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Abstract

We present low-complexity, quickly converging robust adaptive beamformers, for beamforming large

arrays in snapshot deficient scenarios. The proposed algorithms are derived by combining data-dependent

Krylov-subspace based dimensionality reduction, using the Powers-of-R or Conjugate Gradient tech-

niques, with ellipsoidal uncertainty set based robust Capon beamformer methods.Further, we provide
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online dimension-selection rules. We illustrate the benefits of the proposed approaches using simulated
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I. I NTRODUCTION

In this work, we are interested in designing low-complexity, robust adaptive beamformers for beam-

forming large arrays in snapshot deficient scenarios. Such beamformers are applicable to radar and passive

sonar systems, in which large aperture, many-element arrays that operate in highly dynamic environments

are often encountered and where the number of snapshotsK that are available for weight estimation is

significantly less than the number of array elementsM [1], [2]. The challenges are to a) provide robustness

to signal-of-interest (SOI) array steering vector (ASV) modeling errors, which arise from, e.g., calibration

and pointing errors and can cause severe SOI cancellation, b)ensure adequate convergence on the limited

data available, and c) ensure a sufficiently low complexity topermit real-time implementation on the often

limited computational resources that are available.

Many robust adaptive techniques have been proposed to alleviate the deleterious effects of ASV mis-

match, including using multiple linear constraints [3]–[6], diagonal loading [7], eigenspace projection [8],

and more recently, the robust Capon beamformers (RCBs), which exploit ellipsoidal, including spherical,

uncertainty sets of the ASV [9]–[13], and their extensions [2], [14]–[21]. Due to their widespread

popularity and the fact that they have addressed the mismatch problem in several application areas

(see, e.g., [22]–[29]), herein, we focus on using RCB techniques for alleviating the effects of ASV

mismatch. Other notable recent methods for addressing the mismatch problem can be found in [30]–

[33]. Whilst the RCB (under spherical uncertainty) converges significantly faster than, e.g., the minimum

variance distortionless response (MVDR) beamformer, there is still often both a need for and potential

for improvement, especially whenK < M . Further, theO(M3) complexity eigenvalue decomposition

required to compute the full-dimension RCB is prohibitive for real-time implementation on the large

arrays considered here.

Reduced-dimension (or reduced-rank) methods, which project the data onto a low-rank subspace,

are often used to speed-up the convergence of adaptive beamformers and reduce their computational

complexity. Common data-independent methods include subarray pre-processing [34]–[37], full-aperture

beamspace [38]–[40], and discrete prolate spheroidal sequences [40], [41]. Thead hocnature of the data-

independent methods and the need to improve performance, motivated research into statistically optimum

data-dependent methods, the first of which were the eigenbasis based principal components [42] and

cross-spectral metric [1], [43], [44] methods.Whilst these could provide huge reductions in sample

support over conventional full-dimension methods [45], they were soon superseded by several algorithms

that are related to each other as they operate in the same Krylov-subspace [46]–[54], but differ in
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the way that they expand the subspace and then form the adaptive weights. These Krylov-subspace

algorithms include the multistage Wiener filter [1], [55], the auxiliary vector method [56], [57], the

conjugate gradient technique [48], [58]–[62], and the reduced-rank MVDR algorithms in [63], [64].Due

to the popularity and the proven performance of these Krylov-subspace techniques in several application

areas (see, e.g., [1], [46], [47], [49], [51], [52], [56], [59], [61], [63], [65]–[67]), we here focus on

exploiting Krylov-subspace dimensionality reduction, but remark that there are other methods available

(see, e.g. [68], [69]). Significant drawbacks of the aforementioned Krylov-subspace methods are that they

are sensitive to SOI ASV errors and to the selected rank.

The main contribution of this paper is combining Krylov-subspace dimensionality reduction and robust

Capon beamforming, to produce a new family of Krylov-subspace based reduced-dimension robust Capon

beamformers (Krylov-RDRCBs). By exploiting Krylov-subspace methods, we obtain faster convergence

and lower complexity than the RCB. By exploiting RCB methods, we address the sensitivity of the

Krylov-based methods to SOI ASV errors and rank over-determination. We examine four existing Krylov-

subspace expansion methods for computing dimensionality reduction transforms, which have different

degrees of numerical stability and associated computational costs. They are the non-orthogonal Power-

of-R (NO-PoR) method, previously used to implement the multistage Wiener filter in [52], the method

used in [63], [64], which we here term the orthogonal PoR (O-PoR) method, and two methods based on

the conjugate gradient (CG) technique [58], where one exploits the CG direction vectors and we term

the CG method, and where the other exploits the orthogonal CGresiduals and we term the orthogonal

CG (O-CG) method. To form the Krylov-RDRCBs, we use the RDRCBframework proposed in [2],

[70]. Here, we extend the framework, by providing new results that allow faster computation of the

reduced-dimension ellipsoids that are needed after rank reduction and that are useful when exploitingany

type of data-dependent dimensionality reduction transform (and not just the Krylov-subspace methods

considered here). We term the new Krylov-RDRCBs the NO-PoR-RDRCB, the O-PoR-RDRCB, the

CG-RDRCB, and the O-CG-RDRCB, which we derive assuming a known dimension and for both

spherical and non-degenerate ellipsoidal uncertainty. Wealso exploit the fact that the conjugate-gradient

direction vectors diagonalize the reduced-dimension covariance to derive an efficient implementation

of the CG-RDRCB. We provide a detailed analysis of the computational complexities of the Krylov-

RDRCBs. Since, in practice, the optimal dimension (or rank) is often unknowna priori, we consider

how to efficiently implement the automatic rank selection rules proposed in [52], [71] with each of

the Krylov subspace-expansion methods. Further, we proposetwo extremely low-complexity stopping

rules for the CG-RDRCBs, which stop subspace expansion either when the condition number of the
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reduced-dimension covariance exceeds a threshold or when breakdown of the conjugate orthogonality of

the direction vectors is detected. Extensive simulations are used to assess the new Krylov-RDRCBs, with

and without automatic rank selection, and in comparison to existing Krylov-subspace based reduced-

dimension MVDRs and full dimension delay-and-sum, MVDR, and RCBs, for beamforming large planar

arrays in snapshot deficient scenarios. To summarize, the contributions of this work1 comprise 1) the new

family of Krylov-RDRCBs, 2) the extension of the RDRCB framework for data-dependent dimensionality

reduction, 3) the efficient implementation of rank-selection rules, 4) a detailed computational complexity

analysis and 5) a simulation study for beamforming large arrays in snapshot deficient scenarios.

The remainder of this paper is organized as follows. In SectionII, after discussing the notation and

operation counting conventions (for evaluating computational complexity) used throughout the paper, we

summarize the RCB approach and the Krylov-subspace methodsused for rank reduction. In Section III,

we review the RDRCB framework and then present new results for exploiting data-dependent dimen-

sionality reduction. In Section IV, we exploit these resultsto form the Krylov-RDRCBs. We derive a

computationally efficient implementation of the CG-RDRCB inSection IV-A. In Section V, we analyze

the complexity of the proposed Krylov-RDRCBs for a given rank N . In Section VI, we incorporate rank

selection rules. In Section VII, on simulated data, we illustrate the benefits of the proposed algorithms for

beamforming large arrays in snapshot deficient scenarios. Finally, we draw our conclusions in Section VIII.

II. BACKGROUND

Here, we summarize the notation and operation counting conventions used throughout the paper, as

well as the RCB and Krylov-subspace expansion techniques.

A. Notation and Operation Counting Conventions

In the following,E {·}, (·)T , (·)H , (·)−1 and(·)† denote the expectation, transpose, Hermitian transpose,

inverse and Moore-Penrose pseudo-inverse operators, respectively. Furthermore,CM×N , IN , ‖·‖2, R(X),

N (X), Nl
X, ΠX andΠ⊥

X denote the space ofM ×N complex matrices, theN ×N identity matrix, the

two-norm, the column-space ofX, the null-space ofX, a basis for the left null-space ofX, the orthogonal

projector onto the column space ofX and the orthogonal projector onto the space perpendicular to the

column space ofX, respectively. Moreover,X ≥ 0 or X > 0 mean that the Hermitian symmetric matrix

X is positive semi-definite or positive definite, respectively.We defineX
1

2 such thatX = X
H

2 X
1

2 , where

X
H

2 = (X
1

2 )H .

1Part of this work was presented at ICASSP 2013 [72].
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An operation is defined as one complex multiplication plus addition (and is approximately equivalent

to four real multiplications and additions) such that, forX ∈ CM×N and Y ∈ CN×P , XY requires

MNP operations. IfX ∈ CM×M is a diagonal matrix andY ∈ CM×P is a general matrix, thenXY

requiresMP operations. Computing the eigenvalue decomposition (EVD) or the inverse of anM ×M

Hermitian symmetric matrix is assumed to requireO(41
3M

3) or O(M3) operations2, respectively [73].

