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Direction Finding Algorithms Based on Joint
Iterative Subspace Optimization

Lei Wang, Rodrigo C. de Lamare, and Martin Haardt

Abstract—In this paper, a reduced-rank scheme with joint
iterative optimization is presented for direction of arrival esti-
mation. A rank-reduction matrix and an auxiliary reduced-rank
parameter vector are jointly optimized to calculate the output
power with respect to each scanning angle. Subspace algorithms
to estimate the rank-reduction matrix and the auxiliary vector
are proposed. Simulations are performed to show that the
proposed algorithms achieve an enhanced performance over
existing algorithms in the studied scenarios.

Index Terms—Direction of arrival, minimum variance, joint
iterative optimization, rank reduction, model-order selection, grid
search.

I. INTRODUCTION

In many array processing related fields such as radar,
sonar, and wireless communications, the information of in-
terest extracted from the received signals is the direction of
arrival (DOA) of waves transmitted from radiating sources
to the antenna array. The DOA estimation problem has
received considerable attention in the last several decades
[1]. Many estimation algorithms have been reported in the
literature, e.g., [2], [3, Chapters 8 and 9], and the references
therein. Among the most representative algorithms are Capon’s
method [4], maximum-likelihood (ML) [5], and subspace-
based schemes[6]-[24].

Capon’s method calculates the output power spectrum over
the scanning angles and determines the DOA by locating the
peaks in the spectrum. The implementation is relatively simple.
The drawback of this method is that the resolution strongly
depends on the number of available snapshots, the signal-to-
noise ratio (SNR) and the array size. The ML type algorithms
are robust for DOA estimation since they exhibit superior
resolution in hostile scenarios with a low input SNR as long
as the number of snapshots is small. Moreover, they work well
when the sources are correlated. However, the implementation
of the ML type methods is complicated and requires intensive
computational cost, which limits their practical applications.

A. Prior Work

Subspace-based algorithms, which exploit the structure of
the received data to decompose the observation space into a
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signal subspace and a corresponding orthogonal noise sub-
space, play an important role for DOA estimation. According
to the approach to compute the signal subspace, the subspace-
based methods can be classified into eigen-decomposition,
subspace tracking, and basis vectors based algorithms. Among
the most popular and cost-effective eigen-decomposition algo-
rithms are MUSIC [6] and ESPRIT [7] that require an eigen-
decomposition. The MUSIC algorithm computes the output
power spectrum by scanning the possible angles and selects
the peaks to estimate the directions of the sources. The root
MUSIC algorithm [3, pp. 1158-1163] and its low-complexity
versions [8] have also been reported and shown to result in
efficient DOA estimates. The ESPRIT algorithm employs a
displacement invariance in some specific array structures and
requires a lower complexity than MUSIC [3, pp. 1170-1194].
Iterative DOA estimation methods exploiting the removal
of detected signals have been reported in the literature [9],
whereas adaptive techniques based on the multistage Wiener
filter and that operates in the Krylov subspace have been
considered in [10], [11]. Subspace tracking techniques (e.g.,
approximated power iteration (API)) [25]-[27] avoid a direct
eigen-decomposition and employ an iterative procedure to
estimate the signal subspace. These techniques can effectively
reduce the computational complexity but often result in some
performance degradation. Another recent class of subspace
algorithms include those that employ basis vectors such as the
auxiliary vector (AV) [12], the conjugate gradient (CG) [13],
[14] and iterative procedures [19]-[23], which construct the
signal subspace using an iterative procedure without resorting
to an eigen-decomposition.

B. Contributions

In this paper, a novel reduced-rank scheme is presented
and adaptive algorithms for DOA estimation are developed
for scenarios with a small number of snapshots. The reduced-
rank scheme consists of a rank-reduction matrix, which is
responsible for mapping the received vector into a lower
dimension, and an auxiliary reduced-rank parameter vector
that is employed to calculate the output power with respect
to each scanning angle. Unlike previous techniques that either
require an eigen-decomposition, the use of a subspace tracking
algorithms, or an iterative procedure to compute the basis
vectors, the proposed method computes the rank-reduction
matrix and the auxiliary reduced-rank parameter vector based
on a least-squares optimization algorithm along with an al-
ternating procedure between the rank-reduction step and the
computation of the auxiliary reduced-rank parameter vector.
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The rank-reduction matrix and the auxiliary reduced-rank pa-
rameter vector are jointly optimized according to the minimum
variance (MV) design criterion for computing the output power
spectrum. The polynomial rooting technique [28] is employed
in the proposed scheme to estimate the DOAs without an
exhaustive search through all possible angles. We derive
a constrained least squares (LS) based algorithm to iteratively
estimate the rank-reduction matrix and the auxiliary reduced-
rank parameter vector. The proposed algorithm, which is
termed joint iterative optimization (JIO), provides an iterative
exchange of information between the rank reduction matrix
and the reduced-rank vector and thus leads to an improved
resolution [29]. The complexity of the proposed JIO algorithm
can be reduced without any significant degradation of the reso-
lution by utilizing the matrix inversion lemma [30] or resorting
to optimization algorithms with lower computation cost, i.e.,
stochastic gradient techniques. Other approaches based on the
QR decomposition are also possible for implementation [3,
pp. 779]. A model-order selection approach is developed to
select the most adequate rank for the proposed JIO algorithms
to ensure the best performance is obtained. A version of the
proposed JIO algorithms with forward/backward averaging
(FBA) [31], [32] is also devised to deal with highly corre-
lated sources. The proposed algorithms are suitable for DOA
estimation with large arrays, dynamic scenarios in which the
DoA changes over time and a small number of snapshots, and
exhibit an advantage over existing algorithms in the presence
of many sources. We conduct a study that shows that Capon’s
and subspace-based methods are inferior to the proposed JIO
algorithms for a sufficiently large array. Although the ML
algorithm is robust to these conditions, with large arrays it has
an extremely high computational cost which prevents its use
practice. Furthermore, the proposed JIO algorithms work well
without an exact knowledge of the number of sources, which
significantly degrades the performance of the subspace-based
and the ML methods.

