ̂ARR

+2 Tr Q̂ARQ̂AR
}

= 2µ2
 

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 4µ 
{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 2µ
{
−2 Tr RQ̂AQ̂AR + 2 Tr Q̂ARQ̂AR

}

= 2µ2
 

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 4µ 
{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 4µ
{
Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR

}

=
(
2µ2 − 4µ

)
 

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

− 4µ
{
Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR

}
(3-36)

Next, we will discuss equation (3-36). For this purpose, we assume that the

estimate of the projection matrix of the signal subspace Q̂A [1], the true R [5]

and the data covariance matrices R̂ [5] are Hermitian. For the next steps we

will make use of the following Theorem which is proved in [60]:

Theorem 1: For two Hermitian matrices A and B of the same order,

Tr (AB)2k

≤ Tr
(
A2k

B2k
)

, (3-37)

where k is in integer.

By replacing A with Q̂A and B with R̂ in (3-37) and also considering k = 1 ,
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we have

Tr
(
Q̂AR̂

)2
≤ Tr

(
Q̂2

AR̂2
)

∴ Tr Q̂AR̂Q̂AR̂ ≤ Tr Q̂AQ̂AR̂R̂

⇒ Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂ ≥ 0 (3-38)

Similarly, making A = Q̂A and B = R for k = 1, we obtain

Tr
(
Q̂AR

)2
≤ Tr

(
Q̂2

AR2
)

∴ Tr Q̂ARQ̂AR ≤ Tr Q̂AQ̂ARR

⇒ Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR ≥ 0 (3-39)

Next, we analyze the behavior of the expressions −4µ and (2µ2 − 4µ) based on

the reliability factor µ ∈ [0 1], as defined in (5-21). In order to illustrate the case

being studied, we assume that both expressions are continuous functions as

depicted in Fig. 3.1. It can be seen in it that in the range [0 1] both expressions

0 0.2 0.4 0.6 0.8 1
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(µ

)

X: 1

Y: −4

X: 0
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(2µ

2
− 4µ)

− 4µ

Figure 3.1: Behavior of (2µ2 − 4µ) and −4µ for µ ∈ [0 1].

assume values f(µ) ≤ 0, i.e.:

For µ ∈ [0 1] :





(
2µ2 − 4µ

)
≤ 0

− 4µ ≤ 0
(3-40)

Now, we can consider the traces which form the subtraction in (3-38) as
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different random variables y (ω) and x (ω), i.e.:

Tr Q̂AQ̂AR̂R̂ = y (ω)

Tr Q̂AR̂Q̂AR̂ = x (ω)



 , ∀ ω ∈ Ω. (3-41)

In addition, we can suppose that there is a random variable z (ω) always greater

than zero, i.e., z (ω) ≥ 0, so that

z (ω) = y (ω) − x (ω) ≥ 0, ∀ ω ∈ Ω (3-42)

Taking the expectation of (3-42) and applying its properties of linearity and

monotonicity [59,61], we obtain

 [z (ω)] =  [y (ω) − x (ω)] ≥ 0, (3-43)

which, by making use of (3-41), results in

 [z (ω)] =  [y (ω) − x (ω)]

=  

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
≥ 0 (3-44)

Next, we can combine the inequalities (3-40) with (3-44) to compute the second

member of (3-36), for µ ∈ [0 1].

For its first summand, we combine (3-40) and (3-44), as follows:





 

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
≥ 0

(
2µ2 − 4µ

)
≤ 0, µ ∈ [0 1],

(3-45)

to obtain in a straightforward way

(
2µ2 − 4µ

)
 

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
≤ 0 (3-46)

Similarly, we can compute its second member, by combining (3-40) and (3-39),

as described by





Tr Q̂AQ̂ARR − Tr Q̂AR̂Q̂AR̂ ≥ 0

− 4µ ≤ 0, µ ∈ [0 1],
(3-47)

to obtain also straightforwardly the expression given by

− 4µ
{
Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR

}
≤ 0 (3-48)
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By combining the inequalities (3-46) and (3-48) with (3-36), we have

MSE
(
R̂(n+1)

) ∣∣∣
n=1

− MSE
(
R̂

)

=
(
2µ2 − 4µ

)
 

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}

︸ ︷︷ ︸
≤ 0

−4µ
{
Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR

}

︸ ︷︷ ︸
≤ 0

∴ MSE
(
R̂(n+1)

) ∣∣∣
n=1

− MSE
(
R̂

)
≤ 0 (3-49)

which is the desired result.

3.3.2

Computational Complexity Analysis

In this section, we evaluate the computational cost of the proposed MS-KAI-

ESPRIT algorithm which is compared to the following classical subspace

methods: ESPRIT [10], MUSIC [8], Root-MUSIC [9], Conjugate Gradient

(CG) [15,16], Auxiliary Vector Filtering (AVF) [13] and TS-ESPRIT [47]. The

ESPRIT and MUSIC-based methods use the Singular Value Decomposition

(SVD) of the sample covariance matrix (2-59). The computational complexity

of MS-KAI-ESPRIT in terms of number of multiplications and additions is

depicted in Table 3.2, where τ = 1
ι

+ 1. The increment ι is defined in Table

3.1.

Table 3.2: Computational complexity - MS-KAI-ESPRIT [52]

Multiplications

P τ [10
3

M3 + M2(3P + 2) + M(5
2
P2 + 1

2
P + 8N2) +P2(17

2
P + 1

2
)]

+P [2M3 + M2(P) + M(3
2
P2 + 1

2
P) + P2(P

2
+ 3

2
)]

+2M2(P) + M(P2 − P + 8N2) + P2(8P − 1)

Additions

P τ [10
3

M3 + M2(3P − 1) + M(5
2
P2 − 9

2
P + 8N2) +P(8P2 − 2P − 5

2
)]

+P [2M3 + M2(P − 2) + M(3
2
P2 − 1

2
P) − P(P + 1

2
)]

+2M2(P) + M(P2 − 4P + 8N2) + P(8P2 − P − 2)

As can be seen, for this specific configuration used in the simulations

3.4 MS-KAI-ESPRIT shows a relatively high computational burden with
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O(Pτ(3M 3 + 8MN 2 )), where τ is typically an integer that ranges from 2

to 20. It can be noticed that for the configuration used in the simulations

(P = 4, M = 40, N = 25) 3M3 and 8MN2 are comparable, resulting in two

dominant terms. It can also be seen that the number of multiplications required

by the proposed algorithm is more significant than the number of additions.

For this reason, in Table 3.3, we computed only the computational burden of

the previously mentioned algorithms in terms of multiplications for the purpose

of comparisons. In that table, ∆ stands for the search step.

Table 3.3: Computational complexity - other algorithms

Algorithm Multiplications

MUSIC [8] 180
∆

[M2 + M(2 − P) − P] + 8MN2

root-MUSIC [9] 2M3 − M2P + 8MN2

AVF [13] 180
∆

[M2(3P + 1) + M(4P − 2) + P + 2]

+M2N

CG [15] 180
∆

[M2(P + 1) + M(6P + 2) + P + 1] + M2N

ESPRIT [10] 2M2P + M(P2 − 2P + 8N2) + 8P3 − P2

τ [3M3 + M2(3P + 2) + M(5
2
P2 − 3

2
P + 8N2)

+P2(17
2

P + 1
2
) + 1]

TS-ESPRIT [47]* +[2M3 + M2(3P) + M(5
2
P2 − 3

2
P + 8N2)

+P2(17
2

P + 1
2
)]

Next, we will evaluate the influence of the number of sensor elements on the

number of multiplications based on Tables 3.2 and 3.3, respectively. Supposing

P = 4 narrowband signals impinging on a ULA of M sensor elements and

N = 25 available snapshots, we obtain Fig. 3.2. We can see the main trends in

terms of computational cost measured in multiplications of the proposed and

analyzed algorithms. By examining Fig. 3.2, it can be noticed that in the range

M = [20 70] sensors, the curves describing the exact number of multiplications

in MS-KAI-ESPRIT and AVF tend to merge. For M = 40, this ratio tends to

1, i.e. their numbers of multiplications are almost equivalent.

3.4

Simulations

In this section, we examine the performance of the proposed MS-KAI-ESPRIT

in terms of probability of resolution and RMSE and compare them to the stan-

dard ESPRIT [10], the Iterative ESPRIT (IESPRIT), which is also developed

here by combining the approach in [44] that exploits knowledge of the structure

of the covariance matrix and its perturbation terms, the Conjugate Gradient
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Figure 3.2: Number of multiplications as powers of 10 versus number of sensors
for P = 4, N = 25.

(CG) [15], the Root-MUSIC [9], and the MUSIC [8] algorithms. Despite TS-

ESPRIT is based on the knowledge of available known DOAS and the proposed

MS-KAI-ESPRIT does not have access to prior knowledge, TS-ESPRIT is plot-

ted with the aim of illustrating the comparisons. For a fair comparison in terms

of RMSE and probability of resolution of all studied algorithms, we suppose

that we do not have prior knowledge, that is to say that although we have

available known DOAs, we compute TS-ESPRIT as they were unavailable. We

employ a ULA with M=40 sensors, inter-element spacing ∆ = λc

2
and as-

sume there are four uncorrelated complex Gaussian signals with equal power

impinging on the array. The closely-spaced sources are separated by 2.4o, at

(10.2o, 12.6o, 15o, 17.4o), and the number of available snapshots is N=25. For

TS-ESPRIT, as previously mentioned, we presume a priori knowledge of the

last true DOAS (15o, 17.4o).