B. Robust Capon Beamforming

The kth full-dimension (or element-space) array snapshotxk ∈ CM is modeled as

xk = a0s0,k + nk, (1)

wherea0, s0,k andnk denote the true SOI ASV, the SOI complex amplitude and an additive zero-mean

complex Gaussian vector that incorporates the noise and theinterference. Assumings0,k is zero mean and

uncorrelated withnk, the array covariance matrix can be written asRx = E
{

xkx
H
k

}

= σ2
0a0a

H
0 +Qx,

whereRx > 0, σ2
0 = E

{

|s0,k|2
}

is the SOI power, andQx = E
{

nkn
H
k

}

. In practice,Rx is often

replaced by the sample covariance matrix estimate

R̂x =
1

K

K
∑

k=1

xkx
H
k , (2)

formed fromK snapshots. In [10], [11] (see, also [13]), RCBs were derivedby solvingmaxσ2,a σ2 s.t.Rx−
σ2aaH ≥ 0, a ∈ EM (ā,E), which can be reduced to [10], [11]

min
a

aHR−1
x a s.t. a ∈ EM (ā,E). (3)

TheM -dimensional, full-dimension (or element-space) ellipsoid EM (ā,E) is parameterized by its center

ā, often representing the assumed ASV, and by its principal semi-axes, given by the unit-norm left singular

vectors ofE− 1

2 , whereE ≥ 0 ∈ CM×M , scaled by the corresponding singular values, and can be written

as

EM (ā,E) =
{

a ∈ C
M

∣

∣ [a− ā]HE[a− ā] ≤ 1
}

. (4)

2In the limit of largeM , for anM -dimensional real symmetric matrix,4/3M3, approx.30M2 and3M3 real operations are

needed to reduce to tridiagonal form (via Householder reduction), diagonalize the tridiagonal matrix (to obtain the eigenvalues)

and obtain the eigenvectors, respectively. IgnoringM2 terms, in the limit of largeM , 4 1

3
M3 real operations are needed to

compute the EVD of a real symmetric matrix. The eigen-pairs of a complexM dimensional Hermitian matrix can be obtained

from the eigen-pairs of a2M dimensional real symmetric matrix called the augmented matrix. Using this method would require

4 1

3
(2M)3 = 34 2

3
M3 real operations. However, in principle, an algorithm designed specifically for complex matrices could give

a further factor of 2 reduction in complexity over the augmented matrix method, leading to17 1

3
M3 real operations. We here

assume that dividing by 4 gives the number of complex operations needed to compute the EVD of a Hermitian matrix as4 1

3
M3.
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To avoid the trivial solutiona = 0 of (3), it is necessary to assume that

āHEā > 1. (5)

WhenE = ǫ−1I, (4) reduces to a spherical uncertainty set,‖a− ā‖22 ≤ ǫ, with radius
√
ǫ and (5) becomes

‖ā‖22 > ǫ. Whilst conservative spherical uncertainty sets are most often used in practice, more general

ellipsoids can provide a more accurate description of ASV uncertainty and yield better performance in

certain scenarios [13], [15], [74]. For non-degenerate ellipsoids withE > 0, we can factorE = E
H

2 E
1

2

and form ă = E
1

2a, ˘̄a = E
1

2 ā and R̆x = E
1

2RxE
H

2 . Then, (3) can be re-written using the following

spherical constraint [11]

min
ă

ăHR̆−1
x ă s.t.

∥

∥ă− ˘̄a
∥

∥

2

2
≤ 1. (6)

As shown in [11], (6) can be solved using Lagrange multipliers, via the EVDR̆x = ŬΛ̆ŬH , whereΛ̆ is a

diagonal matrix containing the eigenvaluesλ̆1 ≥ λ̆2 . . . ≥ λ̆M in non-increasing order on its main diagonal

and whereŬ contains the associated eigenvectors. Computingz̆ = ŬH ˘̄a in M2 operations and lettinğzm

denote themth entry ofz̆, the Lagrange multiplierµ is found by solvingf(µ) =
∑M

m=1
|z̆m|2

(1+µλ̆m)2
−1 = 0

via Newton line search, which updatesµ according toµk+1 = µk − f(µk)
f ′(µk)

, whereµk is the value ofµ

at thekth iteration andf ′(µ) = −2
∑M

m=1
|z̆m|2λ̆m

(1+µλ̆m)3
. The search terminates whenf(µk+1) is sufficiently

close to zero. Tight bounds onµ, which can be used to initialize the search, are given in [11]. Each

Newton iteration takes around6M operations. Onceµ has been found, the solution to (6) is formed

as ˆ̆a = ˘̄a − Ŭ(I + µΛ̆)−1z̆, which requires an additionalO(M [M + 2]) operations. Thus, solving

(6) for ˆ̆a once the EVD ofR̆x has been computed, requiresO(2M [M + 1] + niter6M) operations,

whereniter denotes the number of iterations in the Newton search. The solution to (3) is formed as

â0,RCB = E− 1

2
ˆ̆a. The RCB power estimate is formed asσ̂2

0,RCB =
‖â0,RCB‖

2

2
/M

âH
0,RCBR

−1

x â0,RCB
and the weight vector

asŵRCB = R−1

x â0,RCB

âH
0,RCBR

−1

x â0,RCB
. The operation counts for computing the full-dimension RCB are summarized

in Table I.

TABLE I

ONLINE OPERATION COUNTS FORRCB.

Spherical Non-Degenerate

R̆x = ŬΛ̆ŬH O(4 1

3
M3)

Solve for ˆ̆a O(2M [M + 1] + niter6M)

â0 = E−

1

2 ˆ̆a 0 O(M2)

ŵRCB O(M [M + 1])
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C. Krylov-Subspace Bases

Here, we summarize the PoR and CG methods for obtaining rank-N Krylov-subspace bases or dimen-

sion reducing transforms, which span the followingN -dimensional Krylov subspace

KN = R
([

ā R̂xā . . . R̂N−1
x ā

])

. (7)

1) Non-Orthogonal Powers-of-R:The standard non-orthogonal PoR (NO-PoR) basis is given by [52]

D =

[

ā
‖ā‖

2

R̂xā

‖R̂xā‖
2

. . . R̂N−1

x ā

‖R̂N−1

x ā‖
2

]

, (8)

which can be formed iteratively, by starting withκ1 = ā andd1 =
ā

‖ā‖
2

, and calculating, fori = 2, . . . , N ,

κi = R̂xκi−1 (9)

anddi =
κi

‖κi‖2

. Calculatingκi from κi−1 usesO(M2) operations and then calculatingdi usesO(M)

operations. Thus, calculating the rank-N NO-PoR transform usesO(NM [M + 1]) operations.

2) Orthogonal Powers-of-R:In [63], an alternative PoR-based transform was suggested for applications

in which the model order is highly variable and time-varying, and can be formed similarly to the NO-PoR

transform, by replacing (9) withκi = Π⊥
Di−1

R̂xκi−1, whereΠ⊥
Di−1

= I − ∑i−1
k=1 dkd

H
k . We term the

resulting transform the orthogonal PoR (O-PoR) transform as its columns are orthogonal. To form a new

columndi efficiently, first computẽκi = R̂xκi−1 in O(M2) operations, thenκi = κ̃i −Di−1D
H
i−1κ̃i,

whereDi−1 =
[

d1 . . . di−1

]

, in a furtherO(2(i − 1)M + M) operations and then calculatedi

from κi in a furtherO(M) operations. Thus, computing theN -dimensional O-PoR transform requires

O(NM [M + 1 +N ]) operations.

3) Conjugate Gradient Method:The CG algorithm minimizes the functionf(w) = wHR̂xw −
wH ā − āHw + constant along a set ofR̂x-orthogonal search directions and thus, iteratively solves

R̂xw = ā [48], [58], [75]. Starting withw1 = 0, d1 = ā andr1 = −ā, for i = 2, . . . , N , calculate [48]

αi = − dH
i ri

dH
i R̂xdi

wi+1 = wi + αidi

ri+1 = ri + αiR̂xdi

βi =
dH
i R̂xri+1

dH
i R̂xdi

di+1 = −ri+1 + βidi, (10)

wheredi andri denote theith conjugate direction vector and residual vector, respectively. The direction

vectors are formed by conjugation of the residuals and therefore, at theith iteration, they both span the
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same subspace, denotedDi = R([ r1 . . . ri ]) = R([ d1 . . . di ]). From (10), we see thatri+1 is

a linear combination ofri and R̂xdi. Sincedi ∈ Di, the new subspaceDi+1 is formed from the union

of Di andR̂xDi, so that [75]

Di = R([ d1 R̂xd1 . . . R̂i−1
x d1 ])

= R([ r1 R̂xr1 . . . R̂i−1
x r1 ]). (11)

Thus, withd1 = ā and r1 = −ā in (11), it clear thatDN , which is the subspace spanned by the first

N residuals or direction vectors, is equivalent to the Krylovsubspace in (7). We term the dimension

reducing transform,D = [d1 . . .dN ], formed using the direction vectors the CG transform, whilst we

termD =
[

r1
‖r1‖2

. . . rN
‖rN‖

2

]

formed using the residuals the orthogonal CG (O-CG) transform. The cost of

computingR̂xdi is O(M2). GivenR̂xdi, the cost of computingαi is O(2M). Updatingri+1 is O(M).