In summary, this paper makes the following contributions:

• A reduced-rank scheme is introduced for DOA estima-
tion. A joint optimization strategy between the rank-
reduction matrix and the auxiliary reduced-rank param-
eter vector based on the MV criterion is employed for
improving the resolution.

• Reduced-rank DOA estimation algorithms are proposed.
The FBA technique is applied to the proposed JIO
algorithms to deal with correlated sources.

• We develop a model-order selection approach to select the
best rank for the proposed JIO algorithms. A comparison
is presented to show the computational complexity of the
proposed and existing DOA estimation algorithms.

• A simulation study is performed to show the improved
resolution of the proposed JIO algorithms over existing
ones in a number of scenarios of practical interest.

This paper is structured as follows: we outline a sys-
tem model for DOA estimation in Section II. The proposed
reduced-rank scheme and the application of the polynomial
rooting technique are introduced in Section III. In Section IV,
we derive the proposed JIO algorithms and illustrate the use of

the model-order selection and the FBA techniques. A complex-
ity analysis is also presented in this section. Simulation results
are provided and discussed in Section V, and conclusions are
drawn in Section VI.

II. SYSTEM MODEL

Let us suppose that q narrowband signals impinge on a
uniform linear array (ULA) of M (M ≥ q) sensor elements.
It should be remarked that the proposed DOA estimation al-
gorithm can be applied to arbitrary array structures. The ULA
is adopted here for using the FBA and polynomial rooting
techniques and providing a fair comparison with ESPRIT,
which has been developed for some specific array structures.
The ith received vector of the array output x(i) ∈ CM×1 can
be modeled as

x(i) = A(θ)s(i) + n(i), i = 1, . . . , N, (1)

where θ = [θ1, . . . , θq]
T ∈ Cq×1 contains the DOAs of the

signals, A(θ) = [a(θ1), . . . ,a(θq)] ∈ CM×q is the matrix
that contains the steering vectors a(θk), where a(θk) =

[1, e−2πj d
λc

cosθk , . . . , e−2πj(M−1) d
λc

cosθk ]T ∈ CM×1, (k =
1, . . . , q), λc is the wavelength, d (d = λc/2 in general) is the
inter-element distance of the ULA, s(i) ∈ Rq×1 contains the
source symbols, n(i) ∈ CM×1 is the white sensor noise that is
assumed to be a zero-mean spatially uncorrelated and Gaussian
process, N is the number of snapshots, and (·)T denotes
transpose. To avoid mathematical ambiguities, the steering
vectors a(θk) are considered to be linearly independent [3,
pp.845].

The spatial correlation matrix of the received vector is

R = E[x(i)xH(i)] = A(θ)RsA
H(θ) + σ2

nI, (2)

where Rs = E[s(i)sH(i)] denotes the signal covariance
matrix, which is diagonal if the sources are uncorrelated
and is nondiagonal and nonsingular for partially correlated
sources, E[n(i)nH(i)] = σ2

nIM×M with IM×M being the
corresponding identity matrix, and (·)H denotes Hermitian
transpose. It is well understood in the literature [3, pp.
1204] that a small number of snapshots results in a poor
estimate of the correlation matrix, which degrades the DOA
estimation resolution of Capon’s method and most subspace-
based methods. With large arrays, the resolution can be com-
pensated to a certain extent whereas the computational cost
increases. Moreover, the performance of eigen-decomposition
and subspace tracking based methods is affected by highly
correlated sources. In these situations, the use of the FBA
technique can mitigate the performance degradation caused
by a high level of correlation between the sources. The recent
AV and CG algorithms can also deal with the problem of
correlated sources but lose their superiority when a large
number of sources need to be located.

III. PROPOSED REDUCED-RANK SCHEME

In this section, we introduce a reduced-rank strategy with
the MV criterion to obtain the output power spectrum with
respect to the possible scanning angles and find the peaks
for DOA estimation. The polynomial rooting technique is
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employed in the new scheme to circumvent an exhaustive
search that leads to a reduced computational complexity.

A. Proposed Reduced-rank Scheme for DOA estimation

Fig. 1. Proposed reduced-rank structure.

The proposed reduced-rank structure is depicted in Fig. 1.
We introduce a rank-reduction matrix T r ∈ CM×r, which
maps the full-rank received vector x(i) into a lower dimension
and generates the reduced-rank received vector x̄(i) ∈ Cr×1

x̄(i) = TH
r x(i), (3)

where T r consists of a collection of r M -dimensional vectors
tl = [t1,l, t2,l, . . . , tM,l]

T ∈ CM×1, l = 1, . . . , r as given by
T r = [t1, t2, . . . , tr], and r is the rank that is assumed to
be less than M . In what follows, all r dimensional quan-
tities are denoted with a “bar”. Compared with x(i), the
dimension of x̄(i) is reduced and the key features of the
original signal are retained in x̄(i) according to the design
criterion. An auxiliary filter with the reduced-rank vector
ḡθ = [ḡθ,1, ḡθ,2, . . . , ḡθ,r]

T ∈ Cr×1 is used after the rank
reduction matrix to process x̄(i) to compute the output power
with respect to the current scanning angle. The computational
complexity is reduced if r << M for large arrays.

The rank-reduction matrix T r and the auxiliary reduced-
rank parameter vector ḡθ are computed by the following
optimization problem

θ̂ = arg min
ḡθ, T r

ḡH
θ TH

r RT rḡθ

subject to ḡH
θ TH

r a(θ) = 1,
(4)

where R is the covariance matrix and the optimization prob-
lem depends on T r and ḡθ, which have to be estimated with
respect to θ.

The optimization problem in (4) can be transformed by
the method of Lagrange multiplier into an unconstrained one,
which is

J = ḡH
θ TH

r RT rḡθ + 2 R
{
λ[ḡH

θ TH
r a(θ)− 1]

}
, (5)

where λ is a scalar Lagrange multiplier and the operator R(·)
selects the real part of the argument.

