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Abstract—This work presents cost-effective low-rank techniques for de-
signing robust adaptive beamforming (RAB) algorithms. The proposed
algorithms are based on the exploitation of the cross-correlation between
the array observation data and the output of the beamformer. Firstly, we
construct a general linear equation considered in large dimensions whose
solution yields the steering vector mismatch. Then, we employ the idea
of the full orthogonalization method (FOM), an orthogonal Krylov sub-
space based method, to iteratively estimate the steering vector mismatch
in a reduced-dimensional subspace, resulting in the proposed orthogonal
Krylov subspace projection mismatch estimation (OKSPME) method. We
also devise adaptive algorithms based on stochastic gradient (SG) and con-
jugate gradient (CG) techniques to update the beamforming weights with
low complexity and avoid any costly matrix inversion. The main advantages
of the proposed low-rank and mismatch estimation techniques are their
cost-effectiveness when dealing with high dimension subspaces or large sen-
sor arrays. Simulations results show excellent performance in terms of the
output signal-to-interference-plus-noise ratio (SINR) of the beamformer
among all the compared RAB methods.

Keywords— robust adaptive beamforming, low-rank techniques, low
complexity algorithms.

I. INTRODUCTION

Adaptive beamforming has been one of the most important
research areas in sensor array signal processing. It has also been
recognized that traditional adaptive beamformers are extremely
sensitive to environmental uncertainties or steering vector mis-
matches, which may be caused by many different factors (e.g.,
imprecise antenna size calibration, signal pointing errors or lo-
cal scattering). Furthermore, some radar systems in advanced
applications require antenna arrays with a very large number of
sensor elements in highly dynamic environments, which leads
to the increase of computational complexity and the decrease of
the convergence rate for computing the parameters of the beam-
former.

A. Prior and Related Work

In order to mitigate the effects of uncertainties on adaptive
beamformers, robust adaptive beamforming (RAB) techniques
have been developed. Popular approaches include worst-case
optimization [2], [9], diagonal loading [4], and eigen-subspace
decomposition and projection techniques [6], [8], [11]. How-
ever, these RAB approaches have some limitations such as their
ad hoc nature, high probability of subspace swap at low signal-
to-noise ratio (SNR) [3] and high computational cost due to on-
line optimization or subspace decomposition techniques.

Furthermore, in the case of large sensor arrays the above men-
tioned RAB methods may encounter problems for their appli-
cation. This is because in these RAB algorithms, a cubic or
greater computational cost is required to compute the beam-
forming parameters. Therefore, dimensionality reduction (or
rank-reduction) methods ([15]-[31], [33]-[36]) have been em-
ployed and developed to reduce the complexity and improve the
convergence rate.

In the recent years, great efforts have been devoted to the
investigation of robust dimensionality reduction techniques for
RAB. The beamspace approach of [23] projects the data onto a
lower dimension subspace by using a beamspace matrix, whose
columns are determined by linearly independent constrained op-
timization problems. A more effective approach (i.e., [16]-
[20],[24],[25]) is based on preprocessing the array observa-
tion data using a Krylov subspace. However, there are differ-
ent ways to generate the Krylov subspace and the choice usu-
ally depends on the cost and the performance. The Arnoldi
method [12], [13], [21] and the Lanczos iterations [12], [13],
[15] are typical approaches used to generate orthogonal Krylov
subspaces, whereas [19] also introduces a method to generate
non-orthogonal ones. However, the main challenge in these
techniques is the model order determination. Specifically, the
model order must be properly chosen to ensure robustness to
over-determination of the system model order [17]. Another ef-
fective approach to dimensionality reduction is the joint itera-
tive optimization (JIO) [26]-[31] techniques, [33]-[36], which
employ a subspace projection matrix and jointly and iteratively
optimize the bases of the subspace and the beamformer weights.
The work in [27] has developed a recursive least squares (RLS)
adaptive algorithm based on widely-linear processing using the
JIO technique. The study in [29] has devised efficient stochastic
gradient (SG) and RLS RAB algorithms from a modified JIO
(MJIO) scheme.

B. Contributions

In this work, we propose and study novel RAB algorithms
that are based on low-rank and cross-correlation techniques. In
the proposed techniques, we exploit the prior knowledge that the
steering vector mismatch of the desired signal is located within
an angular sector which is assumed known. The proposed al-
gorithms are based on the exploitation of the cross-correlation
between the array observation data and the output of the beam-
former, which avoids costly optimization procedures. We firstly
construct a linear system (considered in high dimension) involv-
ing the mismatched steering vector and the statistics of the sam-
pled data. Then we employ an iterative full orthogonalization
method (FOM) [12], [13] to compute an orthogonal Krylov sub-
space whose model order is determined by both the minimum
sufficient rank [17], which ensures no information loss when
capturing the signal of interest (SoI) with interferers, and the
execute-and-stop criterion of FOM [12], [13], which automat-
ically avoids overestimating the number of bases of the com-
puted subspace. The estimated vector that contains the cross-
correlation between the array observation data and the beam-
former output is projected onto the Krylov subspace, in order
to update the steering vector mismatch, resulting in the pro-
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posed orthogonal Krylov subspace projection mismatch estima-
tion (OKSPME) method.

Furthermore, based on the OKSPME method, we have also
devised adaptive stochastic gradient (SG), conventional conju-
gate gradient (CCG) and modified conjugate gradient (MCG)
algorithms derived from the proposed optimization problems
to reduce the cost for computing the beamforming weights,
resulting in the proposed OKSPME-SG, OKSPME-CCG and
OKSPME-MCG RAB algorithms. We remark that the steering
vector is also estimated and updated using the CG-based recur-
sions to produce an even more precise estimate. Derivations of
the proposed algorithms are presented and discussed along with
an analysis of their computational complexity.

Moreover, we develop an analysis of the mean squared error
(MSE) between the estimated and the actual steering vectors for
the general approach of using a presumed angular sector asso-
ciated with subspace projections. This analysis mathematically
describes how precise the steering vector mismatch can be esti-
mated. Upper and lower bounds are derived and compared with
the approach in [6]. Another analysis on the computational com-
plexity of the proposed and existing algorithms is also provided.

In the simulations, we consider local scattering scenarios
(both coherent and incoherent) to model the mismatch effects.
We also study the performance of the proposed algorithms by
testing the output signal-to-interference-plus-noise ratio (SINR)
of the beamformer with respect to training snapshots and differ-
ent input SNRs. The number of sensor elements and interferers
is also varied and compared in each scenario to provide a com-
prehensive performance study. In summary, the contributions of
this work are:
• The proposed OKSPME RAB method.
• The development of the modified SG and CG type OKSPME
RAB algorithms.
• An analysis of the computational complexity and the MSE
performance of the proposed and existing RAB algorithms.

