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Abstract—Low-density parity-check (LDPC) codes are capable was later improved by using Approximated Cycle Extrinsic
of achieving excellent performance and provide a useful a- Message Degree (ACE) properties [8], [9]. PEG-based design
native for high performance applications. However, at medim have also been significantly successful in graph constmicti

to high signal-to-noise ratios (SNR), an observable error €lor
arises from the loss of independence of messages passed undd®! POth unstructured and structured classes [5], [10]],[11

iterative graph-based decoding. In this paper, the error flor [12], dealing with stopping sets [13], [14].
performance of short block length codes is improved by use cd In this paper we propose a Multipath EMD strategy for
novel candidate selection metric in code graph constructio The  pgEG-pased graph construction of LDPC codes which leads

proposed Multipath EMD approach avoids harmful structures . .
in the graph by evaluating certain properties of the cycles to improved error floor performance in the constructed code

which may be introduced in each edge placement. We present '€alization. The proposed method is flexible in rate, irtagu
Multipath EMD based designs for several structured LDPC cogs node degree distributions and the class of constructed ¢bde
including quasi-cyclic and irregular repeat accumulate caes. In  is implemented as a progression of decision metrics whieh ar
addition, an extended class of diversity-achieving codesnothe |,5ed to prune a set of candidate placements, with the desisio

challenging block fading channel is proposed and considede " -
with the Multipath EMD design. This combined approach is based on an indirect measure of the impact of each placement

demonstrated to provide gains in decoder convergence andrer  ON the graph_ as a whole. The goal is to reduce .th_e effects
rate performance. A simulation study evaluates the perfornance 0f the unavoidable graph structures present at finite block

of the proposed and existing state-of-the-art methods. lengths on the iterative LDPC decoding process. Following
Index Terms—Channel coding, Low-density parity-check the presentation of the proposed metric, a novel class of
codes, lterative decoding codes capable of approaching the outage limit on block gadin

channels with different numbers of fading coefficients isdn
duced. These codes are demonstrated to perform excellently
at short block lengths, but require a relatively large numbe
Low-density parity-check codes [1] are a class of iterd§iveof decoder iterations to achieve the desired performanie. T
decoded capacity-approaching codes. Due to excellendperproposed Multipath EMD construction is demonstrated to
mance and low-complexity, parallelisable decoding, thiss provide considerable gains in terms of decoder convergence
of codes is increasingly presented as an option for use Andetailed justification for each of the main contributions
wireless standards, for example DVB-S2, IEEE 802.11 (Wi-Fbf the paper, namely the proposed novel graph construction
and the IEEE 802.16e standard for WiMAX. approach and the proposed diversity-achieving class cés;od
Irregular LDPC codes [2] offer improved performance ims provided. A simulation study of the proposed constructio
the low to medium signal-to-noise ration (SNR) region odlong with the existing state-of-the-art is provided, shmaythe
operation. Asymptotic analysis of the threshold behavibr gains achievable for a number of structured code classeseon t
irregular LDPC codes for a given set of code parameters allo\WGN channel and for the proposed novel reduced structure
identification of optimal irregular LDPC ensembles [3] andiversity-achieving codes on the block fading channel.
predicts well the performance of LDPC codes at large block | summary, this paper has the following contributions:
lengths. However, at short to medium block lengths, closed . .
paths in the graph invalidate the assumption that message$ The proposed Multipath EMD graph construction strat-

passed in the iterative decoding are independent. In pedcti $_%y. 4 code cl desi block
terms, the closed paths (cycles) in the graph harm error® € proposed code class design to operate on a bioc
fading channel with an arbitrary number of fading coef-

rate performance and introduce an error floor, a reduction in =
error rate performance improvement with improving channel ficients.
conditions. At larger block lengths, graphs selected ramgo  The rest of this paper is laid out as follows: In Section
from the code ensemble with desired parameters generdllyhe channel models considered in this paper are described
perform well, but at shorter lengths care must be taken iptgraln Section Il the proposed Multipath metric progression is
selection or construction [4]-[5]. The trellis-based aggurh of detailed, including a discussion of the previous approsche
[6] demonstrated that cycles do not contribute to the emte r and a mathematical and algorithmic description of the pro-
uniformly. A tree-based approach for graph construction baspdsed approach. In section IV, the novel code class for use
on progressive edge growth (PEG) was presented in [7] aod the block fading channel is described, a discussion of pri
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work for the channel with two fading coefficients motivates t A. Preliminaries
expansion first to the channel with three fading coefficients 1) Design Problem:The design problem for LDPC codes
and then to the general case. A note on the versatile Use, 9 ' gn p

of these codes on channels with varying numbers of fadi o find @ member of the code ensemble which provides
o arying . Bod performance on the channel of interest. Certain klate
coefficients through the use of a simple puncturing sche

is also provided. In Section V, a detailed simulation stu E?sh[lset]ru;:;l:jrets;a pnpai\rr;r;]ehs/ e&siig?-ﬁzegwt?;zi [;E\Sl,vvitcizplgg
'S prow_ded for t_he work p_roposed in this paper. SeCtIornesponsibleforerrorevents under iterative decoding. él@x
VI provides a brief conclusion to the paper. The appendix .. . . .

rovides some analysis and discussion of the work propo (g)$}|m|sgt|on O.f t.he code graph with respect to these struc-
'F:w the paber Yofes directly is in general too complex to be achievable for
! Paper. practical code lengths [18]. Instead we resort to optirfosat
of these graph properties indirectly. Short length cyclageh

long been known to harm performance severely and girth

A general LDPC coding system is considered in this worlgyimisation results in improved performance over rangoml
as shown in Fig. 1, where a message represented byt  consiructed graphs. In fact, for the low to medium signal-to

vectorm is encoded to the lengthx N code word Vectos, ise ratio range of operation, the powerful progressigeed

subjected to the channel s_uch that the decoder operateg Ong'il?)vvth (PEG) algorithm provides among the best performance
vectorr to produce an estimate of the code wérd achievable by improving cycle length alone. Every pseudo-
codeword is associated with a stopping set, which are formed

Il. CHANNEL MODELS

m oder s r T § X
—> En(édel Channel Decoder |—» from connected cycles. On the binary erasure channel (BEC)
stopping sets dictate performance entirel. [Careful graph
Fig. 1. A general LDPC coding system construction with respect to stopping sets yields improved

performance [6][10].

