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Abstract—Low-density parity-check (LDPC) codes are capable
of achieving excellent performance and provide a useful alter-
native for high performance applications. However, at medium
to high signal-to-noise ratios (SNR), an observable error floor
arises from the loss of independence of messages passed under
iterative graph-based decoding. In this paper, the error floor
performance of short block length codes is improved by use ofa
novel candidate selection metric in code graph construction. The
proposed Multipath EMD approach avoids harmful structures
in the graph by evaluating certain properties of the cycles
which may be introduced in each edge placement. We present
Multipath EMD based designs for several structured LDPC codes
including quasi-cyclic and irregular repeat accumulate codes. In
addition, an extended class of diversity-achieving codes on the
challenging block fading channel is proposed and considered
with the Multipath EMD design. This combined approach is
demonstrated to provide gains in decoder convergence and error
rate performance. A simulation study evaluates the performance
of the proposed and existing state-of-the-art methods.

Index Terms—Channel coding, Low-density parity-check
codes, Iterative decoding

I. I NTRODUCTION

Low-density parity-check codes [1] are a class of iteratively
decoded capacity-approaching codes. Due to excellent perfor-
mance and low-complexity, parallelisable decoding, this class
of codes is increasingly presented as an option for use in
wireless standards, for example DVB-S2, IEEE 802.11 (Wi-Fi)
and the IEEE 802.16e standard for WiMAX.

Irregular LDPC codes [2] offer improved performance in
the low to medium signal-to-noise ration (SNR) region of
operation. Asymptotic analysis of the threshold behavior of
irregular LDPC codes for a given set of code parameters allows
identification of optimal irregular LDPC ensembles [3] and
predicts well the performance of LDPC codes at large block
lengths. However, at short to medium block lengths, closed
paths in the graph invalidate the assumption that messages
passed in the iterative decoding are independent. In practical
terms, the closed paths (cycles) in the graph harm error
rate performance and introduce an error floor, a reduction in
error rate performance improvement with improving channel
conditions. At larger block lengths, graphs selected randomly
from the code ensemble with desired parameters generally
perform well, but at shorter lengths care must be taken in graph
selection or construction [4]-[5]. The trellis-based approach of
[6] demonstrated that cycles do not contribute to the error rate
uniformly.A tree-based approach for graph construction based
on progressive edge growth (PEG) was presented in [7] and

was later improved by using Approximated Cycle Extrinsic
Message Degree (ACE) properties [8], [9]. PEG-based designs
have also been significantly successful in graph construction
for both unstructured and structured classes [5], [10], [11],
[12], dealing with stopping sets [13], [14].

In this paper we propose a Multipath EMD strategy for
PEG-based graph construction of LDPC codes which leads
to improved error floor performance in the constructed code
realization. The proposed method is flexible in rate, irregular
node degree distributions and the class of constructed code. It
is implemented as a progression of decision metrics which are
used to prune a set of candidate placements, with the decisions
based on an indirect measure of the impact of each placement
on the graph as a whole. The goal is to reduce the effects
of the unavoidable graph structures present at finite block
lengths on the iterative LDPC decoding process. Following
the presentation of the proposed metric, a novel class of
codes capable of approaching the outage limit on block fading
channels with different numbers of fading coefficients is intro-
duced. These codes are demonstrated to perform excellently
at short block lengths, but require a relatively large number
of decoder iterations to achieve the desired performance. The
proposed Multipath EMD construction is demonstrated to
provide considerable gains in terms of decoder convergence.
A detailed justification for each of the main contributions
of the paper, namely the proposed novel graph construction
approach and the proposed diversity-achieving class of codes,
is provided. A simulation study of the proposed construction
along with the existing state-of-the-art is provided, showing the
gains achievable for a number of structured code classes on the
AWGN channel and for the proposed novel reduced structure
diversity-achieving codes on the block fading channel.

In summary, this paper has the following contributions:

• The proposed Multipath EMD graph construction strat-
egy.

• The proposed code class design to operate on a block
fading channel with an arbitrary number of fading coef-
ficients.

The rest of this paper is laid out as follows: In Section
II the channel models considered in this paper are described.
In Section III the proposed Multipath metric progression is
detailed, including a discussion of the previous approaches,
and a mathematical and algorithmic description of the pro-
posed approach. In section IV, the novel code class for use
on the block fading channel is described, a discussion of prior
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work for the channel with two fading coefficients motivates the
expansion first to the channel with three fading coefficients
and then to the general case. A note on the versatile use
of these codes on channels with varying numbers of fading
coefficients through the use of a simple puncturing scheme
is also provided. In Section V, a detailed simulation study
is provided for the work proposed in this paper. Section
VI provides a brief conclusion to the paper. The appendix
provides some analysis and discussion of the work proposed
in the paper.

II. CHANNEL MODELS

A general LDPC coding system is considered in this work,
as shown in Fig. 1, where a message represented by the1× k
vectorm is encoded to the length1×N code word vectors,
subjected to the channel such that the decoder operates on the
vectorr to produce an estimate of the code wordŝ.

Encoder

G

Channel Decoder

H

m s r ŝ

Fig. 1. A general LDPC coding system

In this paper a number of channels are considered. The
received vectorr is given by

r = [α1s1, α2s2, · · · , αNsN ] + n. (1)

For the AWGN channel

α1 = α2 = · · · = αN = 1. (2)

andn is the vector of Gaussian noise samples

n = [n1, n2, · · · , nN ] , (3)

whereni ∼ N (0, σ2).
For the block fading channel with F independent fades,

α1 = α2 = · · · = αN
F
= β1,

αN
F
+1 = αN

F
+2 = · · · = α 2N

F
= β2,

...