The remaining sections of this paper are organized as follows:
The system model and problem statement are described in Sec-
tion II. Section III introduces the proposed OKSPME method,
whereas Section IV introduces the proposed robust adaptive al-
gorithms. Section V provides the MSE analysis of the steer-
ing vector estimation and the complexity analysis. Section VI
presents and discusses the simulation results. Section VII gives
the conclusion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider a linear antenna array of M sensors and K
narrowband signals which impinge on the array. The data re-
ceived at the ith snapshot can be modeled as

x(i) = A(θ)s(i) + n(i), (1)

where s(i) ∈ CK×1 are uncorrelated source signals, θ =
[θ1, · · · , θK ]T ∈ RK is a vector containing the directions of
arrival (DoAs) and [.]T denotes the transpose, A(θ) = [a(θ1)+
e, · · · ,a(θK)] = [a1, · · · ,aK ] ∈ CM×K is the matrix which
contains the steering vector for each DoA and e is the steering
vector mismatch of the desired signal, n(i) ∈ CM×1 is assumed

to be complex circular Gaussian noise with zero mean and vari-
ance σ2

n. The beamformer output is given by

y(i) = wHx(i), (2)

where w = [w1, · · · , wM ]T ∈ CM×1 is the beamformer weight
vector, where (·)H denotes the Hermitian transpose. The opti-
mum beamformer is computed by maximizing the SINR and is
given by

SINR =
σ2
1 |wHa1|2

wHRI+Nw
. (3)

where σ2
1 is the desired signal power, RI+N is the interference-

plus-noise covariance (INC) matrix. The problem of maximiz-
ing the SINR in (3) can be cast as the following optimization
problem:

minimize
w

wHRI+Nw

subject to wHa1 = 1,
(4)

which is known as the MVDR beamformer or Capon beam-
former [1], [4]. The optimum weight vector is given by

wopt =
R−1I+Na1

aH1 R−1I+Na1

. Since RI+N is usually unknown in practice, it can be esti-
mated by the sample covariance matrix (SCM) of the received
data as

R̂(i) =
1

i

i∑
k=1

x(k)xH(k). (5)

Using the SCM for directly computing the weights will lead
to the sample matrix inversion (SMI) beamformer wSMI =
R̂−1a1

aH
1 R̂−1a1

. However, the SMI beamformer requires a large num-
ber of snapshots to converge and is sensitive to steering vec-
tor mismatches [2], [3]. As previously mentioned, most of the
conventional and existing RAB algorithms are computationally
costly especially when encountering arrays with a very large
number of sensors. Therefore, the RAB design problem we are
interested in solving includes the following aspects:
• To design cost-efficient algorithms that are robust against un-
certainties and values of SNRs and interferers in the presence of
uncertainties in the steering vector of a desired signal.
• The proposed algorithms must preserve their robustness and
low-complexity features for large sensor arrays.

III. PROPOSED OKSPME METHOD

In this section, the proposed OKSPME method is introduced.
This method aims to construct a linear system involving only
known or estimated statistics and then projects an estimated
cross-correlation vector between the array observation data and
the beamformer output onto an orthogonal Krylov subspace,
in order to update the steering vector mismatch with reduced
complexity. The SCM of the array observation data is esti-
mated by (5). The cross-correlation vector between the array
observation data and the beamformer output can be expressed
as d = E[xy∗] (where [.]∗ denotes complex conjugation) or
equivalently as

d = E[(As+ n)(As+ n)Hw]. (6)
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Assuming that |aHk w| � |aH1 w| for k = 2, · · · ,K and all
signals have zero mean, the cross-correlation vector d can be
rewritten as

d = E[(As+ n)(s∗1a
H
1 w + nHw)]. (7)

By also assuming that the desired signal is statistically indepen-
dent from the interferers and the noise so that the interferers are
sufficiently canceled (i.e. E[sks

∗
1] = 0 andE[skaks

∗
1a
H
1 w] = 0

for k = 2, · · · ,K) such that they fall much below the noise floor
and the desired signal power is not affected by the interference,
(7) can be rewritten as

d = E[σ1
2aH1 wa1 + nnHw], (8)

which can be estimated by the sample cross-correlation vector
(SCV) given by

d̂(i) =
1

i

i∑
k=1

x(k)y∗(k). (9)

A. Desired Signal Power Estimation

In this subsection, we describe an iterative method for the de-
sired signal power (σ2

1) estimation based on our prior work in
[32], which can be accomplished by directly using the desired
signal steering vector. Alternatively, a designer can employ a
maximum likelihood (ML) or a minimum variance (MV) esti-
mator for computing the desired signal power. However, the
approach described is recommended as it has lower complexity
than the ML and the MV estimators. In the adopted method,
we need to choose an initial guess for the steering vector mis-
match within the presumed angular sector, say â1(0) and set
â1(1) = â1(0). By adding the snapshot index i, we can rewrite
the array observation data as

x(i) = â1(i)s1(i) +

K∑
k=2

ak(i)sk(i) + n(i), (10)

where â1(0) and â1(i) (i = 1, 2, · · · ) designate the initial guess
of the steering vector and its estimate at the ith snapshot, respec-
tively.

Pre-multiplying the above equation by âH1 (i) we have

âH1 (i)x(i) = âH1 (i)â1(i)s1(i) +

K∑
k=2

âH1 (i)ak(i)sk(i) + n(i).

(11)
Here we assume that each of the interferers is orthogonal or
approximately orthogonal to the desired signal. Specifically,
the steering vector of each of the interferers is orthogonal
(âH1 (i)ak(i) = 0, k = 2, 3, · · · ,K), or approximately orthog-
onal (âH1 (i)ak(i) � âH1 (i)â1(i), k = 2, 3, · · · ,K) to the de-
sired signal steering vector (i.e., â1(i)), so that âH1 (i)ak(i) (k =

2, 3, · · · ,K) approaches zero and the term
K∑
k=2

âH1 (i)ak(i)sk(i)

in (11) can be neglected, resulting in

âH1 (i)x(i) = âH1 (i)â1(i)s1(i) + âH1 (i)n(i). (12)

Taking the expectation of |âH1 (i)x(i)|2, we obtain

E[|âH1 (i)x(i)|2] = E[(âH1 (i)â1(i)s1(i) + âH1 (i)n(i))∗

(âH1 (i)â1(i)s1(i) + âH1 (i)n(i))]. (13)

Assuming that the noise is statistically independent from the
desired signal, then we have

E[|âH1 (i)x(i)|2] = |âH1 (i)â1(i)|2E[|s1(i)|2]
+ âH1 (i)E[n(i)nH(i)]â1(i), (14)

where E[n(i)nH(i)] represents the noise covariance matrix
Rn(i) that can be replaced by σ2

nIM , where the noise variance
σ2
n can be easily estimated by a specific estimation method.

A possible approach is to use a Maximum Likelihood (ML)
based method as in [14]. Replacing the desired signal power
E[|s1(i)|2] and the noise variance σ2

n by their estimates σ̂2
1(i)

and σ̂2
n(i), respectively, we obtain

σ̂2
1(i) =

|âH1 (i)x(i)|2 − |âH1 (i)â1(i)|σ̂2
n(i)

|âH1 (i)â1(i)|2
. (15)

The expression in (15) has a low complexity (O(M)) and can
be directly implemented if the desired signal steering vector and
the noise level are accurately estimated.

B. Orthogonal Krylov Subspace Approach for Steering Vector
Mismatch Estimation

An orthogonal Krylov subspace strategy is proposed in or-
der to estimate the mismatch with reduced cost and deal with
situations in which the model order is time-varying. Our idea
is based on constructing a linear system, which considers the
steering vector mismatch as the solution, and solving it by us-
ing an iterative Krylov subspace projection method. To this end,
consider a general high-dimensional linear system model given
by

Ba1 = b, (16)

where B ∈ CM×M and b ∈ CM×1. Then we need to express
B and b only using available information (known statistics or
estimated parameters), so that we can solve the linear system
with the Krylov subspace of order m (m�M ) described by

Km = span{b,Bb,B2b, · · · ,Bmb}. (17)

Taking the complex conjugate of (12), we have

xH(i)â1(i) = âH1 (i)â1(i)s
∗
1(i) + nH(i)â1(i). (18)

Pre-multiplying both sides of (18) by the terms of (10), then
adding an extra term δIâ1(i) (where δ is a small positive number
defined by the user) and simplifying the terms, we obtain

(x(i)xH(i) + δI)â1(i) = â1(i)â
H
1 (i)â1(i)s1(i)s

∗
1(i)

+ n(i)nH(i)â1(i) + δâ1(i). (19)

Replacing x(i)xH(i) + δI by R̂(i), s1(i)s∗1(i) by σ̂2
1(i) and

n(i)nH(i) by σ̂2
n(i)IM , we obtain

R̂(i)â1(i) = â1(i)â
H
1 (i)â1(i)σ̂

2
1(i) + (σ̂2

n(i) + δ)â1(i)︸ ︷︷ ︸
b̂(i)

, (20)
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TABLE I
ARNOLDI-MODIFIED GRAM-SCHMIDT ALGORITHM

For j = 1, 2, · · · do:
Compute uj = R̂tj
For l = 1, 2, · · · , j, do:
hl,j =< uj , tl >
uj = uj − hl,jtl

End do.
Compute hj,j+1 = ‖uj‖.
If hj,j+1 = 0 or j ≥ K + 1,

set m = j;
break;

Else compute tj+1 =
uj

hj,j+1
.