In this paper a number of channels are considered. The2) Definitions: In constructing LDPC code graphs, greater
received vector is given by connectivity has been demonstrated to influence error floor
performance of the graph [6][10]. In the following, a num-
ber of basic definitions are provided which will clarify the
For the AWGN channel development of the Multipath EMD metric.

Definition 1: A cycle is a closed path in a Tanner graph
with no repeated edges.
andn is the vector of Gaussian noise samples Definition 2: A stopping set is a set of variable nodes for

r=[a181, agse, - ,ansy|+ n. (1)

CYl:OéQ:"':OéNzl. (2)

n=[n1, na,-- 0y, 3) yvhich every check node neighbou.r of any member of the set
is connected to the set at least twilde].
wheren; ~ N(vafQ_)- _ _ This structure leads to an uncorrectable error on the BEC
For the block fading channel with F independent fades, anq constitutes a worst-case scenario in terms of indeperde
al=as=-=an =B, of messages passed under iterative decoding in general.
_ o Definition 3: The extrinsic message degree (EMD) of a set
AN = QN oy = =02y = [,

of variable nodes (or a cycle) is the number of check node
neighbours singly connected to that set (or cy¢&)

Clearly, the EMD of a stopping set is zero.

Definition 4: The approximate cycle EMD (ACE) for a

where the fading coefficients are Rayleigh distributgde variable node is the degree of the variable node minus two
R* and again the noise is Gaussian,~ N (0, c?). [6].

For the fast fading channel, each coded bit is subjected toThe ACE metric provides an approximate measure of the
independent fading coefficients which are Rayleigh disteld EMD of a cycle by assuming that all check node neighbours
«; € R*. This is equivalent to the block fading channel wittwhich are not directly involved in the cycle are connected to
F = N fades, and the additive white Gaussian noise samplég cycle only once.
are given byn; ~ N'(0,0?). Figure 2 outlines the points reviewed Definitions 1 - 4

Two cycles are shown, the length 4 cydig, ¢, v2, co] and
[1l. PROPOSEDMULTIPATH EMD METRIC PROGRESSION  the length 6 cycldvs, cs, vs, cs, v4, c4]. Neither set{vy, vy}

In this section, the basis for the proposed constructiomr {v2,vs,v4} alone is a stopping set, as both have extrinsic
algorithm, the novel Multipath EMD metric progression, i€onnections fromv,, the dotted black lines are extrinsic with
introduced and discussed in detail. An overview of previousspect to the sefv;,v2} while the dashed red lines are
construction metrics motivates the approach considered ertrinsic with respect to the sdts,vs,v4}. It is clear that
this work. The new metric progression is then outlined ithe set{vq,vs,vs,v4} IS a stopping set, formed from the
detail, and the pseudocode for the proposed constructionc@nbination of the length 4 and length 6 cycles. Note that
provided, explicitly describing the proposed Multipath EM using an ACE style metric based on variable node weight,
construction algorithm. the set{vy,vs,v3,v4} would appear to have two extrinsic

QN7%+1:OZN,JFV+2:"':OLN:/BF7 (4)



In this work, an alternative progression of metrics is pro-
posed for choosing the survivor check node from the set of
candidates. First, the PEG tree expansion is carried out to
find the set of check nodes at equal maximum distance from
the variable node of interest. This reduces the set of check
nodes to be considered greatly and has been demonstrated
as one of the best approaches currently known. As with
the original algorithm, the minimum node weight metric is
also applied, further reducing the set of check nodes to be
considered. For each of these survivors, in an operatioreto b

C1 Co C3 Cy Cs outlined in the following section, for each candidate check
node each distinct path from root variable node to candidate
Fig. 2. Small Tanner Graph with cycles check node is identified and the precise EMD of each path is

