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Abstract
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I. INTRODUCTION

In this work, we are interested in designing low-complexigbust adaptive beamformers for beam-
forming large arrays in snapshot deficient scenarios. Suainfoemers are applicable to radar and passive
sonar systems, in which large aperture, many-elementsthay operate in highly dynamic environments
are often encountered and where the number of snapshdksat are available for weight estimation is
significantly less than the number of array elemévit§l], [2]. The challenges are to a) provide robustness
to signal-of-interest (SOI) array steering vector (ASV) mlodgerrors, which arise from, e.g., calibration
and pointing errors and can cause severe SOI cancellati@msbye adequate convergence on the limited
data available, and c) ensure a sufficiently low complexityaamit real-time implementation on the often
limited computational resources that are available.

Many robust adaptive techniques have been proposed taaddlethe deleterious effects of ASV mis-
match, including using multiple linear constraints [3[[@iagonal loading [7], eigenspace projection [8],
and more recently, the robust Capon beamformers (RCBsEtwaploit ellipsoidal, including spherical,
uncertainty sets of the ASV [9]-[13], and their extension§ [24]-[21]. Due to their widespread
popularity and the fact that they have addressed the mismaioblem in several application areas
(see, e.g., [22]-[29]), herein, we focus on using RCB tegphes for alleviating the effects of ASV
mismatch. Other notable recent methods for addressing thmatch problem can be found in [30]-
[33]. Whilst the RCB (under spherical uncertainty) convergesiigantly faster than, e.g., the minimum
variance distortionless response (MVDR) beamformer etherstill often both a need for and potential
for improvement, especially wheR < M. Further, theO(M?3) complexity eigenvalue decomposition
required to compute the full-dimension RCB is prohibiti@ feal-time implementation on the large
arrays considered here.

Reduced-dimension (or reduced-rank) methods, which grdjee data onto a low-rank subspace,
are often used to speed-up the convergence of adaptive beaers and reduce their computational
complexity. Common data-independent methods includersajpare-processing [34]-[37], full-aperture
beamspace [38]—[40], and discrete prolate spheroidaleses [40], [41]. Thed hocnature of the data-
independent methods and the need to improve performand&ated research into statistically optimum
data-dependent methods, the first of which were the eigenl@sied principal components [42] and
cross-spectral metric [1], [43], [44] methodg/hilst these could provide huge reductions in sample
support over conventional full-dimension methods [45gythvere soon superseded by several algorithms

that are related to each other as they operate in the samewsybspace [46]-[54], but differ in
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the way that they expand the subspace and then form the aelapights. These Krylov-subspace
algorithms include the multistage Wiener filter [1], [55]etlauxiliary vector method [56], [57], the
conjugate gradient technique [48], [58]-[62], and the pedlsrank MVDR algorithms in [63], [64]Due

to the popularity and the proven performance of these Krglalvyspace techniques in several application
areas (see, e.g., [1], [46], [47], [49], [51], [52], [56],9b [61], [63], [65]-[67]), we here focus on
exploiting Krylov-subspace dimensionality reductiont bemark that there are other methods available
(see, e.g. [68], [69]). Significant drawbacks of the aforenosed Krylov-subspace methods are that they
are sensitive to SOl ASV errors and to the selected rank.

The main contribution of this paper is combining Krylov-spase dimensionality reduction and robust
Capon beamforming, to produce a new family of Krylov-sulegplaased reduced-dimension robust Capon
beamformers (Krylov-RDRCBS). By exploiting Krylov-sulzsme methods, we obtain faster convergence
and lower complexity than the RCB. By exploiting RCB method® address the sensitivity of the
Krylov-based methods to SOI ASV errors and rank over-detatign. We examine four existing Krylov-
subspace expansion methods for computing dimensionadyation transforms, which have different
degrees of numerical stability and associated computatioosts. They are the non-orthogonal Power-
of-R (NO-PoR) method, previously used to implement the rstalje Wiener filter in [52], the method
used in [63], [64], which we here term the orthogonal PoR (OJ)PoRthod, and two methods based on
the conjugate gradient (CG) technique [58], where one @sptbe CG direction vectors and we term
the CG method, and where the other exploits the orthogonalésfeluals and we term the orthogonal
CG (O-CG) method. To form the Krylov-RDRCBs, we use the RDRfZ&8nework proposed in [2],
[70]. Here, we extend the framework, by providing new resutitat allow faster computation of the
reduced-dimension ellipsoids that are needed after radctmn and that are useful when exploitiagy
type of data-dependent dimensionality reduction tramsféand not just the Krylov-subspace methods
considered here). We term the new Krylov-RDRCBs the NO-P@HREB, the O-PoR-RDRCB, the
CG-RDRCB, and the O-CG-RDRCB, which we derive assuming awkndimension and for both
spherical and non-degenerate ellipsoidal uncertaintyalse exploit the fact that the conjugate-gradient
direction vectors diagonalize the reduced-dimension awee to derive an efficient implementation
of the CG-RDRCB. We provide a detailed analysis of the cowrmarial complexities of the Krylov-
RDRCBs. Since, in practice, the optimal dimension (or ramskpften unknownra priori, we consider
how to efficiently implement the automatic rank selectionesuproposed in [52], [71] with each of
the Krylov subspace-expansion methods. Further, we propesextremely low-complexity stopping

rules for the CG-RDRCBSs, which stop subspace expansiorereitthen the condition number of the

May 29, 2014 DRAFT



IEEE ?7??, VOL. ?, NO. ?, ??? 20?? 4

reduced-dimension covariance exceeds a threshold or wieakdown of the conjugate orthogonality of
the direction vectors is detected. Extensive simulatiorsuged to assess the new Krylov-RDRCBs, with
and without automatic rank selection, and in comparisonxistiag Krylov-subspace based reduced-
dimension MVDRs and full dimension delay-and-sum, MVDRJ &CBs, for beamforming large planar
arrays in snapshot deficient scenarios. To summarize, thelmaions of this work comprise 1) the new
family of Krylov-RDRCBSs, 2) the extension of the RDRCB frawwrk for data-dependent dimensionality
reduction, 3) the efficient implementation of rank-selattiales, 4) a detailed computational complexity
analysis and 5) a simulation study for beamforming largayarin snapshot deficient scenarios.

The remainder of this paper is organized as follows. In Sedtioafter discussing the notation and
operation counting conventions (for evaluating compatal complexity) used throughout the paper, we
summarize the RCB approach and the Krylov-subspace methsmtt for rank reduction. In Section lll,
we review the RDRCB framework and then present new resuitexploiting data-dependent dimen-
sionality reduction. In Section IV, we exploit these resutisform the Krylov-RDRCBs. We derive a
computationally efficient implementation of the CG-RDRCBSaction IV-A. In Section V, we analyze
the complexity of the proposed Krylov-RDRCBs for a givenkax. In Section VI, we incorporate rank
selection rules. In Section VII, on simulated data, we ilats the benefits of the proposed algorithms for

beamforming large arrays in snapshot deficient scenarioally;iwe draw our conclusions in Section VIII.

[I. BACKGROUND

Here, we summarize the notation and operation countingergions used throughout the paper, as

well as the RCB and Krylov-subspace expansion techniques.