End do.

in which by further defining the expression on the right-hand
side as b̂(i), we can rewrite (20) as

R̂(i)â1(i) = b̂(i). (21)

As can be seen (21) shares the same form as the linear system
of equations in (16) and b̂(i) can be expressed in terms of â1(i),
σ̂2
1(i) and σ̂2

n(i) whereas R̂(i) can be estimated by (5). In the
following step, we employ the Arnoldi-modified Gram-Schmidt
algorithm from the FOM method [12], [13] associated with the
minimum sufficient rank criterion discussed in [17] to compute
an orthogonal Krylov subspace. We define a residue vector to
represent the estimation error in the ith snapshot as

r̂(i) = b̂(i)− R̂(i)â1(i), (22)

and let

t1(i) =
r̂(i)

‖r̂(i)‖ . (23)

Then the Krylov subspace bases can be computed using the
modified Arnoldi-modified Gram-Schmidt algorithm as in Table
I (the snapshot index i is omitted here for simplicity).

In Table I, <,> denotes the inner product and the parameters
hl,j (l, j = 1, 2, · · · ,m) are real-valued coefficients, the model
order is determined once if one of the following situations is
satisfied:
• The execute-and-stop criterion of the original Arnoldi-
modified Gram-Schmidt algorithm is satisfied (i.e., hj,j+1 = 0).
• The minimum sufficient rank for addressing the SoI and inter-
ferers is achieved (i.e., j ≥ K + 1, where K is the number of
signal sources), so that no more subspace components are nec-
essary for capturing the SoI from all the existing signal sources.

Now by inserting the snapshot index, we have

T̂(i) = [t1(i), t2(i), · · · , tm(i)], (24)

and the Krylov subspace projection matrix is computed by

P̂(i) = T̂(i)T̂H(i). (25)

It should be emphasized that the Krylov subspace matrix T̂(i)
obtained here is constructed by starting with the residue vector

TABLE II
PROPOSED OKSPME METHOD

Initialization:
ŵ(1) = 1;
Choose an initial guess â1(0) within the sector and set â1(1) = â1(0);
For each snapshot i = 1, 2, · · · :

R̂(i) = 1
i

i∑
k=1

x(k)xH(k)

d̂(i) = 1
i

i∑
k=1

x(k)y∗(k)

Step 1. Compute the desired signal power

σ̂2
1(i) =

|âH
1 (i)x(i)|2−|âH

1 (i)â1(i)|σ̂2
n(i)

|âH
1 (i)â1(i)|2

Step 2. Determine the Krylov subspace
b̂(i) = â1(i)âH1 (i)â1(i)σ̂2

1(i) + σ̂2
n(i)â1(i)

r̂(i) = b̂(i)− R̂(i)â1(i)

t1(i) =
r̂(i)
‖r̂(i)‖

Apply the algorithm in Table I to determine m and t1(i),· · · ,tm(i)

T̂(i) = [t1(i), t2(i), · · · , tm(i)]
Step 3. Update the steering vector
P̂(i) = T̂(i)T̂H(i)

â1(i+ 1) = â1(i) +
P̂(i)d̂(i)

‖P̂(i)d̂(i)‖
â1(i+ 1) = â1(i+ 1)/‖â1(i+ 1)‖
Step 4. Compute the weight vector
R̂I+N (i) = R̂(i)− σ̂2

1(i)â1(i)âH1 (i)

ŵ(i) =
R̂−1

I+N
(i)â1(i)

âH
1 (i)R̂−1

I+N
(i)â1(i)

End snapshot

r̂(i). In other words, T̂(i) is constructed with the estimation
error of the steering vector. In order to extract the estimation
error information and use it to update the steering vector mis-
match, we can project the SCV d̂(i) in (9) onto P̂(i) and add
the estimation error to the current estimate of â1(i) as

â1(i+ 1) = â1(i) +
P̂(i)d̂(i)

‖P̂(i)d̂(i)‖
. (26)

C. INC Matrix and Beamformer Weight Vector Computation

Since we have estimated both the desired signal power σ̂2
1(i)

and the mismatched steering vector in the previous subsections,
the INC matrix can be obtained by subtracting the desired signal
covariance matrix out from the SCM as

R̂I+N (i) = R̂(i)− σ̂2
1(i)â1(i)â

H
1 (i). (27)

The beamformer weight vector is computed by

ŵ(i) =
R̂−1I+N (i)â1(i)

âH1 (i)R̂−1I+N (i)â1(i)
, (28)

which has a computationally costly matrix inversion R̂−1I+N (i).
The proposed OKSPME method is summarized in Table II. In
the next section, we will introduce adaptive algorithms to avoid
matrix inversions and reduce the complexity.

IV. PROPOSED ADAPTIVE ALGORITHMS

This section presents adaptive strategies based on the OK-
SPME robust beamforming method, resulting in the pro-
posed OKSPME-SG, OKSPME-CCG and OKSPME-MCG al-
gorithms, which are especially suitable for dynamic scenarios.
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In the proposed adaptive algorithms, we estimate the desired sig-
nal power and its steering vector with the same recursions as in
OKSPME, whereas the estimation procedure of the beamform-
ing weights is different. In particular, we start from a reformu-
lated optimization problem and use SG and CG-based adaptive
recursions to derive the weight update equations, which reduce
the complexity by an order of magnitude as compared to that of
OKSPME.

A. OKSPME-SG Adaptive Algorithm

We resort to an SG adaptive strategy and consider the follow-
ing optimization problem:

minimize
w(i)

wH(i)(R̂(i)− R̂1(i))w(i)

subject to wH(i)â1(i) = 1,
(29)

where R̂(i) can be written as x(i)xH(i) and R̂1(i) repre-
sents the desired signal covariance matrix and can be written
as σ̂2

1(i)â1(i)â
H
1 (i).

Then we can express the SG recursion as

w(i+ 1) = w(i)− µ ∂L
∂w(i)

, (30)

where L = wH(i)(x(i)xH(i) − σ̂2
1(i)â1(i)â

H
1 (i))w(i) +

λL(w
H(i)â1(i)− 1) and µ is the step size.

By substituting L into the SG equation (30) and letting
wH(i+ 1)â1(i+ 1) = 1, λL is obtained as

λL =
2(σ̂2

1(i)â
H
1 (i)â1(i)− y(i)xH(i)â1(i))

âH1 (i)â1(i)
. (31)

By substituting λL in (30) again, the weight update equation
for OKSPME-SG is obtained as

w(i+ 1) = (I− µσ̂2
1(i)â1(i)â

H
1 (i))w(i)

− µ(σ̂2
1(i)â1(i) + y∗(i)(x(i)− âH1 (i)x(i)â1(i)

âH1 (i)â1(i)
)).

(32)
The adaptive SG recursion circumvents a matrix inversion

when computing the weights using (28), which is unavoidable in
OKSPME. Therefore, the computational complexity is reduced
fromO(M3) in OKSPME toO(M2) in OKSPME-SG. It is also
important that the step size µ should satisfy 0 < µ < 1

σ̂2
1(i)

to

guarantee that I−µσ̂2
1(i)â1(i)â

H
1 (i) is always a positive-definite

matrix so that (32) is ensured converging to a solution. To im-
plement OKSPME-SG, Step 1, Step 2 and Step 3 from Table II
and (32) are required.