In Fig. 3.3, we show the probability of resolution versus SNR. We take into

account the criterion [29], in which two sources with DOA θ1 and θ2 are

said to be resolved if their respective estimates θ̂1 and θ̂2 are such that

both
∣∣∣θ̂1 − θ1

∣∣∣ and
∣∣∣θ̂2 − θ2

∣∣∣ are less than |θ1 − θ2| /2. The proposed MS-KAI-

ESPRIT algorithm outperforms IESPRIT developed here, based on [44, 62],

and the standard ESPRIT [10] in the range between −6 and 5dB and MUSIC

[8] from −6 to 8.5dB. MS-KAI-ESPRIT also outperforms CG [15, 16] and

Root-Music [9] throughout the whole range of values. The poor performance

of the latter could be expected from the results for two closed signals obtained

in [44, 62]. When compared to TS-ESPRIT, which as previously discussed,
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was supposed to have the best performance, the proposed MS-KAI-ESPRIT

algorithm is outperformed by the former only in the range between −6 and

−2dB. From this last point to 20dB its performance is superior or equal to

the other algorithms.

In Fig. 3.4, it is shown the RMSE in dB versus SNR, where the term CRB

refers to the square root of the deterministic Cramér-Rao bound [18]. The

RMSE is defined as:

RMSE =

√√√√ 1

L P

L∑

l=1

P∑

p=1

(θp − θ̂p(l))2, (3-50)

where L is the number of trials.

The results show the superior performance of MS-KAI-ESPRIT in the range

between −2.5 and 5 dB. From this last point to 20 dB, MS-KAI-ESPRIT,

IESPRIT, ESPRIT and TS-ESPRIT have similar performance. The only range

in which MS-KAI-ESPRIT is outperformed lies in the range between −6 and

−2.5 dB. From this last point to 20 dB its performance is better or similar to

the others.
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Figure 3.3: Probability of resolution versus SNR with P = 4 uncorrelated
sources, M = 40, N = 25, L = 100 runs.

Now, we focus on the performance of MS-KAI-ESPRIT under more severe

conditions, i.e., we analyze it in terms of RMSE when at least two of the

four equal-powered Gaussian signals are strongly correlated, as shown in the

following signal correlation matrix Rss (3-51):
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Rss = σ2
s




1 0.9 0.6 0

0.9 1 0.4 0.5

0.6 0.4 1 0

0 0.5 0 1




. (3-51)

The signal-to-noise ratio (SNR) is defined as SNR , 10 log10

(
σ2

s

σ2
n

)
. In Fig.
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Figure 3.5: RMSE and the square root of CRB versus SNR with P = 4
correlated sources, M = 40, N = 25, L = 250 runs.

3.5, we can see the performance of the same algorithms plotted in Fig. 3.4

in terms of RMSE(dB) versus SNR computed after 250 runs, when the signal

correlation matrix is given by (3-51). As can be seen, the superior performance
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of MS-KAI-ESPRIT occurs in the whole range between 4.0 and 12 dB, which

can be considered a small but consistent gain. From 12dB to 20dB MS-KAI-

ESPRIT, TS-ESPRIT, IESPRIT and ESPRIT have similar performance. The

values for which MS-KAI-ESPRIT is outperformed are in the range between

−6.0 and 4.0dB.

In Fig. 3.6, we have provided further simulations to illustrate the performance

of each iteration of MS-KAI ESPRIT in terms of RMSE. The resulting

iterations can be compared to each other and to the the original ESPRIT,

which corresponds to the first step of MS-KAI ESPRIT. For this purpose, we

have considered the same scenario employed before, except for the number of

the trials, which is L = 200 runs for all simulations. In particular, we have

considered the case of correlated sources. From Fig. 3.7, which is a magnified

detail of Fig. 3.6, it can be seen that the estimates become more accurate with

the increase of iterations.
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Figure 3.6: RMSE for each iteration of MS-KAI ESPRIT,original ESPRIT and
CRB versus SNR with P = 4 correlated sources, M = 40, N = 25, L = 200
runs.



Chapter 3. Multi-Step Knowledge-aided Iterative ESPRIT algorithm 79

4 5 6 7 8 9 10 11 12 13

−9

−8

−7

−6

−5

−4

SNR (dB)

R
M

S
E

 (
d

B
)

CRB

4th iteration(n=P=4)

3rd iteration(n=3)

2nd iteration(n=2)

1st iteration(n=1)

ESPRIT−first step

Figure 3.7: RMSE for each iteration of MS-KAI ESPRIT,original ESPRIT and
CRB versus SNR with P = 4 correlated sources, M = 40, N = 25, L = 200
runs -magnification.
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Multi-Step Knowledge-aided Iterative Conjugate Gradient

algorithm

4.1

Introduction

In this chapter, we present the Multi-Step Knowledge-Aided Iterative Conju-

gate Gradient (MS-KAI-CG) [66] algorithm, whose preliminary results have

been shown in [65]. Both works combine distinct but complementary ap-

proaches developed in [30] and [47]. The former approach, termed KA-CG [30],

introduced a method that replaces the available known DOAs employed to

compute the a priori knowledge matrix, which is employed in the traditional a

priori knowledge [49] approach, with previous estimates obtained via the CG

algorithm. This a priori knowledge matrix combined with the data covariance

matrix results in an enhanced covariance matrix, which, after being processed

by the CG algorithm, results in more accurate estimates. This approach is

not restricted to CG, the CG algorithm, can be combined with other types of

algorithms and can also be viewed as obtaining knowledge on line. The latter

and more modern approach [47], which is termed TS-KAI, makes use of ES-

PRIT and was the first step toward the MS-KAI techniques. Similarly to the

MS-KAI technique, TS-KAI (ESPRIT) employs refinements of the covariance

matrix combined with incorporation of knowledge to improve the accuracy of

DOA estimation. However, these approaches differ in two key aspects: instead

of using multiple steps, TS-KAI makes use of only two of them; and instead

of acquiring knowledge on line like MS-KAI approach, which can be viewed

as its evolution, TS-KAI employs available knowledge of DOAS, like those

from base stations or static users. MS-KAI-CG follows the MS-KAI approach

applied to ESPRIT, which was described in Chapter 3, and is complemented

by its version equipped with forward-backward spatial smoothing, denoted as

MS-KAI-CG-FB, which can deal with correlated signals. Unlike prior KAI

approaches, MS-KAI-CG and MS-KAI-CG-FB are no longer limited to P it-

erations, where P is the number of source signals. Moreover, the CG-based
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algorithms are particularly effective for scenarios with very few source sig-

nals and closely-spaced angles of arrival. For these situations, the MS-KAI-CG

approach is particularly appealing and addresses some of the weaknesses of ex-

isting CG-based approaches by improving the quality of the covariance matrix

estimates. We then carry out an analysis of the computational complexity of

the proposed and existing direction finding algorithms along with a simulation

study for scenarios with closely-spaced source signals.

4.2

Proposed MS-KAI-CG Algorithm

In this section, we present the proposed MS-KAI-CG algorithm [66] applied to

uncorrelated sources and detail its main features. For this purpose we make use

of the same system model described in Subsection 2.1.6. We start by expanding

the estimate of the data covariance matrix (2-52), which here is denoted by

R̂o, using (2-49), as derived in 3.2:

R̂o =
1

N

N∑

i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1

N

N∑

i=1

s(i)sH(i)

}
AH +

1

N

N∑

i=1

n(i)nH(i)

+ A

{
1

N

N∑

i=1

s(i)nH(i)

}
+

{
1

N

N∑

i=1

n(i)sH(i)

}
AH

︸ ︷︷ ︸
"undesirable by-products"

(4-1)

Similarly to Section 3.2, the first two terms of R̂o in (4-1) can be considered

as estimates of the two summands of R given in (2-51), which represent the

signal and the noise components, respectively. The last two terms in (4-1) are

undesirable by-products, which can be seen as estimates for the correlation

between the signal and the noise vectors. The system model under study is

based on noise vectors which are zero-mean and also independent of the signal

vectors. Therefore, the signal and noise components are uncorrelated to each

other. As a consequence, for a large enough number of samples N , the last two

terms pointed out in (4-1) tend to zero. However, in practice the number of

available samples can be limited. In such situations, the last two terms in (4-1)

may have non negligible values, which causes the deviation of the estimates of

the signal and the noise subspaces from the true signal and noise ones.
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The key approach of the proposed MS-KAI-CG algorithm is to reshape the

sample data covariance matrix estimate at each iteration by gradually in-

corporating the knowledge provided by the updated Vandermonde matrices

which progressively incorporate the newer estimates from the preceding itera-

tion. Based on these updated Vandermonde matrices, refined estimates of the

projection matrices of the signal and noise subspaces are calculated. These

estimates of projection matrices associated with the initial sample covariance

matrix estimate and the reliability (scaling) factor employed to reduce its by-

products allow to choose the set of estimates that has the minimum value

of the stochastic maximum likelihood objective function (SMLOF), i.e., the

highest likelihood of being the set of the true DOAs. The modified covariance

matrix is computed by deriving a scaled version of the undesirable terms from

R̂o, which are pointed out in (4-1).

The steps of the proposed algorithm are listed in Table 4.2. The algorithm

starts by computing the sample data covariance matrix (2-52). Next, the DOAs

are estimated using the CG direction finding algorithm reported in [15,16,27].

In this chapter, the rank P is assumed to be known, which is an assumption

frequently found in the literature. Alternatively, the rank P could be estimated

by model-order selection schemes [53] such as Akaike’s Information Theoretic

Criterion (AIC) [54] and the Minimum Descriptive Length (MDL) Criterion

[55]. The CG method, from which the first and the last steps of the MS-KAI-

CG are based on, is used to minimize a cost function, or analogously, to solve

a linear system of equations by approaching the optimal solution step by step

via a line search along successive directions, which are sequentially determined

at each direction [19]. As a result of the application of the CG algorithm to

direction finding, we have a system of equations that is iteratively solved for

w at each search angle:

Rw = b(θ), (4-2)

where R is the covariance matrix and b(θ) is the initial vector defined as

b(θ) =
R a(θ)

‖R a(θ)‖
, (4-3)

where a(θ) is the search vector.