computed. From the current candidate check node set, those
heck nodes with fewest paths from variable node to check
de are selected to survive. The justification for thist&a
metric lies in the fact that stopping sets are formed either
_ from single zero EMD cycles (comprised of only weight two
B. Metric variable nodes) or from the combination of cycles such that
The PEG construction algorithm proceeds columnwise atfiey are joined by all of their respective extrinsic edgdsus,
edgewise. The task at each edge placement is to prune thersdticing the number of small cycles in the graph has theteffec
of all check nodes to a single survivor, which is connectedf reducing the likelihood of stopping set creation. Notatth
to the variable node under consideration. The PEG algorittthe individual zero EMD cycles are easily avoided in graphs
in its original form selected survivors according to thedest constructed by the PEG algorithm by applying the constsaint
path metric, resulting in creation of the longest possiylele; on the number of weight two variable nodes of [19]. Fig. 3
followed by the minimum current check node weight metriprovides results confirming the effectiveness of this mdtit
which gives the graph the desirable near-regular check ndtie BEC channel, comparing the performance of the standard
distribution. PEG constructed graph with that of the PEG algorithm and
The IPEG algorithm includes a further set-pruning steminimum path number metric. Finally, for the remaining dhec
based on the path ACE metric which provides an approximatedes which have equal maximum distance, minimum weight
measure of the level of connectivity which the cycle cand the same minimum number of shortest paths from the
cycles created will have to the rest of the graph [10]. Thigariable node of interest, the average EMD of the shortest
connectivity determines the performance of the graph uitderpaths is computed and the candidate with the largest value
erative decoding through its influence on stopping set icneat is chosen for edge placement. This choice of average EMD
The performance improvements achieved in the error floacross all paths rather than the EMD of the path with worst
region by the codes constructed by IPEG algorithm suppadnnection is again made to reduce the overall likelihood of
the efficacy of applying graph connectivity and stopping setopping set creation in the graph construction. The result
avoidance principles to graph construction. presented in Section V-B demonstrate the efficacy of avgidin
Another work in the literature adds a further set pruningtopping set creation throughout the graph in this mannér, w
step based on the exact EMD measure of a set of variablegain of approximately).5dB observed for the QC-LDPC
nodes, with the set being that of all variable nodes conthingraph and of approximately.25dB for the IRA graph.
in all paths between a particular candidate check node and
the variable node of interest [11]. The candidate with tf‘@
largest path set EMD is chosen as the survivor. For the case ] ) o )
when there is a single path between the candidate and variabl/AS the metric progression detailed in the following makes
node, this measure gives an exact EMD of the cycle creatége of the notation introduced in [7], a brief review is usefu
However, when multiple paths exist then the EMD measufd'® PEG algorithm involves a tree expansion from the root
produced will not reflect the likelihood that the individuatariable nodev;, with each level added to the tree including
cycles created participate in stopping sets, but rathelithe an add|t|ona_l subset of check and vgrlable n(_)des, up to the
lihood that the combination of all those cycles combined wilevel / at which all check nodes are included in the tree, or
form or participate in a stopping set. This is clearly an ésas further expansion adds no new check ners. The set of check
smaller stopping sets are much more harmful to performarfé@des reached at levélis denoted\; while those not yet
than large ones, and each individual path constitutes acyticluded are denoteﬂ/ﬁj. We also define the set of variable
which may participate in a smaller stopping set, an eveityualnodes included in the tree from nodg to m levels asM;}' .
which is not reflected by the metric proposed in that workJote that, for variable nodesMSj contains onlyv; while
Nevertheless, the EMD-based metric progression did offear check nodesMgi contains the immediate variable node
further improvements in error rate performance in the erraeighbours of;. We denoteC the set of all M check nodes.
floor region. Once the initial stage of graph construction is complete, th

. . C
connections, however a true EMD calculation shows that ﬂH
set has no extrinsic connections and so is a stopping set.

Computation of the Metric



o __ Binary Erasure Channel ‘ Thus a distinct path set for the next level is created for each

E——— " combination of the path set to the current lesgland a node
| e e ] ] in D, if there is a path between the nodesinat the current

level and the node i, 1. When this process has been carried
out L —1 times for the check node then the set of all distinct
path setsS., = {s,., },p € {1,--- Pp} to level L is found.

The number of distinct paths from} to ¢;, denoted?,,, is the
cardinality of the set of all distinct path setB,, = |S.,| =

P;. The above process must be carried out for each check
node inB. The number of distinct paths for each check node
is the first element of the proposed metric progression used t
prune the set of candidate check nodes:

0.‘25 0‘.3 0.‘35 0.‘4 o.L15 05 C {Cz : P, = ml% Pc1} (11)
S

BER

P

e

. . In the event that there is a single entry ¢hthe check
Fig. 3. Plot showing the performance on the BEC of the grapisttocted d lecti d . d th heck de i
with the first stage of the proposed metric progression ottynpared to node selection procedure terminates and that check node IS

the codes constructed by the standard PEG algorithm. Alsladed is the chosen as the survivor node and the eflgeC} is placed. If,
EMD-based construction of [11]. however, there is more than one elemen€jrthe path EMD
of each set irS., is computed fore; € C. The EMD for the
pathp connecting to the check nodg and corresponding to

PEG algorithm first returns the subset the sets, ., is:

A={NTNE =0, 5
AR O g e N a M, )
aatsnd from this set the minimum weight candidates are selected Yoy € Spe. (12)
B={c;:|M%|= min IM? |}. (6) The EMD E, ., for each path can be computed simply by
‘ ce €A *

taking the sum of the columns of the parity-check matrix
Then for the node paifv;,c;} with ¢; € B and L levels corresponding to the nodes #) ., and counting the number
betweenv; and ¢;, such that/\/L = (), the set of variable of 1s in the resulting vector [11]. For each check nod&jn
nodes found at the levelsin all paths between the nodes inthe EMD of (12) is computed for all paths 8y, and then the

this pair is final metric used is computed as the mean of these path EMD
Dy = Mg N M (7) values:

The setsD, must be found for each of thé levels in the ;3 Ep.e:- (13)

graph betweery; and¢;. There exists a path between two =Py

variable nodes in adjacent levelsanda + 1 if The successful candidate is then the check node with the

largest mean path EMD value:
NYOND #0 vz €Dy vy € Dayr. (8)
In order to produce the distinct path number and path EMD
metrics, it is necessary to find the set of distinct path ¥dia Fig. 4 gives the graphical representation of (7)-(10), for a
node sets. These sets are expanded level by level andsataliparticular variable nodey, and two check node candidates
for the connections from root node to each nod®inas labeledc. andcy, respectively. The tree is expanded to depth
two and the nodes at each level for all paths are identified by
applying (7) for levels 1 and 2. So, from the downward tree

