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Abstract—We propose a blind adaptive reduced-rank widely
linear beamforming algorithm using the generalized sidelobe
canceller structure for interference suppression. A structured
Krylov-subspace based approach is devised to construct the
dimensionality reducing transformation matrix and a recursive
least squares algorithm is developed according to the widely lin-
ear constrained constant modulus (CCM) criterion to update the
reduced-rank filter. We analyze the convergence and complexity
of the proposed algorithm and validate its performance gains
through simulations.

Index Terms—Adaptive beamforming, widely linear tech-
niques, reduced-rank techniques, constrained constant modulus.

I. INTRODUCTION

Large-scale antenna array systems have been receiving

significant attention for future aeronautical applications and

communications [1]-[3]. Aerial vehicles or platforms equipped

with large-scale antenna arrays can dramatically increase the

system capacity and improve the quality and reliability of

wireless links. The increased computational complexity asso-

ciated with large-dimensional received data vectors motivates

the use of efficient adaptive beamforming techniques, which

are among the most commonly used approaches to continually

adapt the beamformer weights for detecting a desired signal,

while coping with changes in the radio signal environment and

reducing computational complexity [4]-[6]. Blind algorithms,

which can work without any requirements for training symbol-

s, can further improve the information rates and the efficiency

of communication systems employing antenna arrays. The

most popular design criteria for adaptive blind beamformers

are the constrained minimum variance (CMV) [7]-[9] and

the constrained constant modulus (CCM) [10]-[14] due to

their effectiveness and simplicity. The CMV-based algorithms

are designed with the aim of minimizing the filter output
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power while maintaining a constant response in the direction

of the signal of interest. The CCM-based algorithms, which

attempt to minimize the mean deviation of the squared output

from constant values, exploit additional information about

the underlying signal constellation, and can therefore achieve

superior performance as compared with the CMV techniques.

Recently, some researchers have proposed new robust beam-

forming algorithms for non-Gaussian signals, where the lp
norm (p ≥ 1) of the output is minimized while constraining

the magnitude response of any steering vector within a specific

uncertainty set [15], [16]. In many situations of interest, the

received data vector r at the array output1 is assumed to be

second-order circular with rotation invariant probability distri-

bution. Consequently, the complementary covariance matrix

Rc = E{rrT } equals zero, and for this reason, only the

covariance matrix R = E{rrH} is utilized in conventional

schemes. However, this ideal and general assumption may not

be satisfied in practice since non-circularities in the observed

data may arise from many sources, such as: the difference in

signal powers between the real and imaginary parts, correlation

between the real and imaginary parts, or the particular struc-

ture of the signal constellation used for digital transmission

[21]. Typically, when the received data vector r contains

noncircular modulated signals, such as binary phase shift

keying (BPSK) modulation, Rc is no longer a zero matrix.

Under such circumstances, a more general estimation scheme,

which takes into consideration both the received vector r and

its complex conjugate r∗, is needed to fully exploit the second-

order statistics of the data. Referred to as widely linear (WL)

beamformer, this more general scheme can lead to higher

signal-to-interference-plus noise ratio (SINR) or smaller mean

square error (MSE) in the estimation of a desired signal [17]-

[23].

However, one problem for the standard, i.e., full-rank

adaptive algorithms is that their convergence performance

deteriorates rapidly with an increase in the eigenvalue spread

of the received data covariance matrix, as measured by its

condition number [24]-[27]. This situation is usually worse

in a large-scale antenna array system with numerous filter

coefficients to be estimated. In this context, reduced-rank

signal processing has become a key technique to provide faster

convergence and increased robustness against interference as

compared to standard methods. In this approach, the large-

dimensional received data vector is projected onto a lower

dimensional subspace with the aid of a transformation matrix

1For one data snapshot after demodulation and sampling.
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and a reduced-rank filter is then designed to process the low-

dimensional data vector within this subspace. We note that WL

processing doubles the size of the received data vector which

further motivates the use of reduced-rank techniques [27]-

[30]. Various WL-based reduced-rank beamforming algorithm-

s have been introduced in previous studies, including the

eigen-decomposition method [22], the multi-stage Wiener filter

(MSWF) [31], and the auxiliary vector filtering (AVF) [32].

In particular, Song et al. [31] designed a WL-MSWF reduced-

rank algorithm according to the minimum mean squared error

(MMSE) criterion to suppress the interference in a high data-

rate direct-sequence ultra wideband (DS-UWB) system. The

MSWF-based adaptive WL processing algorithm is imple-

mented with the aid of training symbols. In [32], a non-

data-aided adaptive beamforming algorithm based on WL

processing techniques and the AVF algorithm was developed

for non-circular signals. The WL-AVF algorithm recursively

updates the filter weights by a sequence of auxiliary vectors

that are designed according to the widely-linearly constrained

minimum variance (WLCMV) criterion. Both the MSWF and

AVF methods involve the construction of a low rank Krylov-

subspace (KS) for the purpose of rank-reduction, which has

led to excellent performance in several applications and can be

combined with different design criteria. Besides these recent

studies investigating WL reduced-rank techniques, to the best

of our knowledge, there has been no work focusing on the de-

sign of adaptive reduced-rank beamforming algorithms using

the widely linearly constrained constant modulus (WLCCM)

criterion.

In this work, a novel blind adaptive reduced-rank WL

beamforming algorithm based on the KS technique is pro-

posed for interference suppression in large-scale antenna array

systems. The proposed beamforming algorithm operates in

the generalized sidelobe canceller (GSC) structure2 where

the KS technique is employed for rank reduction [33]. To

reduce the computational complexity of the conventional WL

realization scheme based on the stacking of the received

data and its complex conjugate, the structure of the aug-

mented covariance matrix is taken into consideration as prior

information to devise a structured KS-based transformation

matrix. We then develop a recursive least squares (RLS)

algorithm based on the WLCCM criterion to update the

reduced-rank filter. We refer to the new blind adaptive reduced-

rank beamforming algorithm so obtained as the WLCCM-KS.

A theoretical performance analysis in terms of convergence

behavior and achievable SINR for the proposed algorithm and

its linear counterpart is provided. In addition, we investigate

the computational complexity of the proposed algorithm and

compare it with that of other existing reduced-rank algorithms.

Simulation results verify the analytical results and show that

the proposed WLCCM-KS algorithm outperforms its linear

2The GSC structure uses a main branch along with an array of auxiliary
branches. While interference may be present in both the main and auxiliary
branches, the desired user signal is mostly present in the main branch due
to its high directional gain and the use of a so-called signal blocking matrix
along the auxiliary branches. Consequently, the latter can be used to form
an estimate of the main branch interference that can be used for cancelation
[33]. For these reasons, the use of the GSC structure is often preferred in
applications.

counterpart as well as the full-rank algorithms, achieving the

best convergence performance and steady-state SINR among

all the analyzed methods with a relatively low complexity.