The extended signal subspace of rank P is obtained by means of the CG

algorithm, which is summarized in the Table 4.1. The set of orthogonal residual

vectors
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Gcg,P +1(θ) = [gcg,0(θ), gcg,1(θ), . . . , gcg,P (θ)], (4-4)

where b(θ)= g0(θ) generates the well-known extended Krylov subspace com-

prised of the true signal subspace of dimension P and the search vector

itself. All the residual vectors are normalized except for the last one. If

θ ∈ {θ1, . . . , θP }, the initial vector b(θ) lies in the true signal subspace space

spanned by the [gcg,0(θ), gcg,1(θ), . . . , gcg,P −1(θ)] basis vectors of the extended

Krylov subspace. Thus, the rank of the generated signal subspace drops from

P + 1 to P and we have
gcg,P (θ) = 0, (4-5)

where gcg,P is the last unnormalized residual vector. In order to exploit this

behavior, the proposed KA-CG algorithm makes use of the spectral function

defined in [13]:

PK(θ(n)) =
1

‖gH
cg,P (θ(n))Gcg,P +1(θ(n−1))‖2

, (4-6)

where θ(n)denotes the search angle in the whole angle range {−90o, . . . , 90o}

with θ(n) = n∆o − 90o, where ∆o is the search step and n = 0, 1, . . . , 180o/∆o.

The matrix Gcg,P +1(θ
(n−1)) contains all residual vectors at the (n−1)th vector

calculated at the current search step n. If θ(n) ∈ {θ1, . . . , θP }, gcg,P (θ(n)) = 0

and we can expect a peak in the spectrum. Taking into account that R̂o

in (2-52) and (4-1) is only a sample average estimate, which is unknown in

practical applications, gcg,P (θ(n)) and Gcg,P +1(θ
(n−1)) become approximations.

Hence the spectral function in (4-6) can just provide very large values but they

do not tend to infinity as for the original covariance matrix.

The superscript (·)(1) refers to the estimation task performed in the first step.

Now, a procedure consisting of n = 1 : I iterations starts by forming the

Vandermonde matrix using the DOA estimates. Then, the amplitudes of the

sources are estimated such that the square norm of the differences between

the observation vector and the vector containing estimates and the available

known DOAs is minimized. This problem can be formulated [44] as:

ŝ(i) = arg min
s

‖ x(i) − Âs ‖2
2 . (4-7)

The minimization of (4-7) is achieved using the least squares technique and

the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i) (4-8)

The noise component is then estimated as the difference between the estimated
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Table 4.1: Summary of the Conjugate Gradient Algorithm

w0 = 0, d1 = gcg,0 = b, ρ0 = gH
cg,0gcg,0

for i=1 to P

vi = R di

αi = ρi−1 / dH
i vi

wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi

ρi = gH
cg,igcg,i

βi = ρi / ρi−1 = ‖gcg,i‖
2 / ‖gcg,i−1‖

2

di+1 = gcg,i + βidi

end for

form Gcg,P +1(θ) (4-4)

compute PK(θ(n)) (4-6)

find P̂ largest peaks of PK(θ(n)) to obtain

estimates θ̂l of the DOA

signal and the observations made by the array, as given by

n̂(i) = x(i) − Â ŝ(i). (4-9)

After estimating the signal and noise vectors, the third term in (4-1) can be

computed as

V , Â

{
1

N

N∑

i=1

ŝ(i)n̂H(i)

}

= Â

{
1

N

N∑

i=1

(ÂH Â)−1ÂHx(i)

×(xH(i) − xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1

N

N∑

i=1

x(i)xH(i)
(
IM − Q̂A

)}

= Q̂A R̂ Q̂⊥
A, (4-10)

where
Q̂A , Â (ÂH Â)−1 ÂH (4-11)

is an estimate of the projection matrix of the signal subspace, and

Q̂⊥
A , IM − Q̂A (4-12)

is an estimate of the projection matrix of the noise subspace.
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Subsequently, as part of the procedure with n = 1 : I iterations, the modified

data covariance matrix R̂(n+1) is calculated by computing a scaled version of

the estimated terms from the initial sample data covariance matrix as given

R̂(n+1) = R̂o − µ (V (n) + V (n)H), (4-13)

where the superscript (·)(n) refers to the nth iteration performed. The scaling

or reliability factor µ increases from 0 to 1 incrementally, resulting in modified

data covariance matrices. Each of them gives origin to new estimated DOAs

also denoted by the superscript (·)(n+1) by using the CG algorithm, which was

previously described. Then, a new Vandermonde matrix B̂(n+1) is formed by

the steering vectors of those newer estimated DOAs. By using this new matrix,

it is possible to compute the newer estimates of the projection matrices of the

signal Q̂
(n+1)
B and the noise Q̂

(n+1)⊥
B subspaces.

Next, employing the refined estimates of the projection matrices, the initial

sample data matrix, R̂o, and the number of sensors and sources, the stochastic

maximum likelihood objective function (SMLOF) U (n+1 )(µ) [45] is computed

for each value of µ at the nth iteration, as follows:

U (n+1 )(µ) = ln det (·) , (4-14)

where

(·) =


Q̂

(n+1)
B R̂o Q̂

(n+1)
B +

Trace{Q̂
⊥ (n+1)
B R̂o}

M − P
Q̂

(n+1)⊥
B




The previous computation selects the set of unavailable DOA estimates that

have a higher likelihood at each iteration. Then, the set of estimated DOAs

corresponding to the optimum value of µ that minimizes (4-14) also at each

nth iteration is determined. Finally, the output of the proposed MS-KAI-CG

algorithm is formed by the set of the estimates obtained at the I th iteration,

as described in Table 4.2.

4.3

Proposed MS-KAI CG-FB Algorithm

Most direction finding algorithms experience performance degradation in the

presence of correlated signals. This is also verified for the proposed MS-KAI-

CG algorithm, as will be shown later via simulations. In this section, we

present an approach the combines the proposed MS-KAI-CG algorithm and the

well-known forward-backward spatial smoothing (FBSS) [38,63,64] technique,

denoted as MS-KAI-CG-FB algorithm, for dealing with correlated signals. In
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Table 4.2: Proposed MS-KAI-CG Algorithm

Inputs:
M , d, λ, N , I

Received vectors x(1), x(2),· · · , x(N)
Outputs:

Estimates θ̂
(n+1 )
1 (µ opt), θ̂

(n+1 )
2 (µ opt),· · · , θ̂

(n+1 )
P (µ opt)

First step:

R̂o = 1
N

N∑
i=1

x(i)xH(i)

{θ̂
(1)
1 , θ̂

(1)
2 , · · · , θ̂

(1)
P } CG←− (R̂o, P, d, λ)

Â(1) =
[
a(θ̂

(1 )
1 ), a(θ̂

(1 )
2 ), · · · , a(θ̂

(1 )
P )

]

Second step:

for n = 1 : I

Q̂
(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂
(n)⊥
A = IM − Q̂

(n)
A

V (n) = Q̂
(n)
A R̂o Q̂

(n)⊥
A

for µ = 0 : increment : 1

R̂(n+1) = R̂o − µ (V (n) + V (n)H)

{θ̂
(n+1)
1 , θ̂

(n+1)
2 , · · · , θ̂

(n+1)
P } CG←− (R̂(n+1), P, d, λ)

B̂(n+1) =
[
a(θ̂

(n+1 )
1 ), a(θ̂

(n+1 )
2 ), · · · , a(θ̂

(n+1 )
P )

]

Q̂
(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂
(n+1)⊥
B = IM − Q̂

(n+1)
B

U (n+1 )(µ) = ln det


Q̂

(n+1)
B R̂o Q̂

(n+1)
B +

Trace{Q̂
⊥ (n+1)
B R̂o}

M − P
Q̂

(n+1)⊥
B




µ(n+1)
o = arg min U (n+1 )(µ)

DOAs(n+1) = {θ̂
(n+1 )
1 (µo), θ̂

(n+1 )
2 (µo),· · · , θ̂

(n+1 )
P (µo)}

if n <= P

Â(n+1) =
{
a(θ̂

(n+1 )
{1 ,··· ,n}(µo))

} ⋃ {
a(θ̂

(1 )
{1 ,··· ,P} − {1 ,··· ,n})

}

else

Â(n+1) =
[
a(θ̂

(n+1 )
1 (µo)), a(θ̂

(n+1 )
2 (µo)), · · · , a(θ̂

(n+1 )
P (µo))

]

end if
end for
end for

the proposed MS-KAI-CG-FB algorithm, the FBSS covariance matrix (4-15)

is obtained from the initial sample covariance matrix R̂o (2-52), as follows:

R̂ =
1

K

K∑

k=1

ZK R̃ ZT
k , (4-15)

where the number of its subarrays is obtained by

K = M − L + 1 , (4-16)
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In (4-16), L means the number of sensors of the subarrays and M the number

of sensors of the original ULA. The matrix Zk is given by

Zk =
[
0L×(k−1) | IL×L | 0L×M−(L+k−1)

]
(4-17)

The forward-backward modified matrix R̃ is defined as:

R̃ =
1

2

(
R̂o + J R̂∗

o J
)

, (4-18)

where J is is an off-diagonal exchange matrix

J =




0 1
...

1 0


 , (4-19)

and (∗) means the complex conjugate.