A. Notation and Operation Counting Conventions

In the following, E {-}, ()7, (), (-)~! and(-)" denote the expectation, transpose, Hermitian transpose,
inverse and Moore-Penrose pseudo-inverse operatorsctizsihe FurthermoreCM >N | Ty, I|-[l5, R(X),
N(X), N4, TIx andIIx denote the space dff x N complex matrices, th& x N identity matrix, the
two-norm, the column-space &, the null-space oK, a basis for the left null-space &, the orthogonal
projector onto the column space &f and the orthogonal projector onto the space perpendicoléret
column space oK, respectively. MoreoveiX > 0 or X > 0 mean that the Hermitian symmetric matrix
X is positive semi-definite or positive definite, respectiviiie defineX> such thatX = X > X3, where
X5 = (X3)",

Part of this work was presented at ICASSP 2013 [72].
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An operation is defined as one complex multiplication plusitamid (and is approximately equivalent
to four real multiplications and additions) such that, re CM*Y andY ¢ CV*P, XY requires
MNP operations. IfX ¢ CM*M s a diagonal matrix and@ € CM*? is a general matrix, theX'Y
requiresM P operations. Computing the eigenvalue decomposition (EMDthe inverse of anVf x M

Hermitian symmetric matrix is assumed to reqL@e%M?’) or O(M?) operation$, respectively [73].

B. Robust Capon Beamforming

The kth full-dimension (or element-space) array snapshot C is modeled as
X), = apso,k + Ny, (1)

whereay, so ; andn; denote the true SOI ASV, the SOI complex amplitude and an additvo-mean
complex Gaussian vector that incorporates the noise andtiréerence. Assumingy ;. is zero mean and
uncorrelated withng, the array covariance matrix can be writtenRg = E {xkx}? } = agaoagf + Qx,
whereRx > 0, 0% = E {|so|*} is the SOI power, an)x = E {n;n/’}. In practice,Rx is often

replaced by the sample covariance matrix estimate
| K
1:{x = ? ; kafv (2)

formed fromK snapshots. In [10], [11] (see, also [13]), RCBs were derivedolvingmax,: 5 0% S.t. Rx—

c?aall >0, a € &y(a,E), which can be reduced to [10], [11]

mina? R 'a st ac&y(aE). (3)

The M-dimensional, full-dimension (or element-space) elligs®,, (a, E) is parameterized by its center
a, often representing the assumed ASV, and by its principal-aess, given by the unit-norm left singular
vectors ofEfé, whereE > 0 € CM*M  scaled by the corresponding singular values, and can leemwri
as

Eu(@E)={acC" | a—a"Ela—a] <1}. (4)

2In the limit of large M, for an M -dimensional real symmetric matri%,/3M?2, approx.30M?2 and3M*® real operations are
needed to reduce to tridiagonal form (via Householder reduction)pdéaige the tridiagonal matrix (to obtain the eigenvalues)
and obtain the eigenvectors, respectively. Ignorvlg terms, in the limit of largeM, 4§M3 real operations are needed to
compute the EVD of a real symmetric matrix. The eigen-pairs of a compledimensional Hermitian matrix can be obtained
from the eigen-pairs of 2\ dimensional real symmetric matrix called the augmented matrix. Using thisoshevould require
4%(2M)3 = 34§M3 real operations. However, in principle, an algorithm designed spdbjiffioa complex matrices could give
a further factor of 2 reduction in complexity over the augmented matrix otetleading t017éM3 real operations. We here

assume that dividing by 4 gives the number of complex operationsedgeccompute the EVD of a Hermitian matrix a§M3.
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To avoid the trivial solutiora = 0 of (3), it is necessary to assume that
al’Ea > 1. (5)

WhenE = ¢ '1, (4) reduces to a spherical uncertainty et éH% < ¢, with radius,/e and (5) becomes
||a||§ > €. Whilst conservative spherical uncertainty sets are mishaused in practice, more general
ellipsoids can provide a more accurate description of ASVeuainty and yield better performance in
certain scenarios [13], [15], [74]. For non-degeneratp®ids withE > 0, we can factorE = E:E:
and forma = Eza, 4 = E:a andRy = E:RxE*. Then, (3) can be re-written using the following
spherical constraint [11]

ast |a—all <1 (6)

As shown in [11], (6) can be solved using Lagrange multipieis the EVDR, = UAU*, whereA is a
diagonal matrix containing the eigenvalugs> - ... > X, in non-increasing order on its main diagonal

and whereU contains the associated eigenvectors. ComputingU* a in M2 operations and letting,,,

denote thenth entry ofz, the Lagrange multiplier: is found by solvingf (i) = Zn]‘f 1 % —-1=0
via Newton line search, which updatgsaccording toug.1 = px — f((‘“‘)) where iy, is the value ofu

at thekth iteration andf’(u) = 2Zm 17 ‘Z’ ‘ A) The search terminates wheiu1) is sufficiently
close to zero. Tight bounds om, which can be used to initialize the search, are given in.[EHch

Newton iteration takes aroun@ll/ operations. Once: has been found, the solution to (6) is formed

v

asa = a — U(I + pA) 'z, which requires an additionaD(M[M + 2]) operations. Thus, solving
(6) for & once the EVD ofR, has been computed, requir€§2M[M + 1] + ny.,6M) operations,

where n;., denotes the number of iterations in the Newton search. Thdiselto (3) is formed as

agree = E~24. The RCB power estimate is formed 88rce = M and the weight vector

o,RCBR ap,RC

. The operation counts for computing the fuII-dimenS|on RE8 summarized

~ R:'a
asWgrcp = «_80,RCB

in Table I.

AH 1D-1z
a5 repRx "ao0,rcB

TABLE |
ONLINE OPERATION COUNTS FORRCB.

Spherical‘ Non-Degenerate
Ry = UAUY O(4:M?)
Solve fora O2M[M + 1] + nie6 M)
a0 —E %4 o | owr
WRcB O(M[M +1])
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C. Krylov-Subspace Bases

Here, we summarize the PoR and CG methods for obtaining Mkylov-subspace bases or dimen-

sion reducing transforms, which span the followihgdimensional Krylov subspace

Kv=R(|a Ra ...RYal). (7)

1) Non-Orthogonal Powers-of-RThe standard non-orthogonal PoR (NO-PoR) basis is given by [52]
D[ 8 _Ra R] 8
{ lal, [Real, RSl (8)
which can be formed iteratively, by starting with = a andd; = ||§‘H , and calculating, fof = 2,..., N,
Ki = Rx"‘f/i—l 9)

andd; = ”:—”2 Calculatings; from x;_; usesO(M?) operations and then calculatiny usesO(M)
operations. Thus, calculating the rankNO-PoR transform use®(N M [M + 1]) operations.

2) Orthogonal Powers-of-RIn [63], an alternative PoR-based transform was suggesteapfdications
in which the model order is highly variable and time-varyiagd can be formed similarly to the NO-PoR
transform, by replacing (9) wittk; = II5,  Rxk,_1, whereIl, =TI — 3" didf. We term the
resulting transform the orthogonal PoR (O-PoR) transformsasdlumns are orthogonal. To form a new
columnd; efficiently, first computes; = Ryk; 1 in O(M?) operations, them; = k; — Di_lD{{lki,
whereD;,_ 1 = | d; ... d;,_; |, in a furtherO(2(: — 1)M + M) operations and then calculaik
from k; in a furtherO(M) operations. Thus, computing thé-dimensional O-PoR transform requires
O(NM[M + 1+ N]) operations.