The cost of computingβi, given R̂xdi and the denominator ofαi is O(M). Then, updatingdi+1 is

O(M). Note that we do not need to calculate updates tow to findD. Thus, the cost of computing a new

column of the CG transform isO(M2 + 5M). For the O-CG transform, an extraO(M) operations are

needed to compute the norm‖ri+1‖2. Thus, the total operations needed to calculate the CG and O-CG

transforms areO(NM [M + 5]) andO(NM [M + 6]), respectively. Table II summarizes the operations

needed to compute each of the Krylov-subspace dimension reducing transforms (DRTs).

III. D ATA -DEPENDENTREDUCED-DIMENSION ROBUST CAPON BEAMFORMING FRAMEWORK

Here, we first summarize the existing reduced-dimension robust Capon beamforming (RDRCB) frame-

work, proposed in [2], [70] for combining any form of dimensionality reduction with robust Capon

beamforming, and then extend it for data-dependent dimensionality reduction.

TABLE II

OPERATIONS FOR COMPUTING RANK-N KRYLOV-SUBSPACEDRTS.

Method Operations

NO-PoR O(NM [M + 1])

O-PoR O(NM [M + 1 +N ])

CG O(NM [M + 5])

O-CG O(NM [M + 6])
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A. Summary of Existing RDRCB Framework

In reduced-dimension methods, thekth full-dimension snapshot,xk ∈ CM , is projected onto anN -

dimensional subspace (withN < M ) using a dimension reducing transformationD ∈ CM×N , yielding the

reduced-dimension snapshot,yk = DHxk, whereyk ∈ CN . Using (1), the reduced-dimension snapshot

can be modeled asyk = b0s0,k + ñk, with b0 = DHa0 and ñk = DHnk, giving a reduced-dimension

covarianceRy = E
{

yky
H
k

}

= σ2
0b0b

H
0 + Qy, with Qy = E

{

ñkñ
H
k

}

= DHQxD. SinceRy is

unavailablea priori, it is often replaced witĥRy = 1
K

∑K
k=1 yky

H
k = DHR̂xD, with R̂x given in (2).

This leads to the following RDRCB optimization problemmaxσ2,b σ2 s.t. Ry − σ2bbH ≥ 0, b ∈
EN (b̄,F), whereb = DHa andEN (b̄,F) is a reduced-dimension ellipsoid, yielding [2], [70]

min
b

bHR−1
y b s.t. b ∈ EN (b̄,F). (12)

The following propagation theorem is used to remove components from the full-dimension ellipsoid,

EM (ā,E), that belong toN (DH), to produce a reduced-dimension ellipsoid.

Theorem 1:[2], [70] The propagation of the full-dimension ellipsoidEM (ā,E) (4), whereE ≥ 0 ∈
CM×M , through the mapping defined byDHa − INb = 0, whereD ∈ CM×N has full column rank,

yields the ellipsoidEN (b̄,F) [see ellipsoid definition in (4)] with

b̄ = DH ā (13)

F = D†(E−ENl
D[(Nl

D)HENl
D]†(Nl

D)HE)(D†)H . (14)

When the full-dimension set is a sphere, so that in (4)E = ǫ−1I, the simpler expressionF = ǫ−1(DHD)−1

is obtained, which reduces toF = ǫ−1IN if D has orthogonal columns.

Given, EN (b̄,F) andRy, an estimatêb0 is found by solving (12) using standard RCB results [see

Section II-B]. Givenb̂0, the RDRCB weight vector is formed as

ŵRDRCB =
R−1

y b̂0

b̂H
0 R−1

y b̂0

, (15)

which operates on the reduced-dimension data. The weightsŵRDRCB,ES = DŵRDRCB operate on the

original full-dimension data. An estimate ofa0 is formed aŝa0 = (DH)†b̂0 = D(DHD)−1b̂0, illustrating

that â0 ∈ R(D). Given â0, the RDRCB SOI power estimate is formed as

σ̂2
0,RDRCB =

(‖â0‖22 /M)

b̂H
0 R−1

y b̂0

=
b̂H
0 (DHD)−1b̂0

M b̂H
0 R−1

y b̂0

. (16)
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B. Extension for Data-Dependent Dimensionality Reduction

Here, we provide new results, useful for exploiting data-dependent dimensionality reduction. Exam-

ining (14), we observe that, in general,D†, Nl
D and [(Nl

D)HENl
D]† need computing to obtainF.

The operations required to computeNl
D and [(Nl

D)HENl
D]† areO([M −N ]3) complexity. Moreover,

when N << M , which is of interest to us here, the complexityO([M − N ]3) ≈ O(M3). For data-

independent dimensionality reduction that uses fixedD, which was the only type of dimensionality

reduction considered in [2], [70], these terms can be computed off-line, so that their computation does not

affect the online implementation of the RDRCB. However, when exploiting data-dependent dimensionality

reduction, such as the Krylov-subspace methods consideredin this paper, these terms need computing

online every timeD is updated and therefore, theO([M−N ]3) ≈ O(M3) complexity needed to compute

F using (14) is prohibitive.

To address this problem, here, we note that if the original full-dimension ellipsoid is non-degenerate,

such thatE > 0, we can beneficially re-write the expression forF in (14). Firstly, we remark that the

assumption of non-degenerate ellipsoids, which only excludes flat ellipsoids, is not prohibitive in practice,

since some flexibility in all dimensions is actually beneficialfor robustness to, typically present, arbitrary

ASV errors [74]. ForE > 0, we can write[(Nl
D)HENl

D]† = [(Nl
D)HENl

D]−1, which we insert into

(14) to give

F = D†(E−ENl
D[(Nl

D)HENl
D]−1(Nl

D)HE)(D†)H

= D†E
1

2Π⊥

E
1

2 Nl
D

E
1

2 (D†)H

= D†E
1

2Π
E−

1

2 D
E

1

2 (D†)H

= D†D
[

DHE−1D
]−1

DH
(

D†
)H

=
[

DHE−1D
]−1

, (17)

with Π⊥

E
1

2 Nl
D

= I − E
1

2Nl
D[(Nl

D)HENl
D]−1(Nl

D)HE
1

2 andΠ
E−

1

2 D
= E− 1

2D[DHE−1D]−1DHE− 1

2 .

To obtain the third equality in (17), we note thatΠ⊥

E
1

2 Nl
D

projects ontoN ([E
1

2Nl
D]H) and that the

columns ofE− 1

2D form a basis forN ([E
1

2Nl
D]H), that is (Nl

D)HE
1

2E− 1

2D = (Nl
D)HD = 0, such

that Π
E−

1

2 D
≡ Π⊥

E
1

2 Nl
D

. SinceE−1 can be computed off-line, the online computation ofF reduces to

the O(NM [M + N ]) complexity needed to multiply the factors inF−1 =
[

DHE−1D
]

and then the

complexity required to compute theN ×N inverse. However, for a general non-degenerate ellipsoid,the

factorsF
1

2 , F
H

2 andF− 1

2 need computing [see Section II-B], which can all be obtained from the EVD

of F−1 =
[

DHE−1D
]

, so that theN ×N inverse never needs computing. Thus, for largeM compared

May 29, 2014 DRAFT



IEEE ???, VOL. ?, NO. ?, ??? 20?? 11

to N , the contribution here is reducing the approximatelyO(M3) online complexity that would be

required using (14) to approximatelyO(NM2). As the EVD of R̆y = F
1

2RyF
H

2 is also needed, two

N -dimensional EVDs will be required for general non-degenerate ellipsoidal uncertainty sets. As noted

earlier, when the full-dimension set is a sphere andD is orthogonal,F = ǫ−1IN , so that only one EVD

is required,

The summary steps for data-dependent reduced-dimension robust Capon beamforming, where it is

assumed thatE−1 has been pre-computed off-line, are

1) Evaluate the dimension reducing transform (DRT)D (using, e.g., one of the methods described in

Section II-C).

2) CalculateRy = DHRxD and b̄ = DH ā.

3) For a spherical set and orthogonalD, skip to step 5.

For a spherical set and non-orthogonalD, compute the EVD ofǫ
[

DHD
]

= VΓVH .

For a non-degenerate set, compute the EVD of
[

DHE−1D
]

= VΓVH .

4) Form F
1

2 = Γ− 1

2VH , F
H

2 = VΓ− 1

2 and F− 1

2 = VΓ
1

2 . Then, computeR̆y = F
1

2RyF
H

2 and

˘̄b = F
1

2 b̄.

5) Solvemin
b̆
b̆HR̆−1

y b̆ s.t.
∥

∥

∥
b̆− ˘̄b

∥

∥

∥

2

2
≤ 1 to obtain ˆ̆

b. For the case of a spherical set with squared

radiusǫ and an orthogonalD, we setR̆y = ǫ−1Ry and ˘̄b = ǫ−
1

2 b̄.