B. OKSPME-CCG Adaptive Algorithm

In this subsection, the proposed OKSPME-CCG algorithm is
introduced. In CG-based approaches, we usually employ a for-
getting factor (e.g. λ) to estimate the second-order statistics of
the data or the SCM [1], [10], which can be expressed by

R̂(i) = λR̂(i− 1) + x(i)xH(i), (33)

whereas the SCV d̂(i) can be estimated with the same forgetting
factor as described by

d̂(i) = λd̂(i− 1) + x(i)y∗(i). (34)

The proposed optimization problem that leads to the
OKSPME-CCG algorithm is described by

minimize
â1(i),v(i)

J = vH(i)(R̂(i)− R̂1(i))v(i)− âH1 (i)v(i), (35)

where v(i) is the CG-based weight vector. In OKSPME-CCG,
we require N iterations for each snapshot. In the nth iteration,
â1,n(i) and vn(i) are updated as follows

â1,n(i) = â1,n−1(i) + αâ1,n(i)pâ1,n(i), (36)

vn(i) = vn−1(i) + αv,n(i)pv,n(i), (37)

where pâ1,n(i) and pv,n(i) are direction vectors updated by

pâ1,n+1(i) = gâ1,n(i) + βâ1,n(i)pâ1,n(i), (38)

pv,n+1(i) = gv,n(i) + βv,n(i)pv,n(i), (39)

where gâ1,n(i) and gv,n(i) are the negative gradients of the cost
function in terms of â1(i) and v(i), respectively, which are ex-
pressed as

gâ1,n(i) = −
∂J

∂â1,n(i)
= σ̂2

1(i)vn(i)v
H
n (i)â1,n(i) + vn(i),

(40)

gv,n(i) = −
∂J

∂vn(i)

= gv,n−1(i)− αv,n(i)(R̂(i)− σ̂2
1(i)x(i)x

H(i))pv,n(i).
(41)

The scaling parameters αâ1,n(i), αv,n(i) can be obtained by
substituting (36) and (37) into (35) and minimizing the cost
function with respect to αâ1,n(i) and αv,n(i), respectively. The
solutions are given by

αâ1,n(i) = −
gHâ1,n−1(i)pâ1,n(i)

σ̂2
1(i)p

H
â1,n

(i)vn(i)vHn (i)pâ1,n(i)
, (42)

αv,n(i) =
gHv,n−1(i)pv,n(i)

pHv,n(i)(R̂(i)− σ̂2
1(i)â1,n(i)â

H
1,n(i))pv,n(i)

.

(43)
The parameters βâ1,n(i) and βv,n(i) should be chosen to pro-

vide conjugacy for direction vectors [10], which results in

βâ1,n(i) =
gHâ1,n

(i)gâ1,n(i)

gHâ1,n−1(i)gâ1,n−1(i)
, (44)

βv,n(i) =
gHv,n(i)gv,n(i)

gHv,n−1(i)gv,n−1(i)
. (45)

After â1,n(i) and vn(i) are updated for N iterations, the
beamforming weight vector w(i) can be computed by

w(i) =
vN (i)

âH1,N (i)vN (i)
, (46)

The computational cost of OKSPME-CCG algorithm is
O(NM2), which is higher than the cost required in OKSPME-
SG due to the inner iterations at every snapshot. The proposed
OKSPME-CCG is summarized in Table III.
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TABLE III
PROPOSED OKSPME-CCG ALGORITHM

Initialization:
ŵ(1) = v0(1) = 1; λ;
Choose an initial guess â1(0) within the sector and set â1(1) = â1(0);
For each snapshot i = 1, 2, · · · :

R̂(i) = 1
i

i∑
k=1

x(k)xH(k)

d̂(i) = 1
i

i∑
k=1

x(k)y∗(k)

Step 1 from Table II
Step 2 from Table II
Step 3 from Table II
Steering Vector and Weight Vector Estimations
â1,0(i) = â1(i)
gâ1,0(i) = σ̂2

1(i)v0(i)vH0 (i)â1,0(i) + v0(i)

gv,0(i) = â1,0(i)− R̂(i)v0(i)
pâ1,0(i) = gâ1,0(i); pv,0(i) = gv,0(i)
For each iteration index n = 1, 2, · · · , N :

αâ1,n(i) = −
gH
â1,n−1(i)pâ1,n(i)

σ̂2
1(i)p

H
â1,n

(i)vn(i)vH
n (i)pâ1,n(i)

αv,n(i) =
gH
v,n−1(i)pv,n(i)

pH
v,n(i)(R̂(i)−σ̂2

1(i)â1,n(i)âH
1,n(i))pv,n(i)

â1,n(i) = â1,n−1(i) + αâ1,n(i)pâ1,n(i)
vn(i) = vn−1(i) + αv,n(i)pv,n(i)
gâ1,n(i) = σ̂2

1(i)vn(i)v
H
n (i)â1,n(i) + vn(i)

gv,n(i) = gv,n−1(i)− αv,n(i)(R̂(i)− σ̂2
1(i)x(i)x

H(i))pv,n(i)

βâ1,n(i) =
gH
â1,n(i)gâ1,n(i)

gH
â1,n−1

(i)gâ1,n−1(i)

βv,n(i) =
gH
v,n(i)gv,n(i)

gH
v,n−1(i)gv,n−1(i)

pâ1,n+1(i) = gâ1,n(i) + βâ1,n(i)pâ1,n(i)
pv,n+1(i) = gv,n(i) + βv,n(i)pv,n(i)

End iteration
v0(i+ 1) = vN (i)

w(i) =
vN (i)

âH
1,N

(i)vN (i)

End snapshot

C. OKSPME-MCG Adaptive Algorithm

In OKSPME-MCG, we let only one iteration be performed
per snapshot, which further reduces the complexity compared
to OKSPME-CCG. Here we denote the CG-based weights and
steering vector updated by snapshots rather than inner iterations
as

â1(i) = â1(i− 1) + αâ1
(i)pâ1

(i), (47)

v(i) = v(i− 1) + αv(i)pv(i). (48)

As can be seen, the subscripts of all the quantities for in-
ner iterations are eliminated. Then, we employ the degener-
ated scheme to ensure αâ1

(i) and αv(i) satisfy the convergence
bound [10] given by

0 ≤ pHâ1
(i)gâ1

(i) ≤ 0.5pHâ1
(i)gâ1

(i− 1), (49)

0 ≤ pHv (i)gv(i) ≤ 0.5pHv (i)gv(i− 1). (50)

Instead of updating the negative gradient vectors gâ1
(i) and

gv(i) in iterations, now we utilize the forgetting factor to re-
express them in one snapshot as

gâ1
(i) =(1− λ)v(i) + λgâ1

(i− 1)

+ σ̂2
1(i)αâ1

(i)v(i)vH(i)pâ1
(i)

− x(i)xH(i)â1(i),

(51)

gv(i) =(1− λ)â1(i) + λgv(i− 1)

− αv(i)(R̂(i)− σ̂2
1(i)â1(i)â

H
1 (i))pv(i)

− x(i)xH(i)v(i− 1).