. . from vg, the variable nodes in the first level of the downward
because there is an edge connecting the root npde each : !
; tree are/\/l = {v1 ,v2, vs3} while from the first upward tree

node_ln the first level. _The number of d|st|_nc_t paths at the f'er'rom e it |s clear that the nodes reached at legek 1 — 1
level is P, = |D;|, while the number of distinct paths up to 1 .
are M! = {vy ,v3, vs, v}, SO the nodes which are found

level a is denotedP,. For each path and path variable nodé
“ " p P at that level in both trees are the nodes present in the graph

sets, to levela with v € {1,---, P,}, with variable node

connectinguy andc,., D1 = {va, v3}. The same observation
ve = S, N D, the node ins, WhICh was found at the current 5 3

gives M7 = {vs ,vs, vs} and M. = {vs} so it is clear

level, there will be|v, N D, 1| distinct paths after expandlngthat v alone appears in the graph from and c, at this
it 4 e
the set of distinct path sets to levgl + 1). The new sets level, Dy — {us}. For the graph between, and c;, it is

Fer\(/)ef\jlu(zef I;O;rrletgfozﬁf:hesd saectiotr(c)“rlgvil)e:tnd those nodes in observed that th(_ere _is a single path only,7as= {vg_} an(_:i_
Dy = {vs}. In this simple example two paths are identified
So = {8y Uty : N0 oy ANO £ 0}, betweenv, andc. while a single path is identified between
! ° vg andcy, and according to the metric progression outlined,
Vsy,v € {1, -+, Pu}, Yoy, € Dot1. (10) ¢y would be chosen for the edge placement. In this simple

Cplace = Ci € C: Ve; = MaAX e, (14)
c,eC

S1 = {vjvvul}aSQ = {Ujvvu2}a"' »S|D1| = {’Ujv’UU\Dlt}v



example the EMD calculation and pruning of (12)-(14) wouldlgorithm 1 Proposed Multipath EMD-Driven PEG Design

not be needed as there is already a single superior check notlefor j = 1:V do

candidate. 2.

Downward Tree Upward Tree 1 Upward Tree 2 i
o Yo d .

Fig. 4. The path identification process described by (7)-@implemented 15
by a comparison of a downward PEG-like tree from the rootade node and '
an upward tree from each of the candidate check nodes. Feea gandidate,

for k= 1:D4(j) do
if k==1then

Place edgev;,c; with the check node chosen
randomly from the minimum weight check node
set{c} : |M? e }|— mln | 2.

else

Expand a tree fromy; to depth/ such thateither
NL =NiH#0or NI = 0.
From A4, the check nodes at greatest distance from
v; select the set of check nod8swith minimum
weight:

_ { lfl Nl _ @}
B={c: |/\/l0 | = mlI}lM/lO [}
For each check node i, find all distinct paths
from the root variable node by the following pro-
cedure:
First find all nodes at each level as:
Dy = M N ML
Intialise the path sets as:

any node found at the same level in both the downward and uptree is 14.
contained in the graph between the root variable nadand that candidate 15
check node. By (9)-(10) the unique paths are identified. '

Sq = {’Ujavuq}aq € {17 o aDI}
and expand through levels - -- | L according to:
16. e = {8y Uvw, : N2 1p. mNSwy # 0},Vs,,v €

The pseudocode of Algorithm 1 explicitly describes the {1, ’fa}’w% < ?_‘l“ h ber of disti
algorithm and shows where equations (5)-(14) appear in th Prune the seB according to the number of distinct

structure of the proposed design algorithm. paths, giving seC:
18. C=Ae¢: ci—mlnP }

IV. FuLL DIVERSITY CODES WITHREDUCED STRUCTURE 19. Compute the mean path EMD metrics for each

In this section a class of codes with fewer constraints on surviving check node candidate as follows:

the graph structure than the Root-LDPC graph [2G8nd 20. Epe, = Hea}l @ a € Nso(b)p s &

thus termed reduced structure, which are capable of acigevi /\/;O(d;éb) Wbhdel, -l o

the diversity of the block fading channel is introduced. A

Multipath EMD design extension for the codes with reduceé!- Z Ep.c,

structure for block fading channels is also presented. The )

diversity-achieving code class developed in this sectiom-c Choose_the check r_10de which has _the best graph

prises a generalisation of the previously presented codehwh connectlvny_ according to the Multipath EMD-
based metric as:
Cplace = C; €C 1 Ye, = max e,

achieves the diversity of the channel with = 2 only [21].
In that paper, two results from the literature were employe
For a code to achieve full diversity on the block fadin@4. end if
channel, the systematic nodes must be fully recoverable 2m end for
the block binary erasure channel, i.e. the channel where ti26. end for
fading coefficients take only the valugs e [0, oo] [20].
And the well-known result concerning stopping sets:
Under iterative SPA decoding, each uncorrectable erok r _ 9 case
on the binary erasure channel is associated with a stopping
set, stopping sets fully characterise the error events @i th The work in [21] presented unstructured codes which
channel.[16]. achieve full diversity on the block fading channel with= 2
Note also that the greatest code rate possible for a codegigen certain constraints on rate, distribution and cyetepp
achieve the diversity of the channelis= % + [20]. erties. To meet the requirement that the systematic nodes be
The rest of this section proceeds as follows In part IV-Agcoverable on the block binary erasure channel, the fatt th
the previously presented code for the= 2 case is outlined. stopping sets fully characterize errors on the binary eeasu
Part IV-B presents the extension of this approach to tigannel and thus account for errors on the block erasure
F = 3 case, while part IV-C indicates the procedure foehannel is used to produce a new sufficient condition for
constructing a code for a block fading channel with angchieving the diversity of the channel:
number of fading coefficients. Part IV-D discusses the ogpdin A systematic node is not recovered if it is a member of a
gain of the proposed codes. stopping set and if that stopping set is erased
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We term a stopping set containing a systematic variable
node a systematic stopping set. In ti#e = 2 case, an
uncorrectable error occurs when all nodes in a systematic
stopping set are affected by the same fading coeffigignt