The remainder of this paper is structured as follows. Sec-

tion II briefly describes the system model and the problem

statement, while the KS based reduced-rank scheme with the

GSC structure is introduced in Section III. In Section IV, we

develop the proposed WLCCM-KS algorithm and provide the

computational complexity analysis. The performance analysis

in terms of convergence properties and achievable SINR for

the proposed algorithm is conducted in Section V. The sup-

porting simulation results and their discussion are presented

in Section VI. Finally, Section VII draws the conclusions.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Fig. 1: The aeronautical communication system model.

We consider a wireless communication scenario as shown

in Fig. 1, where K user signals and J jamming signals

impinge on an aerial vehicle or platform which is equipped

with a uniform linear array (ULA) comprised of M identical

omnidirectional antenna elements3, and M is a fairly large

number with K + J < M . Our interest is focused on

communication problems where a reasonably large antenna

array is used to extract the signal of a desired user located

along a known direction of arrival (DOA).

The M × 1 sampled array output vector (or snapshot) at

discrete time i ∈ {0, 1, 2, . . .}, can be modeled as

r(i) =

K−1∑
k=0

bk(i)a(θk) +

J−1∑
j=0

cj(i)a(φj) + n(i). (1)

In this expression, we assume that the sequence of transmitted

signals by the kth user, i.e., {bk(i)}, contains independent

and identically distributed (i.i.d) random variables with zero

mean drawn from a given symbol set with constant modulus.

The quantity cj(i) denotes the jth jammer signal at snapshot

i, which is typically assumed to be an i.i.d. sequence of

3ULA is considered for the sake of simplifying the presentation, while
generalization to other antenna configurations is straightforward.
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Gaussian variables with zero mean and variance σ2
j . The

vectors a(θk) and a(φj) denote the M × 1 steering vectors

of the user and jamming signals, with respective DOAs

θk and φj . The term n(i) ∈ C
M×1 is an additive noise

vector, which is modeled as an i.i.d. sequence of spatially

white Gaussian random vectors with zero-mean and covariance

matrix E{n(i)nH(i)} = σ2
nIM , where σ2

n denotes the noise

variance, IM is an identity matrix of order M , and (.)H stands

for the Hermitian transpose operation. The random sequences

{bk(i)}, {cj(i)} and {n(i)} are mutually independent. Let

λc denote the wavelength at the operating frequency and

d = λc/2 be the inter-element spacing of the ULA. The

corresponding M × 1 steering vector is given by

a(θ) = [1, e−j2π d cos θ
λc , ..., e−j2π

(M−1)d cos θ
λc ]T . (2)

Without loss of generality, we assume that user k = 0 is

the desired user while the remaining K − 1 users and the

J jammers are interferers. The desired-signal-to-noise ratio

(SNR) specific to each sensor element is given by SNR =
σ2
0

σ2
n

, and the desired-signal-to-jammer-j ratio (SJR) is given

by SJRj =
σ2
0

σ2
j

, where σ2
0 = E{|b0(i)|2} denotes the desired

signal’s power.

The design of a linear full-rank beamformer is equivalent to

forming a spatial filter w(i) ∈ C
M×1 that provides an estimate

of the desired user symbol, as expressed by y(i) = wH(i)r(i),
where r(i) denotes the sampled and demodulated output of the

antenna array at the ith snapshot. For the GSC structure, the

full-rank weight vector w(i) = γa(θ0)−Bwg(i) [33], where

γ is a real-valued scalar introduced to guarantee the convexity

of the optimization problem [29], angle θ0 is the DOA of

the desired user signal, and a(θ0) denotes the corresponding

normalized steering vector. B is the signal blocking matrix,

which spans a subspace that is orthogonal to the steering

vector a(θ0) [8]. We calculate the weight vector wg(i) for

the GSC structure according to the CCM criterion, which is a

positive measure of the deviation of the squared output from

a constant value, along with a constraint on the array response

to the desired signal. Considering the specific GSC structure,

the CCM beamformer is converted into an unconstrained

optimization problem with the following cost function:

JCM (wg(i)) = E{(|y(i)|2 − 1)2}, (3)

where y(i) is the output of the GSC beamformer denoted as

y(i) = (γa(θ0)−Bwg(i))
Hr(i), (4)

and wg(i) is a filter to be designed.

For a large-scale antenna array system with M sensors, the

convergence speed for the full-rank blind adaptive beamformer

is typically rather slow. As a result, we resort to reduced-rank

techniques to overcome this problem.

III. KRYLOV-SUBSPACE BASED REDUCED-RANK SCHEME

WITH THE GSC STRUCTURE

Reduced-rank signal processing techniques have been the

focus of many recent works [27]-[30]. These approaches

reduce the number of adaptive filter coefficients by projecting

the received signal vector onto a lower dimensional subspace

and performing the weight adaptation in this subspace. In

this section, we describe the reduced-rank CCM beamformer

design based on the KS technique. For motivations explained

earlier, our interest is centered on the GSC structure illustrated

in Fig. 2.

Fig. 2: Reduced-rank beamforming scheme with the GSC

structure

As can be seen, similar to the full-rank GSC beamformer,

the reduced-rank GSC beamformer output is composed of a

constrained component and an unconstrained component. For

the constrained component (top or main branch), the output is

y1(i) = γaH(θ0)r(i). (5)

We note that the desired signal, the interfering users’ signals,

the jamming signals and the noise component can all pass

through the top branch. For the first three, the correspond-

ing output is a weighted version of the input, where the

weight equals the inner product between the corresponding

normalized steering vector and that of the desired user. As

for the unconstrained component (the bottom or auxiliary

branch), the received data vector first passes through a signal

blocking matrix B, which can be obtained by the singular

value decomposition, the QR decomposition [8], [34], or the

correlation subtractive structure (CSS) [35]. In this work, we

use the CSS structure of the blocking matrix described by

B = IM − a(θ0)a
H(θ0)

aH(θ0)a(θ0)
∈ C

M×M . (6)

We note that, B is conjugate symmetric and idempotent, i.e.,

with the property that Bm = B, for any positive integer

m. Furthermore, the computational complexity of the product

Br(i) is restricted to O(M), instead of O(M2) for a general

matrix B. Thus, the blocked signal vector rB(i) ∈ C
M×1 is

given by

rB(i) = BHr(i) = Br(i). (7)

The blocked signal is processed by the transformation

matrix Tr ∈ C
M×D. In this work, for the construction of Tr,

we utilize the KS technique as exposed in [37], The standard

rank-D (1 ≤ D � M ) KS can be represented by

KD = Span{a(θ0),Ra(θ0), ...,R
D−1a(θ0)}, (8)

where R = E{r(i)rH(i)} denotes the array covariance matrix

[36]. The transformation matrix which directly utilizes the

standard KS is suitable for the direct form processing (DFP)

structure, which processes the original received data vector

directly. However, our proposed scheme is based on the GSC

structure, which processes the blocked signal vector rB(i) with
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only the interference and noise components in it. Thus, we

make some modifications to the construction of the transfor-

mation matrix. For the GSC structure, the auxiliary branch

is devised to recover the interference-plus-noise component4

which has passed through the main branch and then cancel it

by subtraction. Thus, we choose the first projection vector ρ1

in order to maximize the magnitude of the correlation between

its output (Bρ1)
Hr(i) and the output of the main branch

γaH(θ0)r(i) under the constraint that ρH
1 ρ1 = 1. Hence, the

constrained optimization problem can be formulated as:

ρ1 = argmin
ρ

|E{(Bρ)Hr(i)(γaH(θ0)r(i))
∗}|

s.t. ρHρ = 1.
(9)

We note that both the cost function and the constraint are

phase invariant; in other words, any vector ρ1e
jφ where φ

is an arbitrary phase can be chosen as the optimal solution.