(52)

Pre-multiplying (51) and (52) by pHâ1
(i) and pHv (i), respec-

tively, and taking expectations we obtain

E[pHâ1
(i)gâ1

(i)] = E[pHâ1
(i)(v(i)− x(i)xH(i)â1)(i)]

+ λE[pHâ1
(i)gâ1

(i− 1)]− λE[pHâ1
(i)v(i)]

+ E[αâ1
(i)pHâ1

(i)σ̂2
1(i)v(i)v

H(i)pâ1
(i)], (53)

E[pHv (i)gv(i)] = λE[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

− E[αv(i)p
H
v (i)(R̂(i)− σ̂2

1(i)â1(i)â
H
1 (i))pv(i)], (54)

where in (54) we have E[R̂(i)v(i− 1)] = E[â1(i)]. After sub-
stituting (54) in (50) we obtain the bounds for αv(i) as follows

(λ− 0.5)E[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

E[pHv (i)(R̂(i)− σ̂2
1(i)â1(i)â

H
1 (i))pv(i)]

≤E[αv(i)]

≤ λE[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

E[pHv (i)(R̂(i)− σ̂2
1(i)â1(i)â

H
1 (i))pv(i)]

. (55)

Then we can introduce a constant parameter ηv ∈ [0, 0.5] to
restrict αv(i) within the bounds in (55) as

αv(i) =

λ(pHv (i)gv(i− 1)− pHv (i)â1(i))− ηvpHv (i)gv(i− 1)

pHv (i)(R̂(i)− σ̂2
1(i)â1(i)â

H
1 (i))pv(i)

.

(56)

Similarly, we can also obtain the bounds for αâ1
(i).

For simplicity let us define E[pHâ1
(i)gâ1

(i − 1)] = A,
E[pHâ1

(i)v(i)] = B, E[pHâ1
(i)x(i)xH(i)â1(i)] = C and

E[pHâ1
(i)σ̂2

1(i)v(i)v
H(i)pâ1

(i)] = D. Substituting (53) into
(49) gives

λ(B −A)−B + C

D
≤E[αâ1

(i)]

≤λ(B −A)−B + C + 0.5A

D
, (57)

in which we can introduce another constant parameter ηâ1
∈

[0, 0.5] to restrict αâ1
(i) within the bounds in (57) as

E[αâ1
(i)] =

λ(B −A)−B + C + ηâ1
A

D
, (58)

or

αâ1
(i) = [λ(pHâ1

(i)v(i)− pHâ1
(i)gâ1

(i− 1))− pHâ1
(i)v(i)

+ pHâ1
(i)x(i)xH(i)â1(i) + ηâ1

pHâ1
(i)gâ1

(i− 1)]

/[σ̂2
1(i)p

H
â1
(i)v(i)vH(i)pâ1

(i)]. (59)

Then we can update the direction vectors pâ1
(i) and pv(i) by

pâ1
(i+ 1) = gâ1

(i) + βâ1
(i)pâ1

(i), (60)
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pv(i+ 1) = gv(i) + βv(i)pv(i), (61)

where βâ1
(i) and βv(i) are updated by

βâ1
(i) =

[gâ1
(i)− gâ1

(i− 1)]Hgâ1
(i)

gHâ1
(i− 1)gâ1

(i− 1)
, (62)

βv(i) =
[gv(i)− gv(i− 1)]Hgv(i)

gHv (i− 1)gv(i− 1)
. (63)

Finally we can update the beamforming weights by

w(i) =
v(i)

âH1 (i)v(i)
, (64)

The MCG approach employs the forgetting factor λ and con-
stant η for estimating α(i), which means its performance may
depend on a suitable choice of these parameters. The proposed
OKSPME-MCG algorithm requires a complexity of O(M2).
However, the cost is usually much lower compared to CCG ap-
proach for the elimination of inner recursions and it presents a
similar performance in most studied scenarios. From an imple-
mentation point of view, the choice of using the CCG and MCG
algorithms is based on the stationarity of the system: the CCG
algorithm is more suitable for scenarios in which the system is
stationary and we can compute the beamformer with K itera-
tions while the MCG algorithm is suggested for non-stationary
scenarios as we only run one iteration per snapshot and can
track variations in the environment. Table IV summarizes the
OKSPME-MCG algorithm.

V. ANALYSIS

In this section, we present an analysis of the following aspects
of the proposed and existing algorithms:
• An analysis of the MSE between the estimated and actual
steering vectors for the general approach that employs a pre-
sumed angular sector.
• MSE analysis results of the proposed OKSPME method and
the SQP method in [6] and their relationships and differences.
• A complexity analysis for the proposed and existing algo-
rithms.

A. MSE analysis

Firstly, we present the MSE analysis of the general approach
that employs a presumed angular sector. Since we have the
steering vector estimate â1(i) in the ith snapshot, by denoting
the true steering vector as a1, we can express the MSE of the
estimate â1(i) as

MSE{â1(i)} = tr(E[(â1(i)− a1)(â1(i)− a1)
H ])

= E[(â1(i)− a1)
H(â1(i)− a1)]. (65)

In the approach that employs an angular sector, we usually
choose an initial guess (i.e., â1(0)) from the presumed sector.
Let us express the accumulated estimation error as

ê(i) = â1(i)− â1(0), (66)

then (65) can be rewritten as

MSE{â1(i)} = E[(â1(0) + ê(i)− a1)
H(â1(0) + ê(i)− a1)].

(67)

TABLE IV
PROPOSED OKSPME-MCG ALGORITHM

Initialization:
ŵ(1) = v(0) = 1; λ; ηv = ηâ1

;
Choose an initial guess â1(0) within the sector and set â1(1) = â1(0);
gv(0) = pv(1) = â1(1); gâ1

(0) = pâ1
(1) = v(0);

For each snapshot i = 1, 2, · · · :

R̂(i) = 1
i

i∑
k=1

x(k)xH(k)

d̂(i) = 1
i

i∑
k=1

x(k)y∗(k)

Step 1 from Table II
Step 2 from Table II
Step 3 from Table II
Steering Vector and Weight Vector Estimations
αâ1

(i) = [λ(pHâ1
(i)v(i)− pHâ1

(i)gâ1
(i− 1))− pHâ1

(i)v(i)

+pHâ1
(i)x(i)xH(i)â1(i) + ηâ1

pHâ1
(i)gâ1

(i− 1)]

/[σ̂2
1(i)p

H
â1

(i)v(i)vH(i)pâ1
(i)]

αv(i) =
λ(pH

v (i)gv(i−1)−pH
v (i)â1(i))−ηvpH

v (i)gv(i−1)

pH
v (i)(R̂(i)−σ̂2

1(i)â1(i)â
H
1 (i))pv(i)

â1(i) = â1(i− 1) + αâ1
(i)pâ1

(i)
v(i) = v(i− 1) + αv(i)pv(i)
gâ1

(i) = (1− λ)v(i) + λgâ1
(i− 1)

+σ̂2
1(i)αâ1

(i)v(i)vH(i)pâ1
(i)− x(i)xH(i)â1(i)

gv(i) = (1− λ)â1(i) + λgv(i− 1)− αv(i)(R̂(i)
−σ̂2

1(i)â1(i)âH1 (i))pv(i)− x(i)xH(i)v(i− 1)

βâ1
(i) =

[gâ1
(i)−gâ1

(i−1)]Hgâ1
(i)

gH
â1

(i−1)gâ1
(i−1)

βv(i) =
[gv(i)−gv(i−1)]Hgv(i)

gH
v (i−1)gv(i−1)

pâ1
(i+ 1) = gâ1

(i) + βâ1
(i)pâ1

(i)
pv(i+ 1) = gv(i) + βv(i)pv(i)

w(i) =
v(i)

âH
1 (i)v(i)

End snapshot

The initial guess â1(0) can be described as the true steering vec-
tor plus a guess error vector (i.e., ε):

â1(0) = a1 + ε. (68)

Taking expectation of both sides of the above, we have

E[â1(0)] = a1 + E[ε]. (69)

Substituting (68) into (67), taking into account that the accumu-
lated estimation error is uncorrelated with the initial guess error
and simplifying the expression, we obtain

MSE{â1(i)}
= E[εHε] +E[εH ]E[ê(i)] +E[êH(i)]E[ε] +E[êH(i)ê(i)].