αN−N
F
+1 = αN−N

F
+2 = · · · = αN = βF , (4)

where the fading coefficients are Rayleigh distributedβj ∈
R

+ and again the noise is Gaussian,ni ∼ N (0, σ2).
For the fast fading channel, each coded bit is subjected to

independent fading coefficients which are Rayleigh distributed
αi ∈ R

+. This is equivalent to the block fading channel with
F = N fades, and the additive white Gaussian noise samples
are given byni ∼ N (0, σ2).

III. PROPOSEDMULTIPATH EMD METRIC PROGRESSION

In this section, the basis for the proposed construction
algorithm, the novel Multipath EMD metric progression, is
introduced and discussed in detail. An overview of previous
construction metrics motivates the approach considered in
this work. The new metric progression is then outlined in
detail, and the pseudocode for the proposed construction is
provided, explicitly describing the proposed Multipath EMD
construction algorithm.

A. Preliminaries

1) Design Problem:The design problem for LDPC codes
is to find a member of the code ensemble which provides
good performance on the channel of interest. Certain related
graph structures, namely pseudo-codewords [15], stopping
sets [16] and trapping sets [17] have been shown to be
responsible for error events under iterative decoding. However,
optimisation of the code graph with respect to these struc-
tures directly is in general too complex to be achievable for
practical code lengths [18]. Instead we resort to optimisation
of these graph properties indirectly. Short length cycles have
long been known to harm performance severely and girth
optimisation results in improved performance over randomly
constructed graphs. In fact, for the low to medium signal-to-
noise ratio range of operation, the powerful progressive edge
growth (PEG) algorithm provides among the best performance
achievable by improving cycle length alone. Every pseudo-
codeword is associated with a stopping set, which are formed
from connected cycles. On the binary erasure channel (BEC)
stopping sets dictate performance entirely [?]. Careful graph
construction with respect to stopping sets yields improved
performance [6][10].

2) Definitions: In constructing LDPC code graphs, greater
connectivity has been demonstrated to influence error floor
performance of the graph [6][10]. In the following, a num-
ber of basic definitions are provided which will clarify the
development of the Multipath EMD metric.

Definition 1: A cycle is a closed path in a Tanner graph
with no repeated edges.

Definition 2: A stopping set is a set of variable nodes for
which every check node neighbour of any member of the set
is connected to the set at least twice[16].

This structure leads to an uncorrectable error on the BEC
and constitutes a worst-case scenario in terms of independence
of messages passed under iterative decoding in general.

Definition 3: The extrinsic message degree (EMD) of a set
of variable nodes (or a cycle) is the number of check node
neighbours singly connected to that set (or cycle)[6].

Clearly, the EMD of a stopping set is zero.
Definition 4: The approximate cycle EMD (ACE) for a

variable node is the degree of the variable node minus two
[6].

The ACE metric provides an approximate measure of the
EMD of a cycle by assuming that all check node neighbours
which are not directly involved in the cycle are connected to
the cycle only once.

Figure 2 outlines the points reviewed inDefinitions 1 - 4.
Two cycles are shown, the length 4 cycle[v1, c1, v2, c2] and
the length 6 cycle[v2, c3, v3, c5, v4, c4]. Neither set{v1, v2}
nor {v2, v3, v4} alone is a stopping set, as both have extrinsic
connections fromv2, the dotted black lines are extrinsic with
respect to the set{v1, v2} while the dashed red lines are
extrinsic with respect to the set{v2, v3, v4}. It is clear that
the set{v1, v2, v3, v4} is a stopping set, formed from the
combination of the length 4 and length 6 cycles. Note that
using an ACE style metric based on variable node weight,
the set{v1, v2, v3, v4} would appear to have two extrinsic
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Fig. 2. Small Tanner Graph with cycles

connections, however a true EMD calculation shows that this
set has no extrinsic connections and so is a stopping set.

B. Metric

The PEG construction algorithm proceeds columnwise and
edgewise. The task at each edge placement is to prune the set
of all check nodes to a single survivor, which is connected
to the variable node under consideration. The PEG algorithm
in its original form selected survivors according to the longest
path metric, resulting in creation of the longest possible cycle,
followed by the minimum current check node weight metric
which gives the graph the desirable near-regular check node
distribution.

The IPEG algorithm includes a further set-pruning step,
based on the path ACE metric which provides an approximate
measure of the level of connectivity which the cycle or
cycles created will have to the rest of the graph [10]. This
connectivity determines the performance of the graph underit-
erative decoding through its influence on stopping set creation.
The performance improvements achieved in the error floor
region by the codes constructed by IPEG algorithm support
the efficacy of applying graph connectivity and stopping set
avoidance principles to graph construction.

Another work in the literature adds a further set pruning
step based on the exact EMD measure of a set of variable
nodes, with the set being that of all variable nodes contained
in all paths between a particular candidate check node and
the variable node of interest [11]. The candidate with the
largest path set EMD is chosen as the survivor. For the case
when there is a single path between the candidate and variable
node, this measure gives an exact EMD of the cycle created.
However, when multiple paths exist then the EMD measure
produced will not reflect the likelihood that the individual
cycles created participate in stopping sets, but rather thelike-
lihood that the combination of all those cycles combined will
form or participate in a stopping set. This is clearly an issue as
smaller stopping sets are much more harmful to performance
than large ones, and each individual path constitutes a cycle
which may participate in a smaller stopping set, an eventuality
which is not reflected by the metric proposed in that work.
Nevertheless, the EMD-based metric progression did offer
further improvements in error rate performance in the error
floor region.