By By

e VN

Fig. 6. The rate< % code for the block fading channel with = 3

criterion for full diversity will be developed. In this case
is necessary that the elementslaf,; be recoverable on the
block binary erasure channel observation where any onesof th
— — fading coefficients may be non-zero, or any pair may be non-
Fig. 5. The rate< 1 code for the block fading channel with = 2 zero. If all three coefficients are zerg(= > = 83 = 0) the
systematic nodes are entirely unrecoverable, ang, i= oo
The general parity-check matrix for the code on fiie= 2 the systematic nodes will be fully recovered from the channe

channel is presented in Fig. B is the set of variable nodesirrespective of3; and fs. In the case that, if for example,
affected by, and V4 is the set of variable nodes affected’s iS non-zero whiles, = f§, = 0, then any stopping set
by B,. All the systematic nodes/s,, are contained within S Chiuvy would be unrgcoverablle. [16] and I|I§eW|se lfc_>r the
V4 and protection of these nodes is the goal. The requirem&#er single non-zero fading coefficient scenario. Congide
that the code achieves full diversity on tfie= 2 channel is ©nly the error rate of the systematic nodes, the necessity th

exactly the requirement that there exists no sulsset V,,,, > IS Not a stopping set is again as expressed in (15), but the
such thatS is a stopping set [21]. That is: subsets of nodes for which this requirement must hold has

expanded to every set where:

Fuj € S : 3ei, ¢ €N,y ei & Ny esv, (15)
. . SNVeyst #0 : SCVIUVz, SCViUVs. (17)
That is, for every subset of the systematic node Bgj,:,
there exists some variable node with at least one extrinsighjs full diversity requirement comprises a constraint be t
connection with respect to that subset. Then there is geaphical structure of the code realisation. For fhe- 3 case,
stopping set contained withii,,,, and by the previously the requirement is more difficult to achieve, as there areemor
stated results of the literature, each node is recoverable @nfigurations of the block erasures which must be consitlere
the block binary erasure channel [16], implying that theecogdqowever, once a graph is constructed which satisfies (15) and
achieves full diversity [20]. Thus, the full diversity reigement  (17), it is guaranteed to achieve full diversity on the block
of the code has been stated as a constraint on the naturga@fng channel with = 3, by the results of [16] and [20].
the code graph. _ _ The equations (15) and (17) together impose the limit that
In [21], the requirement (15)is achieved by use of the PEfz, systematic stopping set exists solely among the variable
construction and its property concerning cycle creatioth®n gdes inV;, among the noded; V] and among the variable
initial construction phase. As no cycle is greated in. thiag®) nodes [Vi Vi]. In the Root-LDPC code approach, stopping
no stopping set may be created. For weight 2 variable nodggis are avoided by the imposition of the root-check strectu
in the initial graph construction no cycle is created up te thygwever, in order to avoid this structural requirement, an
variable nodey(,;—1) where)M is the number of check nodesgyjternative solution is presented in Fig. 7. Each of the two
of the _graph_[6]. This results in the following constraint OubgraphgHgs, 1 Hp,] and [Hs, » Hg,] are constructed to
code dimension achieve full diversity on theF” = 2 channel. As such, the
N subgraphHg, ; is cycle free, as isHgz, ». Combined, they
K< 92 <(M-1), (16) may have many cycles, however the placement of the null

which, combined with the specification that the systematiBatrices ensures that extrinsic connections exisH o with
nodes are assigned among these initially constructed waigH®SPect 1051, 5> and to Hg, with respect tof, f3. Thus
nodes, leads to a code class which achieves the diversity®f Systematic variable nodes are recoverable under both
the channel. fr = B2 =0, B3 =occandp = B3 =0, B = oo.
Additionally, underp; = 0, B2 = B3 = oo the extrinsic
connections ensure no systematic stopping sets among the
B. I"=3 Case subset of variable nodes affected # only. This code
For the channel withF = 3, the general parity-check therefore completely recovers the systematic bits on thekbl
matrix is represented in Fig. 6. Again the systematic véegiaberasure channel and so achieves full diversity on the block
nodesV;,,; are contained withinl;. A stopping set based fading channel.



B B2 P D. Pseudocode for the Proposed Codes

The pseudocode for construction of the proposed diversity-
H51,1; H/32 0 achieving codes with an arbitrary number of fadés, is
H I . n provided in Algorithm 2, demonstrating clearly the separat
BF3 — 1 1 construction of the submatrices by the PEG-based construc-
Hpoo 0 ¢ Hy on.

E. Rate and Fade Compatible Puncturing

Fig. 7. Full diversity parity check matrix for th& = 3 channel - . .
9 L dlverstty partly eheck matx for channe From the code graph structures in Figs. 7 and 9 for diversity

achieving codes on block fading channels with = 3
and F' = 4, respectively, we can see that the graph for

C. Cases with/" > 3 . . L
the ' — 1 channel is effectively nested within the graph

B B Br for the channel withF' fading coefficients. In addition, the
— ——_ Qraphs are designed to recover from the worst-case scenario
1% Vv, —» «~— v, — ofa; =0,i€{l,---,F}. This allows the use of the graph

3 3 3 designed for the channel with' fading coefficients on the
| | F —1 channel by means of the elementary puncturing scheme
wherein the bits ofVr are punctured. In this case, only the
bits[V1, Vo, -+, Vr_1] are transmitted over the block fading
channel with 7 — 1 fading coefficients. At the input to the
decoder, the LLRs associated with the variable node¥ jin
Fig. 8. The rate< L code for the general block fading channel are set to zero, and iterative decoding is carried out on the
full graph for the F’-channel code. As this is equivalent to an