(70)

Furthermore, it should be emphasized that both ε and ê(i) are
in vector forms, which means that their second-order statistics
can be re-expressed in terms of their first-order statistics of their
Euclidean norms. Then we can re-express (70) as

MSE{â1(i)}
= E[‖ε‖2] + E[‖ê(i)‖2] + 2E[εH ]E[ê(i)]. (71)

Since both ‖ε‖ and ‖ê(i)‖ are scalars we have

E[‖ε‖2] = Var[‖ε‖] + E2[‖ε‖], (72)



8

E[‖ê(i)‖2] = Var[‖ê(i)‖] + E2[‖ê(i)‖]. (73)

At this stage, we can employ Popoviciu’s inequality [37] to ob-
tain the upper bounds for the expectations of the variances of the
random vectors ε and ê(i), which are given by

Var[‖ε‖] ≤ (sup‖ε‖ − inf‖ε‖)2
4

, (74)

Var[‖ê(i)‖] ≤ (sup‖ê(i)‖ − inf‖ê(i)‖)2
4

. (75)

However, the last term in (71) is not analytical when conducting
a norm analysis. Actually, E[ε] depends on how the presumed
sector is chosen: if the sector is chosen in an unbiased man-
ner (i.e., the true steering vector lies in the centre of the sector),
then we have E[ε] = 0 by symmetry criterion, in which case
we can omit the last terms of (71). For convenience of carrying
out the norm analysis as the next step, we focus on the unbiased
case only, so that the MSE only depends on the expectation, the
infimum and the supremum of ‖ε‖ and ‖ê(i)‖. In Fig. 1, we uti-
lize Euclidean geometry to illustrate the relationships among the
norms of the errors and the norm of the steering vector, which is
a fixed parameter due to the re-normalization procedure after it
is estimated each time.

According to Fig. 1, we can use θ (i.e., half of the angu-
lar sector, assumed less than π/4) and ‖a1‖ to obtain E[‖ε‖]
by the following (any angular parameter appeared in the equa-
tions should be measured in radians rather than degrees): ‖ε‖ is
equivalent to the chord length which corresponds to the arc of a
variable τ , which can be any value from 0 to θ with equal prob-
ability, in other words, the choice of τ is uniformly distributed
within [0, θ]. If the sample size of the selected ε is large enough,
we can approximately describe its probability density function
(pdf) as a continuous function given by

f(τ) =
1

θ
. (76)

Meanwhile, we are also able to calculate the chord length ‖ε‖
from a simple geometric criterion as

‖ε‖ = 2‖a1‖ sin
τ

2
. (77)

Then the expectation of ‖ε‖ can be computed by

E[‖ε‖] =
θ∫

0

‖ε‖f(τ)dτ, (78)

from which after simplification we obtain

E[‖ε‖] = 8‖a1‖ sin2 θ4
θ

. (79)

At this point, we can also compute the variance of ‖ε‖ by using
(79) as

Var[‖ε‖] =
θ∫

0

(‖ε‖ − E[‖ε‖])2f(τ)dτ, (80)

from which after simplification we obtain

Var[‖ε‖] = 2‖a1‖2(1−
sin θ

θ
− 32 sin4 θ4

θ2
). (81)

In addition, it is clear that we have inf‖ε‖ = 0 and sup‖ε‖ =
2‖a1‖ sin θ

2 , which can be substituted in (74) and result in

Var[‖ε‖] ≤ ‖a1‖2 sin2
θ

2
. (82)

We can see that the right-hand side of (81) satisfies the inequality
in (82). After substituting (79) and (81) in (72), we obtain

E[‖ε‖2] = 2‖a1‖2(1−
sin θ

θ
). (83)

||a1||

a1

ǫ

θi

θ

â1(i) â1(0)
ê(i)

Fig. 1. Euclidean norm interpretation of the MSE

||a1||

ê(1)

â1(0)â1(i)

θi

ê(i)− ê(i− 1)
...

â1(1)â1(i− 1)

Fig. 2. update scheme of the SQP method

Regarding the computation of the norm of the accumulated
estimation error ‖ê(i)‖, we need to emphasize that even though
the steering vector is always re-normalized each time after it is
updated, the piecewise estimation error in each snapshot does
not directly update the steering vector to its normalized version,
which means it is inappropriate to calculate the estimation er-
ror by geometric methods directly from Fig. 1 because the ac-
cumulated estimation error partially comes from the unnormal-
ized steering vectors. However, we can obtain the infimum and
supremum values for ‖ê(i)‖ if we assume the update scheme is

Rodrigo
Riscado
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||a1||

â1(0)â1(i)

θi

... â1(1)

â1(i− 1) ê(1)

ê(i)− ê(i− 1)

Fig. 3. update scheme of the OKSPME method

unidirectional (i.e., the steering vector is updated from â1(0) to
â1(i) in a single direction within the sector), with the unnormal-
ized steering vectors considered.

We firstly look at the SQP method scenario in [6]. The steer-
ing vector update scheme is shown in Fig. 2. It is necessary to
emphasize that now we focus on the angular sector range of θi
(i.e., the angle difference between the initially guessed steering
vector and its estimate in the ith snapshot) rather than θ. In [6],
an online-optimization program was used to iteratively solve for
the piecewise estimation error in every snapshot, which was al-
ways orthogonal to the current steering vector estimate. Let us
consider that at each time instant the steering vector is updated,
its direction changes by θi,k, where i is the snapshot index and
k (1 ≤ k ≤ i) is the index for the kth update. Since the total
direction change in a snapshot is θi, then we have

θi =

i∑
k=1

θi,k, (84)

and the norm of the accumulated estimation error is no greater
than the sum of the norms of all the piecewise estimation errors,
which is given by the inequality

‖ê(i)‖ ≤
i∑

k=1

‖a1‖ tan θi,k. (85)

If we assume θi is less than π/2, then the right-hand side of (85)
achieves its maximum value when θi,k = tan θi, which is also
the supremum of ‖ê(i)‖ and equals

‖ê(i)‖max = ‖a1‖ tan θi. (86)

On the other hand, we notice that the piecewise estimation error
vector can never enter into the angular sector, but at most move
along with the arc if the number of iterations is large enough. In
this case, we can approximately and geometrically illustrate the
arc length corresponding with θi as the lower bound by taking
the limit i→∞, i.e.,

lim
i→∞
‖ê(i)‖ = θi‖a1‖, (87)

which is actually the infimum of ‖ê(i)‖ and cannot be achieved
since the number of snapshots or iterations are always limited
in practical situations. By combining (86) and (87), ‖ê(i)‖ is

bounded by

inf‖ê(i)‖ = θi‖a1‖ < ‖ê(i)‖ ≤ ‖a1‖ tan θi = sup‖ê(i)‖.
(88)

Different from the SQP method, the proposed OKSPME
method utilizes the Krylov subspace and the cross-correlation
vector projection approach to extract the error information then
use it to update the steering vector. From (9) we have

d̂(i) =
1

i

i∑
k=1

x(k)y∗(k) =
1

i

i∑
k=1

x(k)(wH(k)x(k))∗

=
1

i

i∑
k=1

x(k)xH(k)w(k) =
1

i

i∑
k=1

R̂(k)w(k). (89)

Note that an initialization for vector d̂ or matrix R̂ should be
considered to ensure R̂ is full-rank and invertible, which can be
done by either setting d̂(0) = δIw(0) or R̂(0) = δI. We also
know that

w(k) =
R̂−1(k)â1(k)

âH1 (k)R̂−1(k)â1(k)
=

R̂−1(k)â1(k)

σ̂2
1(k)

. (90)

Pre-multiplying (90) by R̂(k) on both sides we obtain

R̂(k)w(k) =
â1(k)