However, the solution in common use is the one which forces

the cost function to be real. This problem can be solved

through Lagrange multipliers optimization, and we obtain

ρ1 =
BRa(θ0)

‖BRa(θ0)‖
. (10)

Considering that the projection vector is applied to the blocked

data vector rB(i), and utilizing the idempotence property of

B, we can omit B in the expression of ρ1. In addition, the

normalization factor 1/‖Ra(θ0)‖ is denoted as ν1, and we

obtain

ρ1 = ν1Ra(θ0). (11)

In the same way, the d-th (2 < d ≤ D) projection vector ρd

which maximizes the magnitude of the correlation between its

output (Bρd)
Hr(i) and the output of the previous projected

vector (Bρd−1)
Hr(i) can be chosen as

ρd = νdRBρd−1, (12)

where νd = 1/‖RBρd−1‖ denotes the normalization factor.

Finally, we collect all the D projection vectors and define a

modified rank-D transformation matrix that is well-suited to

the GSC structure via the following expression

Tr = [ν1Ra(θ0), ν2RBRa(θ0), ..., νD(RB)D−1Ra(θ0)]
.
= [ρ1,ρ2, ...,ρD],

(13)

which can be formed iteratively with ρ1 = ν1Ra(θ0), and

recursively applying ρk = νkRBρk−1. The reduced-rank esti-

mation can capture most, in the maximum correlation sense, of

the interference-plus-noise component that has passed through

the main branch. The transformation matrix Tr maps the

blocked signal vector rB(i) into a low-dimensional reduced-

rank vector, which is given by

r̄l(i) = TH
r rB(i). (14)

Following this transformation step, the reduced-rank vector

r̄l(i) ∈ C
D×1 is processed by a reduced-rank filter w̄l(i) ∈

4In the following, we refer to the interfering users’ signals plus the jamming
signals as interference.

C
D×1, which is to be iteratively updated using an RLS type

of algorithm to be developed in the next section. The resulting

unconstrained output is

y2(i) = w̄H
l (i)r̄l(i). (15)

Finally, the beamformer output is obtained as the difference

yl(i) = y1(i)− y2(i)

= γaH(θ0)r(i)− w̄H
l (i)r̄l(i)

= wH(i)r(i),

(16)

where the equivalent full-rank weight vector for the reduced-

rank GSC structure w(i) is given by

w(i) = γa(θ0)−BTrw̄l(i) (17)

IV. PROPOSED BLIND ADAPTIVE WIDELY LINEAR

REDUCED-RANK ALGORITHM

For many applications with non-circular sources, the

second-order statistics are fully described by both the co-

variance matrix R = E{r(i)rH(i)} and the complementary

covariance matrix Rc = E{r(i)rT (i)} �= 0. In order to exploit

the additional information contained in Rc, we combine the

received signal r(i) with its complex conjugate r∗(i) into an

augmented vector r̃(i) using an injective transformation T , as

shown below

r(i)
T−→ r̃(i) : r̃(i) =

1√
2
[rT (i), rH(i)]T ∈ C

2M×1.

(18)

In the WL case, the size of the augmented vector obtained by

(18) is twice that of the observed signal, thereby providing

extra degrees of freedom to suppress interference [38],[39].

Moreover, the WL processing can take advantage of the non-

circular property of the desired signal to further improve the

performance. With the increase in the dimension of the data

vector in large-scale arrays, it is therefore crucial to take

full advantage of reduced-rank signal processing techniques

to achieve a faster convergence and increased robustness to

interference.

The block diagram of the WLCCM reduced-rank beam-

forming algorithm with GSC structure is similar to Fig.

2. The difference lies in that all the elements in-

cluding r(i),a(θ0),B and Tr are extended to their

WL variants, respectively denoted as r̃(i), ã(θ0), B̃ and

T̃r. The augmented vectors r̃(i) and ã(θ0) are ob-

tained from (18), whereas B̃ = I2M − ã(θ0)ã
H(θ0)

ãH(θ0)ã(θ0)
and

T̃r = [�1R̃ã(θ0), �2R̃B̃R̃ã(θ0), ..., �D(R̃B̃)D−1R̃ã(θ0)],
where R̃ = E{r̃(i)r̃H(i)}, while the normalization factor

�d(1 ≤ d ≤ D) ensures that the Euclidian norm of

each projection vector equals 1. However, this direct WL

scheme does not fully exploit the structure of B̃ and T̃r,

and consequently, results in extra computational complexity.

In this section, we propose an equivalent structured version

of the WLCCM reduced-rank beamforming scheme which

reduces the complexity by simplifying the construction of

reduced-rank data vector r̄(i). Furthermore, a computational

complexity analysis of the proposed algorithm and the existing

reduced-rank algorithms is given for comparison.
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A. The Proposed WLCCM-KS Algorithm

The development of the proposed WLCCM-KS beamform-

ing algorithm involves two steps, namely, the construction of

the reduced-rank data vector r̄(i) and the design of an RLS

algorithm to iteratively update the reduced-rank filter w̄(i).
1) Construction of the reduced-rank data vector: In the

first step, we take advantage of the structure of the WL

covariance matrix to reduce the computational complexity

when constructing the reduced-rank data vector. Firstly, it

follows from (18) that the augmented covariance matrix can

be written as

R̃ =
1

2

[
R Rc

R∗
c R∗

]
, (19)

which conforms to the block conjugate structure, that is,

the lower halves of the augmented covariance matrix can

be completely determined by its upper halves, or vice-versa.

Moreover, the augmented blocking matrix B̃ is also block

conjugate and can be partitioned into four sub-matrices

B̃ =

[
B1 B2

B∗
2 B∗

1

]

=

[
I− a(θ0)a

H(θ0)
2aH(θ0)a(θ0)

− a(θ0)a
T (θ0)

2aH(θ0)a(θ0)

(− a(θ0)a
T (θ0)

2aH(θ0)a(θ0)
)∗ (I− a(θ0)a

H(θ0)
2aH(θ0)a(θ0)

)∗

]
.