In the general case with fading coefficients, to recover the €'3sUre: the properties of the graph ensure that this ddes no
' affect the diversity achieving capabilities, with respexrthe

systematic nodes containedlif, the stopping set requirement A
generalises to involve all subsets including elements;adnd error rate of the systematic bits.

excluding all elements of one or more other fade-affectés! se - - - —
of nodes. Now (15) must hold for all the subsets describtxﬁb?llgorlthm 2 Proposed Diversity-Achieving LDPC Codes

. 1. Initialise with A, (x) derived from the desired final(z),
o Rup < 3 and Ny = K + &
SN Viyst # 0, (18) sub < 3 NANsup = K + T
2. for x = 1:F do
where 3. Call Algorithm 1 to carry out the Multipath
SCViUVi UV, UVi = (k1 k) C {2, F}. EMD PEG construction for each submatrix

[Hp, 1Hpg,], Hg, 2Hg,], - [Hp, r-1Hp,].
. end for
! Construct the final code from the submatrices as in Figs.
7 and 9, stacking th&lg, ., submatrices vertically in
the systematic part of the parity-check matrix and placing
the Hg, submatrices along the diagonal of thé x M
parity part of the final parity-check matrix.

(19)
The constraints on the code graph described by Eqgns. (1
(18) and (19) provide a graphical interpretation of the regu
ments to achieve full diversity on the block fading channel
with generalfF'.

The full diversity code for the” = 4 channel is provided
in Fig. 9. Diversity-achieving codes for block fading chaim
with a greater number of fading channels are constructed in a
similar progression as that from tlié = 3 code to theF' = 4
code. V. SIMULATION RESULTS

3 3 3 A The simulation study in this section is presented in three
1 2 3 4 .
— parts. In the first, the performance results for the unstinect
LDPC code are provided on the binary erasure channel. This
demonstrates of the success of the proposed construction
"""" at avoidance of stopping sets in the graph, as every error
event under iterative decoding of LDPC codes on the BEC
is caused by a stopping set [16]. The second section provides
performance results for the structured code classes on both
H; BEC and AWGN channels. The results for the AWGN channel
allow easy comparison of performance with the literature. |
the final part of this section, the reduced structure ditersi
Fig. 9. Full diversity parity check matrix for th&" = 4 channel achieving codes are evaluated on the block fading charmel. |
this case, the results are provided as the variation of tadr

Hprpy = | Hao

_______.|_______.|________
e}

o
3




error rate (FER) of the systematic part of the decoded codrly necessary alteration being the initialisation of thepi
word as the channel SNR varies. This is due to the challengiagsociated with the parity bits of the code word to the pre-
nature of the channel, meaning that the parity part of thecodetermined dual diagonal structure of the accumulator.
word is generally not corrected. This is in contrast to the Improved performance is seen in the error floor region
results provided for the binary erasure and AWGN channefey both the QC-LDPC and IRA codes constructed by the
where the error rate is computed for the whole code woptoposed Multipath EMD PEG-based algorithm compared
as is standard in the literature. The decoder is operated tavith both the IPEG-based constructions using the ACE metric
maximum of40 decoder iterations for both BEC and AWGN[10] and the original PEG-based constructions [7]. Fig. 12
channels, while a note is made about the choice of decogeovides the error rate plot for the IRA code class, with the
iterations in Section V-C. modified IPEG design [10] and the proposed Multipath EMD
For both the general ensemble codes, the QC-LDPC codéstegy included on the plot. The IRA graphs constructee ha
and IRA codes, the irregular degree distribution was trdock length250 and rates.
density evolution optimised maximum degreeariable node  Fig. 13 presents the results for the QC-LDPC codes, with
distribution available in the literature [3], Table II: the original PEG [7], the modified IPEG [10] and the pro-
5 - posed Multipath EMD constructions all used to construct the
M) = .30013x + .283952" + 41592z (20)  constrained QC-LDPC irregular code graph [12] with block
For all codes constructed, the check node distribution veas fength 256 and submatrix siz&) = 8. The block length of
specified in the construction algorithm, but rather was ddrc graph constructed using Sidon sequencesis the circulant
to have near-regular concentrated form: size is@ = 43 and the graph i$3,6) regular. Fig. 13 shows
b b1 that the PEG-based designs provide significant performance
p(z) = az” + (1 —a)z”". (21) improvements over the algebraic construction generalylew
Following [19], the variable node degree distribution wate IPEG design offers modest improvements over the PEG
constrained to ensure ensure no stopping sets were fore@astruction in the error floor region. The proposed Muttipa
of weight-2 variable nodes alone, a particularly harmfideca EMD strategy achieves a gain 0f4dB over the PEG con-
As this requirement was applied to all the codes constryct&duction and0.3dB over the IPEG construction at an error
it does not affect the comparison of construction algorighnfate below10~7. Fig. 13 includes results for the previously

presented. presented alteration to the IPEG algorithm which makes use
of a precise EMD value after the ACE-based decision has been
A. Unstructured LDPC Codes made [11]. It is clear that the strategy presented in thispap