σ̂2
1(k)

, (91)

which is then substituted in (89) and results in

d̂(i) =
1

i

i∑
k=1

â1(k)

σ̂2
1(k)

, (92)

where σ̂2
1(k) is a scalar, which means the SCV contains the di-

rection of the desired signal steering vector. Projecting d̂(i) onto
the Krylov subspace represented by P̂(i) is therefore similar to
projecting â1(i). In our method, the estimation of d̂(i) is sepa-
rate from the update of â1(i), which means the steering vector
estimation error used for the updates is obtained from d̂(i), so
that in the kth (1≤k < i) snapshot, the error does not have to be
orthogonal to â1(k), but should be orthogonal to another poten-
tially better estimate â1(j) (1≤k < j≤i), resulting in a situation
where the error is located inside the sector (see Fig. 3). There
are two benefits in the case which the error is inside the sector:
faster convergence rate and smaller estimation error. We can
obtain the infimum and supremum values in a similar way. By
applying the inequality that the norm of the accumulated esti-
mation error is no greater than the sum of the norms of all the
piecewise estimation errors, we have

‖ê(i)‖ ≤
i∑

k=1

‖a1‖ sin θi,k, (93)

where the parameters θi,k (k = 1, 2, · · · , i) satisfy the con-
straint in (84). However, the right-hand side of (93) achieves
its maximum value when all these parameters are equal (i.e.,
θi,1 = θi,2 = · · · = θi,i =

θi
i ) and it is given by

‖ê(i)‖max = i‖a1‖ sin
θi
i
, (94)
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The right-hand side of (94) can be treated as a function of i
which is an increasing function on i = 1, 2, · · · ,∞. There-
fore, we can take the limit of it to obtain the upper bound of
‖ê(i)‖max, and so as to ‖ê(i)‖. In fact, when i → ∞, the
piecewise estimation error moves along the arc corresponding
with θi, resulting in the upper bound obtained is the same as
the lower bound of the SQP method case, which is given by the
right-hand side expression of (87) and defines the supremum of
‖ê(i)‖ in this case. Since we have already assumed that θi is
less than π/2 so that ê(i) must be inside of the angular sector
but its Euclidean norm cannot be smaller than the orthogonal
distance between â1(0) to â1(i), so this orthogonal distance can
define the lower bound of ‖ê(i)‖, which is actually the infimum
and calculated by ‖a1‖ sin θi. Then, in the OKSPME method,
‖ê(i)‖ is bounded by

inf‖ê(i)‖ = ‖a1‖ sin θi ≤ ‖ê(i)‖ < θi‖a1‖ = sup‖ê(i)‖.
(95)

By taking expectations of both (88) and (95), we obtain

E[θi]‖a1‖ < {E[‖ê(i)‖]}SQP ≤ ‖a1‖ tan(E[θi]), (96)

‖a1‖ sin(E[θi]) ≤ {E[‖ê(i)‖]}OKSPME < E[θi]‖a1‖. (97)

On the other side, by substituting (88) and (95) in (75), we ob-
tain

0 ≤ {Var[‖ê(i)‖]}SQP ≤
‖a1‖2(tan θi − θi)2

4
, (98)

0 ≤ {Var[‖ê(i)‖]}OKSPME ≤
‖a1‖2(θi − sin θi)

2

4
. (99)

Substituting (96), (98) and (97), (99) in (73), respectively, we
have

E2[θi]‖a1‖2 < {E[‖ê(i)‖2]}SQP

≤ ‖a1‖
2(tan θi − θi)2

4
+ ‖a1‖2 tan2(E[θi]), (100)

‖a1‖2 sin2(E[θi]) ≤ {E[‖ê(i)‖2]}OKSPME

<
‖a1‖2(θi − sin θi)

2

4
+ E2[θi]‖a1‖2. (101)

However, E[θi] also has its lower and upper bounds. Since our
analysis focuses on the unbiased case only as mentioned, the
true steering vector is located in the center of the angular sector
and the estimate â1(i) is always closer to the center than â1(0).
Let us assume that even if the estimate â1(i) always happens to
be very close to either edge of the sector, no matter how â1(0)
is chosen within the sector, θi will vary from 0 to 2θ with equal
probability, or equivalently, uniformly distributed within [0, 2θ),
in which case we can obtain the upper bound forE[θi] by taking
the average between 0 to 2θ, which is obtained as θ. On the other
hand, if we assume that the estimate â1(i) always happens to be
exactly at the center of the sector, resulting in that θi can only
vary from 0 to θ, or uniformly distributed within [0, θ] in which
case E[θi] = θ/2, resulting in the lower bound of E[θi] is θ/2.
Therefore, the upper and lower bounds for MSE{â1(i)} can be
further obtained by substituting E[θi]max → θ, [θi]max → 2θ

and E[θi]min = θ/2, [θi]min = 0 into the upper and lower
bounds of (100) and (101) respectively, resulting in

θ2

4
‖a1‖2 < {E[‖ê(i)‖2]}SQP

<
‖a1‖2(tan 2θ − 2θ)2

4
+ ‖a1‖2 tan2 θ, (102)

‖a1‖2 sin2
θ

2
≤ {E[‖ê(i)‖2]}OKSPME

<
‖a1‖2(2θ − sin 2θ)2

4
+ θ2‖a1‖2. (103)

Finally, by combining the expectation of the mean-squared ini-
tial guess error E[‖ε‖2] in (83) with (102) and (103), we ob-
tain the bounds for the MSE of the steering vector estimate
MSE{â1(i)} as

(2− 2 sin θ

θ
+
θ2

4
)‖a1‖2 < {MSE{â1(i)}}SQP

< (2− 2 sin θ

θ
+

(tan 2θ − 2θ)2

4
+ tan2 θ)‖a1‖2, (104)

(2− 2 sin θ

θ
+ sin2

θ

2
)‖a1‖2 ≤ {MSE{â1(i)}}OKSPME

< (2− 2 sin θ

θ
+

(2θ − sin 2θ)2

4
+ θ2)‖a1‖2. (105)

From (104) and (105), we can see that the MSEs now only de-
pend on two parameters: the norm of the true steering vector
and the angular sector spread. The lower and upper bounds of
the proposed OKSPME method are lower than those of the SQP
method. As mentioned before, it is important that the presumed
angular sector spread 2θ must be less than π/2 (i.e., 90◦) to en-
sure the previous assumption of θi < π/2 is always valid.

B. Complexity Analysis

The computational complexity analysis is discussed in this
subsection. We measure the total number of additions and mul-
tiplications (i.e., flops) in terms of the number of sensors M
performed for each snapshot for the proposed algorithms and
the existing ones and list them in Table V. Note that the SQP
method in [6] has a highly-variant computational complexity
in different snapshots, due to the online optimization program
based on random choices of the presumed steering vector. How-
ever, it is usually in O(M3.5). The complexity of the LCWC
algorithm in [9] often requires a much larger n than that in the
proposed LOCSME-CCG algorithm. It is obvious that all of
the proposed algorithms have their complexity depending on the
Krylov subspace model order m, which is determined from Ta-
ble I and is no larger than K + 1. For the convenience of com-
parison, we eliminate all parameters except M by setting them
to common values (the values of n in LCWC and OKSPME-
CCG is set to 50 and 5 respectively, m = K + 1 where K = 3)
and illustrate their complexity with M varying from 10 to 100
as shown in Fig. 4. As can be seen that the proposed OKSPME-
SG and OKSPME-MCG algorithms have lower complexity than
the other algorithms.
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TABLE V
COMPLEXITY COMPARISON