Next, we expand (4-15) using (2-49) as follows:

R̂ =
1

N

N∑

i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1

N

N∑

i=1

s(i)sH(i)

}
AH +

1

N

N∑

i=1

n(i)nH(i)

+ A

{
1

N

N∑

i=1

s(i)nH(i)

}
+

{
1

N

N∑

i=1

n(i)sH(i)

}
AH

︸ ︷︷ ︸
"undesirable by-products"

(4-20)

The first two terms of R̂ in (4-20) can be considered as estimates of the two

summands of R given in (2-51), which represent the signal and the noise

components, respectively. The last two terms in (4-20) are undesirable by-

products, which can be seen as estimates for the correlation between the signal

and the noise vectors. Moreover, the last two terms in (4-20) may have large

values, which results in estimates of the signal and the noise subspaces different

from the actual subspaces.

The key aspect of the proposed MS-KAI-CG-FB algorithm is to modify the

FBSS covariance matrix estimate R̂ (4-15) at each iteration by gradually

incorporating the knowledge provided by the newer Vandermonde matrices

which progressively embody the newer estimates from the preceding iteration.

Based on these updated Vandermonde matrices, refined estimates of the

projection matrices of the signal and noise subspaces are calculated. These

estimates of projection matrices associated with the FBSS covariance matrix

estimate estimate R̂ and the reliability factor employed to reduce its by-

products allow to choose the set of estimates that has the minimum value
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of the SMLOF, i.e., the highest likelihood of being the set of the true DOAs.

The modified covariance matrix is computed by deriving a scaled version of

the undesirable terms from R̂, which are pointed out in (4-20).

The steps of the proposed MS-KAI-CG-FB algorithm are listed in Table 4.3.

The algorithm starts by computing the initial sample data covariance matrix

(2-52). Then, the FBSS covariance matrix estimate (4-15) is calculated. Sub-

sequently, the DOAs are estimated using the original CG algorithm described

in Subsection 2.1.6 and summarized in section 4.2. The superscript (·)(1) refers

to the estimation task performed in the first step. Next, a procedure consist-

ing of n = 1 : I iterations starts by forming the Vandermonde matrix using

the DOA estimates. Then, the amplitudes of the sources are estimated such

that the square norm of the differences between the observation vector and the

vector containing estimates and the available known DOAs is minimized. This

problem can be formulated as

ŝ(i) = arg min
s

‖ x(i) − Âs ‖2
2 . (4-21)

The minimization of (4-21) is achieved using the least squares technique and

the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i) (4-22)

The noise component is then estimated as the difference between the estimated

signal and the observations made by the array, as given by

n̂(i) = x(i) − Â ŝ(i). (4-23)

After estimating the signal and noise vectors, the third term in (4-20) can be

computed as

V , Â

{
1

N

N∑

i=1

ŝ(i)n̂H(i)

}

= Â

{
1

N

N∑

i=1

(ÂH Â)−1ÂHx(i)

×(xH(i) − xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1

N

N∑

i=1

x(i)xH(i)
(
IM − Q̂A

)}

= Q̂A R̂ Q̂⊥
A, (4-24)

where
Q̂A , Â (ÂH Â)−1 ÂH (4-25)
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is an estimate of the projection matrix of the signal subspace, and

Q̂⊥
A , IM − Q̂A (4-26)

is an estimate of the projection matrix of the noise subspace.

Next, also as part of the procedure of n = 1 : I iterations, the modified data

covariance matrix R̂(n+1) is calculated by computing a scaled version of the

estimated terms from the FBSS covariance matrix estimate (4-15), as given

R̂(n+1) = R̂ − µ (V (n) + V (n)H), (4-27)

where the superscript (·)(n) refers to the nth iteration performed. The scaling

or reliability factor µ increases from 0 to 1 incrementally, resulting in modified

data covariance matrices. Each of them gives origin to new estimated DOAs

also denoted by the superscript (·)(n+1) by using the standard CG algorithm,

which was described in Subsection 2.1.6. Then, a new Vandermonde matrix

B̂(n+1) is formed by the steering vectors of those newer estimated DOAs. By

using this new matrix, it is possible to compute the newer estimates of the

projection matrices of the signal Q̂
(n+1)
B and the noise Q̂

(n+1)⊥
B subspaces.

Afterwards, employing the newer estimates of the projection matrices, the

FBSS covariance matrix estimate R̂ (4-15), the number of sensors of the

subarrays obtained in the FBSS technique L (4-16) and the number of the

sources P, the stochastic maximum likelihood objective function U (n+1 )(µ) [45]

is computed for each value of µ at the nth iteration, as follows:

U (n+1 )(µ) = ln det (·) , (4-28)

where

(·) =


Q̂

(n+1)
B R̂ Q̂

(n+1)
B +

Trace{Q̂
⊥ (n+1)
B R̂}

L − P
Q̂

(n+1)⊥
B




The preceding computation selects the set of unavailable DOA estimates that

have a higher likelihood at each iteration. Then, the set of estimated DOAs

corresponding to the optimum value of µ that minimizes (4-28) also at each nth

iteration is determined. Finally, the output of the proposed MS-KAI-CG-FB

algorithm is formed by the set of the estimates obtained at the I th iteration,

as described in Table 4.3.
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Table 4.3: Proposed MS-KAI-CG-FB Algorithm

Inputs:
M , d, λ, N , P

Received vectors x(1), x(2),· · · , x(N)
Outputs:

Estimates θ̂
(n+1 )
1 (µ opt), θ̂

(n+1 )
2 (µ opt),· · · , θ̂

(n+1 )
P (µ opt)

First step:

R̂o = 1
N

N∑
i=1

x(i)xH(i)

R̂ FBSS←−−−− R̂o

{θ̂
(1)
1 , θ̂

(1)
2 , · · · , θ̂

(1)
P } CG←− (R̂, P, d, λ)

Â(1) =
[
a(θ̂

(1 )
1 ), a(θ̂

(1 )
2 ), · · · , a(θ̂

(1 )
P )

]

Second step:
for n = 1 : I

Q̂
(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂
(n)⊥
A = IM − Q̂

(n)
A

V (n) = Q̂
(n)
A R̂ Q̂

(n)⊥
A

for µ = 0 : ι : 1

R̂(n+1) = R̂ − µ (V (n) + V (n)H)

{θ̂
(n+1)
1 , θ̂

(n+1)
2 , · · · , θ̂

(n+1)
P } CG←− (R̂(n+1), P, d, λ)

B̂(n+1) =
[
a(θ̂

(n+1 )
1 ), a(θ̂

(n+1 )
2 ), · · · , a(θ̂

(n+1 )
P )

]

Q̂
(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂
(n+1)⊥
B = IM − Q̂

(n+1)
B

U (n+1 )(µ) = ln det


Q̂

(n+1)
B R̂ Q̂

(n+1)
B +

Trace{Q̂
⊥ (n+1)
B R̂}

L − P
Q̂

(n+1)⊥
B




µ(n+1)
o = arg min U (n+1 )(µ)

DOAs(n+1) = {θ̂
(n+1 )
1 (µo), θ̂

(n+1 )
2 (µo),· · · , θ̂

(n+1 )
P (µo)}

if n <= P

Â(n+1) =
{
a(θ̂

(n+1 )
{1 ,··· ,n}(µo))

} ⋃ {
a(θ̂

(1 )
{1 ,··· ,P} − {1 ,··· ,n})

}

else

Â(n+1) =
[
a(θ̂

(n+1 )
1 (µo)), a(θ̂

(n+1 )
2 (µo)), · · · , a(θ̂

(n+1 )
P (µo))

]

end if
end for
end for

4.4

Computational Complexity Analysis

In this section, we evaluate the computational cost of the proposed MS-

KAI-CG and MS-KAI-CG-FB [66] algorithms which are compared to the
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following classical subspace methods: ESPRIT [10], MUSIC [8], Root-MUSIC

[9], Conjugate Gradient (CG) [15], Auxiliary Vector Filtering (AVF) [13]

and TS-ESPRIT [47]. The ESPRIT and MUSIC-based methods use the

Singular Value Decomposition (SVD) of the sample covariance matrix (2-59).

The computational complexity of MS-KAI-CG/MS-KAI-CG-FB in terms of

number of multiplications is depicted in Table 4.4, where τ = 1
ι

+ 1. The

increment ι is defined in Table 4.3.

Considering the number of multiplications, it can be seen that

for this specific configuration used in the simulations 3.4 MS-KAI-

CG/MS-KAI-CG-FB show a relatively high computational burden with

O(Pτ
[

180
∆

(M 2 (P + 1 ) + M (6P + 2 ))
]
), where τ is typically an inte-

ger that ranges from 2 to 20. Similarly, the order of additions reaches

O(Pτ
[

180
∆

(M 2 (P + 1 ) + M (5P + 1 ))
]
). By examining the expressions for

multiplications and additions for the proposed algorithms, that the number

of multiplications required by the proposed algorithms is more significant

than the number of additions and serves as an appropriate indicator of the

computational complexity of the proposed and existing algorithms. For this

reason, in Table 4.4, we consider the computational burden of the proposed

and previously reported algorithms in terms of multiplications for the purpose

of comparisons. In that table, ∆ stands for the search step.

Next, based on Table 4.4, we have evaluated the influence of the number

of sensor elements on the number of multiplications based on the specific

configuration composed of P = 4 narrowband signals impinging on a ULA

of M sensor elements and N = 100 available snapshots. In Fig. 4.1, we can see

the main trends in terms of computational cost measured in multiplications

of the proposed and analyzed algorithms. By examining Fig. 4.1, it can be

noticed that in the whole range M = [0 100] sensors, the curves describing the

exact number of multiplications computed in MS-KAI-CG-FB and MS-KAI-

CG has been merged, which means equivalent burden in terms of this kind of

operation. It can also be noticed that in the range M = [5 20], MS-KAI-CG-

FB, MS-KAI-CG and MS-KAI-ESPRIT require a similar cost.