(20)

Let us rewrite the augmented steering vector as

ã(θ0) = T {a(θ0)} =
1√
2
[aT (θ0),a

H(θ0)]
T , (21)

then, the first column vector (projection vector) of augmented

transformation matrix T̃r can be expressed as

ρ̃1 = �1R̃ã(θ0)

=
1√
2

[
�1

(
1
2Ra(θ0) +

1
2Rca

∗(θ0)
)

�1
(
1
2Ra(θ0) +

1
2Rca

∗(θ0)
)∗ ]

= T {ρ̄1},

(22)

where ρ̄1 = �1
(
1
2Ra(θ0) +

1
2Rca

∗(θ0)
)
, and the scalar

�1 = 1/‖1
2Ra(θ0) +

1
2Rca

∗(θ0)‖ is a normalization factor.

According to (22), ρ̄1 ∈ C
M×1 contains all the necessary

information to construct ρ̃1 ∈ C
2M×1.

Next, we will make some simplifications to the second

projection vector ρ̃2, which is obtained by left multiplying

ρ̃1 with R̃B̃, followed by a normalization operation. Using

(19) and (20), we can obtain

R̃B̃ =
1

2

[
R Rc

R∗
c R∗

] [
B1 B2

B∗
2 B∗

1

]

=
1

2

[
RB1 +RcB

∗
2 RB2 +RcB

∗
1

(RB2 +RcB
∗
1)

∗ (RB1 +RcB
∗
2)

∗

]
.

(23)

Then, ρ̃2 is given by

ρ̃2 = �2R̃B̃ρ̃1

=
1√
2

[
�2

(
1
2R(B1ρ̄1 +B2ρ̄

∗
1) +

1
2Rc(B1ρ̄1 +B2ρ̄

∗
1)

∗)
�2

(
1
2R(B1ρ̄1 +B2ρ̄

∗
1) +

1
2Rc(B1ρ̄1 +B2ρ̄

∗
1)

∗)∗
]

= T {ρ̄2},
(24)

where ρ̄2 = �2
(
1
2R(B1ρ̄1 +B2ρ̄

∗
1) +

1
2Rc(B1ρ̄1 +B2ρ̄

∗
1)

∗),

with �2 = 1/‖1
2R(B1ρ̄1 +B2ρ̄

∗
1) +

1
2Rc(B1ρ̄1 +B2ρ̄

∗
1)

∗‖.

In the same way, if we apply the recursive relation between

ρ̃d and ρ̃d−1, that is ρ̃d = �dR̃B̃ρ̃d−1 (3 ≤ d ≤ D), we

obtain that

ρ̃d = T {ρ̄d}, (25)

where ρ̄d = �d
(
1
2R(B1ρ̄d−1 +B2ρ̄

∗
d−1) +

1
2Rc(B1ρ̄d−1 +B2ρ̄

∗
d−1)

∗).

In practice, R and Rc are often estimated by the time

average of i received snapshots r(n), n = 1, . . . , i, where the

snapshot index i is now re-introduced. That is,

R̂(i) =
1

i

i∑
n=1

r(n)rH(n) R̂c(i) =
1

i

i∑
n=1

r(n)rT (n). (26)

Thus, the WL transformation matrix can be written as

T̃r(i) = T {P(i)}, (27)

where we define

P(i) = [ρ̄1(i), ρ̄2(i), ..., ρ̄D(i)]. (28)

In that sense, P(i) ∈ C
M×D contains the same information

as T̃r(i) ∈ C
2M×D. After further matrix manipulations, the

reduced-rank vector with WL processing can be rewritten as

r̄(i) = (B̃T̃r(i))
H r̃(i)

= R{(B1P(i) +B2P
∗(i))Hr(i)},

(29)

where R{·} denotes the real part of its argument. The block

diagram summarizing the above structured approach is depict-

ed as Fig. 3.

Fig. 3: Proposed WL reduced-rank scheme with the GSC

structure.

2) Adaptive implementation of the reduced-rank filter:
Next, we derive the structured RLS algorithm for the adaptive

implementation of the reduced-rank filter. The reduced-rank

weight vector w̄(i) is obtained by minimizing the uncon-

strained exponentially weighted least-squares cost function

JCM (w̄(i)) =
i∑

n=1

αi−n(|y(n)|2 − 1)2, (30)

where |y(n)|2 = y∗(n)(γR{aH(θ0)r(n)} − w̄H(i)r̄(n)),
and α is a forgetting factor chosen as a positive scalar,

close to, but less than 1. The range of the values of γ
which ensures the convexity of the optimization problem is

derived in Appendix A. Letting x̃(n) = y∗(n)r̄(n), d̃(n) =
γy∗(n)R{aH(θ0)r(n)} − 1, and substituting the remaining
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TABLE I: The proposed WLCCM-KS algorithm

Initialization with a specified rank D:
Q̃−1(0) = δID, w̄(0) = [1, 0, ..., 0]T

For the ith snapshot i = 1, 2, ...

Compute R̂(i) and R̂c(i) according to (26)

Calculate P(i) according to (28)

r̄(i) = R{(B1P(i) +B2P
∗(i))Hr(i)}

y(i) = γR{aH(θ0)r(i)} − w̄H(i− 1)r̄(i)

x̃(i) = y∗(i)r̄(i)
d̃(i) = γy∗(i)R{aH(θ0)r(i)} − 1

Update the reduced-rank coefficient w̄

k̃(i) = Q̃−1(i−1)x̃(i)

α+x̃H (i)Q̃−1(i−1)x̃(i)

ξ̃(i) = d̃(i)− w̄H(i− 1)x̃(i)

Q̃−1(i) = α−1(Q̃−1(i− 1)− k̃(i)x̃H(i)Q̃−1(i− 1))

w̄(i) = w̄(i− 1) + k̃(i)ξ̃∗(i)

y(n) by γR{aH(θ0)r(n)} − w̄H(i − 1)r̄(n), (30) can be

approximated as

JCM (w̄(i)) ≈
i∑

n=1

αi−n[d̃(n)− w̄H(i)x̃(n)]2, (31)

which is now quadratic in the unknown weight vector w̄(i). By

taking the gradient of (31) with respect to w̄∗(i) and equating

it to zero, after further manipulations we obtain

w̄(i) = Q̃−1(i)p̃(i), (32)

where

Q̃(i) = αQ̃(i− 1) + x̃(i)x̃H(i) (33)

p̃(i) = αp̃(i− 1) + x̃(i)d̃∗(i) (34)

To avoid the matrix inversion and reduce the complexity,

we apply the matrix inversion lemma [33] to (32), and obtain

the following recursive expression

w̄(i) = w̄(i− 1) + k̃(i)ξ̃∗(i), (35)

where

k̃(i) =
Q̃−1(i− 1)x̃(i)

α+ x̃H(i)Q̃−1(i− 1)x̃(i)
, (36)

ξ̃(i) = d̃(i)− w̄H(i− 1)x̃(i), (37)

Q̃−1(i) = α−1(Q̃−1(i− 1)− k̃(i)x̃H(i)Q̃−1(i− 1)). (38)

Based on (35)-(38), we obtain the reduced-rank filter updating

procedure for the proposed adaptive WLCCM-KS algorithm

with the GSC structure, which is summarized in Table I.

With this new structured scheme, we do not need to use the

transformation (18) and all the calculations are processed with

vectors of lengths less than or equal to M , thereby significantly

reducing the computational complexity as compared to the

conventional direct WL scheme.