3) Conjugate Gradient MethodThe CG algorithm minimizes the functiofi(w) = wHRw —
wla — aflw + constant along a set ofRy-orthogonal search directions and thus, iteratively solve

Rxw = a [48], [58], [75]. Starting withw; = 0, d; = a andr; = —a, fori = 2,..., N, calculate [48]

leI'i
o = ——l
' d7 R,d;
Wip1 = W; +od;
rig1 = 1+ aRyd;
5 = df Ryriyi
" adfR.a;
diy1 = —rip1+ Bid;, (10)

whered; andr; denote theth conjugate direction vector and residual vector, re$gelgt The direction

vectors are formed by conjugation of the residuals and tbereat theith iteration, they both span the
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same subspace, denot®d=R([ r; ... r; ])=R([ dy ... d;]). From (10), we see that; is
a linear combination of; and R, d;. Sinced; € D;, the new subspacP; . is formed from the union
of D; and R D;, so that [75]

D, = R([ d; Rxdl R R;_ldl ])
= Rl r erl Rﬁfll‘l 1) (11)
Thus, withd; = a andr; = —a in (11), it clear thatDy, which is the subspace spanned by the first

N residuals or direction vectors, is equivalent to the Krykubspace in (7). We term the dimension
reducing transformpD = [d; ...dy], formed using the direction vectors the CG transform, while
termD = [”ﬁz . H:TNHQ formed using the residuals the orthogonal CG (O-CG) transfdhe cost of
computingRxd; is O(M?). Given R.d;, the cost of computingy; is O(2M). Updatingr;;1 is O(M).
The cost of computing3;, given R,d; and the denominator of; is O(M). Then, updatingd;; is
O(M). Note that we do not need to calculate updates ttw find D. Thus, the cost of computing a new
column of the CG transform i©(M? + 5M). For the O-CG transform, an extta(M) operations are
needed to compute the norji;1||,. Thus, the total operations needed to calculate the CG an&O-C
transforms are)(NM[M + 5]) and O(NM[M + 6]), respectively. Table Il summarizes the operations

needed to compute each of the Krylov-subspace dimensiarciregl transforms (DRTS).

[11. DATA-DEPENDENTREDUCED-DIMENSION ROBUST CAPON BEAMFORMING FRAMEWORK

Here, we first summarize the existing reduced-dimensionstoBapon beamforming (RDRCB) frame-
work, proposed in [2], [70] for combining any form of dimeosality reduction with robust Capon

beamforming, and then extend it for data-dependent diroaalty reduction.

TABLE I

OPERATIONS FOR COMPUTING RANK/N KRYLOV-SUBSPACEDRTS.

Method Operations
NO-POR | O(NM[M +1])
O-PoR | O(NM[M + 1+ NJ)
CG O(NMI[M + 5))
0-CG O(NMI[M + 6))
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A. Summary of Existing RDRCB Framework

In reduced-dimension methods, thth full-dimension snapshot;, € CM, is projected onto anv-
dimensional subspace (wiffi < M) using a dimension reducing transformatione CM*V yielding the
reduced-dimension snapshei, = D x;,, wherey, € CV. Using (1), the reduced-dimension snapshot
can be modeled ag; = bgsg ; + ny, with by = D a, andn;, = Dn,, giving a reduced-dimension
covarianceRy = E {yyyf} = obob{’ + Qy, with Q, = E {n,n}’} = DQ,D. SinceRy, is
unavailablea priori, it is often replaced wittRy = = 3"/ vy = D¥R.D, with Ry given in (2).
This leads to the following RDRCB optimization problemax,=} o2 s.t. Ry — o?bb? > 0, b €
En(b,F), whereb = D”a and&y (b, F) is a reduced-dimension ellipsoid, yielding [2], [70]

mbianR;lb st. be&n(b,F). (12)

The following propagation theorem is used to remove compsngom the full-dimension ellipsoid,
Ev(a, B), that belong taV (D), to produce a reduced-dimension ellipsoid.

Theorem 1:[2], [70] The propagation of the full-dimension ellipsoft;(a, E) (4), whereE > 0 €
CM*M " through the mapping defined @“a — Iyb = 0, whereD € CM*¥ has full column rank,

yields the ellipsoidSy (b, F) [see ellipsoid definition in (4)] with
b = Da (13)
F = D'(E-ENp[(Np)"ENp]'(Np)"E)(D")". (14)

When the full-dimension set is a sphere, so that irff{4} ¢ 'I, the simpler expressidi = ¢ (D7 D)~!
is obtained, which reduces # = ¢~ 'Iy if D has orthogonal columns.
Given, Ex (b, F) and Ry, an estimateb, is found by solving (12) using standard RCB results [see
Section 1I-B]. Givenb,, the RDRCB weight vector is formed as
R; by
bRy by’
which operates on the reduced-dimension data. The weWhtskce es = DWrprcs Operate on the

WRDRCB = (15)

original full-dimension data. An estimate af is formed asy = (D)'by, = D(DD)~'b, illustrating
thatay, € R(D). Given a,, the RDRCB SOI power estimate is formed as
-9 (l2oll3 /M) _ bg(D¥D)~"by

0 = — = - —. 16
0,RDRCB ngR;lbo Mb{){R;lbg (16)
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B. Extension for Data-Dependent Dimensionality Reduction

Here, we provide new results, useful for exploiting datpedelent dimensionality reduction. Exam-
ining (14), we observe that, in generdd’, N and [(N},)?ENL]T need computing to obtail.
The operations required to compu, and [(N})?ENL]T are O([M — NJ?) complexity. Moreover,
when N << M, which is of interest to us here, the complex®([M — N]3) ~ O(M?). For data-
independent dimensionality reduction that uses fif@dwhich was the only type of dimensionality
reduction considered in [2], [70], these terms can be coatpaff-line, so that their computation does not
affect the online implementation of the RDRCB. However, wk&ploiting data-dependent dimensionality
reduction, such as the Krylov-subspace methods considerdds paper, these terms need computing
online every timeD is updated and therefore, thi&[M — N1]3) ~ O(M?3) complexity needed to compute
F using (14) is prohibitive.

To address this problem, here, we note that if the origindddimnension ellipsoid is non-degenerate,
such thatE > 0, we can beneficially re-write the expression ¥rin (14). Firstly, we remark that the
assumption of non-degenerate ellipsoids, which only eledulat ellipsoids, is not prohibitive in practice,
since some flexibility in all dimensions is actually benefid¢@l robustness to, typically present, arbitrary
ASV errors [74]. ForE > 0, we can write[(N5)?ENL]T = [(NL)?ENS] 1, which we insert into

(14) to give
F = DY(E - ENp[(Np)"ENp] ' (Np)"E)(DH"
= DE:mmt,  E:(DH
E2Np
= D'E:II_, E:(DN)"
_ H

- D'D[D"E~'D] ' D7 (D)

- [D"E'D] ", (17)
with HE%N;D = I — E:Np[(N)?ENp] ' (NL,)"Ez andTI_, = E":D[D”E~'D]"'D"E":.
To obtain the third equality in (17), we note thEt%Nl projects ontoN ([EzNL]7) and that the

D

columns of E~2D form a basis forV'([E2NL]H), that is (N E:E-2D = (NL)?D = 0, such

that IT = H}fﬁNl . SinceE~! can be computed off-line, the online computationFofeduces to

E 2D L
the O(NM[M + N]) complexity needed to multiply the factors Ii~! = [D¥E~'D] and then the
complexity required to compute th€ x N inverse. However, for a general non-degenerate ellipsoé,
factorsF2, F> andF 3 need computing [see Section 1I-B], which can all be obtainmedhfthe EVD

of F~! = [DE~'D], so that theV x IV inverse never needs computing. Thus, for laigecompared
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to N, the contribution here is reducing the approximaté€lyM?3) online complexity that would be
required using (14) to approximatet)(NM?). As the EVD oflu%y = FéRyF% is also needed, two
N-dimensional EVDs will be required for general non-degeteesdlipsoidal uncertainty sets. As noted
earlier, when the full-dimension set is a sphere #nis orthogonal F = ¢ I, so that only one EVD
is required,

The summary steps for data-dependent reduced-dimensiastr@apon beamforming, where it is

assumed thaE~! has been pre-computed off-line, are

1) Evaluate the dimension reducing transform (DRT)using, e.g., one of the methods described in
Section II-C).

2) CalculateRy = D¥RD andb = D a.