4.5

Simulations

In this section, we evaluate the performance of the proposed MS-KAI CG-FB

and MS-KAI-CG algorithms, the standard CG [15, 16, 27] and the forward-
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Table 4.4: Computational complexity in multiplications of algorithms

P τ{180
∆

[M 2 (P + 1 ) + M (6P + 2 ) + P + 1 ]

+10
3

M 3 + M 2 (N + P + 3 ) + M (3
2
P2 + 1

2
P)

MS-KAI-CG [65] +P2 (1
2
P + 3

2
)}

∼ +P [2M 3 + M 2 (P) + M (1
2
P) + P2 (P

2
+ 3

2
)]

MS-KAI-CG +180
∆

[M 2 (P + 1 ) + M (6P + 2 ) + P + 1 ]

-FB [65] +M 2 (N + 2 ) + MP

MUSIC [8] 180
∆

[M 2 + M (2 − P) − P] + 8MN 2

Root-MUSIC [9] 2M 3 − M 2 P + 8MN 2

AVF [13] 180
∆

[M 2 (3P + 1 ) + M (4P − 2 ) + P + 2 ]

+M 2 N

CG [15] 180
∆

[M 2 (P + 1 ) + M (6P + 2 ) + P + 1 ] + M 2 N

ESPRIT [10] 2M 2 P + M (P2 − 2P + 8N 2 ) + 8P3 − P2

τ [3M 3 + M 2 (3P + 2 ) + M (5
2
P2 − 3

2
P + 8N 2 )

+P2 (17
2

P + 1
2
) + 1 ]

TS-ESPRIT [47] +[2M 3 + M 2 (3P) + M (5
2
P2 − 3

2
P + 8N 2 )

+P2 (17
2

P + 1
2
)]
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Figure 4.1: Number of multiplications as powers of 10 versus number of sensors
for P = 4, N = 100.

backward spatially smoothed CG (CG-FB) [15,38], the ESPRIT [10], and the

MUSIC [8] algorithms in terms of RMSE and probability of resolution (PR).
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The RMSE is defined as

RMSE =

√√√√ 1

S P

S∑

s=1

P∑

p=1

(θp − θ̂p(s))2, (4-29)

where S is the number of trials. The signal-to-noise ratio (SNR) is defined

as SNR , 10 log10

(
σ2

s

σ2
n

)
. For comparisons in terms of RMSE (dB), we have

computed and plotted the square root of the deterministic CRB [28]. To assess

the performance in terms of PR, we take into account the criterion of [29], in

which two sources with DOA θ1 and θ2 are said to be resolved if their respective

estimates θ̂1 and θ̂2 are such that both
∣∣∣θ̂1 − θ1

∣∣∣ and
∣∣∣θ̂2 − θ2

∣∣∣ are less than

|θ1 − θ2| /2. We have set the search step to ∆ = 0.2o in all algorithms that

make use of peak search. We first consider a scenario with P = 2 uncorrelated

complex Gaussian signals with equal power impinging on a ULA with N = 12

sensors. The sources have been separated by ξ (θ) = 2.0o, at (15o, 17o), and the

number of available snapshots was set to N = 100. The computations of RMSE

have used 150 independent trials. In Fig. 4.2, we show the PR against the SNR,

whereas in Fig. 4.3 the RMSE performance against the SNR is depicted. From

the curves it can be noticed the improvement of the performance of MS-KAI-

CG in terms of both PR and RMSE as a result of the improved covariance

matrix estimates.
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Figure 4.2: Probability of resolution versus SNR with P = 2, M = 12, N = 100,
L = 150 runs, ξ (θ) = 2.0o.

In Fig. 4.4, we show the influence of the iterations carried out at the second

step. It can be noticed the gradual and consistent improvement of the perfor-

mance of MS-KAI-CG in terms of RMSE as a result of the increasing number

of iterations.
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Figure 4.3: RMSE in degrees versus SNR with P = 2, M = 12, N = 100,
L = 150 runs, ξ (θ) = 2.0o.
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Figure 4.4: Influence of the iterations in terms of RMSE in degrees versus SNR
with P = 2, M = 12, N = 100, L = 150 runs, ξ (θ) = 2.0o.

In the next examples, we have examined the performance of the proposed MS-

KAI-CG-FB when employed to estimate strongly correlated closely spaced

sources. To this end, we consider a scenario composed of Gaussian signals

with equal power impinging on a ULA. In particular, we have P = 2 sources

separated by ξ (θ) = 2.0o, at (15o, 17o), M = 12 sensors and N = 70 snapshots.

We have employed L = 150 trials for these simulations. The source signals have

been correlated according to the following correlation matrix:

Rss = σ2
s


 1 0.9

0.9 1


 . (4-30)
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In Fig. 4.5, we can notice that in terms of PR the proposed MS-KAI-CG-

FB outperforms the standard CG algorithm equipped with forward-backward

spatial smoothing, denoted as CG-FB, the standard CG algorithm, MUSIC

and ESPRIT in most of the considered range of SNR values. In Fig. 4.6, we
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Figure 4.5: Probability of resolution versus SNR with P = 2, M = 12, N = 70,
L = 150 runs, ξ (θ) = 2.0o.

can see that in terms of RMSE the proposed MS-KAI-CG-FB provides the

best performance in the range [1.8 16] dB. It can also be seen that in the

ranges [−6 1.8) dB and (16 20] dB its performance is similar to the best. This

performance can be better noticed in Fig. 4.7, which shows the RMSE in terms

of dB.
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Figure 4.6: RMSE in degrees versus SNR with P = 2, M = 12, N = 70,
L = 150 runs, ξ (θ) = 2.0o.
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5

Multi-Step Knowledge-Aided Iterative MUSIC for Nested

Sensor Arrays

5.1

Introduction

In the previous chapters of this thesis, we have presented algorithms based

on a ULA-based system model, whose major applications such as DOA

estimation and beamforming suffer from a key limitation: the number of

sources that can be resolved with an N element ULA using conventional

subspace based methods like MUSIC [1], [8] is N-1. Over the years, the

question of detecting more sources than sensors has been dealt with by different

approaches. In [67,68], the use of minimum redundancy arrays (MRA) [69] and

the construction of an enlarged covariance matrix for achieving higher degrees

of freedom (DOF) has not been successful. In [70,71], an approach to convert

the enlarged matrix into an appropriate positive definite Toeplitz matrix has

been proposed and relies on MRA. Despite those efforts to achieve more DOF

to process more sources than sensors, there is no closed form expression for the

array geometry. Moreover, such arrays demand hard designs which are limited

to computer simulations or complex algorithms for locating the sensors [72–76].

In [77–79], it was shown that an approach [80] using fourth-order cumulants

succeeded in increasing the DOF, however it is limited to non-Gaussian sources.

In [81,82], by using the Khatri-Rao (KR) product and the hypothesis of quasi-

stationary sources, which finds applications in microphone array processing of

speech [83], one can recognize 2N-1 sources through a N element ULA without

the need for high-order statistics. In [84], the increase of the DOF results from

building a virtual array making use of a MIMO radar. Since the creation of that

array relies on active sensing, the method is not suitable for passive sensing.

In [85, 86], by exploring the class of non-uniform arrays, a structure called

nested has been introduced, which is formed by combining two or more ULAs,

to obtain a difference co-array. This structure can provide an increase of DOF

and, therefore, can resolve more sources than the number of sensors. In a
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subsequent work [87], linear nested arrays were employed to estimate DOAs

of distributed sources. Moreover, in [88] robust beamforming for these arrays

based on interference-plus-noise reconstruction and steering vector estimation

has been developed. The studies in [85–88] focus on scenarios with multiple

but not necessarily closely spaced sources in order to assess their performance.

To this end, their signal models assume that the sources are uncorrelated.

However, the required vectorization of the initial covariance matrix resulting

from uncorrelated sources already leads to an equivalent source signal vector

whose powers of their sources behave like fully coherent ones. For this reason,

these methods require spatial smoothing.

In Chapter 3, we have presented Multi-Step KAI-ESPRIT [51, 52], and in

Chapter 4, the Krylov subspace based Multi-Step KAI-Conjugate Gradient

[65, 66]. Both perform refinements of the covariance matrix estimates via

cancellation [44,62] of their undesirable terms. However, neither MUSIC-type

algorithms nor non-uniform arrays have yet been considered with the MS-KAI

approach.

In this chapter, in order to satisfy such needs, we present a MUSIC-type algo-

rithm for DOA estimation using nested arrays, denoted multi-step knowledge-

aided iterative MUSIC method [89] (MS-KAI-MUSIC). The basic idea of MS-

KAI-MUSIC is to exploit prior knowledge about the signals and the mathemat-

ical structure of the spatially smoothed [38,90,91] covariance matrix of the data

of nested arrays, which are obtained online. An iterative procedure to perform

cancellation of undesirable terms of the estimate of the spatially smoothed co-

variance matrix is then developed. Unlike existing knowledge-aided methods

applied to ULAs, which exploit available known DOAs to improve the esti-

mation of the covariance matrix of the input data, MS-KAI-MUSIC exploits

knowledge of the structure of the spatially smoothed covariance matrix ob-

tained from part of a difference co-array of a two-level nested array and the

gradual incorporation of prior knowledge, which is obtained on line.

In this Chapter, after describing the nested arrays system model and method,

we present the MS-KAI-MUSIC technique. We also discuss its computational

complexity and present simulations, which show its performance.