In this work, an alternative progression of metrics is pro-
posed for choosing the survivor check node from the set of
candidates. First, the PEG tree expansion is carried out to
find the set of check nodes at equal maximum distance from
the variable node of interest. This reduces the set of check
nodes to be considered greatly and has been demonstrated
as one of the best approaches currently known. As with
the original algorithm, the minimum node weight metric is
also applied, further reducing the set of check nodes to be
considered. For each of these survivors, in an operation to be
outlined in the following section, for each candidate check
node each distinct path from root variable node to candidate
check node is identified and the precise EMD of each path is
computed. From the current candidate check node set, those
check nodes with fewest paths from variable node to check
node are selected to survive. The justification for this selection
metric lies in the fact that stopping sets are formed either
from single zero EMD cycles (comprised of only weight two
variable nodes) or from the combination of cycles such that
they are joined by all of their respective extrinsic edges. Thus,
reducing the number of small cycles in the graph has the effect
of reducing the likelihood of stopping set creation. Note that
the individual zero EMD cycles are easily avoided in graphs
constructed by the PEG algorithm by applying the constraints
on the number of weight two variable nodes of [19]. Fig. 3
provides results confirming the effectiveness of this metric for
the BEC channel, comparing the performance of the standard
PEG constructed graph with that of the PEG algorithm and
minimum path number metric. Finally, for the remaining check
nodes which have equal maximum distance, minimum weight
and the same minimum number of shortest paths from the
variable node of interest, the average EMD of the shortest
paths is computed and the candidate with the largest value
is chosen for edge placement. This choice of average EMD
across all paths rather than the EMD of the path with worst
connection is again made to reduce the overall likelihood of
stopping set creation in the graph construction. The results
presented in Section V-B demonstrate the efficacy of avoiding
stopping set creation throughout the graph in this manner, with
a gain of approximately0.5dB observed for the QC-LDPC
graph and of approximately0.25dB for the IRA graph.

C. Computation of the Metric

As the metric progression detailed in the following makes
use of the notation introduced in [7], a brief review is useful.
The PEG algorithm involves a tree expansion from the root
variable nodevj , with each level added to the tree including
an additional subset of check and variable nodes, up to the
level l at which all check nodes are included in the tree, or
further expansion adds no new check nodes. The set of check
nodes reached at levell is denotedN l

vj
while those not yet

included are denotedN l
vj

. We also define the set of variable
nodes included in the tree from nodeni to m levels asMm

ni
.

Note that, for variable nodes,M0
vj

contains onlyvj while
for check nodesM0

ci
contains the immediate variable node

neighbours ofci. We denoteC the set of all M check nodes.
Once the initial stage of graph construction is complete, the
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Fig. 3. Plot showing the performance on the BEC of the graph constructed
with the first stage of the proposed metric progression only,compared to
the codes constructed by the standard PEG algorithm. Also included is the
EMD-based construction of [11].

PEG algorithm first returns the subset

A = {N l−1
vj : N l

vj
= ∅}, (5)

and from this set the minimum weight candidates are selected
as

B = {ci : |M
0
ci
| = min

cx∈A
|M0

cx
|}. (6)

Then for the node pair{vj , ci} with ci ∈ B and L levels
betweenvj and ci, such thatNL

vj
= ∅, the set of variable

nodes found at the levelsa in all paths between the nodes in
this pair is

Da = Ma
vj

∩ML−a
ci

(7)

The setsDa must be found for each of theL levels in the
graph betweenvj and ci. There exists a path between two
variable nodes in adjacent levelsa anda+ 1 if

N 0
vx

∩ N 0
vy

6= ∅ , vx ∈ Da , vy ∈ Da+1. (8)

In order to produce the distinct path number and path EMD
metrics, it is necessary to find the set of distinct path variable
node sets. These sets are expanded level by level and intialised
for the connections from root node to each node inD1 as

s1 = {vj, vu1
}, s2 = {vj , vu2

}, · · · , s|D1| = {vj , vu|D1|
},

(9)
because there is an edge connecting the root nodevj to each

node in the first level. The number of distinct paths at the first
level is P1 = |D1|, while the number of distinct paths up to
level a is denotedPa. For each path and path variable node
set sv to level a with v ∈ {1, · · · , Pa}, with variable node
va = sv ∩ Da the node insv which was found at the current
level, there will be|va ∩Da+1| distinct paths after expanding
the set of distinct path sets to level(a + 1). The new sets
produced from the paths sets to levela and those nodes in
level (a+ 1) are produced according to:

sx = {sv ∪ vwy
: N 0

sv∩Da
∩ N 0

vwy
6= ∅},

∀sv, v ∈ {1, · · · , Pa}, ∀vwy
∈ Da+1. (10)

Thus a distinct path set for the next level is created for each
combination of the path set to the current levelsv and a node
in Da+1 if there is a path between the node insv at the current
level and the node inDa+1. When this process has been carried
outL−1 times for the check nodeci then the set of all distinct
path setsSci = {sp,ci}, p ∈ {1, · · ·PL} to level L is found.
The number of distinct paths fromvj to ci, denotedPci , is the
cardinality of the set of all distinct path sets,Pci = |Sci | =
PL. The above process must be carried out for each check
node inB. The number of distinct paths for each check node
is the first element of the proposed metric progression used to
prune the set of candidate check nodes:

C = {ci : Pci = min
cy∈B

Pcy}. (11)

In the event that there is a single entry inC the check
node selection procedure terminates and that check node is
chosen as the survivor node and the edge{vj , C} is placed. If,
however, there is more than one element inC, the path EMD
of each set inSci is computed forci ∈ C. The EMD for the
pathp connecting to the check nodeci and corresponding to
the setsp,ci is:

Ep,ci = |{ck : ck ∈ N 0
vb
, ck 6∈ N 0

vc∈sp,ci
\vb

}|,

∀vb ∈ sp,ci . (12)