In order to obtain T r and ḡθ, we make an assumption that
one quantity is known and compute the other one. Specifically,
assuming ḡθ is known and taking the gradient of (5) with
respect to T ∗

r , where ∗ denotes complex conjugate, we have

∇JT∗
r
= RT rḡθḡ

H
θ + λT∗

r
a(θ)ḡH

θ . (6)

Equating the gradient to a zero matrix and solving for λT∗
r

,
the rank-reduction matrix can be expressed as

T r =
R−1a(θ)

aH(θ)R−1a(θ)

ḡH
θ

∥ḡθ∥2
, (7)

where for a small number of snapshots, R−1 is estimated by
either employing diagonal loading or the pseudo-inverse. The
derivation of (7) is given in the Appendix.

Assuming that T r is known and taking the gradient of (5)
with respect to ḡ∗

θ , we have

∇Jḡ∗
θ
= TH

r RT rḡθ + λḡ∗
θ
TH

r a(θ)

= R̄ḡθ + λḡ∗
θ
ā(θ),

(8)

where R̄ = E[x̄(i)x̄H(i)] ∈ Cr×r is the reduced-rank
covariance matrix. Setting (8) equal to a zero vector and
solving for λḡ∗

θ
, we obtain

ḡθ =
R̄

−1
ā(θ)

āH(θ)R̄
−1

ā(θ)
, (9)

where ā(θ) = TH
r a(θ) ∈ Cr×1 is the reduced-rank steering

vector with respect to the current scanning angle. A detailed
derivation is included in the Appendix. Note that the auxiliary
reduced-rank vector ḡθ is more general for dealing with DOA
estimation. Specifically, for r = 1, the proposed JIO algorithm
results in Capon’s method. For 1 < r < M , it operates under
a lower dimension and thus reduces the complexity.

The output power for each scanning angle is calculated by
substituting the expressions of T r in (7) and ḡθ in (9) into
(4), which yields

P (θ) =
(
āH(θ)R̄

−1
ā(θ)

)−1
. (10)

By searching all possible angles, we could find peaks in
the output power spectrum that correspond to the DOAs of
the sources.

B. Proposed Scheme with Polynomial Rooting

In order to avoid the exhaustive search through all possible
angles, we take the polynomial rooting technique into account.
Specifically, premultiplying the terms in (9) by ḡH

θ and rear-
ranging the terms, we have

Q(θ) = āH(θ)R̄
−1

ā(θ) =
ḡH
θ R̄

−1
ā(θ)

∥ḡθ∥2
, (11)

where Q(θ) = P−1(θ).
The proposed reduced-rank scheme performs DOA esti-

mation by scanning a limited range of angles without an
exhaustive search. Compared with (10), the expression in (11)
brings a simplification in the joint optimization of the rank-
reduction matrix and the auxiliary reduced-rank parameter
vector. We show the advantage of this scheme in the simula-
tions. Note that, in this paper, the objective of the application
of the polynomial rooting is not only an extension of the
proposed scheme. It is viewed as an approach to reduce the
computational complexity.
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Another effective technique that could be employed in the
proposed scheme is beamspace preprocessing [3, pp. 1243-
1251], [35], which preprocesses the received vector with a
matrix that, in essence, creates a set of beams. It reduces the
complexity from the number of sensor elements to the number
of beams utilized to probe a given sector. We then use these
beam outputs to estimate the DOAs. In many environments,
DOA estimation with the beamspace preprocessing achieves
an improved probability of resolution with substantially less
computational complexity. Furthermore, numerous works have
been reported to combine polynomial rooting and beamspace
techniques into one scheme for robustness [36], [37]. In the
proposed reduced-rank scheme, it is possible to consider the
beamspace technique as an extension of the current work for
improving the resolution and reducing the complexity.

IV. PROPOSED REDUCED-RANK ALGORITHMS

In this section, we derive a constrained LS algorithm for
an implementation of the proposed reduced-rank scheme.
The proposed algorithm jointly estimates the rank-reduction
matrix and auxiliary reduced-rank parameter vector using an
alternating optimization procedure. The rank is selected via
the model order selection approach. The FBA technique is
employed in the algorithm to deal with highly correlated
sources for the resolution improvement. We utilize the matrix
inversion lemma to develop a recursive least squares (RLS)
based algorithm for DOA estimation. With these algorithms
a designer can choose between batch or adaptive (recursive)
processing. In particular, adaptive techniques can be used if
a designer is interested in reducing the computational cost
per snapshot as compared to computing a matrix inversion.
In batch processing a designer needs to compute a matrix
inversion, which might be a choice for a stationary scenario
that only requires one matrix inversion.

A. Proposed JIO Algorithm
From (7) and (9), the challenge left to us is how to

efficiently compute the rank-reduction matrix T r and the
auxiliary reduced-rank vector ḡθ for solving (4). Using the
method of LS, the constraint in (4) can be incorporated by the
method of Lagrange multipliers in the form

JLS =

i∑
l=1

αi−l|ḡH
θ (i)TH

r (i)x(l)|2+2R
{
λ
[
ḡH
θ (i)TH

r (i)a(θ)−1
]}

,

(12)
where α is a forgetting factor that is a positive constant

close to, but less than 1. Assuming ḡθ(i) is known, taking
the gradient of (12) with respect to T ∗

r(i) yields,

∇JLST∗
r
=

i∑
l=1

αi−lx(l)xH(l)T r(i)ḡθ(i)ḡ
H
θ (i) + λT∗

r
a(θ)ḡH

θ (i)

= R̂(i)T r(i)ḡθ(i)ḡ
H(θ)(i) + λT∗

r
a(θ)ḡH

θ (i),
(13)

where R̂(i) =
∑i

l=1 α
i−lx(l)xH(l) ∈ CM×M is an estimate

of the covariance matrix at time instant i and can be written
in a recursive form R̂(i) = αR̂(i− 1) + x(i)xH(i).