Notation: the superscript H denotes the Hermitian transposition,  [·] expresses

the expectation operator. I stands for the identity matrix and ⊙ means the

Khatri-Rao product.
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5.2

System Model

Let us consider a two-level nested sensor array composed of M sensors,

which is a concatenation of two ULAs. The inner ULA has M1 sensors

with intersensor spacing d1 and the outer has M2 sensors with intersensor

spacing d2 = (M1 + 1) d1. Specifically, it consists of a linear array with sensors

positions obtained by the union of the sets Inner = {md1 | m = 1, 2, . . . , M1}

and Outer = {n {M1 + 1} d1 | n = 1, 2, . . . , M2}. Fig. 5.1 illustrates a two-level

nested array composed of 6 sensors. Assuming P uncorrelated narrowband

Figure 5.1: A two level nested array with 3 sensors at each level.

signals from far-field sources at directions {θp, p = 1, 2, . . . , P} impinging on

this array, the ith data snapshot of the M -dimensional array output vector

can be modeled as

y(i) = F s(i) + n(i), i = 1, 2, . . . , N, (5-1)

where y(i) = [y1(i), y2(i), . . . , yM(i)]T is the received signal vector at the snap-

shot i, s(i) = [s1(i), s2(i), . . . , sP (i)]T is the source signal vector and sp(i) ∼

NC
(
0, σ2

p

)
. Additionally, we assume that n(i) = [n1(i), n2(i), . . . , nM(i)]T is

the white Gaussian noise vector with power σ2
n and that its components and

the source vector ones are uncorrelated to each other. We also consider that

f(θp) =
{

e−j2π
d1
λc

rn sin θp | n = 1, 2, . . . , M
}

denotes the steering vector of the

pth signal, where λc stands for the carrier wavelength and

{rn | n = 1, 2, . . . , M} = {0, 1, . . . , M1 − 1, M1,

2 (M1 + 1) − 1, . . . ,

M2 (M1 + 1) − 1} (5-2)

is a vector that contains the location of the sensors. Next, the array manifold

containing the steering vectors of the signals can be formed as

F (Θ) = [f(θ1), f(θ2), . . . , f(θP )] (5-3)
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By averaging the N collected snapshots over time, we can express the sample

covariance matrix as

R̂1 =
1

N

N∑

i=1

y (i) yH (i)

≈  

[
y (i) yH (i)

]

= F RsF
H + σ2

nI

= F




σ2
1

σ2
2

. . .

σ2
P




F H + σ2
nI (5-4)

Next, following [81], by the vectorization of R̂1 (5-4), one can obtain a long

vector z1, as shown bellow:

z1 = vec
(
R̂1

)

= vec

[
N∑

i=1

σ2
i

(
f(θ1)f(θH

1 )
)]

+ σ2
n +

−→
1 n

= (F ∗ ⊙ F ) p +
−→
1 n, (5-5)

where

p =
[
σ2

1, σ2
2, . . . , σ2

P

]T
, (5-6)

−→
1 n =

[
eT

1 , eT
2 · · · eT

M

]T
(5-7)

and ⊙ means the Khatri-Rao product.

Since in the long vector (5-5) some elements appear more than once, one can

remove duplicated rows and sort them so that the ith row corresponds to the

sensor located at
(
−M̄ + i

)
d1, where M̄ = (M2/4 + M/2). Then, we can

obtain the following new vector:

z = G p + σ2
ne, (5-8)

where
G(Θ) = [g(θ1), g(θ2), . . . , g(θP )], (5-9)
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in which

g(θp) =
[
e−j2π

d1
λc

(−M̄+1) sin θp , e−j2π
d1
λc

(−M̄+2) sin θp ,

. . . , e−j2π
d1
λc

(M̄−2) sin θp , e−j2π
d1
λc

(M̄−1) sin θp

]T

, (5-10)

e ∈ R
(2M̄−1)×1 (5-11)

is a vector of all zeros, except for a 1 at the center position and p has already

been given by (5-6).

By comparing (5-8) with (5-1), we can notice that z in (5-8) behaves like

the signal received by a longer difference coarray [92], whose sensors locations

can be determined by the distinct values in the set {ri − rj | 1 ≤ i, j ≤ M}.

The equivalent source signal vector p (5-6) consists of powers σ2
p of the actual

sources and thus they behave like fully coherent sources [85,86]. This, combined

with the fact that the difference coarray is a filled ULA, motivates to apply

spatial smoothing to z (5-8) to obtain a full rank covariance matrix R̃ as

follows:

R̃ = 1
M2/4+M/2

M2/4+M/2∑
i=1

ziz
H
i

= 1
M2/4+M/2

(
G1RsG

H
1 + σ2

nI
)2

, (5-12)

where zi corresponds to the

(
M2/4 + M/2 − i + 1

)
th to

((
M2 − 2

)
/2 + M − i + 1

)
th (5-13)

rows of z and G1 is a manifold array composed of the last M̄ rows of G. It can

be shown [86] that the smoothed covariance matrix R̃ (5-12) can be expressed

as R̃ = R̂2, where R̂ has the same form as the covariance received by a longer

ULA composed of M2/4 + M/2 sensors. Since R̂ and R̃ share the same set of

eigenvectors and the eigenvalues of R̂ are the square roots of those of R̃, by

eigendecomposition of R̃, we can find the eigenvectors corresponding to the

smallest (M2/4 + M/2)−P eigenvalues of R̂. Due to the previously mentioned

reasons and also for being PSD by construction, which results from the sum

of vector outer products, the spatially smoothed matrix R̃ can be used as the

basis for the proposed MS-KAI-MUSIC algorithm.
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5.3

Proposed MS-KAI-MUSIC algorithm

The idea behind the MS-KAI-Nested-MUSIC algorithm is to expand the

estimated spatially smoothed covariance matrix R̃ (5-12) as if it were generated

by i data snapshots of L = (M2/4 + M/2) -dimensional array output vectors,

where, as explained in Section 5.2, M is the number of physical sensors of

the nested array. That is to say that we can employ the estimated spatially

smoothed covariance matrix R̃ as if it were the estimate provided by the sample

average formula. Since, as mentioned before, the resulting smoothed covariance

matrix is generated by part of a coarray, which is a filled ULA, from now on,

our method will make use of the ULA model.

Therefore, after setting R̃ in (5-12) equal to R̂ = 1
N

N∑
i=1

x(i)xH(i) (2-52), we

can expand (5-12) as follows:

R̃ =
1

N

N∑

i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1

N

N∑

i=1

s(i)sH(i)

}
AH +

1

N

N∑

i=1

n(i)nH(i)

+ A

{
1

N

N∑

i=1

s(i)nH(i)

}
+

{
1

N

N∑

i=1

n(i)sH(i)

}
AH

︸ ︷︷ ︸
"undesirable by-products"

(5-14)

In a similar way to MS-KAI-ESPRIT and MS-KAI-CG, in Chapters 3 and

4, the first two terms of R̃ in (5-14) can be considered as estimates of the

two summands of R = A RssA
H + σ2

nIL, which represent the signal and the

orthogonal subspaces, respectively. The last two terms in (5-14) are undesirable

by-products, which can be seen as estimates for the correlation between the

signal and the noise vectors. The system model under study is based on noise

vectors which are zero-mean and statistically independent of the signal vectors.

As a consequence, for a large enough number of samples N , the last two

terms expressed in (5-14) tend to zero. Nevertheless, in practice the number of

available samples can be limited. In such situations, the last two terms in (5-14)

may have significant values, which causes the deviation of the estimates of the

signal and the noise subspaces from the true signal and noise ones. The key

point of the proposed MS-KAI-MUSIC algorithm is to modify the smoothed

covariance matrix estimate at each iteration by gradually incorporating the

knowledge provided by the updated Vandermonde matrices which progressively

incorporate the newer estimates from the preceding iteration. Based on these
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updated Vandermonde matrices, refined estimates of the projection matrices

of the signal and noise subspaces are calculated. These estimates of projection

matrices associated with the initial smoothed covariance matrix estimate and

the reliability factor employed to reduce its by-products allow to choose the set

of estimates that has the minimum value of the stochastic maximum likelihood

objective function (SMLOF), i.e., the highest likelihood of being the set of the

true DOAs. The modified smoothed covariance matrix estimate is computed

by deriving a scaled version of the undesirable terms from R̃, which are pointed

out in (5-14).

MS-KAI-MUSIC starts by computing the spatially smoothed covariance ma-

trix estimate (5-12). Next, the DOAs are estimated using the original MU-

SIC [8] algorithm. The superscript (·)(1) refers to the estimation task performed

in the 1st step. Now, a procedure composed of n = 1 : I iterations starts by

forming the Vandermonde matrix using the DOA estimates. Then, the ampli-

tudes of the sources are estimated such that the squared norm of the differences

between the observation vector and the vector containing estimates and the

available known DOAs is minimized. This problem can be formulated as

ŝ(i) = arg min
s

‖ x(i) − Âs ‖2
2 . (5-15)

The minimization of (5-15) is achieved using the least squares technique and

the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i). (5-16)

The noise component is then estimated as the difference between the estimated

signal and the observations made by the array, as given by

n̂(i) = x(i) − Â ŝ(i). (5-17)

After estimating the signal and the noise vectors, the third term in (4-20) can
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be computed as

V , Â

{
1

N

N∑

i=1

ŝ(i)n̂H(i)

}

= Â

{
1

N

N∑

i=1

(ÂH Â)−1ÂHx(i)

×(xH(i) − xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1

N

N∑

i=1

x(i)xH(i)
(
IM − Q̂A

)}

= Q̂A R̃ Q̂⊥
A, (5-18)

where
Q̂A , Â (ÂH Â)−1 ÂH (5-19)

is an estimate of the projection matrix of the signal subspace, and

Q̂⊥
A , IL − Q̂A (5-20)

is an estimate of the projection matrix of the noise subspace.

Next, as part of the process of n = 1 : I iterations, the modified data covariance

matrix R̃(n+1) is calculated by computing a scaled version of the estimated

terms from the initial smoothed covariance matrix as given

R̃(n+1) = R̃ − µ (V(n) + V(n)H), (5-21)

where the superscript (·)(n) refers to the nth iteration performed. The scaling

or reliability factor µ increases from 0 to 1 incrementally, resulting in modified

smoothed covariance matrix estimates. Each of them gives origin to new DOAs

estimates also denoted by the superscript (·)(n+1) using the MUSIC algorithm.