3) For a spherical set and orthogora] skip to step 5.
For a spherical set and non-orthogoiial compute the EVD of [DD| = VIV,
For a non-degenerate set, compute the EVODf'E~'D| = VI'V#.

4) Form F: — I“§VH, Fz — V[ : andF: = VT:. Then, computeFv{y = FéRng and
b=F:b.

v o v o v |2 %
5) Solveming bHR;lb s.t. Hb —b , < 1 to obtainb. For the case of a spherical set with squared

radiuse and an orthogonaD, we setRy = ¢ 'Ry andb = ¢ :b.

6) Given b, we formby = F~:b and form the weights using (15) and the power using (16). We
remark thatWrprcg = ng_lbc = F~ > WroRes
bER;'b
Note that, for spherical uncertainty sets, [ B D]~! = eV 'V, we can write the numerator of

. « S 12
the power term (16) efficiently as)!(D’D)~'by = ¢ sz'

IV. KRYLOV-SUBSPACEREDUCED-DIMENSION ROBUST CAPON BEAMFORMING

Here, we describe how to form four different Krylov-RDRCB&/e use the framework described
in Section Ill, which is general and can be used with any forndiofiensionality reduction. Krylov-
RDRCBs can be formed by using a Krylov dimensionality reguctransformD, obtained using one
of the Krylov-subspace expansion techniques described ¢tio®ell-C, with steps 1-6 in Section III-B.

When the NO-PoR transform (8) is used, we term the resultiggriéhm the NO-PoR-RDRCB. Since
the columns of the NO-PoR transform are not orthogonal, iotig the discussion in Section IlI-B,
computing the NO-PoR-RDRCB weights requires twoedimensional EVDs, even for spherical full-

dimension sets.
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When the O-PoR transform, described in Section 1I-C2, is ugesterm the resulting algorithm
the O-PoR-RDRCB. Since the O-PoR transform has orthogonahwewyonly one EVD is required
to compute the O-PoR-RDRCB for spherical uncertainty sats.nen-degenerate uncertainty sets, two
EVDs are required.

When the dimension reducing transform is formed from theugmate-gradient direction vectors, we
term the resulting algorithm the CG-RDRCB. Since the dimetivectors are not orthogonal, following
the discussion in Section 1lI-B, we would expect that two EVDsuld be needed to compute the CG
RDRCB. However, below in Section IV-A, we illustrate how atf&G-RDRCB can be obtained by
exploiting that the direction vectors diagonalize the siengovariance matrix.

When the dimension reducing transform is formed from thguggate gradient residuals, we term the
resulting algorithm the O-CG-RDRCB, which requires a sngVD under spherical uncertainty and two

under non-degenerate uncertainty.

A. Fast Conjugate Gradient-Based RDRCB

Here, we illustrate how only oné&/-dimensional EVD is required to obtain the CG-RDRCB under
either spherical or non-degenerate uncertainty. The keytisign that whenD is formed using the CG
algorithm,

Ry, = D'R,D = Acg, (18)
where Acg is a diagonal matrix given by
Acc = diag{[ diRyed; ... d¥R,dy }} (19)

We remark thatiﬁf{xdi has already been calculated o= 1,..., N — 1 when calculatingy; in (10).
Therefore, evaluation of (18) reduces to t¢M[M + 1]) operations needed to compulé Ryd .

In general, we will be solving

minb"Ry'b sit. [b—b]"F[b-b] <1. (20)

Usually, at this stage, one would transform wWEH to give a spherical uncertainty set. However, from

(18), we observe thaR, ' = Agg, so that (20) can be written as
minb"”Agéb sit. [b—b]"F[b-b] <1. (21)
Letting b = Ac2b, b = Acgb andM = AZDPE'DA ¢, we can rewrite (21) as

min bib sit. [B - B}H M- [B - B} <1 (22)

May 29, 2014 DRAFT



IEEE ?7??, VOL. ?, NO. ?, ??? 20?? 13

The associated Lagrangian is formed as
. S . =1H .-
L(b,y):be—F,u([b—b] M! [b—b}—1>, (23)
wherey is a real-valued Lagrange multiplier. Settiﬁ% = 0 yields

- N\~ ar-11 M e
b = p(I+M™') M 'b= ?+I b

— b—[pM ' +1] b, (24)

Using (24) in the constraint equation yields

s S -1 H s ~
h(b,y) = [b - b} M- [b - b}
— b [pM 1T M M 1] b (25)
Letting M = UAU¥ denote the EVD oM, whereA = diag{[ A .. AN }} is a diagonal matrix

containing the eigenvalues in non-increasing order on amndiagonal andJ contains the associated

eigenvectors, we can write (25) as

h(b,p) = BPU (A +T) "A T (A +1) UTD
N

)\n|cn|2
_ E 7 26
(1 + )% (26)

n=1

wherec,, is thenth element ot = UHb. Since we can writd = M%Mg, whereM: — AgéDHE*%,

we know thatM is non-negative definite [76], [77] and therefore, it has negative real eigenvalues.

Thus, h(b, ) is a monotonically decreasing function pf> 0. A trivial solution is inevitable aj. = 0,
which gives

h(b,0) = bM~'b = b [D¥E'D] ' b = b Fb. 27)

Thus, to avoid a trivial solution, we require that’Fb > 1, which, if satisfied, means that the solution
to h(f), p) = 1 occurs aty > 0. Further, aslim,, h(}g,u) = 0, there is a unique solutiop > 0
to h(f),;z) = 1 or equivalently toﬁ(f;,y) = h(f),u) — 1 = 0, which can be found, e.g., by Newton

A

search. The Newton search iteraigs; 1 = ur — hbu) whereh/(b, ) = —2 ZnN:1 A"":"'Qg, until
R (b, (HtAn)

h(b, ux+1) is sufficiently close to zero. Each iteration of our Newton skaequiresO(6.N') operations.

Once the EVD ofM has been calculated)(2N [N + 1] + 1.6 N) operations are required to solve for
IX); N? to computec, 71,6 N to compute the Lagrange multiplier and a furtdéf + 2V operations to
computeb = b— U [#A~' +1] " c. The solution to (21) is formed ds) — AéGf). We can uséy, and
R;,l = Agg in (15) to form the adaptive weights and form the power esimssing (16).
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The main steps for computing the CG-RDRCB weights are aswvisllo

1) Evaluate the CG transfori® via (10) andAcg using (19).

2) Formb = AgéDHé andM = AgéDHE—lDAEG%.

3) Calculate the EVDUAUH = M.

4) Formc = U#b and findu > 0 from (26) via Newton search.
5) Formb=b - U (A + I]_1 c.

N _1l:
Azgby AZD

6) FOmeO = A(%:G]ZC) andwRDRCB: B{;IAEGIBO = HIC)HQ .
2

For spherical uncertainty sets, note tHBt'D]|~! = eAcd M1AE = eAd UATTUTAL, so

~ ~ 1 2 (12
that the numerator in (16) can be efficiently computed udgiD’D]"'by = ¢ A‘EUHbH2 =
A2 [c — AT + I]fl c}

degenerate ellipsoid, we will need to compL@EHD]_l.

2
)2 with only an additionalO(3N) computations. For a (general) non-

€

V. COMPLEXITY ANALYSIS

Here, we analyze the complexity of the proposed Krylov-RBRJor an assumed rank/. The
operation counts summarized in Tables Il and IV relate tqp$te—6 in Section IlI-B for either the

NO-PoR-RDRCB or the O-PoR-RDRCB under either spherical ordegenerate uncertainty. In Step 5,

TABLE 11l
ONLINE OPERATION COUNTS FOR SPHERICAIPOR-BASED RDRCBs.