, outperforms that design in the error floor region. Also inled
Fig. 10 shows the performance of graphs constructed Eythe plot for the QC-LDPC graph constructed by the QC-

the constructi_on algorithms considered in Se_cti(_)r_1 Il o8 thhopeg algorithm [5], demonstrating that although that grap
BEC. As previously stated, these results are Slgnlflcarﬁlebstconstruction offers better performance than the consillere

dlrec'ltly c;l]emonstrat_e the rel;;mvehpreserfwce of harr_nfulp;tqp constructions from the literature, the method proposedhis t
sets in the respective graphs. The performance Improvemephy offers best performance overall, with a gain observed

in the error floor region shown in Fig. 10 are significant. ¢ approximately0.2dB over the QC-DOPEG constructed
graph. This may be accounted for by the fact that the decoder
B. QC-LDPC and IRA Codes optimisation (DO) operation is applied for a limited number
In this section we present results demonstrating the gaifi frames and iterations due to complexity constraints, and
achieved through the use of the proposed novel constructibvat the selection of the noise parameter for testing in te D
algorithm, comparing the short block length performance operation may be imperfect. The proposed strategy achieves
a number of classes of codes to those codes constructedabgain of0.25dB over the existing strategy at an error rate
previous methods, the original PEG algorithm [7] and theelow 10~7.
ACE-based IPEG improvement [10], along with an algebraic
construction for the QC-LDPC codes [23]. The QC-LDPE€. Results for the Block Fading Channel
codes were constructed as in [12], with circulant siaghich Simulation results for the block fading channel are presgnt
is relatively small compared to the final graph size but is Figs. 14 to 16. All codes are irregular, and for channels
line with the results of that paper. The final distributiorf” > 2the distributions are derived by density evolution for
of the QC-LDPC codes was thus altered slightly from (2Ghe AWGN channel, as optimisation [21] remains an open
in order to achieve the necessary structure. The algebrpioblem for cases withi” > 2. The suboptimal distributions
construction based on Sidon sequences was also includeéfice to show that the proposed codes achieve full diwersit
in the comparison, in order to provide a point of referencand perform close to the Root-LDPC codes with the same
for the performance achieved by the codes constructed. Ndistributions. For thel" = 2 unstructured code the degree
that this algebraic construction uses larger tile sizes adtribution termedCode 3in [21] was used. For all results
therefore achieves greater complexity reduction and plessiin this section, the fading coefficients are Rayleigh distied
parallelisation. However, this construction lacks theifigity — with scale parameter df.5.
of the PEG-based construction algorithm. The IRA codes wereFig. 14 demonstrates that the proposed code class performs
constructed by the PEG-based algorithms directly, with tldose to the Root-LDPC class, approaching the limit of the
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Fig. 10. Performance comparison on the BEC of the graph rain
algorithms for the general LDPC code. The codes are Rate % and block
length N = 250.
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Fig. 11. Performance comparison on the BEC for the graphtaai®on
algorithms applied to the construction of IRA code graphke Todes are
R = 1 and block length\ = 230.
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Fig. 12. Performance of the IRA code graph constructed byptioposed
algorithm compared to that of the graph constructed by IPE@Grighm.The
codes have ratd&? = % and block lengthV = 250.
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Fig. 13. Performance of QC-structured LDPC codes of the vaita R = %
and block lengthV = 256 and circulant siz&) = 8.

channel. However, this figure also demonstrates that the pro
posed class requires a greater number of iteratid®)st¢ con-
verge to the performance of the Root-LDPC graph operating
at 20 decoder iterations. This motivates the results presented
in Figs. 16 and 17. Note that results are also provided for
the proposed code graph designed for fie= 4 channel

but punctured for use on thE = 3 channel, demonstrating
this useful feature of the proposed class. Note that for the
proposed code class a small rate reduction is imposed in
order to meet the requirements of (16) for achieving full
diversity. For theF' = 3 channel, the rate is reduced from

% to 0.3248 while for the I = 4 code of Fig. 15 the rate of
the proposed code 52468 rather than}l. All graphs in Fig.

14 are constructed by the PEG algorithm. Fig. 15 demonstrate
that the generalisation to highét is valid.

The slower convergence observed in Figs. 14 and 15 mo-
tivated the application of the proposed graph construdion
condition the graph. It can be seen clearly in Fig. 16 that
the Multipath EMD PEG construction allows a significantly
improved speed of convergence. Fig. 16 shows the perfor-
mance of bothF” = 2 and F' = 3 codes at fixed SNR over a
range of maximum allowed iterations, while Fig. 17 shows
the performance of thd® = 2 code at a fixed maximum
number of iterations oR0 for a range of SNR values. Both
show the performance improvements that the proposed graph
construction offer for the new class of codes.

VI. CONCLUSIONS

In this work, a graph-based construction algorithm was
proposed which improves the connection properties of the
final graph, providing performance gains in the error floor
region of operation. The proposed algorithm, called Maitip
EMD PEG construction, is demonstrated to provide significan
performance improvements for a number of useful structured
code classes. In addition, a new class of codes for achieving
full diversity on general block fading channels is presdnte
and is demonstrated to perform competitively comparedéo th
previously presented code class for this channel. The novel
Multipath EMD construction algorithm is then applied to the
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Block Fading Channel with F=3 (@) (b)
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Fig. 14. Results for the proposed reduced-structure diyeashieving code Fig. 16. Error rate performance against decoder iteratfonshe codes on
on the block fading channel witf" = 3. Included are the Root-LDPC code the BF channel with = 2 and F' = 3, respectively. In (a) the code rate
for that channel and the standard LDPC code of the same diomnsThe s 0.48, block lengthV = 248 and SNR is 24dB while in (b) the code rate
plot for the unstructured code designed for ffie= 4 channel and punctured 0.3262, block length iV = 282 and SNR is 18dB. For both, FER is plotted
for use on thel” = 3 channel is also included. All graphs are constructed bygainst decoder iteration number.

the PEG algorithm.