TABLE II: Computational complexity of reduced-rank

algorithms

Algorithms Real multiplications Real additions
Structured

WLCCM-KS-RLS
8DM2 + 12M2 + 23DM

+2M + 3D2 + 9D + 1

8DM2 + 8M2 + 18DM

+2M + 2D2 − 3

Direct
WLCCM-KS-RLS

16DM2 + 24M2 + 10DM

+32M + 3D2 + 5D + 1

16DM2 + 16M2

+6DM + 24M + 2D2 − D − 3

WL-AVF 32DM2 + 24M2

+40DM + 8M + 4D

32DM2 + 16M2

+32DM − 4D

LCCM-KS-RLS 4DM2 + 6M2 + 13DM

+4M + 10D2 + 20D + 2

4DM2 + 4M2 + 11DM

+4M + 8D2 + 9D − 1

L-AVF 8DM2 + 6M2

+20DM + 4D

8DM2 + 4M2

+16DM − 4D

B. Computational Complexity Analysis

We investigate the computational complexity of the pro-

posed WLCCM-KS algorithm with the GSC structure, where

the complexity is evaluated in terms of the number of real

additions and real multiplications for each snapshot of length

M of the received data vector. We compare the complexity of

the proposed algorithms with that of the direct algorithm, i.e.

as obtained by application of the conventional WL processing

scheme, the existing WL-AVF reduced-rank algorithm [32],

and their linear counterparts, referred to by the acronyms

LCCM-KS and L-AVF, respectively. The complexity figures

are listed in Table II, while Fig. 4 illustrates the total number

of real operations (real multiplications plus real additions)

per snapshot for each reduced-rank algorithm as a function

of M , where we choose the rank D = 3. As can be seen,

the proposed WLCCM-KS algorithm, implemented either in

the direct or in the structured form, reduces the computational

complexity, compared with the existing WL-AVF algorithm. It

is worth emphasizing that the proposed structured WLCCM-

KS algorithm is less complex than the direct form, since

it fully utilizes the structure of the augmented covariance

matrix and exploits it to make some key simplifications. We

also observe that the WL algorithms generally have a higher

computational complexity than their linear counterparts. This

should not come as a surprise since in the construction of the

transformation matrix, the WL algorithms make use of both

the original observed vector and its complex conjugate.
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V. ANALYSIS OF THE PROPOSED ALGORITHM

In this section, we theoretically analyze the convergence

properties of the sequence of reduced-rank weight vectors

produced by the proposed WLCCM-KS algorithm and derive

the analytical steady-state MSE expression. Furthermore, a

qualitative analysis of the SINR performance is carried out to

further emphasize the superiority of the WL processing over

its corresponding linear processing.

A. Convergence of the Mean Reduced-Rank Weight Vector

We consider the convergence of the mean reduced-rank

weight vector w̄(i) for the proposed WLCCM-KS algorithm,

which is characterized by the reduced-rank weight error vector

ε(i), defined as the difference between the instantaneous and

optimal values of the weight vector5, that is,

ε(i) = w̄(i)− w̄o. (39)

Multiplying both sides of the adaptation equation (35) with

Q̃(i), we subsequently obtain

Q̃(i)w̄(i) = Q̃(i)w̄(i− 1) + Q̃(i)k̃(i)ξ̃∗(i). (40)

Invoking (33) and (36), we obtain

Q̃(i)k̃(i) = x̃(i). (41)

Substituting (33),(37) and (41) into (40) yields

Q̃(i)w̄(i) = αQ̃(i− 1)w̄(i− 1) + x̃(i)d̃∗(i). (42)

We define the optimum error at time i as

ẽo(i) = d̃(i)− w̄H
o x̃(i). (43)

Right multiplying both sides of (33) with the optimum

reduced-rank weight vector w̄o, and subtracting the resulting

equation from (42), we obtain the following recursive relation

for the reduced-rank weight error vector

Q̃(i)ε(i) = αQ̃(i− 1)ε(i− 1) + x̃(i)ẽ∗o(i). (44)

When i → ∞, the asymptotic stationarity property of the

estimated augmented correlation matrix
ˆ̃R(i) indicates that

ˆ̃R(i) � R̃, where the asymptotic variance of the error

matrix is very small. Since the transformation matrix T̃r(i)

is directly related to
ˆ̃R(i), we can assume that T̃r(i) is also

asymptotically stationary with

T̃r(i) � T̃r(i− 1) � T̃r

= [�1R̃ã(θ0), �2R̃B̃R̃ã(θ0), ..., �D(R̃B̃)D−1R̃ã(θ0)].
(45)

Accordingly, as the algorithm converges to its steady-state,

x̃(i) only depends on the input vector r(i), thus we can

similarly obtain that Q̃−1(i)Q̃(i − 1) � ID [14], [40], [41].

Multiplying both sides of (44) by Q̃−1(i) and after some

5The optimal value w̄o is the solution to the minimization problem with
cost function J = E{(|y(i)|2 − 1)2}, where y(i) = γãH(θ0)r̃(i) −
w̄H(i)T̃H

r B̃r̃(i). However, there is no closed form expression for w̄o and
an iterative approach must be employed to reach a solution [14].

simplifications, we obtain the following recursive relation for

the reduced-rank weight error vector

ε(i) � αε(i− 1) + Q̃−1(i)x̃(i)ẽ∗o(i). (46)

Noticing that when i → ∞, the optimum error ẽo(i) is

orthogonal [40] with x̃(i), namely

E{x̃(i)ẽ∗o(i)} = 0, (47)

we obtain the following recursive equation for the mean

reduced-rank weight error vector

E{ε(i)} � αE{ε(i− 1)}. (48)

Since 0 < α < 1, when i → ∞, we obtain

E{ε(i)} = 0, (49)

which implies that the mean reduced-rank weight error vector

converges to zero or equivalently, that the reduced-rank weight

vector converges to its optimum value.

B. Convergence of MSE

Next, we analyze the MSE convergence for the proposed

reduced-rank beamforming algorithm and develop an analyt-

ical expression of the steady-state MSE. When i → ∞, the

steady-state MSE can be written as

lim
i→∞

ζ̃mse(i) = lim
i→∞

E{|b0(i)− w̃H(i)r̃(i)|2}

= lim
i→∞

E{|b0(i)− w̃H
o r̃(i)− ε̃H(i)r̃(i)|2}

= (1− 2γ)σ2
0 + w̃H

o R̃w̃o + lim
i→∞

E{tr[R̃ε̃(i)ε̃H(i)]}

= ζ̃min + lim
i→∞

ζ̃ex(i),

(50)

where w̃(i) = γã(θ0) − B̃T̃r(i)w̄(i) and w̃o = γã(θ0) −
B̃T̃rw̄o are the equivalent transient and optimum full-rank

weight vector for the reduced-rank algorithm, respectively.