6) Given ˆ̆
b, we form b̂0 = F− 1

2

ˆ̆
b and form the weights using (15) and the power using (16). We

remark that ˆ̆wRDRCB =
R̆−1

y

ˆ̆
b

ˆ̆
bHR̆−1

y
ˆ̆
b
= F−H

2 ŵRDRCB.

Note that, for spherical uncertainty sets, as[DHD]−1 = ǫVΓ−1VH , we can write the numerator of

the power term (16) efficiently aŝbH
0 (DHD)−1b̂0 = ǫ

∥

∥

∥

ˆ̆
b

∥

∥

∥

2

2
.

IV. K RYLOV-SUBSPACEREDUCED-DIMENSION ROBUST CAPON BEAMFORMING

Here, we describe how to form four different Krylov-RDRCBs.We use the framework described

in Section III, which is general and can be used with any form ofdimensionality reduction. Krylov-

RDRCBs can be formed by using a Krylov dimensionality reduction transformD, obtained using one

of the Krylov-subspace expansion techniques described in Section II-C, with steps 1-6 in Section III-B.

When the NO-PoR transform (8) is used, we term the resulting algorithm the NO-PoR-RDRCB. Since

the columns of the NO-PoR transform are not orthogonal, following the discussion in Section III-B,

computing the NO-PoR-RDRCB weights requires twoN -dimensional EVDs, even for spherical full-

dimension sets.
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When the O-PoR transform, described in Section II-C2, is used,we term the resulting algorithm

the O-PoR-RDRCB. Since the O-PoR transform has orthogonal columns, only one EVD is required

to compute the O-PoR-RDRCB for spherical uncertainty sets. For non-degenerate uncertainty sets, two

EVDs are required.

When the dimension reducing transform is formed from the conjugate-gradient direction vectors, we

term the resulting algorithm the CG-RDRCB. Since the direction vectors are not orthogonal, following

the discussion in Section III-B, we would expect that two EVDs would be needed to compute the CG

RDRCB. However, below in Section IV-A, we illustrate how a fast CG-RDRCB can be obtained by

exploiting that the direction vectors diagonalize the sample covariance matrix.

When the dimension reducing transform is formed from the conjugate gradient residuals, we term the

resulting algorithm the O-CG-RDRCB, which requires a single EVD under spherical uncertainty and two

under non-degenerate uncertainty.

A. Fast Conjugate Gradient-Based RDRCB

Here, we illustrate how only oneN -dimensional EVD is required to obtain the CG-RDRCB under

either spherical or non-degenerate uncertainty. The key is noting that whenD is formed using the CG

algorithm,

R̂y = DHR̂xD = ΛCG, (18)

whereΛCG is a diagonal matrix given by

ΛCG = diag
{[

dH
1 R̂xd1 . . . dH

NR̂xdN

]}

. (19)

We remark thatdH
i R̂xdi has already been calculated fori = 1, . . . , N − 1 when calculatingαi in (10).

Therefore, evaluation of (18) reduces to theO(M [M + 1]) operations needed to computedH
NR̂xdN .

In general, we will be solving

min
b

bHR−1
y b s.t.

[

b− b̄
]H

F
[

b− b̄
]

≤ 1. (20)

Usually, at this stage, one would transform withF
1

2 to give a spherical uncertainty set. However, from

(18), we observe thatR−1
y = Λ−1

CG, so that (20) can be written as

min
b

bHΛ−1
CGb s.t.

[

b− b̄
]H

F
[

b− b̄
]

≤ 1. (21)

Letting b̌ = Λ
− 1

2

CGb, ˇ̄b = Λ
− 1

2

CG b̄ andM = Λ
− 1

2

CGD
HE−1DΛ

−H

2

CG , we can rewrite (21) as

min
b̌

b̌H b̌ s.t.
[

b̌− ˇ̄b
]H

M−1
[

b̌− ˇ̄b
]

≤ 1. (22)
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The associated Lagrangian is formed as

L(b̌, µ) = b̌H b̌+ µ

(

[

b̌− ˇ̄b
]H

M−1
[

b̌− ˇ̄b
]

− 1

)

, (23)

whereµ is a real-valued Lagrange multiplier. Setting∂L(b̌,µ)
∂b̌H

= 0 yields

ˆ̌
b = µ

(

I+ µM−1
)−1

M−1 ˇ̄b =

(

M

µ
+ I

)−1
ˇ̄b

= ˇ̄b−
[

µM−1 + I
]−1 ˇ̄b. (24)

Using (24) in the constraint equation yields

h(ˆ̌b, µ) =
[

ˆ̌
b− ˇ̄b

]H
M−1

[

ˆ̌
b− ˇ̄b

]

= ˇ̄bH
[

µM−1 + I
]−1

M−1
[

µM−1 + I
]−1 ˇ̄bH . (25)

Letting M = UΛUH denote the EVD ofM, whereΛ = diag
{

[ λ1 . . . λN ]
}

is a diagonal matrix

containing the eigenvalues in non-increasing order on its main diagonal andU contains the associated

eigenvectors, we can write (25) as

h(ˆ̌b, µ) = ˇ̄bHU
(

µΛ−1 + I
)−1

Λ−1
(

µΛ−1 + I
)−1

UH ˇ̄b

=

N
∑

n=1

λn|cn|2
(µ+ λn)

2 , (26)

wherecn is thenth element ofc = UH ˇ̄b. Since we can writeM = M
1

2M
H

2 , whereM
1

2 = Λ
− 1

2

CGD
HE− 1

2 ,

we know thatM is non-negative definite [76], [77] and therefore, it has non-negative real eigenvalues.

Thus,h(ˆ̌b, µ) is a monotonically decreasing function ofµ > 0. A trivial solution is inevitable atµ = 0,

which gives

h(ˆ̌b, 0) = ˇ̄bHM−1 ˇ̄b = b̄H
[

DHE−1D
]−1

b̄ = b̄HFb̄. (27)

Thus, to avoid a trivial solution, we require thatb̄HFb̄ > 1, which, if satisfied, means that the solution

to h(ˆ̌b, µ) = 1 occurs atµ > 0. Further, aslimµ→∞ h(ˆ̌b, µ) = 0, there is a unique solutionµ > 0

to h(ˆ̌b, µ) = 1 or equivalently toh̄(ˆ̌b, µ) = h(ˆ̌b, µ) − 1 = 0, which can be found, e.g., by Newton

search. The Newton search iteratesµk+1 = µk − h̄(ˆ̌b,µk)

h̄′(ˆ̌b,µk)
, whereh′(ˆ̌b, µ) = −2

∑N
n=1

λn|cn|2

(µ+λn)
3 , until

h̄(ˆ̌b, µk+1) is sufficiently close to zero. Each iteration of our Newton search requiresO(6N) operations.

Once the EVD ofM has been calculated,O(2N [N +1]+ ñiter6N) operations are required to solve for
ˇ̂
b; N2 to computec, ñiter6N to compute the Lagrange multiplier and a furtherN2 + 2N operations to

computeˆ̌b = ˇ̄b−U
[

µΛ−1 + I
]−1

c. The solution to (21) is formed aŝb0 = Λ
1

2

CG
ˆ̌
b. We can usêb0 and

R−1
y = Λ−1

CG in (15) to form the adaptive weights and form the power estimate using (16).
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The main steps for computing the CG-RDRCB weights are as follows

1) Evaluate the CG transformD via (10) andΛCG using (19).

2) Form ˇ̄b = Λ
− 1

2

CGD
H ā andM = Λ

− 1

2

CGD
HE−1DΛ

−H

2

CG .

3) Calculate the EVD,UΛUH = M.

4) Formc = UH ˇ̄b and findµ > 0 from (26) via Newton search.

5) Form ˆ̌
b = ˇ̄b−U

[

µΛ−1 + I
]−1

c.

6) Form b̂0 = Λ
1

2

CG
ˆ̌
b andwRDRCB =

Λ−1

CG b̂0

b̂H
0
Λ−1

CG b̂0

=
Λ

−
1

2

CG
ˆ̌
b

∥

∥

∥

ˆ̌
b
∥

∥

∥

2

2

.

For spherical uncertainty sets, note that[DHD]−1 = ǫΛ
−H

2

CG M−1Λ
− 1

2

CG = ǫΛ
−H

2

CG UΛ−1UHΛ
− 1

2

CG , so

that the numerator in (16) can be efficiently computed usingb̂H
0 [DHD]−1b̂0 = ǫ

∥

∥

∥
Λ− 1

2UH ˆ̌
b

∥

∥

∥

2

2
=

ǫ
∥

∥

∥
Λ− 1

2

[

c−
[

µΛ−1 + I
]−1

c
]
∥

∥

∥

2

2
with only an additionalO(3N) computations. For a (general) non-

degenerate ellipsoid, we will need to compute
[

DHD
]−1

.

V. COMPLEXITY ANALYSIS

Here, we analyze the complexity of the proposed Krylov-RDRCBs for an assumed rankN . The

operation counts summarized in Tables III and IV relate to Steps 1–6 in Section III-B for either the

NO-PoR-RDRCB or the O-PoR-RDRCB under either spherical or non-degenerate uncertainty. In Step 5,

TABLE III

ONLINE OPERATION COUNTS FOR SPHERICALPOR-BASED RDRCBS.