NO-PoR O-PoR
Evaluate DRT O(NM[M +1]) | O(NM[M + 1+ N))
Ry, = D”R,D O(NM[M + NJ)
b=D"a O(NM)
(D"D) O(MN?) 0
vrvf =D D O(4iN?) 0
F2 =T 2VH O(N?) 0
b=F2b O(N?) 0
Ry =F:R,F? O(2N?) 0
EVD(Ry) O(43N?)
Solve forb O@2NIN + 1] + nie:bN)
bo=F ¥b=VIib | OWNIN+1) | 0
WRDRCB O(N[N +1])
Power 0
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we need to solve a reduced-dimension RCB optimizationf)toThis can be solved using the standard
RCB techniques described in Section 1I-B so that once the EVIRgfis calculated,f) is found via
Newton search ifO(2N[N + 1] + niy/6 N') operations. The operation counts for the O-CG-RDRCB are
the same as those for the O-PoR-RDRCB, except for the couhtagivey the dimensionality reduction
transform. The operations in Table V relate to Steps 1-6 in @et¥-A for the efficient implementation

of the CG-RDRCB under either spherical or non-degeneratentainty. In Step 47, iterations are
needed to find the Lagrange multiplier. Empirically, we haveeolsd that there is little difference
between the values of;;.,, andn;.,- and in the following calculations set them both equal to 1Hhew
non-degenerate sets are exploited in the NO-PoR or CG RDRId@sficant savings in complexity can
be achieved if power-estimation scaling is not requiredthes [DHDT1 does not need computing,
which would require a furthe©(N?[M + N]) operations. Fig. 1 shows the relative complexities of the
different algorithms asV is increased from 1 ta\/, for M = 320, where for the NO-PoR and CG
RDRCBs under non-degenerate (ND) uncertainty, we dist#ighetween applications that only require
weight estimation and those that also need power estimakima results show that the efficient CG-based
algorithms are the least complex.

It is interesting to consider how the complexities of thegused Krylov-RDRCBs compare to the non-
robust Krylov-subspace based reduced-dimension MVDRyIg+RDMVDRS), which can be formed
by using (15) withb instead ofby, and to the full-dimension RCB whose complexity is summetim
Table I. For the 320 element array examined in the numericagles and when exploiting spherical
full-dimension uncertainty sets, the CG-RDRCB with N = 5 i&0200 times less complex than using
an RCB. In surveillance applications, such as passive soften many hundreds of beams are formed
to span the angular space in both azimuth and elevation. Tinplegity of the RCB is dominated by the
O(4%M3) operations needed to compute the EVDR{ [see Section I1-B]. For spherical uncertainty,
R, = ¢ !R,, so that the EVD ofR, can be exploited for multiple beams. In this case, for our 320
element array example, when around 200 beams are evaltlagedomplexity of our CG-RDRCB will
be similar to that of a full-dimension RCB under sphericatentainty. However, our approach is still
advantageous as, ond, has been formed, the remaining operations needed for anlyeoproposed
Krylov-RDRCBs can be performed separately for each beagn, @ separate processing units, yielding
a highly parallelizable implementation, whereas fifledimensional EVD needed by the full-dimension
RCB cannot be easily parallelized. For RCBs under genenaldegenerate uncertainty or when using
spherical sets with extra linear constraints as in [19],pmse EVD has to be performed for every beam

and therefore, the complexity savings of our methods ar@e gveater. Compared to the CG-MVDR,
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Fig. 1. Relative Krylov-RDRCB complexitie§he NO-PoR-ND-weights and O-CG-ND curves are heavily overlapasdre
the O-CG-Spherical and CG-ND-weights curves.

which requiresO(NM[M + 6]) operation3, the CG RDRCBs exploiting spherical or non-degenerate

3In the CG-MVDR, O(N M) operations are needed to compute the weights in addition t&{éM [M + 5]) operations

needed for subspace expansion.

TABLE IV
ONLINE OPERATION COUNTS FOR NONDEGENERATEPOR-BASED RDRCBs.
NO-PoR O-PoR
Evaluate DRT O(NM[M +1]) | O(NM[M + 1+ NJ)
R, = DR,D O(NM[M + NJ)
b=D"a O(NM)
(DYE'D) O(NM[M + NJ)
vrv? = DYE'D O(4iN?)
Fz =T":V# O(N?)
b=F2b O(N?)
Ry =F:R,F? O(2N?)
EVD(Ry) O(43N?)
Solve forb O@2NIN 4+ 1] + nie:bN)
bo=F zb=VIzb O(N[N + 1))
WRDRCB O(N[N +1])
Power[ D D] ™! O(N?[M + NJ) ‘ 0
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when exploiting the rank-selection rulé28), unless appended with “Yukawa”,

“Condition” or “Orthog”, which use rules (31), (32) and (33), resjpeely. The curves for O-PoR-Spherical and CG-ND-Power
are heavily overlapped, as are the curves for O-CG-Spherical &llC-weights.

uncertainty sets are only 1.2 or 2.2 times more complex,aesly, which is a small price to pay for

the additional benefits arising from robustness to ASV errors.

TABLE V

ONLINE OPERATION COUNTS FORCG-BASED RDRCBs.

Spherical ‘ Non-Degenerate
Evaluate DRT O(NM[M + 5])
Ry = Acs O(M[M +1])
b=D"a O(NM)
b=ACh O(N)
Form M ON*[M +2)) | ON[M? + NM +2N))
EVD(M) O(4iN?®)
Solve forb O@2NIN + 1] + fiiebN)
bo = AZb O(N)
WRDRCB O(2N)
Power O(3N) O(N?*[M + N]) for [DFD]™*
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VI. RANK SELECTION

Selecting the rankV is important for computational complexity and performaridere, we examine
the efficient implementation of two existing stopping ciisiefor selectingN and also propose two new
rules for the CG-RDRCB. In [52], it was noted that the basisters in the NO-PoR transform (8)
can become nearly linearly dependent (at least numerjctdlyquite small values ofV. It was also
noted that if a new potential basis vector belongs to thegades spanned by the current transfoib,
ie., if gv = RYa € R(D), theng, € R(D) for all n > N. Thus, the following stopping rule was

suggested [52]
|75, . R
2 >4, (28)

N =max{n: -
|Rza

2
where the ratio represents, for a new potential Krylov besdor, the fraction of its energy not contained

in the current Krylov subspace and where a small positive constant which imposes a minimum bound
on this energy. We now consider how to implement the rule effiity with each of the Krylov-subspace
expansion techniques described in Section 1I-C. Calcgagin = f{gé requiresO(M?) operations
and ||g, ||, requiresO(M) operations. Noting that the square of the numerator in (28) loe written

as |g.|l3 — g¥TIp, ,g,, we need to calculatg/TIp, g,. Defining g, = DX | g,, which costs
O([n — 1]M) operations to calculate, we can wrigg' TIp g, = g [D{f_an,l]*l g,. SinceD,, 2

[ D, d, } we can write[DZD,] " efficiently in terms of[D D, ,] ' by using the block
matrix inversion lemma (see, e.g., [78]). Lettidg = DX . d,, which requiresO([n — 1]M) operations

andd, = [Df_an,l]*l d,,, which requiresO([n — 1)) operations, we can write

. DH D, ] " d
DD, ] = D 1;}11 T A (29)
v v

wherev = Hdnug — &fén which requiresO(M + n — 1) operations. Forming the upper left block of
the matrix on the r.h.s of (29) requires an additio6H[» — 1]?) operations. Thus, in general, updating
[D{;’Dn]*1 requiresO(nM + 2n? — 4n) operations, so that updatir[g){;’_an,l}*l requiresO([n —
1]M + 2n® — 8n) operations at theuth iteration. For the NO-PoR method,, = R%a and ||g,||3 are
available at each iteration and, B Dy]~! is computed in the implementation of the stopping rule,
no additional operations are needed for power estimation.
For the O-PoR and O-CG methods, the columnBgfare orthonormal so that the inverd®’ ;D,,_] -
n—1

does not need calculating. For the CG method, we note thae#iéuals{r;},”; , which are orthogonal

to each other and are available at each iteration, span the sabspace a@di}?:‘f and so, we can
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write
_ - —1 _
gf'lp, g, =8"A, 8, (30)

whereg,, = R? g, withR,, 1 =|r, ... r,; |andA, ;=RY R, ;= diag{{ [N [y | }}
which is a diagonal matrix. For each of the methods, Table Whmarizes the additional operations
required to calculate the function in (28) at thid iteration, illustrating that for smalV, NO-PoR requires

the fewest additional operations. We remark that for both @G and NO-PoR based RDRCBs under
non-degenerate ellipsoidal uncertainty, extra operatame required to comput[GDHDr1 in the power
estimation step. If (28) is implemented using (29), tl{@HD]_l will have already been computed.