The difference ε̃(i) = w̃(i) − w̃o denotes the weight error

vector. The steady-state MSE consists of the minimum MSE

component ζ̃min = (1 − 2γ)σ2
0 + w̃H

o R̃w̃o and the excess

MSE component lim
i→∞

ζ̃ex(i) = lim
i→∞

E{tr[R̃ε̃(i)ε̃H(i)]}. The

unavoidable weight error vector ε̃(i) is the source of the excess

MSE.

In order to calculate the excess MSE, we need to derive two

equations as a preliminary step. Firstly, using the asymptotic

stationary property of T̃r(i) given in (45), we obtain when

i → ∞
ε̃(i) = −B̃T̃rε(i), (51)

which is the first equation needed. In addition, we define the

correlation matrix of x̃(i) as R̃x = E{x̃(i)x̃H(i)}. Recalling

that x̃(i) = y∗(i)T̃H
r (i)B̃H r̃(i), we have

lim
i→∞

R̃x(i) = lim
i→∞

E{|y(i)|2T̃H
r (i)B̃H r̃(i)r̃H(i)B̃T̃r(i)}

� lim
i→∞

E{|y(i)|2}T̃H
r B̃HR̃B̃T̃r,

(52)

where we used the asymptotic property in (45), and this is the

second needed equation.
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Subsequently, by applying (51) and (52), the expression of

the excess MSE can be further modified as follows

lim
i→∞

ζ̃ex(i) = lim
i→∞

E{tr[R̃B̃T̃rε(i)ε
H(i)T̃H

r B̃H ]}

= lim
i→∞

E{tr[T̃H
r B̃HR̃B̃T̃rε(i)ε

H(i)]}

= lim
i→∞

E{tr[R̃x(i)ε(i)ε
H(i)]}

E{|y(i)|2} .

(53)

Considering the recursive relation for the reduced-rank weight

error vector described in (46), we obtain

Θ(i) = E{ε(i)εH(i)}
= α2

E{ε(i− 1)εH(i− 1)}
− αE{ε(i− 1)ẽo(i)x̃

H(i)Q̃−1(i)}
− αE{Q̃−1(i)x̃(i)ẽ∗o(i)ε

H(i− 1)}
+ E{Q̃−1(i)x̃(i)ẽ∗o(i)ẽo(i)x̃

H(i)Q̃−1(i)}.

(54)

When i → ∞, the algorithm has converged to its steady-state,

and thus we can assume that ẽo(i), x̃(i) and Q̃−1(i) are un-

correlated. Furthermore, making use again of the orthogonality

between ẽo(i) and x̃(i) as stated in (47) yields

Θ(i) = α2Θ(i− 1) + σ2
eE{Q̃−1(i)}R̃xE{Q̃−1(i)}, (55)

where σ2
e = E{ẽ∗o(i)ẽo(i)} denotes the minimum value of the

CCM reduced-rank algorithm. When i → ∞, we can assume

that Q̃−1(i)R̃x � (1−α)IDD [40], thus (55) can be simplified

as

Θ(i) = α2Θ(i− 1) + (1− α)2σ2
eR̃

−1
x . (56)

Considering that 0 < α < 1, the solution Θ(i) to the above

equation (56) converges to a finite limit. Hence upon equating

Θ(i) = Θ(i− 1), we obtain

Θ(i) =
(1− α)2

1− α2
σ2
eR̃

−1
x . (57)

We then substitute (57) into (53) and obtain the compact form

of the excess MSE given by

lim
i→∞

ζ̃ex(i) = lim
i→∞

D(1− α)2σ2
e

(1− α2)E{|y(i)|2} . (58)

Finally, we have the steady-state MSE which is given by

lim
i→∞

ζ̃mse(i) = (1− 2γ)σ2
0 + w̃H

o R̃w̃o

+ lim
i→∞

D(1− α)2σ2
e

(1− α2)E{|y(i)|2} .
(59)

C. Achievable SINR

From the block diagram shown in Fig. 3, we explicitly

note that the WL reduced-rank vector r̄(i) is real-valued.

Thus, the filter coefficient w̄(i) and the output of the fil-

ter y(i) are also real-valued. Then the optimum augmented

WL weighting vector w̃o = γã(θ0) − B̃T̃rw̄o is conjugate

symmetric, and can be expressed as w̃o = T {wo,WL}, where

by definition wo,WL ∈ C
M×1 contains the same information

as w̃o ∈ C
2M×1. The corresponding optimal weight vector

wo,WL minimizes the cost function E{(|R{y(i)}|2 − 1)2},

where y(i) = wHr(i). The optimum output SINR can be

equivalently expressed as

SINRWL =
E{|R{wH

o,WLs(i)}|2}
E{|R{wH

o,WLv(i)}|2}

=
γ2M

E{|R{wH
o,WLv(i)}|2}

,

(60)

where s(i) and v(i) denote the desired signal and the

interference-plus-noise components, respectively. On the one

hand, the optimal weight vector wo,L minimizes the linear cost

function E{(|y(i)|2 − 1)2}, and the corresponding optimum

SINR is given by

SINRL =
γ2M

E{|wH
o,Lv(i)|2}

. (61)

According to (60), if we substitute wo,WL for wo,L, the

resulting SINR′ = γ2M
E{|R{wH

o,Lv(i)}|2}
≤ SINRWL. On the other

hand, the operation R{·} nearly reduces the interference-plus-

noise power by half, that is SINR′ ≈ 2SINRL. Consequently,

the optimum SINR of the WL processing exhibits an almost

3dB gain over that of the linear one [32].

VI. SIMULATIONS

In this section, we assess the output SINR and the MSE

performance of the proposed WLCCM-KS algorithm through

numerical simulations. In addition, we verify the validity

of the derived analytical results for the steady-state MSE.

For the SINR, we evaluate the convergence and steady-state

performance of the proposed algorithm and compare it with

the existing WL-AVF algorithm [32], its linear counterpart

LCCM-KS algorithm as well as the CCM and CMV criteria

based full-rank (FR) algorithms, with the respective acronyms

WLCCM-FR, LCCM-FR, WLCMV-FR, LCMV-FR. The FR

scheme directly devises an adaptive algorithm to update the

weighting coefficient corresponding to each component of the

blocked data vector rB(i) without the projection procedure.

The output SINR of the WL processing is given by

SINR(i) =
w̃H(i)R̃sw̃(i)

w̃H(i)R̃inw̃(i)
, (62)

where R̃s and R̃in denote the augmented covariance matrices

of the desired signal and the interference-plus-noise compo-

nent in the observation space, respectively.

In our simulations, we consider a fairly large ULA system

where the number M of antenna elements, which has a great

impact on the output SINR performance, is varied between

10 to 30.6 For simplicity, we assume that the signal of user

k ∈ {0, . . . ,K − 1} is taken from the BPSK set {±1}
with equal probability, so that its power is normalized to

unity7. The DOA of the desired user (k = 0) is set to

6At an operational wavelength of 1.5GHz [42], this corresponds to an array
aperture size between 1 meter and 3 meters.