NO-PoR O-PoR

Evaluate DRT O(NM [M + 1]) O(NM [M + 1 +N ])

Ry = DHRxD O(NM [M +N ])

b̄ = DH ā O(NM)
(

DHD
)

O(MN2) 0

VΓVH = DHD O(4 1

3
N3) 0

F
1

2 = Γ−

1

2VH O(N2) 0
˘̄b = F

1

2 b̄ O(N2) 0

R̆y = F
1

2RyF
H
2 O(2N3) 0

EVD(R̆y) O(4 1

3
N3)

Solve for ˆ̆b O(2N [N + 1] + niter6N)

b̂0 = F−

1

2
ˆ̆
b = VΓ

1

2
ˆ̆
b O(N [N + 1]) 0

wRDRCB O(N [N + 1])

Power 0
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we need to solve a reduced-dimension RCB optimization forˆ̆
b. This can be solved using the standard

RCB techniques described in Section II-B so that once the EVD ofR̆y is calculated,ˆ̆b is found via

Newton search inO(2N [N + 1] + niter6N) operations. The operation counts for the O-CG-RDRCB are

the same as those for the O-PoR-RDRCB, except for the count evaluating the dimensionality reduction

transform. The operations in Table V relate to Steps 1–6 in Section IV-A for the efficient implementation

of the CG-RDRCB under either spherical or non-degenerate uncertainty. In Step 4,̃niter iterations are

needed to find the Lagrange multiplier. Empirically, we have observed that there is little difference

between the values ofniter and ñiter and in the following calculations set them both equal to 15. When

non-degenerate sets are exploited in the NO-PoR or CG RDRCBs,significant savings in complexity can

be achieved if power-estimation scaling is not required, asthen
[

DHD
]−1

does not need computing,

which would require a furtherO(N2[M +N ]) operations. Fig. 1 shows the relative complexities of the

different algorithms asN is increased from 1 toM , for M = 320, where for the NO-PoR and CG

RDRCBs under non-degenerate (ND) uncertainty, we distinguish between applications that only require

weight estimation and those that also need power estimation. The results show that the efficient CG-based

algorithms are the least complex.

It is interesting to consider how the complexities of the proposed Krylov-RDRCBs compare to the non-

robust Krylov-subspace based reduced-dimension MVDRs (Krylov-RDMVDRs), which can be formed

by using (15) withb̄ instead ofb̂0, and to the full-dimension RCB whose complexity is summarized in

Table I. For the 320 element array examined in the numerical examples and when exploiting spherical

full-dimension uncertainty sets, the CG-RDRCB with N = 5 is over 200 times less complex than using

an RCB. In surveillance applications, such as passive sonar, often many hundreds of beams are formed

to span the angular space in both azimuth and elevation. The complexity of the RCB is dominated by the

O(41
3M

3) operations needed to compute the EVD ofR̆x [see Section II-B]. For spherical uncertainty,

R̆x = ǫ−1Rx, so that the EVD ofRx can be exploited for multiple beams. In this case, for our 320

element array example, when around 200 beams are evaluated,the complexity of our CG-RDRCB will

be similar to that of a full-dimension RCB under spherical uncertainty. However, our approach is still

advantageous as, oncêRx has been formed, the remaining operations needed for any of the proposed

Krylov-RDRCBs can be performed separately for each beam, e.g., on separate processing units, yielding

a highly parallelizable implementation, whereas theM -dimensional EVD needed by the full-dimension

RCB cannot be easily parallelized. For RCBs under general non-degenerate uncertainty or when using

spherical sets with extra linear constraints as in [19], a separate EVD has to be performed for every beam

and therefore, the complexity savings of our methods are even greater. Compared to the CG-MVDR,
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Fig. 1. Relative Krylov-RDRCB complexities.The NO-PoR-ND-weights and O-CG-ND curves are heavily overlapped, as are

the O-CG-Spherical and CG-ND-weights curves.

which requiresO(NM [M + 6]) operations3, the CG RDRCBs exploiting spherical or non-degenerate

3In the CG-MVDR,O(NM) operations are needed to compute the weights in addition to theO(NM [M + 5]) operations

needed for subspace expansion.

TABLE IV

ONLINE OPERATION COUNTS FOR NON-DEGENERATEPOR-BASED RDRCBS.

NO-PoR O-PoR

Evaluate DRT O(NM [M + 1]) O(NM [M + 1 +N ])

Ry = DHRxD O(NM [M +N ])

b̄ = DH ā O(NM)
(

DHE−1D
)

O(NM [M +N ])

VΓVH = DHE−1D O(4 1

3
N3)

F
1

2 = Γ−

1

2VH O(N2)

˘̄b = F
1

2 b̄ O(N2)

R̆y = F
1

2RyF
H
2 O(2N3)

EVD(R̆y) O(4 1

3
N3)

Solve for ˆ̆b O(2N [N + 1] + niter6N)

b̂0 = F−

1

2
ˆ̆
b = VΓ

1

2
ˆ̆
b O(N [N + 1])

wRDRCB O(N [N + 1])

Power[DHD]−1 O(N2[M +N ]) 0
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Fig. 2. Relative RDRCB complexities when exploiting the rank-selection rule in(28), unless appended with “Yukawa”,

“Condition” or “Orthog”, which use rules (31), (32) and (33), respectively. The curves for O-PoR-Spherical and CG-ND-Power

are heavily overlapped, as are the curves for O-CG-Spherical and CG-ND-weights.

uncertainty sets are only 1.2 or 2.2 times more complex, respectively, which is a small price to pay for

the additional benefits arising from robustness to ASV errors.

TABLE V

ONLINE OPERATION COUNTS FORCG-BASED RDRCBS.

Spherical Non-Degenerate

Evaluate DRT O(NM [M + 5])

Ry = ΛCG O(M [M + 1])

b̄ = DH ā O(NM)

ˇ̄b = Λ
−

1

2

CG b̄ O(N)

FormM O(N2[M + 2]) O(N [M2 +NM + 2N ])

EVD(M) O(4 1

3
N3)

Solve for ˆ̌b O(2N [N + 1] + ñiter6N)

b̂0 = Λ
1

2

CG
ˆ̌
b O(N)

wRDRCB O(2N)

Power O(3N) O(N2[M +N ]) for [DHD]−1
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VI. RANK SELECTION

Selecting the rankN is important for computational complexity and performance. Here, we examine

the efficient implementation of two existing stopping criteria for selectingN and also propose two new

rules for the CG-RDRCB. In [52], it was noted that the basis vectors in the NO-PoR transform (8)

can become nearly linearly dependent (at least numerically) for quite small values ofN . It was also

noted that if a new potential basis vector belongs to the subspace spanned by the current transform,D,

i.e., if gN = R̂N
x ā ∈ R(D), thengn ∈ R(D) for all n ≥ N . Thus, the following stopping rule was

suggested [52]

N = max







n :

∥

∥

∥
Π⊥

Dn−1
R̂n

xā

∥

∥

∥

2
∥

∥

∥
R̂n

xā

∥

∥

∥

2

> δ







, (28)

where the ratio represents, for a new potential Krylov basisvector, the fraction of its energy not contained

in the current Krylov subspace and whereδ is a small positive constant which imposes a minimum bound

on this energy. We now consider how to implement the rule efficiently with each of the Krylov-subspace

expansion techniques described in Section II-C. Calculating gn = R̂n
xā requiresO(M2) operations

and ‖gn‖2 requiresO(M) operations. Noting that the square of the numerator in (28) can be written

as ‖gn‖22 − gH
n ΠDn−1

gn, we need to calculategH
n ΠDn−1

gn. Defining g̃n = DH
n−1gn, which costs

O([n− 1]M) operations to calculate, we can writegH
n ΠDn−1

gn = g̃H
n

[

DH
n−1Dn−1

]−1
g̃n. SinceDn

△
=

[

Dn−1 dn

]

, we can write
[

DH
n Dn

]−1
efficiently in terms of

[

DH
n−1Dn−1

]−1
by using the block

matrix inversion lemma (see, e.g., [78]). Lettingd̃n = DH
n−1dn, which requiresO([n− 1]M) operations

and ˘̃
dn =

[

DH
n−1Dn−1

]−1
d̃n, which requiresO([n− 1]2) operations, we can write

[

DH
n Dn

]−1
=





[

DH
n−1Dn−1

]−1
+

˘̃
dn

˘̃
dH

n

ν − ˘̃
dn

ν

−
˘̃
dH

n

ν
1
ν



 , (29)

whereν = ‖dn‖22 − d̃H
n
˘̃
dn, which requiresO(M + n − 1) operations. Forming the upper left block of

the matrix on the r.h.s of (29) requires an additionalO([n− 1]2) operations. Thus, in general, updating
[

DH
n Dn

]−1
requiresO(nM + 2n2 − 4n) operations, so that updating

[

DH
n−1Dn−1

]−1
requiresO([n−

1]M + 2n2 − 8n) operations at thenth iteration. For the NO-PoR method,gn = R̂n
xā and ‖gn‖22 are

available at each iteration and, as[DH
NDN ]−1 is computed in the implementation of the stopping rule,

no additional operations are needed for power estimation.