RAB Algorithms Flops
LOCSME [32] 4M3 + 3M2 + 20M

RCB [4] 2M3 + 11M2

SQP [6] O(M3.5)
LOCME [7] 2M3 + 4M2 + 5M
LCWC [9] 2nM2 + 7nM

OKSPME M3 + (4m+ 11)M2

+(3m2 + 5m+ 20)M

OKSPME-SG (4m+ 7)M2

+(3m2 + 5m+ 33)M

OKSPME-CCG (4m+ 8n+ 8)M2

+(3m2 + 5m+ 33n+ 29)M

OKSPME-MCG (4m+ 14)M2

+(3m2 + 5m+ 86)M
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Fig. 4. Complexity Comparison

VI. SIMULATIONS

In this section, we present and discuss the simulation results
of the proposed RAB algorithms by comparing them to some of
the existing RAB techniques. We consider uniform linear arrays
(ULA) of omnidirectional sensors with half wavelength spacing.
To produce all the figures (if unspecified in a few scenario), 100
repetitions are executed to obtain each point of the curves and a
maximum of i = 300 snapshots are observed. The desired sig-
nal is assumed to arrive at θ1 = 10◦. The signal-to-interference
ratio (SIR) is fixed at 0dB. As the prior knowledge, the angu-
lar sector in which the desired signal is assumed to be located is
chosen as [θ1−5◦, θ1+5◦]. The results focus on the beamformer
output SINR performance versus the number of snapshots, or a
variation of input SNR (−10dB to 30dB) and both coherent and
incoherent local scattering mismatch [5] scenarios are consid-
ered.

A. Mismatch due to Coherent Local Scattering

All simulations in this subsection consider coherent local
scattering. With time-invariant coherent local scattering, the

steering vector of the desired signal is modeled as

a1 = p+

4∑
k=1

ejϕkb(θk), (106)

where p corresponds to the direct path while b(θk)(k =
1, 2, 3, 4) corresponds to the scattered paths. The angles θk(k =
1, 2, 3, 4) are randomly and independently drawn in each simu-
lation run from a uniform generator with mean 10◦ and standard
deviation 2◦. The angles ϕk(k = 1, 2, 3, 4) are independently
and uniformly taken from the interval [0, 2π] in each simulation
run. Both θk and ϕk change from trials while remaining con-
stant over snapshots.

We firstly compare our proposed methods with some classi-
cal RAB methods (i.e., standard diagonal loading method with
a fixed loading factor equal to 10 times the noise variance, the
RCB method in [4] which estimates the loading factor itera-
tively, and the method that solves an online quadratic optimiza-
tion programming, which refers to the SQP method [6]). The
numbers of sensors and signal sources (including the desired
signal) are set to M = 10 and K = 3, respectively. For this
case only, we set the INR (interferences-to-noise ratio) to 20dB
and illustrate the SINR performance versus snapshots within
100 snapshots in Fig. 5. The two interferers are arranged to
be in the directions of θ2 = 30◦ and θ3 = 50◦, respectively. The
other user-defined parameters, if unspecified, (e.g. the step size
µ and the forgetting factor λ) are manually optimized to give the
best algorithm performance, which is also applied for the other
simulation scenarios.

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

snapshots

S
IN

R
 (

dB
)

 

 

Optimum SINR
fixed diagonal loading
RCB [4]
SQP [6]
OKSPME
OKSPME−SG
OKSPME−CCG
OKSPME−MCG

Fig. 5. Coherent local scattering, SINR versus snapshots, M = 10, K = 3,
INR = 20dB

We then set the number of sensors to M = 12, the number
of signal sources as (including the desired signal) K = 3 and
illustrate the SINR versus snapshots and the SINR versus input
SNR performance in Fig. 6 and Fig. 7 respectively. The two
interferers are arranged to be in the directions of θ2 = 30◦ and
θ3 = 50◦, respectively. In either Fig. 6 or Fig. 7, we can see that
the proposed OKSPME method has a very similar or slightly
better performance compared to the LOCSME algorithm of [32]
and both of them have the best performance. Furthermore, the
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TABLE VI
CHANGES OF INTERFERERS

Snapshots Number of Interferers
(K − 1) DoAs

0− 150 2 θ2 = 30◦, θ3 = 50◦.

151− 300 5
θ2 = 20◦, θ3 = 30◦, θ4 = 40◦,

θ5 = 50◦, θ6 = 60◦.

proposed OKSPME-CCG and OKSPME-MCG algorithms also
achieve very close performance to OKSPME.

In Fig. 8, we assess the SINR performance versus snapshots
of those selected algorithms in a specific time-varying scenario
which encounters a halfway redistribution of the interferers at a
certain snapshot. In this case, the number of sensors is kept at
M = 12, whereas the details of the interferers are given in Table
VI.

In Figs. 9 and 10, we set the number of signal sources to
K = 3, but increase the number of sensors from M = 12
to M = 40 and study the SINR versus snapshots and the
SINR versus input SNR performance of the selected and pro-
posed dimensionality reduction RAB algorithms, respectively.
We set the reduced-dimension as D = 4 for the beamspace
based algorithm [23] in all simulations. This time, it is clear
that the proposed OKSPME, OKSPME-SG, OKSPME-CCG
and OKSPME-MCG algorithms all have a certain level of per-
formance degradation compared to the scenario where M = 12.
The proposed OKSPME based algorithms achieve better perfor-
mances than the beamspace approach.
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Fig. 6. Coherent local scattering, SINR versus snapshots, M = 12, K = 3

B. Mismatch due to Incoherent Local Scattering

In this case, the desired signal affected by incoherent local
scattering has a time-varying signature and its steering vector is
modeled by

a1(i) = s0(i)p+

4∑
k=1

sk(i)b(θk), (107)

−5 0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

20

25

30

SNR (dB)

S
IN

R
 (

dB
)

 

 

Optimum SINR
LOCSME [32]
LCWC [9]
SQP [6]
OKSPME
OKSPME−SG
OKSPME−CCG
OKSPME−MCG

Fig. 7. Coherent local scattering, SINR versus SNR, M = 12, K = 3
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Fig. 8. Coherent local scattering, SINR versus snapshots, M = 12

where sk(i)(k = 0, 1, 2, 3, 4) are i.i.d zero mean complex Gaus-
sian random variables independently drawn from a random gen-
erator. The angles θk(k = 0, 1, 2, 3, 4) are drawn independently
in each simulation run from a uniform generator with mean 10◦

and standard deviation 2◦. At this time, sk(i) changes both from
run to run and from snapshot to snapshot. In order to show the
effects caused by incoherent scattering only, we set the param-
eters M = 40 and K = 3, study the SINR versus SNR per-
formance of the selected algorithms in Fig. 11 and compare the
results with Fig. 10. As a result, a performance degradation is
observed for all the studied algorithms. This is because the time-
varying nature of incoherent scattering results in more dynamic
and environmental uncertainties in the system, which increases
the steering vector mismatch.
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Fig. 9. Coherent local scattering, SINR versus snapshots, M = 40, K = 3
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Fig. 10. Coherent local scattering, SINR versus SNR, M = 40, K = 3

VII. CONCLUSION

We have proposed the OKSPME algorithm based on the ex-
ploitation of cross-correlation mismatch estimation and the or-
thogonal Krylov subspace. In addition, low complexity RAB al-
gorithms, OKSPME-SG, OKSPME-CCG and OKSPME-MCG
have been developed to enable the beamforming weights to be
updated recursively without matrix inversions. A detailed steer-
ing vector estimation MSE analysis for the general RAB de-
sign approach that relies on a presumed angular sector as prior
knowledge has been provided. The computational complex-
ity of the proposed and some of the existing algorithms have
been compared and discussed. Simulation results have shown
that the proposed algorithms have robustness against different
choices of user-defined parameters and environmental effects,
and achieved excellent output SINR performance especially in
medium-high input SNR values.
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Fig. 11. Incoherent local scattering, SINR versus SNR, M = 40, K = 3
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