TABLE I
THE PROPOSED JIO ALGORITHM

Initialization:
T r(0) = [IT

r×r 0T
(M−r)×r]

T

Update for each time instant i = 1, . . . , N
x̄(i) = TH

r (i− 1)x(i)
ā(θn) = TH

r (i− 1)a(θn)

R̂(i) = αR̂(i− 1) + x(i)xH(i)
ˆ̄R(i) = α ˆ̄R(i− 1) + x̄(i)x̄H(i)

ḡθ(i) =
ˆ̄R−1(i)ā(θn)/

(
āH(θn)

ˆ̄R−1(i)ā(θn)
)

T r(i) =
R̂

−1
(i)a(θn)

aH (θn)R̂
−1

(i)a(θn)

ḡθ
H (i)

∥ḡθ(i)∥2

Output power
P (θn) = 1/

(
āH(θn)

ˆ̄R−1ā(θn)
)

Polynomial rooting (optional)
Q(θ) = āH(θ)R̄

−1
ā(θ)

The resulting rank-reduction matrix is

T r(i) =
R̂

−1
(i)a(θ)

aH(θ)R̂
−1

(i)a(θ)

ḡH
θ (i)

∥ḡθ(i)∥2
. (14)

Fixing T r(i), taking the gradient of (12) with respect to
ḡ∗
θ(i), it becomes

∇JLSḡ∗
θ
=

i∑
l=1

αi−lTH
r (i)x(l)xH(l)T r(i)ḡθ(i) + λḡ∗

θ
TH

r (i)a(θ)

= ˆ̄R(i)ḡθ(i) + λḡ∗
θ
TH

r (i)a(θ),
(15)

where ˆ̄R(i) =
∑i

l=1 α
i−lx̄(l)x̄H(l) ∈ Cr×r is an estimate

of the reduced-rank covariance matrix. Its recursive form is
ˆ̄R(i) = α ˆ̄R(i − 1) + x̄(i)x̄H(i). The resulting expression of
ḡθ(i) is

ḡθ(i) =
ˆ̄R−1(i)ā(θ)

āH(θ) ˆ̄R−1(i)ā(θ)
. (16)

Note that the expression of the rank-reduction matrix in (14)
is a function of ḡθ(i) while the auxiliary reduced-rank vector
obtained from (16) depends on T r(i). The proposed algorithm
relies on an iterative exchange of information between T r(i)
and ḡθ(i), which results in an improved convergence perfor-
mance. The proposed JIO algorithm is summarized in Table I,
where ˆ̄R is the estimate of the reduced-rank correlation matrix
related to N snapshots, the scanning angle θn = n△o, △o is
the search step, and n = 1, 2, . . . , 180o/△o. For a simple
and convenient search, we make 180o/△o an integer. It is
necessary to initialize T r(0) to start the update due to the
dependence between T r(i) and ḡθ(i), see Table I.

The output power P (θn) is much higher if the scanning
angle θn = θk, (k = 0, . . . , q − 1), which corresponds to the
position of the source, compared with other scanning angles
with respect to the noise level. Thus, we can estimate the
DOAs by finding the peaks in the output power spectrum. We
refer to [3, pp.1142-1146] for the individual computational
costs of the recursions.
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TABLE II
THE PROPOSED JIO(FBA) ALGORITHM

Initialization:
T fb(0) = [IT

r×r 0T
(M−r)×r]

T

Update for each time instant i = 1, . . . , N
āfb(θn) = TH

fb (i− 1)a(θn)

R̂(i) = αR̂(i− 1) + x(i)xH(i)

R̂fb(i) =
1
2

[
R̂(i) +ΠMR̂

∗
(i)ΠM

]
ˆ̄Rfb(i) = TH

fb (i− 1)R̂fb(i)T fb(i− 1)

ḡθ,fb(i) =
ˆ̄R−1

fb (i)āfb(θn)/
(
āH

fb (θn)
ˆ̄R−1

fb (i)āfb(θn)
)

T fb(i) =
R̂

−1
fb (i)a(θn)

aH (θn)R̂
−1
fb (i)a(θn)

ḡH
θ,fb(i)

∥ḡθ,fb(i)∥2

Output power
P (θn) = 1/

(
āH

fb (θn)
ˆ̄R−1

fb āfb(θn)
)

Polynomial rooting (optional)
Q(θ) = āH(θ)R̄

−1
ā(θ)

B. Proposed JIO Algorithm with FBA

The FBA technique is helpful to increase the resolution for
DOA estimation when the sources are correlated. It is based on
the averaging of the covariance matrix of identical overlapping
arrays and so requires an array of identical elements equipped
with some form of periodic structure, such as the ULA.
For its application, we split a ULA antenna array into a
set of forward and conjugate backward subarrays. The FBA
preprocessing operates on x(i) to estimate the forward and
backward subarray covariance matrices that are averaged to get
the forward/conjugate backward smoothed covariance matrix.
The JIO algorithm incorporated with the FBA technique is
termed JIO(FBA).

In this work, we employ an efficient way to estimate the
forward/conjugate backward covariance matrix (see Eq. (3.22)
in [33]). The resulting JIO(FBA) algorithm is summarized in
Table II, where ΠM ∈ CM×M is a matrix with ones on
its antidiagonal and zeros elsewhere, R̂fb(i) and ˆ̄Rfb(i) are
the full-rank and the reduced-rank forward/backward averaged
covariance matrices, respectively. Note that R̂(i) here is
calculated by using a time-averaged estimate, i.e., R̂(i) =
αR̂(i − 1) + x(i)xH(i). The proposed JIO(FBA) algorithm
employs the averaged R̂fb(i) and ˆ̄Rfb(i) to compute ḡθ,fb(i)
and T fb(i) for the output power with respect to each scanning
angle θn. The computational complexity can be significantly
reduced by using a real-valued implementation [33].

C. Proposed JIO-RLS Algorithm

We utilize the matrix inversion lemma [30] to develop a JIO-
based RLS algorithm (JIO-RLS) for DOA estimation without
the matrix inverse. Specifically, defining Φ̂(i) = R̂

−1
(i),

yields

k(i) =
α−1Φ̂(i− 1)x(i)

1 + α−1xH(i)Φ̂(i− 1)x(i)
, (17)

Φ̂(i) = α−1Φ̂(i− 1)− α−1k(i)xH(i)Φ̂(i− 1), (18)

where k(i) ∈ CM×1 is the Kalman gain vector and Φ̂(0) =
δIM×M with δ being a positive value that needs to be set for
numerical stability.