The EMD Ep,ci for each path can be computed simply by
taking the sum of the columns of the parity-check matrix
corresponding to the nodes insp,ci and counting the number
of 1s in the resulting vector [11]. For each check node inC,
the EMD of (12) is computed for all paths inSci and then the
final metric used is computed as the mean of these path EMD
values:

γci =
1

Pci

∑

p=1:Pci

Ep,ci . (13)

The successful candidate is then the check node with the
largest mean path EMD value:

cplace = ci ∈ C : γci = max
cz∈C

γcz (14)

Fig. 4 gives the graphical representation of (7)-(10), for a
particular variable nodev0 and two check node candidates
labeledce andcf , respectively. The tree is expanded to depth
two and the nodes at each level for all paths are identified by
applying (7) for levels 1 and 2. So, from the downward tree
from v0, the variable nodes in the first level of the downward
tree areM1

v0
= {v1 , v2, v3} while from the first upward tree

from ce, it is clear that the nodes reached at levelL− 1 = 1
areM1

ce
= {v2 , v3, v5, v6}, so the nodes which are found

at that level in both trees are the nodes present in the graph
connectingv0 and ce, D1 = {v2, v3}. The same observation
givesM2

v0
= {v4 , v5, v6} andM0

ce
= {v4} so it is clear

that v4 alone appears in the graph fromv0 and ce at this
level, D2 = {v4}. For the graph betweenv0 and cf , it is
observed that there is a single path only, asD1 = {v2} and
D2 = {v5}. In this simple example two paths are identified
betweenv0 and ce while a single path is identified between
v0 and cf , and according to the metric progression outlined,
cf would be chosen for the edge placement. In this simple
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example the EMD calculation and pruning of (12)-(14) would
not be needed as there is already a single superior check node
candidate.

v0

ce cf

v2

v4

ce

v4

v0

Downward Tree Upward Tree 1 Upward Tree 2

v1 v3

v5 v6

ca cb

cc cd cc cd

v2 v3v5 v6

cb

v0

v5

cf

cc

v2 v4

cb

Fig. 4. The path identification process described by (7)-(10) as implemented
by a comparison of a downward PEG-like tree from the root variable node and
an upward tree from each of the candidate check nodes. For a given candidate,
any node found at the same level in both the downward and upward tree is
contained in the graph between the root variable nodev0 and that candidate
check node. By (9)-(10) the unique paths are identified.

The pseudocode of Algorithm 1 explicitly describes the
algorithm and shows where equations (5)-(14) appear in the
structure of the proposed design algorithm.

IV. FULL DIVERSITY CODES WITH REDUCED STRUCTURE

In this section a class of codes with fewer constraints on
the graph structure than the Root-LDPC graph [20],and
thus termed reduced structure, which are capable of achieving
the diversity of the block fading channel is introduced. A
Multipath EMD design extension for the codes with reduced
structure for block fading channels is also presented. The
diversity-achieving code class developed in this section com-
prises a generalisation of the previously presented code which
achieves the diversity of the channel withF = 2 only [21].
In that paper, two results from the literature were employed:

For a code to achieve full diversity on the block fading
channel, the systematic nodes must be fully recoverable on
the block binary erasure channel, i.e. the channel where the
fading coefficients take only the valuesβj ∈ [0,∞] [20].

And the well-known result concerning stopping sets:
Under iterative SPA decoding, each uncorrectable error

on the binary erasure channel is associated with a stopping
set, stopping sets fully characterise the error events on that
channel.[16].

Note also that the greatest code rate possible for a code to
achieve the diversity of the channel isR = 1

F
[20].

The rest of this section proceeds as follows: In part IV-A,
the previously presented code for theF = 2 case is outlined.
Part IV-B presents the extension of this approach to the
F = 3 case, while part IV-C indicates the procedure for
constructing a code for a block fading channel with any
number of fading coefficients. Part IV-D discusses the coding
gain of the proposed codes.

Algorithm 1 Proposed Multipath EMD-Driven PEG Design
1. for j = 1:N do
2. for k= 1:Ds(j) do
3. if k==1 then
4. Place edgevj , ci with the check node chosen

randomly from the minimum weight check node
set{c} : |M0

ci∈{c}| = min
m=1:M

|M0
cm

|.

5. else
6. Expand a tree fromvj to depthl such thateither

N l
vj

= N l−1
vj 6= ∅ or N l

vj
= ∅.

7. FromA, the check nodes at greatest distance from
vj select the set of check nodesB with minimum
weight:

8. A = {N l−1
vj : N l

vj
= ∅}

9. B = {ci : |M
0
ci
| = min

cx∈A
|M0

cx
|}

10. For each check node inB, find all distinct paths
from the root variable node by the following pro-
cedure:

11. First find all nodes at each level as:
12. Da = Ma

vj
∩ML−a

ci

13. Intialise the path sets as:
14. sq = {vj , vuq

}, q ∈ {1, · · · ,D1}
15. and expand through levels2, · · · , L according to:
16. sx = {sv ∪ vwy

: N 0
sv∩Da

∩ N 0
vwy

6= ∅}, ∀sv, v ∈

{1, · · · , Pa}, ∀vwy
∈ Da+1

17. Prune the setB according to the number of distinct
paths, giving setC:

18. C = {ci : Pci = min
cy∈B

Pcy}

19. Compute the mean path EMD metrics for each
surviving check node candidate as follows:

20. Ep,ci = |{ck}| : ck ∈ N 0
s(b)p,ci

, ck 6∈

N 0
s(d 6=b)p,ci

∀b, d ∈ 1, · · · , l

21. γci =
1

Pci

∑

p=1:Pci

Ep,ci

22. Choose the check node which has the best graph
connectivity according to the Multipath EMD-
based metric as:

23. cplace = ci ∈ C : γci = max
cz∈C

γcz

24. end if
25. end for
26. end for

A. F = 2 Case

The work in [21] presented unstructured codes which
achieve full diversity on the block fading channel withF = 2
given certain constraints on rate, distribution and cycle prop-
erties. To meet the requirement that the systematic nodes be
recoverable on the block binary erasure channel, the fact that
stopping sets fully characterize errors on the binary erasure
channel and thus account for errors on the block erasure
channel is used to produce a new sufficient condition for
achieving the diversity of the channel:

A systematic node is not recovered if it is a member of a
stopping set and if that stopping set is erased
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We term a stopping set containing a systematic variable
node a systematic stopping set. In theF = 2 case, an
uncorrectable error occurs when all nodes in a systematic
stopping set are affected by the same fading coefficientβf .