7In our work, we consider the constant modulus criterion after demodulation
(i.e., using match filtering with the same pulse shape) under the assumption
of perfect synchronization. The beamforming is done using the optimally
generated sample in each symbol duration, which is affected by the added
Gaussian noise. Under these standard modeling conditions, the BPSK signal
is exactly constant modulus.
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θ0 = 50◦, while for the other K − 1 interference users, the

DOAs are set as (40◦, 70◦, 20◦, 80◦). We assume that J = 4
white Gaussian jamming signals impinge on the array with

DOAs of (60◦, 90◦, 30◦, 10◦), where for each jammer, the

corresponding SJR= 0 dB. In the simulation results given

below, all the SINR related curves are averaged over 200
independent runs, whereas the MSE related ones are obtained

by averaging 2000 runs.

A. Effects of the Number of Antenna Elements M

Firstly, we investigate the effect of the number of antenna

elements M on the output SINR performance of each analyzed

algorithm. Fig. 5 shows the impact of M on the output SINR

performance with the reference snapshot set as N = 1000 to

ensure that the steady-regime is achieved. The performance

of the optimum minimum variance distortionless response

(MVDR) filter is also given for comparison. The input SNR

for each antenna element is set to -3dB. We find that as the

value of M increases, the steady-state SINR of each algorithm

generally becomes larger, which is especially evident for the

optimum MVDR solution. Moreover, the proposed WLCCM-

KS algorithm tends to yield a greater performance gain com-

pared with the second best WL-AVF algorithm when M is

larger (M > 26). Besides, when M is smaller (M < 14),
WL processing generally provides a greater performance gain

compared with the linear processing. This can be explained

by noting that when M is small, WL processing doubles

the dimension of the processing vector so as to obtain extra

freedoms for interference suppression.
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Fig. 5: The impact of M on the output SINR performance

(N=1000)

Correspondingly, Fig. 6 shows the impact of M on the

output SINR performance with reference snapshot set as

N = 200, which represents a transient-state performance

in the process of convergence. The simulation environment

is the same as that of Fig. 5. It can be seen that our

proposed WLCCM-KS algorithm obtains the best output SINR

performance compared with all the other analyzed algorithms.

Besides, one of the problems for the full-rank algorithms is
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Fig. 6: The impact of M on the output SINR performance

(N=200)

that the output SINR does not increase as M grows, and even

decreases for the WL processing schemes, when M ≥ 16.

This shows that as M increases, the convergence speed of

the full-rank algorithms deteriorates greatly [24]-[27]. Thus,

in such case, the use of reduced-rank technique is of crucial

importance. Considering limitations of a realistic application

and the simulation results for the output SINR performance

versus the value of M , we finally choose M as 20 in the

remaining experiments.

B. Effects of Rank D
The output SINR performance of the reduced-rank algo-

rithms depends on the selection of rank D. In this part, we

evaluate the effects of D on the steady-state SINR performance

for the proposed and existing reduced-rank algorithms, so as

to find the most adequate value of D for a fair comparison.

Interestingly, it has been observed that in various scenarios

with the KS based reduced-rank technique, the optimal rank

D does not scale significantly with the number of users K and

the length of the observation vector M . For a blind algorithm,

generally D ≤ 5 can be chosen [27]. This knowledge can

dramatically compress the range of D to be considered. In

Fig. 7, we show the SINR performance of the reduced-rank

algorithms versus D, while the other simulation parameters

are the same as that of Fig. 5. The reference snapshots

is set as N = 1000 to ensure that the steady-regime is

achieved. We observe that for the WLCCM-KS algorithm and

its linear counterpart, the performance is enhanced when D
increases from 1 to 3, however when D continues to grow,

the performance nearly remains the same. Comprehensively

taking into consideration the performance and complexity, the

optimal choice of rank appears to be D = 3. While for the

WL-AVF and L-AVF algorithms, the most adequate value to

reach the best performance is D = 2.

C. Beampatterns
Fig. 8 illustrates the beampatterns of the proposed WLCCM-

KS reduced-rank beamforming algorithm and its linear version
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Fig. 7: SINR performance of the reduced-rank algorithms

versus the rank D (SNR= −3dB, N = 1000)

LCCM-KS algorithm, respectively. The reference snapshot is

set as N = 1000, where the simulation environment is just

the same as that of Fig. 7. For both algorithms, the rank D
is chosen to be the most appropriate one, i.e., D = 3. It is

evident that the mainlobes of the two schemes considered are

both directed towards the DOA of the desired user. However,

the WLCCM-KS algorithm forms a narrower mainlobe with

the same aperture, which will greatly enhance the angle

resolution capability. Moreover, the proposed WLCCM-KS

algorithm generally yields lower sidelobes, which allows better

interference suppression.

0 20 40 60 80 100 120 140 160 180
−60

−50

−40

−30

−20

−10

0

DOA \degree

O
ut

pu
t P

ow
er

 (d
B)

WLCCM−KS
LCCM−KS

Fig. 8: Beampattern of the reduced-rank beamforming

scheme

D. SINR Convergence Performance

In the experiment shown in Fig. 9, we consider the same

simulation environment as given in Fig. 8, and investigate the

output SINR convergence versus the number of snapshots. The

proposed WLCCM-KS algorithm exhibits a faster convergence

and a higher steady-state SINR compared with the WL-AVF

algorithm and the full-rank schemes. It can be observed that

the WL algorithms outperform their linear counterparts. This

can be explained by the fact that the received data is non-

circular and WL processing fully exploits the second-order

statistics. Moreover, the SINR performance of the CCM-based

full-rank algorithm is superior to that of the CMV-based one.
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Fig. 9: Output SINR convergence performance

(SNR= −3dB)

In Fig. 10, we show the steady-state SINR performance as

a function of the input SNR, where the simulation scenario is

the same as that in Fig. 9 and the reference snapshot is set as

N = 1000. Generally, the SINR increases monotonically with

the input SNR, but our proposed algorithm shows a better

performance with a smaller gap from the optimum MVDR

results. This conclusion is consistent with the results in Fig. 9.

Besides, the WL algorithms yield an additional gain compared

with the conventional linear algorithms.

In the next experiment, we analyze the robustness of the

various algorithms under study to the minimum angular sep-

aration. Here, we assume there are two interfering users with

DOAs (50◦ + 
θ, 50◦ − 
θ), where 
θ is the minimum

angular separation between the interferer and the desired user.

Besides, two jammers impinge on the array with DOAs of

(10◦, 30◦). The input SNR is set to −3dB, and reference

snapshot is set as N = 1000. As the results of Fig. 11

show, the WL algorithms are less sensitive to the minimum

angular separation than the linear algorithms, which suffer

a great performance degradation when the minimum angular

separation becomes less than 7◦.

E. MSE performance

In this part, we evaluate the MSE performance of the

proposed WLCCM-KS algorithm and its linear counterpart.