TABLE III
PROPOSED JIO-RLS ALGORITHM

Initialization:
T r(0) = [IT

r 0T
(M−r)×r]

T ; δ, δ̄ =positive constants;
Φ̂(0) = δIM×M ; ˆ̄Φ(0) = δ̄Ir×r .

Update for each time instant i = 1, . . . , N
x̄(i) = TH

r (i− 1)x(i)
ā(θn) = TH

r (i− 1)a(θn)

k̄(i) = α−1 ˆ̄Φ(i−1)x̄(i)

1+α−1x̄H (i) ˆ̄Φ(i−1)x̄(i)

ˆ̄Φ(i) = α−1 ˆ̄Φ(i− 1)− α−1k̄(i)x̄H(i) ˆ̄Φ(i− 1)

ḡθ(i) =
ˆ̄Φ(i)ā(θn)

āH (θn) ˆ̄Φ(i)ā(θn)

k(i) = α−1Φ̂(i−1)x(i)

1+α−1xH (i)Φ̂(i−1)x(i)

Φ̂(i) = α−1Φ̂(i− 1)− α−1k(i)xH(i)Φ̂(i− 1)

T r(i) =
Φ̂(i)a(θn)

a(θn)HΦ̂(i)a(θn)

ḡH
θ (i)

∥ḡθ(i)∥2

Output power
P (θn) = 1/

(
āH(θn)

ˆ̄Φā(θn)
)

Polynomial rooting (optional)
Q(θ) = āH(θ)R̄

−1
ā(θ)

Given ˆ̄Φ(i) = ˆ̄R−1(i), we have

k̄(i) =
α−1 ˆ̄Φ(i− 1)x̄(i)

1 + α−1x̄H(i) ˆ̄Φ(i− 1)x̄(i)
, (19)

ˆ̄Φ(i) = α−1 ˆ̄Φ(i− 1)− α−1k̄(i)x̄H(i) ˆ̄Φ(i− 1), (20)

where k̄(i) ∈ Cr×1 is the reduced-rank gain vector and
ˆ̄Φ(0) = δ̄Ir×r with δ̄ > 0.

Substituting the recursive procedures (17)-(20) into the
proposed JIO algorithm instead of the matrix inverse results in
the JIO-RLS algorithm, which is concluded in Table III, where
δ and δ̄ are selected according to the input signal-to-noise ratio
(SNR) [30], and Φ̂ is the estimate of the inverse of the received
covariance matrix after N snapshots. The specific values will
be given in the simulations. The JIO-RLS algorithm retains
the positive feature of the iterative exchange of information
between the rank-reduction matrix and auxiliary reduced-rank
vector, which avoids the degradation of the resolution, and
utilizes a recursive procedure to compute R̂

−1
and ˆ̄R−1 for

the reduced complexity.
We can also use the FBA technique in the proposed

JIO-RLS algorithm to improve the resolution when the
sources are correlated. The full-rank and the reduced-rank
forward/conjugate backward smoothed covariance matrix can
be estimated by R̂fb(i) and ˆ̄Rfb(i) in Table II. Using the matrix
inversion lemma for the calculation of Φ̂fb(i) = R̂

−1

fb (i) and
ˆ̄Φfb(i) =

ˆ̄R−1
fb (i), we have

Φ̂fb(i) = 2[Φ̂(i)− Φ̂(i)ΠMΠH
M Φ̂(i)

Φ̂
∗
(i) +ΠH

M Φ̂(i)ΠM

]

ˆ̄Φfb(i) = 2[ ˆ̄Φ(i)−
ˆ̄Φ(i)TH

fb (i− 1)ΠMΠH
MT fb(i− 1) ˆ̄Φ(i)

ˆ̄Φ∗(i) +ΠH
MT fb(i− 1) ˆ̄Φ(i)TH

fb (i− 1)ΠM

],

where both Φ̂(i) and ˆ̄Φ(i) are calculated by their recursive
expressions, which have been given in Table III. By using
Φ̂fb(i) and ˆ̄Φfb(i) to replace Φ̂(i) and ˆ̄Φ(i) in Table III,
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respectively, for calculating the rank-reduction matrix and the
auxiliary reduced-rank parameter vector, we can compute the
output power with respect to each scanning angle and find the
DOAs corresponding to the sources.

We have so far detailed the proposed reduced-rank scheme
and the derivations of the proposed algorithms. There are two
points that need to be interpreted here. First, the polynomial
rooting technique derived in Section III-B can be employed
in the proposed algorithms as a preprocessing step to save
the computational cost. Second, the proposed JIO algorithms
could work without the exact knowledge of the number of
sources q. They jointly update the rank-reduction matrix and
auxiliary reduced-rank vector to calculate the output power and
scan possible angles to plot the output power spectrum, which
do not require information about q. Most existing algorithms
need this information since, for the subspace-based algorithms,
q is critical to construct the signal subspace, and, for the ML
algorithm, it is important to improve the resolution. However, q
has to be estimated using other techniques with more complex
procedures, which increase the computational cost.

D. Model-Order Selection

The selection of the rank r is important to the proposed
algorithms since it determines how much information could be
retained in the reduced-rank received vector and thus impacts
the resolution. However, it does not mean that a larger r
always leads to a better resolution. A large r (e.g., close to M )
increases the dimension of the reduced-rank received vector,
which may cause redundancy and significantly increase the
computational complexity. On the other hand, a small r saves
the cost but may lose information that is useful to improve
the resolution. In most of the existing subspace algorithms,
r equals q, which is employed in the eigen-decomposition
for the construction of the signal subspace. In the proposed
algorithms, r could be set to be some specific values that
do not necessarily equal q. The range of values has been
obtained by experiments and the theoretical explanation is that
the subspace fitting performed by the JIO algorithms does
not require many bases in the subspace to result in a good
performance. This has been verified in the simulations.