V1 V2

β1 β2

Fig. 5. The rate≤ 1

2
code for the block fading channel withF = 2

The general parity-check matrix for the code on theF = 2
channel is presented in Fig. 5.V1 is the set of variable nodes
affected byβ1 and V2 is the set of variable nodes affected
by β2. All the systematic nodes,Vsyst, are contained within
V1 and protection of these nodes is the goal. The requirement
that the code achieves full diversity on theF = 2 channel is
exactly the requirement that there exists no subsetS ⊆ Vsyst

such thatS is a stopping set [21]. That is:

∃vj ∈ S : ∃ci, ci ∈ N 0
vj
, ci /∈ N 0

vk∈S\vj
(15)

That is, for every subset of the systematic node set,Vsyst,
there exists some variable node with at least one extrinsic
connection with respect to that subset. Then there is no
stopping set contained withinVsyst and by the previously
stated results of the literature, each node is recoverable on
the block binary erasure channel [16], implying that the code
achieves full diversity [20]. Thus, the full diversity requirement
of the code has been stated as a constraint on the nature of
the code graph.

In [21], the requirement (15)is achieved by use of the PEG
construction and its property concerning cycle creation inthe
initial construction phase. As no cycle is created in this phase,
no stopping set may be created. For weight 2 variable nodes,
in the initial graph construction no cycle is created up to the
variable nodev(M−1) whereM is the number of check nodes
of the graph [6]. This results in the following constraint on
code dimension

K <
N

2
< (M − 1), (16)

which, combined with the specification that the systematic
nodes are assigned among these initially constructed weight 2
nodes, leads to a code class which achieves the diversity of
the channel.

B. F = 3 Case

For the channel withF = 3, the general parity-check
matrix is represented in Fig. 6. Again the systematic variable
nodesVsyst are contained withinV1. A stopping set based

V1 V2

β1 β2

V3

β3

Fig. 6. The rate≤ 1

3
code for the block fading channel withF = 3

criterion for full diversity will be developed. In this caseit
is necessary that the elements ofVsyst be recoverable on the
block binary erasure channel observation where any one of the
fading coefficients may be non-zero, or any pair may be non-
zero. If all three coefficients are zero (β1 = β2 = β3 = 0) the
systematic nodes are entirely unrecoverable, and ifβ1 = ∞
the systematic nodes will be fully recovered from the channel
irrespective ofβ2 and β3. In the case that, if for example,
β3 is non-zero whileβ1 = β2 = 0, then any stopping set
S ⊆ V1∪V2 would be unrecoverable [16] and likewise for the
other single non-zero fading coefficient scenario. Considering
only the error rate of the systematic nodes, the necessity that
S is not a stopping set is again as expressed in (15), but the
subsets of nodes for which this requirement must hold has
expanded to every set where:

S ∩ Vsyst 6= ∅ : S ⊆ V1 ∪ V2 , S ⊆ V1 ∪ V3. (17)

This full diversity requirement comprises a constraint on the
graphical structure of the code realisation. For theF = 3 case,
the requirement is more difficult to achieve, as there are more
configurations of the block erasures which must be considered.
However, once a graph is constructed which satisfies (15) and
(17), it is guaranteed to achieve full diversity on the block
fading channel withF = 3, by the results of [16] and [20].

The equations (15) and (17) together impose the limit that
no systematic stopping set exists solely among the variable
nodes inV1, among the nodes[V1 V2] and among the variable
nodes[V1 V3]. In the Root-LDPC code approach, stopping
sets are avoided by the imposition of the root-check structure.
However, in order to avoid this structural requirement, an
alternative solution is presented in Fig. 7. Each of the two
subgraphs[Hβ1,1 Hβ2

] and [Hβ1,2 Hβ3
] are constructed to

achieve full diversity on theF = 2 channel. As such, the
subgraphHβ1,1 is cycle free, as isHβ1,2. Combined, they
may have many cycles, however the placement of the null
matrices ensures that extrinsic connections exist, toHβ3

with
respect toβ1, β2 and to Hβ2

with respect toβ1, β3. Thus
the systematic variable nodes are recoverable under both
β1 = β2 = 0, β3 = ∞ and β1 = β3 = 0, β2 = ∞.
Additionally, underβ1 = 0, β2 = β3 = ∞ the extrinsic
connections ensure no systematic stopping sets among the
subset of variable nodes affected byβ1 only. This code
therefore completely recovers the systematic bits on the block
erasure channel and so achieves full diversity on the block
fading channel.
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Hβ1,1 Hβ2 0

Hβ1,2 0 Hβ3

HBF 3
=

β1 β2 β3

Fig. 7. Full diversity parity check matrix for theF = 3 channel

C. Cases withF > 3

V1 V2

β1 β2

VF

βF

Fig. 8. The rate≤ 1

F
code for the general block fading channel

In the general case withF fading coefficients, to recover the
systematic nodes contained inV1, the stopping set requirement
generalises to involve all subsets including elements ofV1 and
excluding all elements of one or more other fade-affected sets
of nodes. Now (15) must hold for all the subsets described
by:

S ∩ Vsyst 6= ∅, (18)

where

S ⊆ V1 ∪ Vk1
∪ Vk2

· · · ∪ Vkm
: {k1 · · · km} ⊂ {2, · · · , F}.