Thus, for the CG-RDRCB, if only the weights are required, thenimplement (28) via (30); however,

if power estimation is also required, then we use (29). Figluatrates the relative complexities when
exploiting the stopping rule in (28), indicating that the ®@&sed algorithms are still the least complex,
except for very low values oN /M.

In [71], the following criterion was proposed

RxD,.—1

ally

HH% a

N =max<{n: ‘2>(5 ) (31)

where it is was found to possess more natWat J relations than (28), which enable a simpler selection
of §. We refer the reader to [71] for more details on this aspedt\ahere it is also shown that (28)
and (31) can be derived from two necessary and sufficient tondifor the low-rank subspace to
contain the optimal (MVDR-type) filter. Here, we need to cédtel éHHRxDHé. At each iteration,
D, 1 2 R.D,_; needs updating. We will already have all but the last colurhhis matrix from
previous iterations, thus we need only calcul@tgd,,_;, which can be calculated at no extra cost
in all of the algorithms. Note thaa"TI, , a = a”D, [ﬁﬁ_lﬁn,l}_lﬁf_la. In calculating
D/ a, we only need to calculatd” ,a, whered,,; denotes then — 1)th column ofD,_;, as the
other parts have been calculated at previous iterationscaMeuse the same approach used above to
update[DnH_an,l]*1 efficiently to update[]u)nH_I]u)n,l} o Therefore, at theuth iteration, the cost of
implementing the rule in (31) i®(nM + 3n? — 9n). Thus, for smallV, it is cheaper to use (31) rather
than (28). When exploiting (31), there is no difference frima relative complexities plotted in Fig. 1.
The operation counts in Table VI shows that afféiiterations, more tha® (N M[M + 2]) additional
operations are needed to implement (28) with the CG (or O-PoiR¥pace expansion method, which
is a significant proportion of the overall complexity. Heree \propose two alternative rules, which

can be implemented more efficiently with the CG-RDRCB. Firsil¢ note that using (28) prevents
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R, = DHR,D from becoming poorly conditioned. Therefore, one approach threshold the condition
number ofR,,. When exploiting the CG direction vectors to fody the resultingR, = Acg is diagonal
so that its eigenvalues are exactly the non-zero entrigscigt Thus, we propose the following stopping

rule

N = max n:%<5ee , (32)
min{A, cc}

where \,, cc contains then diagonal elements oAcg (18) anddcg is an upper bound on the allowed
condition number oR,. Since we always calculatkcg in the CG-RDRCB, there is negligible additional
complexity in exploiting this rule.

We also propose an alternative rule that ensures thaRtherthogonality of the direction vectors is
maintained. In theory, each new CG direction vector shoeld®k-orthogonal to all previous direction
vectors, i.e.d%f{xdi =0fori=1,..., N —1, however, empirically, we have found that even for quite

small values ofN this orthogonality can break down. Thus, we propose thevidtig stopping rule
n—1
1 .
N = max {n S E_l d,Iijdi < 5orthog} . (33)

1
are already available [see (10)], on}([n — 1]M) additional operations are needed

n—
i=1

Since{f{xdi}
to implement the rule at theth iteration, which is less than the rules in (28) and (31).. Rigshows

complexity plots when using all of the different rules wittet CG-RDRCBS, at least under spherical
uncertainty, indicating that (32) and (33) are the leastmlern We remark that the curves exploiting the

condition test rule (32) give an indication of the complgxithen not using additional rank selection.

TABLE VI

ONLINE OPERATION COUNTS FOR COMPUTING RANKSELECTION USING(28) AT THE nTH ITERATION.

O-PoR /
NO-PoR CG
O-CG
gn 0 O(MZ)
lgnlls 0 o(M)
gn OF gn O([’I’L—l}M)
[Df—an71}71 2
. O([n — 1]M + 2n* — 8n) 0 O(M)
orA,
g [D D] &n
g [ o e On? — n) O(n)
or ngn71gn

May 29, 2014 DRAFT



IEEE ?7??, VOL. ?, NO. ?, ??? 20?? 21

VIlI. NUMERICAL EXAMPLES

Here, we examine numerical examples for a laide= 320 element half wavelength spaced planar
array, with M = 40 elements in each row antf, = 8 rows. We focus on the performance in snapshot
deficient scenarios, wher® << M snapshots are available. The simulated scenario is rel@vaeig.,
passive sonar, where large multidimensional arrays aenamployed to detect and localize sources
(weak and strong) in an environment where there are noisghmat ships and/or jammers, isotropic
ambient noise and sensor noise (see, e.g., [2], [21], [Z9}e data were simulated using the array
covariance matrixRy = agaoagf + Qx, Whereag and ag denote the SOI power and the SOl ASV,
respectively, and wher@, = "% o?a;al’ + 021 + 02, Qiso- Finite-data snapshots were produced by
coloring independent zero-mean complex circularly symimetormal random vectors, with covariance
equal to the identity matrix, usin@{é. The noise plus interference covarian@g. consists of terms
due tod zero-mean uncorrelated interfering sources, where foritthénterferers? and a; denote the
source power and ASV, a term modeling sensor neisE with sensor noise power?, and a term
modeling an isotropic ambient nois& Qiso, With power o2,. The isotropic noise covariance is given

by [Qisolm,» = Sindmgmn|, Where g,,,, is the distance between theth andnth sensors in units of
wavelength. Theth source (SOI or interference) ASV is simulated according;te- a(0; + ;) + o ;e;,
where 8; = [éi,ggi]T denotes the assumed AOA, comprising the assumed azimute &ngnd the
assumed elevation angle, d; = [0y,,d,,]" denotes the AOA mismatch, comprising the mismatch in
azimuth anglejy, and the mismatch in elevation angdlg,, o.; denotes the length of the arbitrary error
vector ande; is a zero-mean complex circularly symmetric random vectitih wnit norm. Whenj; #= 0

an AOA error exists and whea.; # 0, an arbitrary ASV error exists. In our application of inteéres
we are interested in forming multiple beams to survey an ngegion and assume that the beams are
cosine-spaced at/M;, and1/M, intervals in azimuth and elevation, respectively. We asstinat the
SOl beam corresponds to the beam whose center is defindg by89.86° and ¢, = 94.78°. When
simulating the AOA of the SOI, we assume that its azimuth afigkeanywhere in the intervab;, 6,,]
with uniform probability, where);(6,,) is the angle midway between the center of SOl azimuth beam
and the center of the adjacent beam with lower (higher) attimungle, and that its elevation angle lies
anywhere in the intervaly;, ¢,,] with uniform probability, wherep;(¢,,) is the angle midway between the
center of SOI elevation beam and the center of the adjacemt ath lower (higher) elevation angle;
do is set accordingly. In the following, unless otherwise eat? = 10 dB, o, = 1, ¢ = 0 dB,