We introduce an adaptive approach for selecting the rank.
We describe a model-order selection method based on the MV
criterion computed by the rank-reduction matrix T (r)

r and the
auxiliary reduced-rank parameter vector ḡ(r), which is

T (r)
r =


t1,1 t1,2 . . . t1,rmin . . . t1,rmax

t2,1 t2,2 . . . t2,rmin . . . t2,rmax

...
...

...
...

...
...

tM,1 tM,2 . . . tM,rmin . . . tM,rmax

 ,

ḡ
(r)
θ =

[
ḡ1 ḡ2 . . . ḡrmin . . . ḡrmax

]T
,

(21)

where the superscript (·)(r) denotes the rank used for the
adaptation at each time instant, rmin and rmax are the minimum
and maximum ranks allowed, respectively.

The rank is adopted automatically based on the
exponentially-weighted a posteriori MV criterion used

to derive the rank-reduction matrix and the auxiliary
reduced-rank vector, which is

JPLS
(
T (r)

r (i− 1), ḡ(r)(i− 1)
)
=

i∑
l=1

ϱi−l|ḡ(r)H
θ (i− 1)T (r)H

r (i− 1)x(l)|2,
(22)

where ϱ is the exponential weight factor that is required as the
optimal rank r can change as a function of the time instant i.
For each time instant, T (r)

r (i) and ḡ
(r)
θ (i) are computed for

a selected r according to (22). The developed model-order
selection method is given by

ropt = arg min
rmin≤r≤rmax

JPLS
(
T (r)

r (i− 1), ḡ
(r)
θ (i− 1)

)
, (23)

where r is an integer ranging between rmin and rmax. For
each θn, we calculate T (r)

r and ḡ
(r)
θ until r = rmax, and then

scan (r) from rmin to rmax to find a pair of {T (r)
r , ḡ

(r)
θ } that

satisfy (23). It should be noted that the model-order selection
algorithm is not very expensive because it re-uses entries of the
rank-reduction matrix which is initially computed with rmax

and the matrix inverse (no extra matrix inverse is required).
The algorithm then computes extra terms for the optimization
in (23). The corresponding (r) is the most appropriate value
with respect to the current time instant. We found that the
range for which the rank r has an impact on the resolution is
very limited, being from rmin = 3 to rmax = 7. These values
are rather insensitive to the number of users in the system,
to the number of sensor elements, and work effectively for
the studied scenarios. If q is larger than rmax then there
is a potential risk of undermodelling. However, the method
proposed concentrates the energy of the subspace in a different
way as compared to an eigen-based technique. This is the
reason why it was found that rmax = 7 was enough for the
scenarios studied. Alternatively, an additional mechanism can
be used to adjust rmin and rmax. The model-order selection
procedure involves additional complexity corresponding to
the computation of the cost function in (23) and requires
3(rmax−rmin)+1 additions and a sorting algorithm to find the
best model order according to (23). It is efficient to combine
this approach with the polynomial rooting technique to select
the most appropriate rank for the proposed algorithms.

E. Complexity Analysis

Considering the computational cost, Capon’s method, MU-
SIC, and ESPRIT work with O(M3) due to the matrix inverse
and the eigen-decomposition, respectively. The recent AV and
CG algorithms pay a higher cost [13] due to the generation
of the signal subspace. The API subspace tracking approach
estimates the signal subspace of the MUSIC and the ESPRIT
with lower complexity O(qM + q3). However, its complexity
becomes relatively high as the number of sources q becomes
large. For the proposed algorithms, the JIO algorithm requires
O(M3+r3) due to the matrix inverse. The JIO-RLS algorithm
requires O(M2 + r2) due to the use of the matrix inversion
lemma [30]. It is worth noting that the cost of computing Φ̂
is saved after the procedure of the first scanning angle since
it is invariable for the rest of the search.
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We provide a comparison of the computational complexity
for the proposed and existing algorithms in Table IV, where
M denotes the number of sensor elements, q is the number of
sources, ∆ is the search step, D is the iteration number for the
CG algorithm, and r is the rank. Note that the cost of r3 (or r2)
is much less than that of M3 (or M2) since r is always much
smaller than M for sufficiently large arrays. Our studies reveal
that the range for which the rank r has a positive impact on the
performance is limited among a set of small values. This fact
has been referred to the previous section and will be verified
in the simulations. The complexity of the algorithms equipped
via the FBA technique is not shown in this table since it is
viewed as a preprocessing step and requires nearly the same
cost for all the methods.

TABLE IV
COMPARISON OF THE COMPUTATIONAL COMPLEXITY

Algorithms Complexity Main Procedures
Capon O(M3) Matrix inverse (grid search)
MUSIC O(M3) Eigen-decomposition (grid search)
MUSIC(API) O(qM + q3) Subspace tracking (grid search)
ESPRIT O(M3) Eigen-decomposition
ESPRIT(API) O(qM + q3) Subspace tracking
AV O((180/∆)qM2) Construction of signal subspace (grid search)
CG O((180/∆)DM2) Construction of signal subspace (grid search)
JIO O(M3 + (180/∆)r3) Matrix inverse and reduced-rank process (grid search)
JIO-RLS O(M2 + (180/∆)r2) Matrix inversion lemma and reduced-rank processing (grid search)
Root JIO-RLS O(M2 + r2) Matrix inversion lemma and reduced-rank processing (polynomial rooting)

V. SIMULATIONS

In this section, we evaluate the probability of resolution of
the proposed JIO algorithms and compare them with a number
of existing DOA estimation algorithms. The probability of
resolution for two sources is defined as Pr[|θ̂1− θ1|and|θ̂2−
θ2| < |θ1 − θ2|/2] [12], [40]. We compare the proposed JIO
algorithms with Capon’s method, the MUSIC and ESPRIT
subspace-based methods with and without the API subspace
tracking implementation, the projected companion matrix MU-
SIC (PCM-MUSIC) [15], the fast root MUSIC [8] and the
ML method. In all simulations, binary phase shift keying
(BPSK) sources separated by 3o with powers σ2

s = 1 are
considered and the noise is spatially and temporally white
Gaussian. All the results are averaged over 1000 runs. The
search step is ∆o = 0.5o. The forgetting factor α corresponds
to a coherence window of 1/(1 − α) snapshots. When the
number of snapshots is small which is the case of interest in
this work, then there is no significant impact of using an α
different from 1 but as the number of snapshots is increased
the forgetting factor should match the coherence window of
the time-varying process in order to track dynamic sources.
The forgetting factor is important in non-stationary scenarios
in which there is need to discard past data to obtain more
accurate estimates. The diagonal loading (or regularization)
has been used for all the methods and the parameters have
been optimized for each method in order to ensure a fair
comparison. Simulations are performed for a ULA with half
a wavelength inter-element spacing for a generic application
of all studied algorithms.