(19)
The constraints on the code graph described by Eqns. (15),

(18) and (19) provide a graphical interpretation of the require-
ments to achieve full diversity on the block fading channel
with generalF .

The full diversity code for theF = 4 channel is provided
in Fig. 9. Diversity-achieving codes for block fading channels
with a greater number of fading channels are constructed in a
similar progression as that from theF = 3 code to theF = 4
code.

Hβ1,1

Hβ1,2

Hβ1,3

Hβ2

Hβ3

Hβ4

0

0 0

0

0 0

HBF 4
=

β1 β2 β3 β4

Fig. 9. Full diversity parity check matrix for theF = 4 channel

D. Pseudocode for the Proposed Codes

The pseudocode for construction of the proposed diversity-
achieving codes with an arbitrary number of fades,F , is
provided in Algorithm 2, demonstrating clearly the separate
construction of the submatrices by the PEG-based construc-
tion.

E. Rate and Fade Compatible Puncturing

From the code graph structures in Figs. 7 and 9 for diversity
achieving codes on block fading channels withF = 3
and F = 4, respectively, we can see that the graph for
the F − 1 channel is effectively nested within the graph
for the channel withF fading coefficients. In addition, the
graphs are designed to recover from the worst-case scenario
of αi = 0, i ∈ {1, · · · , F}. This allows the use of the graph
designed for the channel withF fading coefficients on the
F −1 channel by means of the elementary puncturing scheme
wherein the bits ofVF are punctured. In this case, only the
bits [V1,V2, · · · ,VF−1] are transmitted over the block fading
channel withF − 1 fading coefficients. At the input to the
decoder, the LLRs associated with the variable nodes inVF

are set to zero, and iterative decoding is carried out on the
full graph for theF -channel code. As this is equivalent to an
erasure, the properties of the graph ensure that this does not
affect the diversity achieving capabilities, with respectto the
error rate of the systematic bits.

Algorithm 2 Proposed Diversity-Achieving LDPC Codes

1. Initialise withλsub(x) derived from the desired finalλ(x),
Rsub <

1
2 andNsub = K + M

F
.

2. for x = 1:F do
3. Call Algorithm 1 to carry out the Multipath

EMD PEG construction for each submatrix
[Hβ1,1Hβ2

], [Hβ1,2Hβ3
], · · · [Hβ1,F−1HβF

].
4. end for
5. Construct the final code from the submatrices as in Figs.

7 and 9, stacking theHβ1,x−1 submatrices vertically in
the systematic part of the parity-check matrix and placing
the Hβx

submatrices along the diagonal of theM × M
parity part of the final parity-check matrix.

V. SIMULATION RESULTS

The simulation study in this section is presented in three
parts. In the first, the performance results for the unstructured
LDPC code are provided on the binary erasure channel. This
demonstrates of the success of the proposed construction
at avoidance of stopping sets in the graph, as every error
event under iterative decoding of LDPC codes on the BEC
is caused by a stopping set [16]. The second section provides
performance results for the structured code classes on both
BEC and AWGN channels. The results for the AWGN channel
allow easy comparison of performance with the literature. In
the final part of this section, the reduced structure diversity-
achieving codes are evaluated on the block fading channel. In
this case, the results are provided as the variation of the frame



8

error rate (FER) of the systematic part of the decoded code
word as the channel SNR varies. This is due to the challenging
nature of the channel, meaning that the parity part of the code
word is generally not corrected. This is in contrast to the
results provided for the binary erasure and AWGN channels,
where the error rate is computed for the whole code word
as is standard in the literature. The decoder is operated to a
maximum of40 decoder iterations for both BEC and AWGN
channels, while a note is made about the choice of decoder
iterations in Section V-C.

For both the general ensemble codes, the QC-LDPC codes
and IRA codes, the irregular degree distribution was the
density evolution optimised maximum degree8 variable node
distribution available in the literature [3], Table II:

λ(x) = .30013x+ .28395x2 + .41592x7 (20)

For all codes constructed, the check node distribution was not
specified in the construction algorithm, but rather was forced
to have near-regular concentrated form:

ρ(x) = axb + (1− a)xb−1. (21)

Following [19], the variable node degree distribution was
constrained to ensure ensure no stopping sets were formed
of weight-2 variable nodes alone, a particularly harmful case.
As this requirement was applied to all the codes constructed,
it does not affect the comparison of construction algorithms
presented.

A. Unstructured LDPC Codes

Fig. 10 shows the performance of graphs constructed by
the construction algorithms considered in Section III on the
BEC. As previously stated, these results are significant as they
directly demonstrate the relative presence of harmful stopping
sets in the respective graphs. The performance improvements
in the error floor region shown in Fig. 10 are significant.

B. QC-LDPC and IRA Codes

In this section we present results demonstrating the gain
achieved through the use of the proposed novel construction
algorithm, comparing the short block length performance of
a number of classes of codes to those codes constructed by
previous methods, the original PEG algorithm [7] and the
ACE-based IPEG improvement [10], along with an algebraic
construction for the QC-LDPC codes [23]. The QC-LDPC
codes were constructed as in [12], with circulant size8 which
is relatively small compared to the final graph size but is
line with the results of that paper. The final distribution
of the QC-LDPC codes was thus altered slightly from (20)
in order to achieve the necessary structure. The algebraic
construction based on Sidon sequences was also included
in the comparison, in order to provide a point of reference
for the performance achieved by the codes constructed. Note
that this algebraic construction uses larger tile sizes and
therefore achieves greater complexity reduction and possible
parallelisation. However, this construction lacks the flexibility
of the PEG-based construction algorithm. The IRA codes were
constructed by the PEG-based algorithms directly, with the

only necessary alteration being the initialisation of the graph
associated with the parity bits of the code word to the pre-
determined dual diagonal structure of the accumulator.