02, =1 dB andd = 10. Except foro? = 30 dB ando? = 30 dB, the interference powers are set to
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20 dB. The azimuth angles of the interferers are séj te: 10°, 8, = 20°, 85 = 70°, 6, = 85°, 65 = 95°,
0 = 100°, A7 = 115°, B3 = 130°, Ay = 150° and 6,y = 160°. Except forg; = 130°, ¢ = 112° and
#3 = 75° the elevation angles of the interferences are se¥4t@8°. Furthermore,{§; = 0}}21 and
{oei =1},

We now discuss the full-dimension (or element-space) uaicgy sets that we have used in the
(RD)RCBs. RCBs are most commonly used with spherical sétwhiah the smallest possible spherical
uncertainty set [13], [14] is a particularly tight set thditeos good control of AOA uncertainty without
sacrificing as much in interference rejection as other spakset designs [74]. In [74], non-degenerate
ellipsoids, each formed from a flat minimum volume ellipsoMME) and aspherical error ellipsoid,
were proposed for azimuth and elevation beamforming of idioiensional arrays. These sets, termed
non-degenerate MVE (NDMVE) sets, allow for better controlaaimuth and elevation uncertainty and
can give better interference rejection than the associdigiat) spherical sets. Here, we exploit (tight)
spherical sets and NDMVE sets, not to endorse one over the, dibt to illustrate that our algorithms
work with both spherical and more general non-degenerdte kethe interest of brevity, we refer the
reader to [74] for details on how to form these sets, whichdmsigned for each azimuth and elevation
pair, assuming the beams are spaced as described abovemai teat the (tight) spherical uncertainty
set radius (squared) for the SOI beam was calculated=a$20. In designing the NDMVE sets, we set
1 —~=—80dB in (28) in [74] and used aphericalerror ellipsoid radius of = 10 in (34) in [74].

In the following, we examine the delay-and-sum (DAS), the MR/,Dthe RCB-NDMVE and the
RCB-Spherical full-dimension beamformers; the followinDRCBs: NO-PoR-Spherical, NO-PoR-NDMVE,
O-PoR-Spherical, O-PoR-NDMVE, O-CG-Spherical, O-CG-NDMVE;-Spherical and CG-NDMVE,
where we append Spherical or NDMVE to denote that we are ekpjoa tight spherical uncertainty
set or a non-degenerate NDMVE uncertainty set; and thewollp standard, non-robust RDMVDRSs:
NO-PoR-MVDR, O-PoR-MVDR, O-CG-MVDR and CG-MVDR. The RDMVDR vwghts can be formed
by using (15) withb, replaced withb. Unless otherwise stated, we use= 80 snapshots for weight
estimation. Whenk < M, the inverse ofRy in (2) does not exist and therefore, we use a low-
rank pseudo-inverse, which calculates the inverse basetieorigenpairs associated with t& non-
zero eigenvalues. We evaluate performance via the sigratérference-plus-noise ratio (SINR) metric,
defined as SINR= o2 1% 2" |t is well known that the optimal SINR is given by SINR= o2al!Qy tay.

O wHQ,w

In our Monte-Carlo simulationsyg and Qx vary due to modeling the SOI and interferer ASV errors and

therefore, we plot the optimal SINR as the mean of S§NRBver the Monte-Carlo simulations.
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A. SINR versus Rank

Here, we investigate how the performances of the reduam@itiion algorithms vary with the rank.
Fig. 3 (a) shows the SINR v&V for a strong 60 dB SOlI, illustrating that up to rank-3, theeatiént Krylov-
based variants of the RDMVDR, the spherical RDRCB and thedegenerate RDRCB give the same
performance. The NO-PoR and O-CG/CG algorithm SINRs diverge ednks 3 and 7, respectively. This
divergence is due to numerical instability and is relatethtocondition number oR,. Fig. 3 (c) shows
the mean condition number &, vs. NV for the strong 60 dB SOI case, illustrating that when this erse
a certain threshold (around 160 dB), the associated ahgorgerformance breaks down. Providing this
threshold is not breached, the Krylov-RDRCBs are able totaai near optimum performance. However,
the Krylov-RDMVDRs deteriorate after rank-1 due to severd &incellation. Fig. 3 (b) shows the SINR
vs. N for a weaker 20 dB SOI, for which the O-PoR, O-CG and CG variants the same performances
for all of the ranks tested. The NO-PoR variant starts divgragifter rank-7, which, as shown by Fig. 3 (d)
for the weaker 20 dB SOI, is caused by numerical instabilihgven by the mean condition number
of R, exceeding the 160 dB threshold. Thus, providing that the iiondnumber of R, does not
exceed a certain threshold, then for a fixed rawik the performance of the non-degenerate Krylov-
RDRCBs are equal to each other, the performance of the gphétiylov-RDRCBs are equal to each
other and the performance of the Krylov-RDMVDRs are equaaoh other. The results in Fig. 3 (a)—(d)
show how the CG, O-CG and O-PoR subspace expansion methodsgaifcantly more numerically
stable than the NO-PoR method. They also show that the KryDWMRDRSs are highly sensitive to the
rank and particularly to its over-determination, whergasyiding that numerical stability is maintained,
the Krylov-RDRCBs are relatively insensitive to rank odatermination, which represents a significant
advantage for the RDRCBs.

When using the stopping rules, we examine the SINR as a funofithe maximum allowable rank. If
the maximum allowable rank is set equal}g the stopping rule may set the rank to any value less than
or equal toN. As suggested in [52], we selett= 0.01 in Honig’s rule (28). Based on the results in [71]
and noting our level of snapshot support, we have used).8 with Yukawa'’s rule (31). Based on some
empirical observations, we have selecte@ = 40 dB for the condition number based rule (32) and
Sorthog = 1 x 107° for the orthogonality testing based rule (33). Figs. 3 (e) @hdhow results with the
CG-based algorithms for a 60 dB SOI and a 20 dB SOI, respectiwgynote that when using Honig’s
rule (28) or Yukawa’s rule (31) with these settings, theeat#it Krylov-subspace variants give the same

results, that is, all the Krylov-RDMVDRs give equal resultdl the non-degenerate Krylov-RDRCBSs
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give the same results, and all the spherical Krylov-RDRCBs the same results. The reason for this
is that the stopping rules prevent any of the algorithms flmooming numerically unstable and as they
all implement the same stopping rule, it means that eaclctstie same rank and therefore, expand
identical subspaces to give identical results. Therefoehave only shown the results for the CG-based
algorithms in Figs. 3 (e) and (f). Fig. 3 (e) shows that at high SN stopping rules allow the CG-
RDRCBs to maintain near-optimal performance by preventiagradation due to numerical instability.
Since the CG-MVDR performance deteriorates for any ranktgrahat 1, only Yukawa’s rule and the
condition number based rule (32), which selected the rarik asabled the CG-MVDR to perform well.
Fig. 3 (f) shows that, for the 20 dB SOI, there was little diffeze between using a stopping rule or
not with the CG-RDRCBs. Only the CG-NDMVE benefited slighttprh using Honig’s rule. Yukawa'’s
rule allowed the CG-MVDR to maintain a reasonable perforceamthough, this was not as good as that

obtained by the CG-RDRCBs when using another rule or a fixekl. ran

B. SINR versus SOI Power

Here, we examine the SINR as a function of the SOI power, whicgth@avn in Fig. 4 (a) for fixed
rank N = 5. For low SOI powers, below 0 dB, the reduced-dimension aflgas perform the same as
each other and much better than the full-dimension algosthAt low SOI powers, the DAS performs
poorly as it is unable to form data-adaptive nulls towards itiierferences. MVDR and RCB-NDMVE
perform better than the DAS, but still perform poorly at théme SNRs due to their poor robustness
to snapshot deficiency. RCB-Spherical performs much betteit, ia inherently more robust to snapshot
deficiency than both MVDR and RCB-NMVDE, however, it still flams worse at these lower SNRs
than the proposed algorithms, which converge a lot fasterth® SNR increases, we observe how the
performances of all of the MVDR-based algorithms, whetlgluced-rank or not, start to deteriorate, as
they are not robust to ASV errors. The robust algorithms mtiéiglais loss in performance. At the highest
SOl power, the NO-PoR based algorithms start to diverge duarteerical instability, as discussed earlier.