In Fig. 2, we assess the impact of the correlated sources on
the performance of the proposed and existing algorithms. The
array size is M = 40 and the number of snapshots N = 10 is
fixed. There are q = 2 highly correlated sources in the system
with correlation value τ = 0.9, which are generated as follows
[12]:

s1 ∼ N (0, σ2
s) and s2 = τs1 +

√
1− τ2s3,

where s3 ∼ N (0, σ2
s). The rank for the proposed JIO algo-

rithm is r = 4. We have verified the rank among r ∈ [1, 8]
and found that r = 4 is the most appropriate value. Although
the values that are higher than r = 4 could also achieve a
relatively high probability of resolution, they result in a higher
computational load if r → M . The probability of resolution
is plotted against the input SNR values. From Fig. 2, we can
see that the ML algorithm is superior to the other analyzed
algorithms. However, it requires a higher computational cost
than the remaining techniques. The proposed JIO algorithm
outperforms other existing algorithms for different SNR val-
ues.
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Fig. 2. Probability of resolution versus input SNR with α = 0998, M = 40,
N = 10, q = 2, τ = 0.9, ropt = 4.

In Fig. 3, we consider the same scenario as in Fig. 2 and
show the performance of the proposed and existing algorithms
equipped with the FBA technique. The ML algorithm is
included in this experiment to provide a comparison with
Fig. 2. It is clear that the FBA technique is useful to the
studied algorithms for dealing with the problem of the highly
correlated sources. The probability of resolution for each
algorithm is improved under this case in comparison with its
conventional counterpart shown in Fig. 2. The proposed JIO
algorithm shows a high performance that is close to the ML
and superior to the others.

Before further experiments, we evaluate the performance of
the proposed JIO and JIO-RLS algorithms, which is shown in
Fig. 4. In this experiment, we set the sources to be uncorrelated
but increase the number of sources by setting q = 10.
The number of snapshots is N = 20 and the array size
is M = 40. From Fig. 4, we find that the proposed JIO
and JIO-RLS algorithms show nearly the same probability
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Fig. 3. Probability of resolution versus input SNR with α = 0998, M = 40,
N = 10, q = 2, τ = 0.9, ropt = 4.

of resolution with respect to different input SNR values. The
same behavior is observed for correlated sources with the use
of the FBA technique. These results show that the proposed
JIO-RLS algorithm is an efficient alternative to implement the
JIO method. In what follows, we will focus on the JIO-RLS
algorithm and its comparison to other techniques.
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Fig. 4. Probability of resolution versus input SNR with M = 40, N = 20,
q = 10, α = 0.998, δ = δ̄ = 1× 10−3, ropt = 5.

In the next two experiments, the scenario is the same as in
Fig.4. We evaluate the probability of resolution and the root
mean-square error (RMSE) performance of the proposed JIO-
RLS algorithm. Note that the RMSE is computed by averaging
over the number of sources in the scenario. Furthermore, we
employ the polynomial rooting provided in Section III-B to re-
duce the search length for the JIO-RLS, which further reduces
the complexity. In Fig. 5, the curves between the proposed
and ESPRIT algorithms intersect when the input SNR values
increase. The proposed algorithm exhibits its ability to work
with low SNR values. ESPRIT uses the eigen-decomposition

for estimating the signal subspace. ESPRIT with the API
approach

(
ESPRIT(API)

)
performs direction finding with a

low-complexity implementation. However, this performance is
poor with a small number of snapshots and thus results in a
low probability of resolution, so does MUSIC(API). The AV
and CG algorithms also show a low performance when many
sources are present in the system.

Fig. 6 presents the RMSE performance for the proposed
and existing algorithms under the same scenario as Fig. 5 and
compare them with the Cramér-Rao bound (CRB). The RMSE
of the proposed JIO-RLS algorithm always keeps a lower
level than those of other existing algorithms with different
input SNR values. Its values are around 10 dB higher than
the CRB in the threshold region and then approach the CRB
curve with the increase of the SNR. The eigen-decomposition
algorithms (MUSIC and ESPRIT) are superior to the AV and
CG algorithms in this example.
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Fig. 5. Probability of resolution versus input SNR with M = 40, N = 20,
q = 10, α = 1, δ = δ̄ = 1× 10−3, ropt = 5.

Fig. 7 and Fig. 8 examine the performance of the proposed
and existing algorithms with the FBA technique in a severe
scenario, where many sources (q = 10) are present in the
system and the number of snapshots is low (N = 10). Two
sources are highly correlated as explained in the beginning of
this section. The number of sensor elements in the array is
M = 40. From Fig. 7, the AV with the FBA technique fails
to resolve the DOA at most input SNR values. The CG(FBA)
algorithm provides a good resolution but is unstable with re-
spect to different SNR values. The Capon’s, MUSIC, ESPRIT,
and the proposed algorithms exhibit relatively high resolutions
at high SNR values. The proposed JIO-RLS(FBA) algorithm
works well even with very low SNR values. Fig. 8 reflects the
RMSE performance of the studied algorithms under the same
condition. The proposed JIO algorithm approaches the CRB
asymptotically and follows the trend of the CRB as the SNR
value increases to 5 dB.