For the O-PoR and O-CG methods, the columns ofDn are orthonormal so that the inverse
[

DH
n−1Dn−1

]−1

does not need calculating. For the CG method, we note that theresiduals{ri}n−1
i=1 , which are orthogonal

to each other and are available at each iteration, span the same subspace as{di}n−1
i=1 and so, we can
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write

gH
n ΠDn−1

gn = ḡH
n Λ̄

−1
n−1ḡn, (30)

whereḡn = R̄H
n−1gn, with R̄n−1 =

[

r1 . . . rn−1

]

andΛ̄n−1 = R̄H
n−1R̄n−1 = diag

{[

‖r1‖22 . . . ‖rn−1‖22
]}

,

which is a diagonal matrix. For each of the methods, Table VI summarizes the additional operations

required to calculate the function in (28) at thenth iteration, illustrating that for smallN , NO-PoR requires

the fewest additional operations. We remark that for both the CG and NO-PoR based RDRCBs under

non-degenerate ellipsoidal uncertainty, extra operations are required to compute
[

DHD
]−1

in the power

estimation step. If (28) is implemented using (29), then
[

DHD
]−1

will have already been computed.

Thus, for the CG-RDRCB, if only the weights are required, thenwe implement (28) via (30); however,

if power estimation is also required, then we use (29). Fig. 2 illustrates the relative complexities when

exploiting the stopping rule in (28), indicating that the CG-based algorithms are still the least complex,

except for very low values ofN/M .

In [71], the following criterion was proposed

N = max







n :

∥

∥

∥
Π⊥

R̂xDn−1

ā

∥

∥

∥

2

‖ā‖2
> δ







, (31)

where it is was found to possess more naturalN−δ relations than (28), which enable a simpler selection

of δ. We refer the reader to [71] for more details on this aspect and where it is also shown that (28)

and (31) can be derived from two necessary and sufficient conditions for the low-rank subspace to

contain the optimal (MVDR-type) filter. Here, we need to calculate āHΠ
R̂xDn−1

ā. At each iteration,

D̆n−1
△
= R̂xDn−1 needs updating. We will already have all but the last column of this matrix from

previous iterations, thus we need only calculateR̂xdn−1, which can be calculated at no extra cost

in all of the algorithms. Note that̄aHΠ
R̂xDn−1

ā = āHD̆n−1

[

D̆H
n−1D̆n−1

]−1
D̆H

n−1ā. In calculating

D̆H
n−1ā, we only need to calculatĕdH

n−1ā, whered̆n−1 denotes the(n − 1)th column ofD̆n−1, as the

other parts have been calculated at previous iterations. Wecan use the same approach used above to

update
[

DH
n−1Dn−1

]−1
efficiently to update

[

D̆H
n−1D̆n−1

]−1
. Therefore, at thenth iteration, the cost of

implementing the rule in (31) isO(nM +3n2 − 9n). Thus, for smallN , it is cheaper to use (31) rather

than (28). When exploiting (31), there is no difference fromthe relative complexities plotted in Fig. 1.

The operation counts in Table VI shows that afterN iterations, more thanO(NM [M +2]) additional

operations are needed to implement (28) with the CG (or O-PoR)subspace expansion method, which

is a significant proportion of the overall complexity. Here, we propose two alternative rules, which

can be implemented more efficiently with the CG-RDRCB. Firstly, we note that using (28) prevents
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Ry = DHRxD from becoming poorly conditioned. Therefore, one approach is to threshold the condition

number ofRy. When exploiting the CG direction vectors to formD, the resultingRy = ΛCG is diagonal

so that its eigenvalues are exactly the non-zero entries inΛCG. Thus, we propose the following stopping

rule

N = max

{

n :
max{λn,CG}
min{λn,CG}

< δCG

}

, (32)

whereλn,CG contains then diagonal elements ofΛCG (18) andδCG is an upper bound on the allowed

condition number ofRy. Since we always calculateΛCG in the CG-RDRCB, there is negligible additional

complexity in exploiting this rule.

We also propose an alternative rule that ensures that theR̂x-orthogonality of the direction vectors is

maintained. In theory, each new CG direction vector should be R̂x-orthogonal to all previous direction

vectors, i.e.,dH
NR̂xdi = 0 for i = 1, . . . , N − 1, however, empirically, we have found that even for quite

small values ofN this orthogonality can break down. Thus, we propose the following stopping rule

N = max

{

n :
1

n− 1

n−1
∑

i=1

dH
n R̂xdi < δorthog

}

. (33)

Since
{

R̂xdi

}n−1

i=1
are already available [see (10)], onlyO([n− 1]M) additional operations are needed

to implement the rule at thenth iteration, which is less than the rules in (28) and (31). Fig. 2 shows

complexity plots when using all of the different rules with the CG-RDRCBs, at least under spherical

uncertainty, indicating that (32) and (33) are the least complex. We remark that the curves exploiting the

condition test rule (32) give an indication of the complexity when not using additional rank selection.

TABLE VI

ONLINE OPERATION COUNTS FOR COMPUTING RANK-SELECTION USING(28) AT THE nTH ITERATION.

NO-PoR
O-PoR /

O-CG
CG

gn 0 O(M2)

‖gn‖
2

2
0 O(M)

g̃n or ḡn O([n− 1]M)
[

DH
n−1Dn−1

]

−1

or Λ̄−1

n−1

O([n− 1]M + 2n2 − 8n) 0 O(M)

g̃H
n

[

DH
n−1Dn−1

]

−1

g̃n

or ḡH
n Λ̄

−1

n−1ḡn

O(n2 − n) O(n)
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VII. N UMERICAL EXAMPLES

Here, we examine numerical examples for a largeM = 320 element half wavelength spaced planar

array, withMh = 40 elements in each row andMv = 8 rows. We focus on the performance in snapshot

deficient scenarios, whereK << M snapshots are available. The simulated scenario is relevantin, e.g.,

passive sonar, where large multidimensional arrays are often employed to detect and localize sources

(weak and strong) in an environment where there are noisy merchant ships and/or jammers, isotropic

ambient noise and sensor noise (see, e.g., [2], [21], [29]).The data were simulated using the array

covariance matrixRx = σ2
0a0a

H
0 + Qx, whereσ2

0 and a0 denote the SOI power and the SOI ASV,

respectively, and whereQx =
∑d

i=1 σ
2
i aia

H
i + σ2

sI + σ2
isoQiso. Finite-data snapshots were produced by

coloring independent zero-mean complex circularly symmetric normal random vectors, with covariance

equal to the identity matrix, usingR
1

2

x . The noise plus interference covarianceQx consists of terms

due tod zero-mean uncorrelated interfering sources, where for theith interfererσ2
i and ai denote the

source power and ASV, a term modeling sensor noiseσ2
sI, with sensor noise powerσ2

s , and a term

modeling an isotropic ambient noiseσ2
isoQiso, with powerσ2

iso. The isotropic noise covariance is given

by [Qiso]m,n = sinc[πgmn], where gmn is the distance between themth andnth sensors in units of

wavelength. Theith source (SOI or interference) ASV is simulated according toai = a(θ̄i+δi)+σe,iei,

where θ̄i =
[

θ̄i, φ̄i

]T
denotes the assumed AOA, comprising the assumed azimuth angle θ̄i and the

assumed elevation anglēφi, δi = [δθi , δφi
]T denotes the AOA mismatch, comprising the mismatch in

azimuth angleδθi and the mismatch in elevation angleδφi
, σe,i denotes the length of the arbitrary error

vector andei is a zero-mean complex circularly symmetric random vector with unit norm. Whenδi 6= 0

an AOA error exists and whenσe,i 6= 0, an arbitrary ASV error exists. In our application of interest,

we are interested in forming multiple beams to survey an angular region and assume that the beams are

cosine-spaced at1/Mh and 1/Mv intervals in azimuth and elevation, respectively. We assume that the

SOI beam corresponds to the beam whose center is defined byθ̄0 = 89.86◦ and φ̄0 = 94.78◦. When

simulating the AOA of the SOI, we assume that its azimuth anglelies anywhere in the interval[θl, θu]

with uniform probability, whereθl(θu) is the angle midway between the center of SOI azimuth beam

and the center of the adjacent beam with lower (higher) azimuth angle, and that its elevation angle lies

anywhere in the interval[φl, φu] with uniform probability, whereφl(φu) is the angle midway between the

center of SOI elevation beam and the center of the adjacent beam with lower (higher) elevation angle;

δ0 is set accordingly. In the following, unless otherwise stated, σ2
0 = 10 dB, σe,0 = 1, σ2

s = 0 dB,

σ2
iso = 1 dB andd = 10. Except forσ2

5 = 30 dB andσ2
6 = 30 dB, the interference powers are set to
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20 dB. The azimuth angles of the interferers are set toθ̄1 = 10◦, θ̄2 = 20◦, θ̄3 = 70◦, θ̄4 = 85◦, θ̄5 = 95◦,

θ̄6 = 100◦, θ̄7 = 115◦, θ̄8 = 130◦, θ̄9 = 150◦ and θ̄10 = 160◦. Except forφ̄1 = 130◦, φ̄2 = 112◦ and

φ̄3 = 75◦, the elevation angles of the interferences are set to94.78◦. Furthermore,{δi = 0}10i=1 and

{σe,i = 1}10i=1.