Here, the rank P is assumed to be known, which is an assumption frequently

found in the literature. Alternatively, the rank P could be estimated by model-

order selection schemes [53] such as Akaike’s Information Theoretic Criterion

(AIC) [54] and the Minimum Descriptive Length (MDL) Criterion [55].

Then, a new Vandermonde matrix B̂(n+1) is formed by the steering vectors

of those new DOAs estimates. By using B̂(n+1), it is possible to compute the

newer estimates of the projection matrices of the signal Q̂
(n+1)
B and the noise

Q̂
(n+1)⊥
B subspaces.

Afterwards, employing the newer estimates of the projection matrices, the ini-

tial smoothed covariance matrix estimate, R̃, the number of its corresponding

sensors and the number of sources, the stochastic maximum likelihood objec-

tive function U (n+1 )(µ) [45] is computed for each value of µ at the nth iteration,
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as follows:
U (n+1 )(µ) = ln det (·) , (5-22)

where

(·) =


Q̂

(n+1)
B R̃ Q̂

(n+1)
B +

Trace{Q̂
⊥ (n+1)
B R̃}

L − P
Q̂

(n+1)⊥
B




The preceding computation selects the set of unavailable DOA estimates that

have a higher likelihood at each iteration. Then, the set of estimated DOAs

corresponding to the optimum value of µ that minimizes (5-22) also at each nth

iteration is determined. Lastly, the output of the proposed MS-KAI-MUSIC

algorithm is formed by the set of the estimates obtained at the I th iteration,

as described in Table 5.1.

5.4

Computational Complexity Analysis

In this section, we evaluate the approximate computational cost of the pro-

posed MS-KAI-MUSIC algorithm in terms of multiplications and additions.

For this purpose, we make use of Table 5.2, where τ = 1
ι

+ 1. The increment ι

is defined in Table 5.1.

From Table 5.2, it can be seen that assuming the specific configuration

used in the simulations 5.5, MS-KAI-Nested-MUSIC shows a roughly similar

computational burden in terms of multiplications and also of additions with

O
{

Iτ
[

180
∆

(
M2

4
+ M

2

)2
]

+
(

M2

4
+ M

2

)
8N2

}
, where τ is typically an integer that

ranges from 2 to 20, ∆ stands for the search step and I is the number of

iterations at the 2nd step. The relatively high costs come from the two nested

loops for computing I × τ times two subprocesses at its second step. These

nested loops, from which the last is the most significant, concentrate most of

the required operations. For this reason it is responsible for most of the cost

of MS-KAI-MUSIC.

5.5

Simulations

In this section, we examine the performance of the proposed MS-KAI-MUSIC

algorithm in terms of probability of resolution (PR) and compare it to the

corresponding performances of MUSIC for nested arrays (Nested-MUSIC) [86]

and of the original MUSIC [8] for ULAs. We focus on the specific case of closely-
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Table 5.1: MS-KAI-MUSIC algorithm

Inputs:
M1 , M2 , d1, λ, N , P

Received vectors y (1), y (2),· · · , y (N)
Outputs:

Estimates θ̂
(n+1 )
1 (µ opt), θ̂

(n+1 )
2 (µ opt),· · · , θ̂

(n+1 )
P (µ opt)

First step:

{θ̂
(1)
1 , θ̂

(1)
2 , · · · , θ̂

(1)
P } MUSIC←−−−−− (R̃, P, d, λ)

Â(1) =
[
a(θ̂

(1 )
1 ), a(θ̂

(1 )
2 ), · · · , a(θ̂

(1 )
P )

]

Second step:

for n = 1 : I

Q̂
(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂
(n)⊥
A = IL − Q̂

(n)
A

V (n) = Q̂
(n)
A R̃ Q̂

(n)⊥
A

for µ = 0 : ι : 1

R̃(n+1) = R̃ − µ (V (n) + V (n)H)

{θ̂
(n+1)
1 , θ̂

(n+1)
2 , · · · , θ̂

(n+1)
P } MUSIC←−−−−− (R̃(n+1), P, d, λ)

B̂(n+1) =
[
a(θ̂

(n+1 )
1 ), a(θ̂

(n+1 )
2 ), · · · , a(θ̂

(n+1 )
P )

]

Q̂
(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂
(n+1)⊥
B = IL − Q̂

(n+1)
B

U (n+1 )(µ) = ln det


Q̂

(n+1)
B R̃ Q̂

(n+1)
B +

Trace{Q̂
⊥ (n+1)
B R̃}

L − P
Q̂

(n+1)⊥
B




µ(n+1)
o = arg min U (n+1 )(µ)

DOAs(n+1) = {θ̂
(n+1 )
1 (µo), θ̂

(n+1 )
2 (µo),· · · , θ̂

(n+1 )
P (µo)}

if n <= P

Â(n+1) =
{
a(θ̂

(n+1 )
{1 ,··· ,n}(µo))

} ⋃ {
a(θ̂

(1 )
{1 ,··· ,P} − {1 ,··· ,n})

}

else

Â(n+1) =
[
a(θ̂

(n+1 )
1 (µo)), a(θ̂

(n+1 )
2 (µo)), · · · , a(θ̂

(n+1 )
P (µo))

]

end if
end for
end for

spaced sources. We employ M = 8 sensors in the algorithms based on two-level

nested array and. In the original MUSIC, we use a ULA with M = 20 sensors,

which is also the same number of sensors (M2/4 + M/2) of the filled ULA

obtained from part of the difference coarray, which is the effective number

of sensors employed in the MUSIC for nested arrays and MS-KAI-MUSIC

algorithms. The choice of the number of the sensors of each algorithm is a

strategy to assess the employment of sensor arrays with a reduced number

of sensors. We assume the shortest inter-element spacing d1 = λc

2
and also
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Table 5.2: MS-KAI-MUSIC algorithm

Multiplications

≈ Iτ
{

180
∆

[
(

M2

4
+ M

2

)2
+

(
M2

4
+ M

2

)
(2 − P ) − P ]

+
(

M2

4
+ M

2

)
8N2+10

3

(
M2

4
+ M

2

)3
+

(
M2

4
+ M

2

)2
(P + 2)

+
(

M2

4
+ M

2

)
(P 2 + 2P ) + P 3

2
+ 3P 2

2

}

Additions

≈ Iτ
{

180
∆

[
(

M2

4
+ M

2

)2
−

(
M2

4
+ M

2

)
(P − 1)]

+
(

M2

4
+ M

2

)
8N2+10

3

(
M2

4
+ M

2

)3
+

(
M2

4
+ M

2

)2
(P − 1)

+
(

M2

4
+ M

2

) (
3P 2

2
+ 5P

2
− 1

)
− P 2 − P

2

}

that there are two uncorrelated complex Gaussian signals with equal power

impinging on the arrays. The closely-spaced sources are separated by 2o, at

(15o, 17o). The first figure makes use of N = 150 snapshots and Lr = 250

trials, whereas the latter employs 3.33dB and Lr = 500 trials. In both cases,

we have set the search step to ∆ = 0.1o.

In Fig. 5.2, we show PR versus SNR. We take into account the criterion

[29], in which two sources with DOAs θ1 and θ2 are said to be resolved

if their respective estimates θ̂1 and θ̂2 are such that both
∣∣∣θ̂1 − θ1

∣∣∣ and∣∣∣θ̂2 − θ2

∣∣∣ are less than |θ1 − θ2| /2. It can be seen the superior performance

of the proposed MS-KAI-MUSIC in the range (−10 7) dB. From this point

on, all considered algorithms provide similar performance. The gap between

the proposed MS-KAI-MUSIC and MUSIC with nested arrays [86] shows a

significant improvement achieved in terms of PR. It can be noticed a bigger

gap between the proposed MS-KAI-MUSIC and the original MUSIC [8], whose

number of physical sensors is 2.5× the number of the physical sensors of the

other two-level nested based algorithms under comparison, which means an

important saving of sensors.

In Fig. 5.3, it is shown the RMSE in degrees versus SNR. The RMSE is defined

as
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Figure 5.2: Probability of resolution versus SNR with P = 2, M = 8, N = 150,
Lr = 250 runs

RMSE =

√√√√√ 1

Lr P

Lr∑

l=1

P∑

p=1

(θp − θ̂p(l))2, (5-23)

where Lr is the number of trials.

It can be noticed that the MS-KAI-MUSIC outperforms Nested-MUSIC,

in the whole range under consideration. In the range [−10 − 1.8) dB, it is

outperformed by conventional MUSIC, however, it can be noticed that the

achieved level shows a clear trend to improvement in accuracy. From −1.8 to

6.7 dB MS-KAI-MUSIC is superior to it. From 10 dB on all algorithms have

similar performance. As mentioned before, it must be highlighted that in this

specific case MUSIC makes use of a ULA whose number of physical sensors is

2.5× the number of the physical sensors of the other two-level nested based

algorithms under comparison.

In Fig. 5.4, it is shown the influence of the number of snapshots on PR. For this

purpose we have set the SNR at 3.33 dB and employed 500 trials. From the

curves, it can be noticed the superior performance of MS-KAI-MUSIC in the

range of 25 to 250 snapshots. From this point on, all algorithms have similar

performance.

In Fig.5.5, it is shown the influence of the number of snapshots on RMSE.

In this case, we also set the SNR at 3.33 dB and employed 500 trials. It can

be seen that the performance of the MS-KAI-MUSIC is superior to Nested-

MUSIC. It can also be noticed that except for the range 25 to 50, in which the

RMSE has high levels, the performance of MS-KAI-MUSIC is also superior to
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Figure 5.3: RMSE in degrees versus SNR with with P = 2, M = 8, N = 150,
Lr = 250 runs.
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Figure 5.4: Probability of resolution versus SNR with P = 2, M = 8,
SNR = 3.33 dB, Lr = 500 runs.

the original MUSIC [8], whose number of physical sensors is 2.5× the number

of the physical sensors of the other two-level nested based algorithms under

comparison.