Improved performance is seen in the error floor region
for both the QC-LDPC and IRA codes constructed by the
proposed Multipath EMD PEG-based algorithm compared
with both the IPEG-based constructions using the ACE metric
[10] and the original PEG-based constructions [7]. Fig. 12
provides the error rate plot for the IRA code class, with the
modified IPEG design [10] and the proposed Multipath EMD
strategy included on the plot. The IRA graphs constructed have
block length250 and rate1

2 .
Fig. 13 presents the results for the QC-LDPC codes, with

the original PEG [7], the modified IPEG [10] and the pro-
posed Multipath EMD constructions all used to construct the
constrained QC-LDPC irregular code graph [12] with block
length 256 and submatrix sizeQ = 8. The block length of
graph constructed using Sidon sequences is258, the circulant
size isQ = 43 and the graph is(3, 6) regular. Fig. 13 shows
that the PEG-based designs provide significant performance
improvements over the algebraic construction generally, while
the IPEG design offers modest improvements over the PEG
construction in the error floor region. The proposed Multipath
EMD strategy achieves a gain of0.4dB over the PEG con-
struction and0.3dB over the IPEG construction at an error
rate below10−7. Fig. 13 includes results for the previously
presented alteration to the IPEG algorithm which makes use
of a precise EMD value after the ACE-based decision has been
made [11]. It is clear that the strategy presented in this paper
outperforms that design in the error floor region. Also included
is the plot for the QC-LDPC graph constructed by the QC-
DOPEG algorithm [5], demonstrating that although that graph
construction offers better performance than the considered
constructions from the literature, the method proposed in this
work offers best performance overall, with a gain observed
of approximately0.2dB over the QC-DOPEG constructed
graph. This may be accounted for by the fact that the decoder
optimisation (DO) operation is applied for a limited number
of frames and iterations due to complexity constraints, and
that the selection of the noise parameter for testing in the DO
operation may be imperfect. The proposed strategy achieves
a gain of 0.25dB over the existing strategy at an error rate
below 10−7.

C. Results for the Block Fading Channel

Simulation results for the block fading channel are presented
in Figs. 14 to 16. All codes are irregular, and for channels
F > 2the distributions are derived by density evolution for
the AWGN channel, as optimisation [21] remains an open
problem for cases withF > 2. The suboptimal distributions
suffice to show that the proposed codes achieve full diversity
and perform close to the Root-LDPC codes with the same
distributions. For theF = 2 unstructured code the degree
distribution termedCode 3 in [21] was used. For all results
in this section, the fading coefficients are Rayleigh distributed
with scale parameter of0.5.

Fig. 14 demonstrates that the proposed code class performs
close to the Root-LDPC class, approaching the limit of the
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and block lengthN = 230.
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Fig. 12. Performance of the IRA code graph constructed by theproposed
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Fig. 13. Performance of QC-structured LDPC codes of the withrateR =
1

2

and block lengthN = 256 and circulant sizeQ = 8.

channel. However, this figure also demonstrates that the pro-
posed class requires a greater number of iterations (40) to con-
verge to the performance of the Root-LDPC graph operating
at 20 decoder iterations. This motivates the results presented
in Figs. 16 and 17. Note that results are also provided for
the proposed code graph designed for theF = 4 channel
but punctured for use on theF = 3 channel, demonstrating
this useful feature of the proposed class. Note that for the
proposed code class a small rate reduction is imposed in
order to meet the requirements of (16) for achieving full
diversity. For theF = 3 channel, the rate is reduced from
1
3 to 0.3248 while for theF = 4 code of Fig. 15 the rate of
the proposed code is0.2468 rather than14 . All graphs in Fig.
14 are constructed by the PEG algorithm. Fig. 15 demonstrates
that the generalisation to higherF is valid.

The slower convergence observed in Figs. 14 and 15 mo-
tivated the application of the proposed graph constructionto
condition the graph. It can be seen clearly in Fig. 16 that
the Multipath EMD PEG construction allows a significantly
improved speed of convergence. Fig. 16 shows the perfor-
mance of bothF = 2 andF = 3 codes at fixed SNR over a
range of maximum allowed iterations, while Fig. 17 shows
the performance of theF = 2 code at a fixed maximum
number of iterations of20 for a range of SNR values. Both
show the performance improvements that the proposed graph
construction offer for the new class of codes.

VI. CONCLUSIONS

In this work, a graph-based construction algorithm was
proposed which improves the connection properties of the
final graph, providing performance gains in the error floor
region of operation. The proposed algorithm, called Multipath
EMD PEG construction, is demonstrated to provide significant
performance improvements for a number of useful structured
code classes. In addition, a new class of codes for achieving
full diversity on general block fading channels is presented
and is demonstrated to perform competitively compared to the
previously presented code class for this channel. The novel
Multipath EMD construction algorithm is then applied to the
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Fig. 14. Results for the proposed reduced-structure diversity-achieving code
on the block fading channel withF = 3. Included are the Root-LDPC code
for that channel and the standard LDPC code of the same dimensions. The
plot for the unstructured code designed for theF = 4 channel and punctured
for use on theF = 3 channel is also included. All graphs are constructed by
the PEG algorithm.
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Fig. 15. Results for the proposed unstructured code for the block fading
channel withF = 4 compared to the Root-LDPC code for that channel and
the standard LDPC code. All graphs are constructed by the PEGalgorithm.

construction of this code class, with improvements in decoder
convergence speed observed as a result.