We now discuss the full-dimension (or element-space) uncertainty sets that we have used in the

(RD)RCBs. RCBs are most commonly used with spherical sets, of which the smallest possible spherical

uncertainty set [13], [14] is a particularly tight set that offers good control of AOA uncertainty without

sacrificing as much in interference rejection as other spherical set designs [74]. In [74], non-degenerate

ellipsoids, each formed from a flat minimum volume ellipsoid (MVE) and asphericalerror ellipsoid,

were proposed for azimuth and elevation beamforming of multidimensional arrays. These sets, termed

non-degenerate MVE (NDMVE) sets, allow for better control ofazimuth and elevation uncertainty and

can give better interference rejection than the associated(tight) spherical sets. Here, we exploit (tight)

spherical sets and NDMVE sets, not to endorse one over the other, but to illustrate that our algorithms

work with both spherical and more general non-degenerate sets. In the interest of brevity, we refer the

reader to [74] for details on how to form these sets, which aredesigned for each azimuth and elevation

pair, assuming the beams are spaced as described above. We remark that the (tight) spherical uncertainty

set radius (squared) for the SOI beam was calculated asǫ = 120. In designing the NDMVE sets, we set

1− γ = −80 dB in (28) in [74] and used asphericalerror ellipsoid radius of̌ǫ = 10 in (34) in [74].

In the following, we examine the delay-and-sum (DAS), the MVDR, the RCB-NDMVE and the

RCB-Spherical full-dimension beamformers; the following RDRCBs: NO-PoR-Spherical, NO-PoR-NDMVE,

O-PoR-Spherical, O-PoR-NDMVE, O-CG-Spherical, O-CG-NDMVE, CG-Spherical and CG-NDMVE,

where we append Spherical or NDMVE to denote that we are exploiting a tight spherical uncertainty

set or a non-degenerate NDMVE uncertainty set; and the following standard, non-robust RDMVDRs:

NO-PoR-MVDR, O-PoR-MVDR, O-CG-MVDR and CG-MVDR. The RDMVDR weights can be formed

by using (15) withb̂0 replaced withb̄. Unless otherwise stated, we useK = 80 snapshots for weight

estimation. WhenK < M , the inverse ofR̂x in (2) does not exist and therefore, we use a low-

rank pseudo-inverse, which calculates the inverse based onthe eigenpairs associated with theK non-

zero eigenvalues. We evaluate performance via the signal-to-interference-plus-noise ratio (SINR) metric,

defined as SINR= σ2
0
|wHa0|2

wHQxw
. It is well known that the optimal SINR is given by SINRopt = σ2

0a
H
0 Q−1

x a0.

In our Monte-Carlo simulations,a0 andQx vary due to modeling the SOI and interferer ASV errors and

therefore, we plot the optimal SINR as the mean of SINRopt over the Monte-Carlo simulations.
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A. SINR versus Rank

Here, we investigate how the performances of the reduced-dimension algorithms vary with the rankN .

Fig. 3 (a) shows the SINR vs.N for a strong 60 dB SOI, illustrating that up to rank-3, the different Krylov-

based variants of the RDMVDR, the spherical RDRCB and the non-degenerate RDRCB give the same

performance. The NO-PoR and O-CG/CG algorithm SINRs diverge after ranks 3 and 7, respectively. This

divergence is due to numerical instability and is related tothe condition number ofRy. Fig. 3 (c) shows

the mean condition number ofRy vs.N for the strong 60 dB SOI case, illustrating that when this exceeds

a certain threshold (around 160 dB), the associated algorithm performance breaks down. Providing this

threshold is not breached, the Krylov-RDRCBs are able to maintain near optimum performance. However,

the Krylov-RDMVDRs deteriorate after rank-1 due to severe SOI cancellation. Fig. 3 (b) shows the SINR

vs.N for a weaker 20 dB SOI, for which the O-PoR, O-CG and CG variants give the same performances

for all of the ranks tested. The NO-PoR variant starts diverging after rank-7, which, as shown by Fig. 3 (d)

for the weaker 20 dB SOI, is caused by numerical instability, shown by the mean condition number

of Ry exceeding the 160 dB threshold. Thus, providing that the condition number ofRy does not

exceed a certain threshold, then for a fixed rankN , the performance of the non-degenerate Krylov-

RDRCBs are equal to each other, the performance of the spherical Krylov-RDRCBs are equal to each

other and the performance of the Krylov-RDMVDRs are equal toeach other. The results in Fig. 3 (a)–(d)

show how the CG, O-CG and O-PoR subspace expansion methods aresignificantly more numerically

stable than the NO-PoR method. They also show that the Krylov-RDMVDRs are highly sensitive to the

rank and particularly to its over-determination, whereas,providing that numerical stability is maintained,

the Krylov-RDRCBs are relatively insensitive to rank over-determination, which represents a significant

advantage for the RDRCBs.

When using the stopping rules, we examine the SINR as a function of the maximum allowable rank. If

the maximum allowable rank is set equal toN , the stopping rule may set the rank to any value less than

or equal toN . As suggested in [52], we selectδ = 0.01 in Honig’s rule (28). Based on the results in [71]

and noting our level of snapshot support, we have usedδ = 0.8 with Yukawa’s rule (31). Based on some

empirical observations, we have selectedδCG = 40 dB for the condition number based rule (32) and

δorthog= 1× 10−5 for the orthogonality testing based rule (33). Figs. 3 (e) and(f) show results with the

CG-based algorithms for a 60 dB SOI and a 20 dB SOI, respectively. We note that when using Honig’s

rule (28) or Yukawa’s rule (31) with these settings, the different Krylov-subspace variants give the same

results, that is, all the Krylov-RDMVDRs give equal results, all the non-degenerate Krylov-RDRCBs
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give the same results, and all the spherical Krylov-RDRCBs give the same results. The reason for this

is that the stopping rules prevent any of the algorithms frombecoming numerically unstable and as they

all implement the same stopping rule, it means that each select the same rank and therefore, expand

identical subspaces to give identical results. Therefore, we have only shown the results for the CG-based

algorithms in Figs. 3 (e) and (f). Fig. 3 (e) shows that at high SNR, the stopping rules allow the CG-

RDRCBs to maintain near-optimal performance by preventingdegradation due to numerical instability.

Since the CG-MVDR performance deteriorates for any rank greater that 1, only Yukawa’s rule and the

condition number based rule (32), which selected the rank as1, enabled the CG-MVDR to perform well.

Fig. 3 (f) shows that, for the 20 dB SOI, there was little difference between using a stopping rule or

not with the CG-RDRCBs. Only the CG-NDMVE benefited slightly from using Honig’s rule. Yukawa’s

rule allowed the CG-MVDR to maintain a reasonable performance, though, this was not as good as that

obtained by the CG-RDRCBs when using another rule or a fixed rank.

B. SINR versus SOI Power

Here, we examine the SINR as a function of the SOI power, which isshown in Fig. 4 (a) for fixed

rank N = 5. For low SOI powers, below 0 dB, the reduced-dimension algorithms perform the same as

each other and much better than the full-dimension algorithms. At low SOI powers, the DAS performs

poorly as it is unable to form data-adaptive nulls towards the interferences. MVDR and RCB-NDMVE

perform better than the DAS, but still perform poorly at theselow SNRs due to their poor robustness

to snapshot deficiency. RCB-Spherical performs much better, as it is inherently more robust to snapshot

deficiency than both MVDR and RCB-NMVDE, however, it still performs worse at these lower SNRs

than the proposed algorithms, which converge a lot faster. As the SNR increases, we observe how the

performances of all of the MVDR-based algorithms, whether reduced-rank or not, start to deteriorate, as

they are not robust to ASV errors. The robust algorithms mitigate this loss in performance. At the highest

SOI power, the NO-PoR based algorithms start to diverge due to numerical instability, as discussed earlier.