Finally, from Figures 5.4 and 5.5, respectively, it can be noticed the significant

saving of samples to achieve high probabilities of resolution and reduced

RMSEs.
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Figure 5.5: RMSE versus SNR with P = 2, M = 8, SNR = 3.33 dB, Lr = 500
runs.



6

Conclusions

In this Chapter, conclusions of this thesis are presented and future directions

for this research topic are discussed. It is organized as follows: Section 6.1

summarizes the work and points significant results and Section 6.2 present

points to be worked in the future.

6.1

Summary of the Work

This thesis has been devoted to the investigation of high-resolution direction

finding techniques exploiting prior knowledge. These methods can be classified

into two categories according to the approaches for obtaining this knowledge.

The approach previously available in the literature, termed KAv (Subsection

2.1.7.3) makes use of accessible known DOAs to form a rank-deficient known

covariance, which can be optimally combined with the sample covariance

matrix obtained from snapshots collected by a ULA, resulting in an enhanced

covariance matrix estimate. This estimate, which, in this thesis, has been

applied to CG (KAv-CG), can also be used as the basis for other several ULA-

based algorithms. The KAv approach was the starting point for the approach

developed in this thesis, termed KA (Subsection 2.1.7.3), which also employs

the CG algorithm. Instead of using available known DOAs to compute the

mentioned rank-deficient known covariance to be combined with the sample

covariance matrix, the KA approach makes use of initial estimates, which can

be considered online knowledge acquisition. The resulting covariance matrix

is then processed by the CG algorithm to compute the final estimates. After

checking the feasibility of on-line knowledge acquisition for enhancing the data

covariance matrix, provided that the initial DOA estimates are sufficiently

accurate, this concept has been extended to a new approach, described in

Chapter 3 and expanded in Chapter 4: the iterative refinement of the data

covariance matrix by progressive incorporation of knowledge on line. This

approach, initially applied to algorithms that processed signals impinging on
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ULAs, has been further extended to a non-ULA-based algorithm such as MS-

KAI-MUSIC (Chapter 5), which makes use of a two-level nested array.

In Subsection 2.1.7.3, in a case study involving the CG algorithm applied

to DOA estimation, we introduced the idea of replacing accessible DOAs

with those acquired on-line to form a rank-deficient known covariance matrix,

which combined with the sample covariance matrix in a mean squared error

sense, yields an enhanced covariance matrix. The initial implementation of this

approach has made use of a CG-based algorithm (KA-CG) composed of two

stages: the former for obtaining the mentioned enhanced covariance matrix

and the latter for processing it. The performances of KA-CG and subsequent

versions of the KA approach based on MUSIC (KA-MUSIC) and ESPRIT

(KA-ESPRIT) have been evaluated in terms of PR under a scenario composed

of two signals generated by uncorrelated closely spaced sources impinging on a

ULA and sufficient number of snapshots. For the purpose of comparisons, we

have also plotted the KAv versions of the mentioned algorithms, i.e., instead of

using estimates to form the known covariance, we have used available known

DOAs to do that. The gaps between KAv-versions and their correspondent

KA-versions have shown that most of the potential to be exploited is situated

at middle low signal-to-noise ratios (SNR). Considering that each KAv-version

can be considered an upper bound of its KA version the small gap between

KA-CG and KAv-CG shows that the former already exploits its potential

close to the effective optimal performance. Despite the larger existing gaps

between the corresponding versions of MUSIC and ESPRIT, the specific result

related to CG could be viewed as a preliminary indication of feasibility of

replacing available known DOAs with estimates to form the known covariance,

as suggested in the KA-approach.

In Chapter 3, extending the research about prior knowledge obtained on-line

applied to DOA estimation, we have introduced the Multi-Step KAI approach

applied to ESPRIT algorithm (MS-KAI-ESPRIT). This approach is based on

the gradual incorporation of prior knowledge acquired on line, i.e, an increasing

number of the obtained estimates, to iteratively refine the covariance matrix of

the input data. It has also been presented an analysis of the mean squared error

(MSE) of the data covariance matrix free of undesired terms (side effects) that

results from low levels of SNR or modest number of snapshots. The analysis has

shown that in the first iteration, the MSE of the data covariance matrix free

of side effects is already less than or equal to the MSE of the original one. The

heavy computational burden faced by MS-ESPRIT can be considered a cost to
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be paid for the accuracy achieved, however this is a limitation to be addressed.

The performance of MS-ESPRIT has been assessed in terms of PR and RMSE

under scenarios composed of four signals generated by uncorrelated and highly

correlated closely spaced sources impinging on a ULA and small data set. The

comparisons with existing algorithms have evidenced the superior performance

of the estimate-based MS-KAI-ESPRIT, which rivals and sometimes surpasses

the supposed best performance of an algorithm that makes use of available

known DOAs like TS-KAI-ESPRIT. Lastly, extra simulations have illustrated

the influence of the iterations of MS-KAI-ESPRIT on its performance.

In Chapter 4, we have presented an MS-KAI approach combined with the CG

algorithm, which is an expanded approach of that which has been applied to

ESPRIT in Chapter 3. In this way, unlike the prior KA-ESPRIT approach MS-

KAI-CG versions are no longer limited to P iterations like MS-KAI-ESPRIT

one, where P is the number of source signals. Furthermore, we have provided a

version equipped with forward-backward spatial smoothing, termed MS-KAI-

CG-FB, which can deal with correlated signals. The CG-based algorithms are

particularly effective for scenarios with very few source signals and closely-

spaced angles of arrival. However, under a small number of samples or low

levels of SNR, they suffer from lack of resolution, which can result from false

intermediate peaks in the spectrum. In this case, simulations have shown

that the MS-KAI-CG approach is particularly attractive and addresses this

weakness in existing CG-based approaches by improving the quality of the

covariance matrix estimates. Moreover, as expected, the MS-KAI approach

applied to CG have show effectiveness in the finite sample region, by reducing

the needed number of snapshots to achieve the same levels of accuracy. MS-

KAI-CG has also shown the heaviest computational burden, resulting not only

from the MS-KAI approach but also from its reliance on structure composed

of peak searches.

Chapter 5 have focused on the development of the MS-KAI approach in

a non-ULA-class-based method from which a two-level nested array is a

representative. It is known that one of the main drawbacks of the spatial

smoothing-based MUSIC algorithm applied to a two-level nested array a is

that increasing degrees of freedom can be achieved at the cost of significant

increase of the number of samples. For achieving this purpose, after obtaining

an increased data covariance matrix by vectorization, the method removes

redundancies and decorrelates intermediate sources which emerges during the

process, resulting in a spatially smoothed matrix which is smaller than the
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augmented covariance matrix but even so is greater than the initial one.

Since this smoothed covariance matrix and its square, which is a longer ULA,

share eigenstructure properties, the MS-KAI approach applied to a two-level

nested array based on SS-MUSIC involves only ULA-based computations.

The performance of MS-KAI-MUSIC has been evaluated in terms of PR and

RMSE against SNR under scenarios composed of two signals generated by

uncorrelated closely spaced sources impinging on a two-level nested array

composed of eight sensors and sufficient small data set. The comparisons

between MS-KAI-MUSIC and existing MUSIC-based algorithms like nested-

MUSIC, which employs the same number of sensors, and the original MUSIC

algorithm, which is based on a a ULA composed of 2.5× the number of

sensors of MS-KAI-MUSIC, have evidenced the superiority of the first over

the others. In what concerns RMSE, MS-KAI-MUSIC is superior to nested-

MUSIC in all considered range, however in specific subranges it rivals the

original MUSIC algorithm based on a a ULA composed of 2.5× its number of

sensors. This fact can be viewed as a strategy to employ sensor arrays with

a reduced number of sensors. Under the same mentioned scenario and a SNR

set at 3.33 dB, the evaluation of the performance of the MS-KAI-MUSIC has

shown significant saving of snapshots in terms of PR and RMSE. As expected

from a MS-KAI approach, the computational complexity analysis of MS-KAI-

MUSIC, has revealed a heavy burden, which is intensified by the increase of

operations resulting from the greater dimensions of the matrices involved in

the computations.

6.2

Future Work

For future work, efforts to enhance the KAI-approach and to extend it to

other types of arrays should be considered along with the development of new

algorithms to improve DOA estimation. Some suggestions based on this thesis

are given below.

In Chapters 3, 4 and 5, the MS-KAI-approach combined with ESPRIT,

CG and MUSIC algorithms, respectively, has faced a characteristic heavy

computational burden. This huge number of operations results mainly from

a factor termed τ related to the iterative reduction of the undesired by-

products, which occurs under short data records or low levels of SNR and

can result in considerable deviations of the sample covariance matrix from

the true one. This factor is usually an integer that ranges from 2 to 20
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and is proportional to the reciprocal of the step in which the reduction

of the undesired terms is optimized. Therefore, research involving means of

accelerating this optimization by reducing τ is a point to be considered.

In Chapter 5, it has been shown that it is possible to apply the MS-KAI

approach to a nested-type non-uniform linear array. However, this approach

can also be applied to other types of sensor array geometries. Thus, it is

suggested to extend the research about the MS-KAI approach to other types

of sensor arrays and geometries like co-prime arrays.

Up to this point, we have pointed out a drawback to be addressed and the

feasibility of the application of MS-KAI approach to other geometries of sensor

arrays as possible extensions of the present work. But can the mentioned

approach also be applied to grouped (a set of) sources? This question can

be considered in the form of distributed sources. It is indeed another point

that deserves attention when deciding the expansion of the current work.

The suggestions for future works here presented are limited, however variations

and new extensions are possible.
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