Block Fading Channel with F=2
T T T T T T
—57— PEG construction

—— PEG-ACE-EMD construction
—— Multipath—EMD-PEG construction
Outage - Gaussian

Block Fading Channel with F=4
T T

% 10°
@
& [
™
10°
—&— Proposed F4 code - 40 dec. it. . (
- & - Proposed F4 code - 20 dec. it. 10
w0l —6— Root-LDPC code - 20 dec. it. Max. 20
—E— LDPC code - 40 dec. it decoder
—+— Outage - Gaussian - Rate = 0.25 iterations
Outage - Gaussian — Rate = 0.2468
10’5 L L L L L L L
10° . . . , 10 12 14 16 18 20 22 24 26
2 4 10 12 14 SNR (dB)

8
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. . Fig. 17. A further plot for theF = 2 code of Fig. 16(a) showing the
Fig. 15. ‘Results for the proposed unstructured code for thekbfading va%iation of FER WithpSNR with the decoder operaﬁqng to(a)' ofgzo
channel withF = 4 compared to the Root-LDPC code for that channel an orations ’

the standard LDPC code. All graphs are constructed by the &g&ithm.

d’ustification for the decision metric progression employed
the proposed construction algorithm is provided.

Denote the number of shortest-length paths from check node
¢y € B to the current variable node; as P, and recall that

construction of this code class, with improvements in deco
convergence speed observed as a result.

APPENDIXA . .
the setlC = {¢; : P., = min P, }. Thus a placement involvin
ANALYSIS OF THE MULTIPATH EMD METRIC {eis P cy€B e} P ¢
PROGRESSION any element o would create the same minimum number of

In a PEG-based construction, any cycles created by pIa?E'prteSt cyclesP:,. The proposed algorithm selects a node

ment of the edgéz;, v;) will contain that edge, including the rom C based on the extrinsic connections of thésecycles.

shortest-length cycles created. One or many cycles aréecrea Al any Pa”'CP'?“ edge placement in the progressive con-
when, in Step 6 of Algorithm 1N — (. struction, the original PEG algorithm would credtg, cycles

In review, the PEG algorithm selects from the set— ©Of length 21+2, with ¢, € B while the Multipath EMD
VT N — 0} the set of nodes with minimum weight approach of this paper creatés, cycles of the same length.
vj . v; I H .
B = {¢ : M| = miI}‘|MBI|}. In that algorithm, the By design:
[2S]
nodes in this set were considered to be equivalent in terms
of their effect on the performance under iterative decodingn the above expression, the equality is satisfied in only two
as they are at equal maximum distance from and so a cases, when
node was selected from this set at random. In the following, a P.,=PYc, €B, (23)

P, <P, ,celCrceB (22)



11

where P is some constant, or when algorithm of [24]. Note that the proposed algorithm produce
Bl 1 o4 the graph with the fewest number of cycles of length 6 among
|B| =1. (24) the constructions considered.

In both of these case§, = B. Thus, at worst the proposed
metric reduces to that of the original PEG algorithm. APPENDIXB

Consider the construction of two code graphs, where all but ON THE COMPLEXITY OF THE PROPOSEDGRAPH
the final edge placement is made using the same original PEG CONSTRUCTIONALGORITHM
algorithm. For each placement, the number of shortest sycle In order to provide an insight into the complexity required
created, similarly to the notation used abowe, ;(PEG) for the proposed algorithm in comparison to that of the algo-
with z indexing the edge placement ard denoting cycle rithm in [11], the number of paths which must be evaluated in
length. Thus the total number of length-4 cycles in the PE&der to compute the final EMD metric of each algorithm is
constructed graph isz P, (PEG), whereE is the total considered. To justify this, consider that both algorittoagy

. 2=1:E ) out the trivial task of EMD computation once the paths have

number of edges in the graph. The same applies for cyclesplep jgentified, while the criterion applied prior to the EMD
length L = 6,8, - --. _ _ o in the proposed algorithm is based simply on the number of

Now, the first graph in our hypothetical situation is CONpaths identified for each candidate check node.
structed en.tirely by the PE_G algorithm, while for the secpnd Fig. 18 provides the total number of paths which must
graph the final placement is made by the proposed Multipgi gentified for the algorithms considered, along with the
EMD algorithm. In both cases, cycles of length= 2I_+2 are  number of paths of length or longer, leading to cycles
created. The total number of cycles of lenglh+-2 in each f ength 10 or longer. From this figure it is clear that the

graph is proposed candidate selection criteria incur a significast m
Z P, 2142(PEG), (25)  terms of complexity. However, note that the majority of path
z=1E identification operations for the proposed algorithm hayfoe
and shorter paths, mitigating somewhat the complexity cost.
> P.2112(PEG) + Pz 2(MEMD),  (26)
z=1:E—1 N

respeCtlvely. —=©&— MEMD - total, all lengths
We wish to show that - 0= - MEMD - length > 3

——8— ACE-EMD - total, all lengths
— —0— - ACE-EMD - length >3

> P.22(PEG+Pgay2(MEMD) < Y P, 5 45(PEG),
z=1:E—1 z=1:E o 5F
(27) g
Expanding the above equation, we obtain §4
€
> P.212(PEG) + Pg i 2(MEMD) < Z 3
z=1:E—1 (28) oL
> P.242(PEG) + Py i12(PEG).
z=1:E—1 i B
From above, if we assume that# B, T o W e e% me aw
Block Length, N
PE72|+2(PEG) - PE72|+2(MEMD) = €, (29)
. L o Fig. 18. A plot of the number of paths computed for the PEG#dath-
wheree is some positive integer, while & = B, EMD and PEG-ACE-EMD algorithms, respectively, for varidaleck lengths.
Pg 91+2(PEG) — Pg 21+2(MEMD) = 0, (30)
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