Fig. 4 (b) shows results when using the four stopping rules with the CG-based algorithms. With all the

rules, except Yukawa’s rule (31), the performances of the RDRCBs are similar to the fixed rankN = 5

case, though there is a slight loss in performance at low SOI power. With Yukawa’s rule (31), there is a

drop in SINR for the RDRCBs at 20 dB SOI power; however, the performances of the RDMVDRs now

match the RDRCBs. With these settings, for the CG-MVDR, thresholding the condition number improves

the performance, but there is little difference when using Honig’s rule or the rule testing for orthogonality

breakdown. We remark that increasing the value of Honig’s threshold to improve the performance of
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Fig. 3. For a SOI with AOA errors,σe,i = 1 andK = 80, SINR vs rank for (a) a 60 dB SOI, (b) a 20 dB SOI; mean condition

of Ry vs rank for (c) a 60 dB SOI or (d) a 20 dB SOI; SINR vs. maximum allowable rank, when using stopping rules, for (e)

a 60 dB SOI or (f) a 20 dB SOI.
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Fig. 4. SINR vs SOI power withK = 80 for (a) N = 5; for stopping rules withNMax = 8 and δ = 0.01 in (28), δ = 0.8

in (31), δCG = 40 dB in (32) andδorthog = 1 × 10−5 in (33), (b) SINR vs SOI power, and SINR loss, relative to the optimal

SINR, vs. SOI power for the CG-RDRCBs, where the fixed rank version usesN = 8, for (c) non-degenerate uncertainty, or (d)

spherical uncertainty.

the RDMVDRs at high SNR reduces the performance at low SNR. Similarly, lowering the value of

Yukawa’s threshold can improve the performance of the RDRCBs at 20 dB, but then the performances

of the RDMVDRs deteriorates. The performance of the CG-MVDR is highly sensitive to the selection

of the rank and can benefit from rank-selection, especially Yukawa’s rule, whereas the CG-RDRCBs

are not. Figs. 4 (c) and (d) show the SINR loss, compared to optimal, vs the SOI power when using
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different types of rank selection with the CG-RDRCBs under non-degenerate and spherical uncertainty,

respectively. The performances of the efficient rules based oneither thresholding the condition number

or on testing the orthogonality of the CG direction vectors,are similar to using Honig and Goldstein’s

rule in (28), but can be implemented at a fraction of the complexity. The results also show that only

minor additional performance gains over simply selecting the rank as the maximum rank ofN = 8 can

be achieved with stopping rules, as the RDRCBs are already robust to rank over-determination.

C. SINR versus the Number of Snapshots

Fig. 5 (a) illustrates the SINR versus the number of snapshotsK for a strong 50 dB SOI, when we

have selectedN = 5 in the reduced-dimension algorithms. The CG, O-CG and O-PoR RDRCBs behave

identically to each other and similar to the DAS, which we expect to behave well for this high SNR

case, and much better than the standard MVDR algorithm and the associated non-robust RDMVDRs.

The NO-PoR RDRCBs perform worse due to numerical instability.Fig. 5 (b) illustrates the results for a

low SNR case with a SOI power of -30 dB, indicating that all of themethods exploiting data-dependent

dimensionality reduction perform similarly, outperforming the full-dimension RCBs, DAS and MVDR.

We remark that the SINR for RCB-Spherical does look good at these low levels ofK, but it should be

noted that its SINR is actually falling asK is increasing. This phenomenon has been seen elsewhere [2]

and we remark that it is only forK > M , that SINR is expected to increase monotonically withK.

For the same data as used in Figs. 5 (a) and (b), Figs. 5 (c) and (d)show results for the CG-

based algorithms exploiting different rank selection methods, showing that there is little difference in

the behaviors of the CG-RDRCBs when using the different stopping rules, mainly as they are robust

to model over-determination, whereas large improvements are possible in the CG-RDMVDR if, e.g.,

Yukawa’s rule is used.

D. Spatial Spectra

In several applications, e.g., passive sonar, beamformingis used for imaging (in addition to increasing

SINR) where good quality spatial spectra with good power estimates are desirable. Here, we examine the

spatial spectra, assuming the azimuth and elevation beam spacings described earlier. Due to the similarity

of the spatial spectra obtained using the CG, O-CG, O-PoR and NO-PoR methods, we only examine

the CG-based algorithms here. Fig. 6 (a) shows the DAS spatialspectrum, where the source AOAs that

appear in the scanning region are shown using red circles. Figs. 6 (b)–(f) show the azimuth spectra for

the elevation beam containing the SOI (centered at94.78◦) when using different forms of rank selection.
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Fig. 5. SINR vsK, for a SOI with AOA errors and arbitrary ASV errors withσ2

e = 1, whenN = 5 for (a) a 50 dB SOI and

(b) a -30 dB SOI; when usingN = 8 or stopping rules withNMax = 8 andδ = 0.01 in (28) or δ = 0.8 in (31) or δCG = 40 dB

in (32) or δorthog = 1× 10−5 in (33) for (c) a 50 dB SOI and (d) a -30 dB SOI.

In all cases, the CG-RDRCBs provide robustness against SOI cancellation and give good quality power

estimates, whereas the non-robust CG-MVDR suffers severe SOI cancellation in all cases except when

using Yukawa’s stopping rule (31).

May 29, 2014 DRAFT



IEEE ???, VOL. ?, NO. ?, ??? 20?? 29

 

Azimuth (degrees)

 

E
le

va
tio

n 
(d

eg
re

es
)

40 60 80 100 120 140

70

80

90

100

110

120

130

0

5

10

15

20

25

30

40 60 80 100 120 140
−10

−5

0

5

10

15

20

25

30

35

Azimuth angle

P
ow

er
 (

dB
)

 

 
CG−NDMVE
CG−Spherical
CG−MVDR

(a) (b)

40 60 80 100 120 140
−10

−5

0

5

10

15

20

25

30

35

Azimuth angle

P
ow

er
 (

dB
)

 

 
CG−NDMVE
CG−Spherical
CG−MVDR

40 60 80 100 120 140
−10

−5

0

5

10

15

20

25

30

35

Azimuth angle

P
ow

er
 (

dB
)

 

 
CG−NDMVE
CG−Spherical
CG−MVDR

(c) (d)

40 60 80 100 120 140
−10

−5

0

5

10

15

20

25

30

35

Azimuth angle

P
ow

er
 (

dB
)

 

 
CG−NDMVE
CG−Spherical
CG−MVDR

40 60 80 100 120 140
−10

−5

0

5

10

15

20

25

30

35

Azimuth angle

P
ow

er
 (

dB
)

 

 
CG−NDMVE
CG−Spherical
CG−MVDR

(e) (f)

Fig. 6. Spatial spectra for (a) DAS; the CG-based algorithms with (b)N = 5, or when using stopping rules withNmax = 8

and (c) (28) withδ = 0.01, (d) (32) with δCG = 40 dB, (e) (33) withδorthog = 10−5, or (f) (31) with δ = 0.8.
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E. Summary

From the results above we observe that

• A Krylov-RDRCB’s performance is lower-bounded by its associated Krylov-RDMVDR performance.

• The O-PoR and CG/O-CG Krylov-subspace expansion methods are significantly more numerically

stable than the NO-PoR method.

• Provided that numerical stability is maintained, the Krylov-RDRCBs give the same results.

• Providing that numerical stability is maintained, the Krylov-RDRCBs are insensitive to rank over-

determination and SOI ASV errors, whereas the Krylov-RDMVDRsare not.

• Stopping rules can be used to maintain numerical stability and can provide further small performance

enhancements in the Krylov-RDRCBs.

• A “good” stopping rule, such as Yukawa’s rule, allows the performance of a Krylov-RDMVDR to

be significantly improved.

• Krylov-RDRCBs converge faster than full-dimension RCBs and are significantly less complex.

• Krylov-RDRCBs provide good quality spatial spectra with good quality power estimates.

VIII. C ONCLUSIONS

We have derived a family of low-complexity, quickly converging, Krylov-subspace reduced-dimension

robust Capon beamformers (Krylov-RDRCBs) that combine data-dependent Krylov-subspace dimen-

sionality reduction, computed using the Power-of-R (PoR) or conjugate gradient (CG) methods, with

ellipsoidal uncertainty set based robust Capon beamformer(RCB) techniques. To derive the Krylov-

RDRCBs, we have extended a recent RDRCB framework to allow for faster online computation of the

reduced-dimension ellipsoids needed after rank reduction. The extended framework is applicable to all

forms of dimensionality reduction and not just the Krylov methods considered in this paper. Existing

Krylov-subspace techniques often suffer severe signal-of-interest cancellation, due to steering vector

mismatch, and are extremely sensitive to rank selection, particularly to rank over-determination. The

proposed Krylov-RDRCBs provide excellent robustness to both steering vector mismatch and rank over-

determination. A detailed computational analysis has shown that out of the different Krylov-RDRCBs, the

Conjugate Gradient RDRCB (CG-RDRCB) is the least computationally complex and, on the large array

considered, is two orders of magnitude less complex than thestandard RCB. We have also examined the

efficient implementation of stopping-criterion based rank-selection rules in the Krylov-RDRCBs and found

that they are useful for preventing numerical instability and can provide some further small performance

enhancements. We have proposed two new low complexity stopping rules for use with the CG-RDRCB
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that can be implemented at lower complexity than existing rules. On large arrays operating in non-

stationary environments, it is often unfeasible to implement current full-dimension RCBs, due to the

limited sample support and high complexity required. The proposed Krylov-RDRCBs can be implemented

in these situations, as they are significantly less complex, converge faster and are amenable to parallel

implementations.
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