In the following results, we consider a situation where
the receiver antenna does not know exactly the information
of the number of sources q. This is more practical since
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the exact q has to be determined by procedures with extra
computational cost and time or by resorting noise threshold
with subspace tracking algorithms [27]. The purpose is assess
the robustness of the methods in the presence of errors in
the model order by measuring the performance degradation
of such techniques. The scenario is the same as in Fig. 5.
We set the input SNR to 0 dB and examine the probability
of resolution of the proposed and existing algorithms with
respect to different values of qw. From Fig. 9, the proposed
and existing algorithms are evaluated with a variable qw The
results show that the proposed JIO and Capon’s algorithms are
not significantly affected by different values of qw, whereas
the performance of the other studied algorithms is significantly
degraded for qw ̸= q. Note that, in this scenario, the number of
snapshots N = 20 is quite small as compared to the number
of sensors M = 40, and this is not sufficient for the existing
subspace-based algorithms to construct the signal subspace.

In Fig. 10 and Fig. 11, we set an incorrect number of sources
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Fig. 8. RMSE versus input SNR with M = 40, N = 10, q = 10, α = 1,
τ = 0.9, δ = δ̄ = 1× 10−3, ropt = 5.

qw = 9 for the receiver and show the performance versus
different input SNR values. Fig. 10 exhibits the probability of
resolution for the proposed and existing algorithms. The eigen-
decomposition and their related API algorithms fail to solve
the DOA estimation problem at all input SNR values since q
is critical to the estimation of the signal and noise subspaces.
Also, the design of the AV basis and CG residual vectors
depends strongly on q and cannot achieve a good direction
finding. Capon’s method works well under this condition since
it is insensitive to the number of sources. The same result
holds for the proposed JIO-RLS algorithm, which outperforms
Capon’s method since the joint optimization between the rank
reduction matrix and the auxiliary reduced-rank parameter
vector leads to an improved performance for the proposed
scheme. We also provide the RMSE performance in Fig. 11.
The subspace-based algorithms always keep a high RMSE
level (above 0 dB) and do not approach the CRB. The
proposed algorithm is not significantly influenced by qw and
retains the same trend as the CRB, as depicted in Fig. 5. We
also consider the algorithms with the FBA technique in this
condition and obtain a comparable result.

VI. CONCLUDING REMARKS

We have introduced a novel reduced-rank scheme based
on the joint iterative optimization of a rank-reduction matrix
and an auxiliary parameter vector for DOA estimation. In
the proposed scheme, the dimension of the received vector is
reduced by the rank-reduction matrix, and the resulting vector
is processed by the auxiliary reduced-rank parameter vector for
calculating the output power. It provides an iterative exchange
of information between the estimated quantities and thus
leads to an improved performance. The DOAs of the sources
are located by scanning the possible angles and plotting the
output power spectrum. The proposed JIO algorithms have
been implemented to iteratively estimate the rank-reduction
matrix and the auxiliary parameter vector according to the
MV design criterion. The polynomial rooting technique has
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Fig. 10. Probability of resolution versus qw with M = 40, N = 20, q = 10,
qw = 9, α = 0.998, δ = δ̄ = 1× 10−3, ropt = 5.

been incorporated in the proposed JIO algorithms to save some
computational cost. We have employed the FBA preprocessing
to deal with the problem of the highly correlated sources.
The proposed algorithms also work well without the exact
information of the number of sources. Simulations have shown
that the proposed JIO algorithms achieve a superior resolution
over the existing algorithms in the scenarios where many
sources are present in the system, the array size is large, and
the number of snapshots is small.

APPENDIX

DERIVATION OF THE RANK-REDUCTION MATRIX

Equating (6) to a zero matrix and post multiplying the terms
by ḡθ yields

T rḡθ = −λT∗
r
R−1a(θ). (24)
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Fig. 11. RMSE versus input SNR versus qw with M = 40, N = 20,
q = 10, qw = 9, α = 0.998, δ = δ̄ = 1× 10−3, ropt = 5.

Given f = −λT∗
r
R−1a(θ), the matrix T r can be viewed as

finding a solution to the linear equation T rḡθ = f . Assuming
ḡθ ̸= 0, there exist multiple T r satisfying the linear equation
in general. Thus, we derive the minimum Frobenius-norm
solution for stability. Let us express the quantities involved
by

T r = [̄t1, t̄2, . . . , t̄M ]H ; f = [f1, f2, . . . , fM ]T , (25)

where t̄j = [t̄∗j,1, . . . , t̄
∗
j,r]

T ∈ Cr×1 with j = 1, . . . ,M .
The computation of the minimum Frobenius-norm solution

transfers to the following M subproblems:

min∥t̄j∥2, subject to t̄
H
j ḡθ = fj . (26)

The solution to (26) is the projection of t̄j onto the
hyperplane Hj = {t̄j ∈ Cr×1} : t̄

H
j ḡθ = fj , which is given

by

t̄j = f∗
j

ḡθ

∥ḡθ∥2
. (27)

Thus, the rank-reduction matrix can be expressed by

T r = f
ḡH
θ

∥ḡθ∥2
. (28)

Substituting f = −λT∗
r
R−1a(θ) into (28) and following

the constraint in (4), we get the λT∗
r

, which is

λT∗
r
= − 1

aH(θ)R−1a(θ)
. (29)

From f , λT∗
r

, and T r in (28), we have the expression of
the rank-reduction matrix in (7).

DERIVATION OF THE REDUCED-RANK VECTOR ḡθ

Equating (8) to zero, we have

ḡθ = λḡ∗
θ
R̄

−1
ā(θ), (30)
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where R̄ = E[x̄(i)x̄H(i)] ∈ Cr×r is the reduced-rank
covariance matrix. Substituting (30) into the constraint and
equating the terms, we obtain

λḡ∗
θ
= (āH(θ)R̄

−1
ā(θ))−1, (31)

Substituting λḡ∗
θ

into (30), we obtain

ḡθ =
R̄

−1
ā(θ)

āH(θ)R̄
−1

ā(θ)
, (32)

where ā(θ) = TH
r a(θ) ∈ Cr×1 is the reduced-rank steering

vector with respect to the current scanning angle.
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