To this end, the MSE estimated by simulation is compared

to the analytical steady-state MSE expression (59) derived

in Section V-B. With respect to the approximation of the

optimum CCM reduced-rank weight vector, we apply the

steady-state reduced-rank weight vector as w̄o, as obtained
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Fig. 10: Steady-state SINR versus the input SNR (N = 1000)
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Fig. 11: Steady-state SINR versus the minimum angular

separation between the interferer and the desired user

(N = 1000, SNR= −3dB)

by averaging relevant quantities over independent simulation

trials, and the corresponding optimum full-rank weight vector

is given by w̃o = γã(θ0) − B̃T̃rw̄o. For the calculation of

the analytical steady-state MSE of the linear version of the

algorithm (LCCM-KS), the procedure is very similar, and we

only need to replace the optimum WL weight vector with its

linear counterpart. In Fig. 12, the input SNR is set to −3dB,

while the interfering users and jammers are configured in the

same way as in Fig. 9. We observe that as the number of

snapshots increases, the simulated MSE decreases rapidly and

converges to the analytical result. The steady-state MSE of WL

processing is much smaller than its linear counterpart. Fig. 13

depicts the steady-state MSE performance as a function of the

input SNR, where reference snapshot is set as N = 2000 to

ensure steady-state condition. It can be seen that the analytical

results and the simulation results agree well with each other.
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Fig. 12: MSE performance versus the number of snapshots

(SNR= −3dB)
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Fig. 13: Steady-state MSE performance versus the input

SNR (N = 2000)

VII. CONCLUSION

In this paper, we have proposed a novel blind adaptive

reduced-rank WL beamforming algorithm with the GSC struc-

ture based on the KS technique for interference suppression

in aeronautical communication systems. In order to reduce

the computational complexity of the direct WL reduced-rank

scheme, a structured KS based method has been devised to

construct the transformation matrix needed for dimensional-

ity reduction by considering the structure of the augmented

covariance matrix. An RLS algorithm has been developed

according to the WLCCM criterion to update the reduced-

rank filter. In addition, we have analyzed the performance of

the proposed WLCCM-KS-RLS algorithm in terms of com-

putational complexity, convergence behvior and achievable

SINR. The simulation results demonstrated the validity of

the analytical results and showed that the proposed reduced-

rank beamforming algorithm significantly outperforms existing

full-rank and reduced-rank beamforming algorithms with a
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relatively low complexity. Although in this work we em-

ployed BPSK signals to illustrate our ideas, in future work

the proposed algorithm can be also extended to other types

of non-circular modulated signals employed in aeronautical

communications.

APPENDIX A

DERIVATION OF VALUE RANGE FOR γ

According to equation (1) and (18), the augmented vector

r̃ can be represented as

r̃ =
K−1∑
k=0

bkã(θk) +
J−1∑
k=0

crj ã(φj) +
J−1∑
j=0

icij ă(φj) + ñ, (63)

where crj and cij denote the real and imaginary part of cj ,

respectively. Here we drop the time index i for simplicity. The

vector ã(θk) is the augmented steering vector, which satifies

ã(θk) = 1√
2
[ãT (θk), ã

H(θk)]
T ∈ C

2M×1, and we define

ă(θk) = 1√
2
[ãT (θk),−ãH(θk)]

T ∈ C
2M×1 as the quasi-

augmented steering vector. Furthermore, we rewrite equation

(63) in matrix form as follows for convenience:

r̃ = Ã(θ)b̃+ ñ, (64)

where Ã(θ) = [ã(θ0), ..., ã(θK−1), ã(φ0), ..., ã(φ0), ă(φ0),
..., ă(φJ − 1)],
and b̃ = [b0, ..., bK−1, c

r
0, ..., c

r
J−1, ic

i
0, ..., ic

i
J−1]. The CM

cost function can be expressed as

JCM = E[(|y|2 − 1)2]

= E[|y|4]− 2E[|y|2] + 1,
(65)

where the output

y = w̃Hr = w̃HÃ(θ)b̃+ w̃H ñ, (66)

and w̃ denotes the equivalent full-rank weight vector for the

proposed reduced-rank algorithm. For conciseness, we define

z1 = w̃HÃ(θ)b̃ = uH(n)b(n), z2 = w̃H ñ, where u =
[u0, ..., uK+2J−1]

T and

uk =

⎧⎨
⎩

ãH(θk)w̃, 0 ≤ k ≤ K − 1
ãH(φk−K)w̃, K ≤ k ≤ K + J − 1
ăH(φk−K−J)w̃, K + J ≤ k ≤ K + 2J − 1

(67)

Thus, the output y = z1 + z2. Then, after some mathematical

operations and simplifications, the CM cost function can be

rewritten as

JCM = J1(u) + σ2
nJ2(w̃), (68)

where

J1(u) = 2(uHu)2 −
K+2J−1∑

k=0

u4
k − 2uHu+ 1, (69)

J2(w̃) = (4uHu− 2 + 3σ2
nw̃

Hw̃)w̃Hw̃. (70)

Considering the constraint that the array response remain-

s constant in the direction of the desired user, we define

E = u0u
∗
0 = γ2‖ã(θ0)‖2, and ū = [u1, ..., uK+2J−1]

T . Then,

the CM cost function can be expressed as

JCM = J1(ū) + σ2
nJ2(w̃), (71)

where

J1(ū) = 2(E+ūHu)2−
(
E2 +

K+2J−1∑
k=1

u4
k

)
−2

(
E + uHu

)
+1,

(72)

J2(w̃) =
(
4
(
E + uHu

)
− 2 + 3σ2

nw̃
Hw̃

)
w̃Hw̃. (73)

To evaluate the convexity of JCM , we compute its Hessian

matrix using the rule H = ∂
∂w̃H

∂JCM

∂w̃ . This yields H = H1+
σ2
nH2, with

H1 = 4Ā[(E−1/2)I+ūH ūI+ūūH−diag(|u1|2, ..., |uK+2J−1|2)]ĀT ,
(74)

H2 = (4E − 2)I+ 6σ2
n(w̃

Hw̃I+ w̃w̃H)

+ 4
(
w̃HĀĀHw̃I+ (ĀĀH)T w̃Hw̃

+ (w̃w̃HĀĀH)T + (w̃HĀĀHw̃)T
)
,

(75)

where Ā(θ) = [ã(θ1), ..., ã(θK−1), ã(φ0), ..., ã(φ0), ă(φ0),
..., ă(φJ − 1)].

We recall that H is positive definite if cHHc > 0 for all

nonzero vector c. For H1 expressed in (74), the sum of the

second and fourth terms yields a positive definite matrix and

the third term ūūH is also positive definite. Thus, the first

term provides the condition E = γ2‖ã(θ0)‖2 ≥ 1/2, which

ensures the convexity of J1(ū). As for H2 expressed in (75),

it is easily seen that we can select a sufficiently large value of

E such that H2 is positive definite in any bounded region.

Finally, we conclude that by properly selecting the con-

stant γ such that E = γ2‖ãH(θ0)‖2 ≥ 1/2, which yields

γ ≥ 1√
2‖ã(θ0)‖2

, the convexity of the CM cost function can be

guaranteed, and the algorithm can reach the global minimum.
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