Fig. 4 (b) shows results when using the four stopping ruleh thié CG-based algorithms. With all the
rules, except Yukawa’s rule (31), the performances of thdRRBs are similar to the fixed rank =5
case, though there is a slight loss in performance at low S@kepdnith Yukawa’s rule (31), there is a
drop in SINR for the RDRCBs at 20 dB SOI power; however, the parémces of the RDMVDRS now
match the RDRCBSs. With these settings, for the CG-MVDR,shatding the condition number improves
the performance, but there is little difference when usimgig’s rule or the rule testing for orthogonality

breakdown. We remark that increasing the value of Honigreghold to improve the performance of
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Fig. 4. SINR vs SOI power withX = 80 for (a) N = 5; for stopping rules withVyax = 8 andd = 0.01 in (28),6 = 0.8
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spherical uncertainty.

the RDMVDRs at high SNR reduces the performance at low SNR. &ilpillowering the value of

Yukawa’s threshold can improve the performance of the RDR@B20 dB, but then the performances
of the RDMVDRs deteriorates. The performance of the CG-MVBRiighly sensitive to the selection
of the rank and can benefit from rank-selection, especiallgaMa’s rule, whereas the CG-RDRCBs

are not. Figs. 4 (c) and (d) show the SINR loss, compared to aptins the SOI power when using
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different types of rank selection with the CG-RDRCBs unden-sdegenerate and spherical uncertainty,
respectively. The performances of the efficient rules basedittver thresholding the condition number

or on testing the orthogonality of the CG direction vect@n® similar to using Honig and Goldstein’s

rule in (28), but can be implemented at a fraction of the caxip). The results also show that only

minor additional performance gains over simply selectimg tank as the maximum rank &f = 8 can

be achieved with stopping rules, as the RDRCBs are alredulystdo rank over-determination.

C. SINR versus the Number of Snapshots

Fig. 5 (a) illustrates the SINR versus the number of snapshofsr a strong 50 dB SOI, when we
have selectedv = 5 in the reduced-dimension algorithms. The CG, O-CG and O-PoRE&&s behave
identically to each other and similar to the DAS, which we etpge behave well for this high SNR
case, and much better than the standard MVDR algorithm amdassociated non-robust RDMVDRSs.
The NO-PoR RDRCBs perform worse due to numerical instabhity. 5 (b) illustrates the results for a
low SNR case with a SOI power of -30 dB, indicating that all of thethods exploiting data-dependent
dimensionality reduction perform similarly, outperforgithe full-dimension RCBs, DAS and MVDR.
We remark that the SINR for RCB-Spherical does look good atethes levels of K, but it should be
noted that its SINR is actually falling & is increasing. This phenomenon has been seen elsewhere [2]
and we remark that it is only foK > M, that SINR is expected to increase monotonically with

For the same data as used in Figs. 5 (a) and (b), Figs. 5 (c) andh(y results for the CG-
based algorithms exploiting different rank selection rodd) showing that there is little difference in
the behaviors of the CG-RDRCBs when using the different@tap rules, mainly as they are robust
to model over-determination, whereas large improvemerdgspassible in the CG-RDMVDR if, e.g.,

Yukawa’s rule is used.

D. Spatial Spectra

In several applications, e.g., passive sonar, beamforisinged for imaging (in addition to increasing
SINR) where good quality spatial spectra with good powenesies are desirable. Here, we examine the
spatial spectra, assuming the azimuth and elevation beaoings described earlier. Due to the similarity
of the spatial spectra obtained using the CG, O-CG, O-PoR d@éPbR methods, we only examine
the CG-based algorithms here. Fig. 6 (a) shows the DAS spadedtrum, where the source AOAs that
appear in the scanning region are shown using red circles. Bigb)—(f) show the azimuth spectra for

the elevation beam containing the SOI (centeregddt8°) when using different forms of rank selection.
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Fig. 5. SINR vsK, for a SOl with AOA errors and arbitrary ASV errors witlf = 1, whenN = 5 for (a) a 50 dB SOI and
(b) a -30 dB SOI; when usingy = 8 or stopping rules withVyax = 8 andd = 0.01 in (28) ord = 0.8 in (31) ordce = 40 dB
in (32) Of Sortnog = 1 x 107 in (33) for (c) a 50 dB SOI and (d) a -30 dB SOI.

In all cases, the CG-RDRCBs provide robustness against S@ktation and give good quality power
estimates, whereas the non-robust CG-MVDR suffers sevetec&ellation in all cases except when

using Yukawa’s stopping rule (31).
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E. Summary

From the results above we observe that

o A Krylov-RDRCB's performance is lower-bounded by its asated Krylov-RDMVDR performance.

o The O-PoR and CG/O-CG Krylov-subspace expansion methodsgificantly more numerically
stable than the NO-PoR method.

« Provided that numerical stability is maintained, the KryRIDRCBs give the same results.

« Providing that numerical stability is maintained, the Kjdg@DRCBs are insensitive to rank over-
determination and SOI ASV errors, whereas the Krylov-RDMVIHRs not.

« Stopping rules can be used to maintain numerical stabilitycam provide further small performance
enhancements in the Krylov-RDRCBs.

» A “good” stopping rule, such as Yukawa'’s rule, allows thefpenance of a Krylov-RDMVDR to
be significantly improved.

« Krylov-RDRCBs converge faster than full-dimension RCBsl @amne significantly less complex.

» Krylov-RDRCBs provide good quality spatial spectra withogoquality power estimates.

VIIl. CONCLUSIONS

We have derived a family of low-complexity, quickly convarg, Krylov-subspace reduced-dimension
robust Capon beamformers (Krylov-RDRCBSs) that combinea-gigpendent Krylov-subspace dimen-
sionality reduction, computed using the Power-of-R (PoR) amjugate gradient (CG) methods, with
ellipsoidal uncertainty set based robust Capon beamfofR&B) techniques. To derive the Krylov-
RDRCBs, we have extended a recent RDRCB framework to allowafster online computation of the
reduced-dimension ellipsoids needed after rank reduciibe extended framework is applicable to all
forms of dimensionality reduction and not just the Krylov timas considered in this paper. Existing
Krylov-subspace techniques often suffer severe signaitefest cancellation, due to steering vector
mismatch, and are extremely sensitive to rank selectiortjcp&arly to rank over-determination. The
proposed Krylov-RDRCBs provide excellent robustness tih Isteering vector mismatch and rank over-
determination. A detailed computational analysis has shihat out of the different Krylov-RDRCBSs, the
Conjugate Gradient RDRCB (CG-RDRCB) is the least computally complex and, on the large array
considered, is two orders of magnitude less complex thastdredard RCB. We have also examined the
efficient implementation of stopping-criterion based raekection rules in the Krylov-RDRCBs and found
that they are useful for preventing numerical instabilitydaan provide some further small performance

enhancements. We have proposed two new low complexity istgpples for use with the CG-RDRCB
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that can be implemented at lower complexity than existingsuOn large arrays operating in non-
stationary environments, it is often unfeasible to implatmeurrent full-dimension RCBs, due to the
limited sample support and high complexity required. Theppsed Krylov-RDRCBs can be implemented
in these situations, as they are significantly less compleryerge faster and are amenable to parallel

implementations.
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