APPENDIX A
ANALYSIS OF THE MULTIPATH EMD METRIC

PROGRESSION

In a PEG-based construction, any cycles created by place-
ment of the edge(xi, vj) will contain that edge, including the
shortest-length cycles created. One or many cycles are created
when, in Step 6 of Algorithm 1,N l

vj
= ∅.

In review, the PEG algorithm selects from the setA =

{N l−1
vj : N l

vj
= ∅} the set of nodes with minimum weight,

B = {ci : |M0
ci
| = min

cx∈A
|M0

cx
|}. In that algorithm, the

nodes in this set were considered to be equivalent in terms
of their effect on the performance under iterative decoding
as they are at equal maximum distance fromvj , and so a
node was selected from this set at random. In the following, a
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Fig. 16. Error rate performance against decoder iterationsfor the codes on
the BF channel withF = 2 andF = 3, respectively. In (a) the code rate
is 0.48, block lengthN = 248 and SNR is 24dB while in (b) the code rate
0.3262, block length isN = 282 and SNR is 18dB. For both, FER is plotted
against decoder iteration number.
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Fig. 17. A further plot for theF = 2 code of Fig. 16(a) showing the
variation of FER with SNR, with the decoder operating to a maximum of 20
iterations.

justification for the decision metric progression employedin
the proposed construction algorithm is provided.

Denote the number of shortest-length paths from check node
cy ∈ B to the current variable nodevj asPcy and recall that
the setC = {ci : Pci = min

cy∈B
Pcy}. Thus a placement involving

any element ofC would create the same minimum number of
shortest cycles,Pci . The proposed algorithm selects a node
from C based on the extrinsic connections of thosePci cycles.

At any particular edge placement in the progressive con-
struction, the original PEG algorithm would createPcy cycles
of length 2l+2, with cy ∈ B while the Multipath EMD
approach of this paper createsPci cycles of the same length.
By design:

Pci ≤ Pcy , ci ∈ C, cy ∈ B. (22)

In the above expression, the equality is satisfied in only two
cases, when

Pcy = P ∀ cy ∈ B, (23)
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whereP is some constant, or when

|B| = 1. (24)

In both of these cases,C = B. Thus, at worst the proposed
metric reduces to that of the original PEG algorithm.

Consider the construction of two code graphs, where all but
the final edge placement is made using the same original PEG
algorithm. For each placement, the number of shortest cycles
created, similarly to the notation used above,Pz,L(PEG)
with z indexing the edge placement andL denoting cycle
length. Thus the total number of length-4 cycles in the PEG
constructed graph is

∑

z=1:E

Pz,L(PEG), whereE is the total

number of edges in the graph. The same applies for cycles of
lengthL = 6, 8, · · · .

Now, the first graph in our hypothetical situation is con-
structed entirely by the PEG algorithm, while for the second
graph the final placement is made by the proposed Multipath
EMD algorithm. In both cases, cycles of lengthL = 2l+2 are
created. The total number of cycles of length2l + 2 in each
graph is ∑

z=1:E

Pz,2l+2(PEG), (25)

and ∑

z=1:E−1

Pz,2l+2(PEG) + PE,2l+2(MEMD), (26)

respectively.
We wish to show that
∑

z=1:E−1

Pz,2l+2(PEG)+PE,2l+2(MEMD) ≤
∑

z=1:E

Pz,2l+2(PEG),

(27)
Expanding the above equation, we obtain

∑

z=1:E−1

Pz,2l+2(PEG) + PE,2l+2(MEMD) ≤

∑

z=1:E−1

Pz,2l+2(PEG) + PE,2l+2(PEG).
(28)

From above, if we assume thatC 6= B,

PE,2l+2(PEG)− PE,2l+2(MEMD) = ǫ, (29)

whereǫ is some positive integer, while ifC = B,

PE,2l+2(PEG)− PE,2l+2(MEMD) = 0, (30)

proving that (27) holds.
Due to the suboptimal nature of PEG-based constructions,

where some choice in edge placement at an earlier stage
of the graph, though locally optimal, may negatively impact
on available choices for edge placement at a later stage of
construction, the corresponding proof may not be constructed
for earlier edge placements,z ≤ E. However, the proposed
algorithm follows the tractable locally optimal approach of the
PEG algorithm and has been demonstrated through simulation
to produce graphs capable of excellent performance. As further
support for the assertion that reduces the number of shortest
length cycles throughout the graph, Table I provides the total
number of cycles of length 6, 8 and 10 in a number of the code
graphs used in Fig. 13, with the cycles counted by means of the

algorithm of [24]. Note that the proposed algorithm produces
the graph with the fewest number of cycles of length 6 among
the constructions considered.

APPENDIX B
ON THE COMPLEXITY OF THE PROPOSEDGRAPH

CONSTRUCTIONALGORITHM

In order to provide an insight into the complexity required
for the proposed algorithm in comparison to that of the algo-
rithm in [11], the number of paths which must be evaluated in
order to compute the final EMD metric of each algorithm is
considered. To justify this, consider that both algorithmscarry
out the trivial task of EMD computation once the paths have
been identified, while the criterion applied prior to the EMD
in the proposed algorithm is based simply on the number of
paths identified for each candidate check node.

Fig. 18 provides the total number of paths which must
be identified for the algorithms considered, along with the
number of paths of length4 or longer, leading to cycles
of length 10 or longer. From this figure it is clear that the
proposed candidate selection criteria incur a significant cost in
terms of complexity. However, note that the majority of path
identification operations for the proposed algorithm happen for
shorter paths, mitigating somewhat the complexity cost.
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Fig. 18. A plot of the number of paths computed for the PEG-Multipath-
EMD and PEG-ACE-EMD algorithms, respectively, for variousblock lengths.
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