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Blind Adaptive Interference Suppression Based on
Set-Membership Constrained Constant-Modulus

Algorithms with Dynamic Bounds
Rodrigo C. de Lamare and Paulo S. R. Diniz

Abstract— This work presents blind constrained constant modulus
(CCM) adaptive algorithms based on the set-membership filtering (SMF)
concept and incorporates dynamic bounds for interference suppression ap-
plications. We develop stochastic gradient and recursive least squares type
algorithms based on the CCM design criterion in accordance with the spec-
ifications of the SMF concept. We also propose a blind framework that
includes channel and amplitude estimators that take into account param-
eter estimation dependency, multiple access interference (MAI) and inter-
symbol interference (ISI) to address the important issue of bound specifica-
tion in multiuser communications. A convergence and tracking analysis of
the proposed algorithms is carried out along with the development of ana-
lytical expressions to predict their performance. Simulations for a number
of scenarios of interest with a DS-CDMA system show that the proposed
algorithms outperform previously reported techniques with a smaller num-
ber of parameter updates and a reduced risk of overbounding or under-
bounding.

Keywords— Interference suppression, blind adaptive estimation, set-
membership estimation, spread spectrum systems.

I. INTRODUCTION

Set-membership filtering (SMF) [2], [3], [5], [6] is a class
of recursive estimation algorithms that, on the basis of a pre-
determined error bound, seeks a set of parameters that yield
bounded filter output errors. These algorithms have been ap-
plied to a variety of applications including adaptive equalization
[5] and multi-access interference suppression [6], [7]. The SMF
algorithms are able to combat conflicting requirements such as
fast convergence and low misadjustment by introducing a mod-
ification on the objective function. These algorithms exhibit re-
duced complexity due to data-selective updates, which involve
two steps: a) information evaluation and b) update of parame-
ter estimates. If the filter update does not occur frequently and
the information evaluation does not involve much computational
complexity, the overall complexity can be significantly reduced.

Adaptive SMF algorithms usually achieve good convergence
and tracking performance due to the use of an adaptive step size
or an adaptive forgetting factor for each update. This trans-
lates into reduced complexity due to the data selective updat-
ing. However, the performance of SMF techniques depends on
the error-bound specification, which is very difficult to obtain in
practice due to the lack of knowledge of the environment and its
dynamics. In wireless networks characterized by non-stationary
environments, where users often enter and exit the system, it
is very difficult to choose an error bound and the risk of over-
bounding (when the error bound is larger than the actual one)
and underbounding (when the error bound is smaller than the
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actual one) is significantly increased, leading to a performance
degradation. In addition, when the measured noise in the sys-
tem is time-varying and the multiple access interference (MAI)
and the intersymbol interference (ISI) encountered by a receiver
in a wireless network are highly dynamic, the selection of an
error-bound is further complicated. This is especially relevant
for low-complexity estimation problems encountered in appli-
cations that include mobile units and wireless sensor networks
[9], [10], where the sensors have limited signal processing capa-
bilities and power consumption is of central importance. These
problems suggest the deployment of mechanisms to automati-
cally adjust the error bound in order to guarantee good perfor-
mance and a low update rate (UR).

A. Prior and Related Work

In this context, blind methods are appealing because they can
alleviate the need for training sequences or pilots, thereby in-
creasing the throughput and efficiency of wireless networks. In
particular, blind algorithms based on constrained optimization
techniques are important in several areas of signal processing
and communications such as beamforming and interference sup-
pression. The constrained optimization required in these ap-
plications deals with linear constraints that correspond to prior
knowledge of certain parameters such as the direction of ar-
rival (DoA) of user signals in antenna array processing [23] and
the signature sequence of the desired signal in DS-CDMA sys-
tems [24], [25]. Therefore, linear signal models and constraints
can be used to describe various wireless communications sys-
tems including multi-input multi-output (MIMO) and orthogo-
nal frequency-division multiplexing (OFDM) systems. For in-
stance, linear constraints that incorporate the knowledge of user
signatures of a DS-CDMA system can also be used to exploit the
knowledge of the spatial signatures of MIMO systems. A num-
ber of blind algorithms with different trade-offs between perfor-
mance and complexity have been reported in the last decades
[24]-[36]. Local scattering, synchronization and estimation er-
rors, imperfectly calibrated arrays and imprecisely known wave
field propagation conditions are typical sources of uncertainties
that can lead to a performance degradation of blind algorithms.
The literature indicates that the CCM-based algorithms [30]-
[36] have a superior performance to algorithms based on the
constrained minimum variance (CMV) criterion [24]- [27]. The
CCM-based algorithms exploit prior knowledge about the con-
stant modulus property of signals like M-PSK, which results in
an improved performance over CMV-type techniques and a per-
formance that is very close to the linear minimum mean-square
error (MMSE) training-based techniques. Moreover, the CCM-
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type algorithms are robust against errors in the effective signa-
ture sequence required for blind parameter estimation, which
prevents a severe performance degradation in the presence of
uncertainties. These features make CCM-type algorithms ex-
cellent candidates for interference suppression in wireless net-
works. The need for the adjustment of parameters (step size, for-
getting factor) and the computational complexity of CCM-based
techniques calls for approaches like SMF. Prior work on SMF
blind algorithms for interference suppression is very limited [7],
[8]. The use of time-varying bounds is also restricted to applica-
tions where one assumes that the ”true” error bound is constant
[16] and to the parameter-dependent error bound recently pro-
posed in [13], [15]. The time-varying bound techniques so far
reported are not blind and do not exploit these mechanisms for
channel and parameter estimation.

B. Contributions

In this work, we propose set-membership blind adaptive con-
strained algorithms based on the CCM criterion. Preliminary re-
sults have been reported in [22]. In particular, we derive stochas-
tic gradient (SG) and recursive least squares (RLS)-type CCM
algorithms designed in accordance with the specifications of the
SMF concept. The second contribution is a low-complexity
blind framework for parameter estimation, and tracking of pa-
rameter evolution, MAI and ISI that relies on simple estimation
techniques and employs the proposed set-membership CCM al-
gorithms with a time-varying bound. The third contribution of
this work is an analysis of the optimization problem that gives
rise to the proposed algorithms along with a mean-squared error
(MSE) convergence and tracking analysis using the energy con-
servation approach [39] for predicting the performance of the
algorithms. A simulation study considers an interference sup-
pression application to DS-CDMA systems, which compares the
performance of the proposed and existing algorithms, and dis-
cusses the main features of the algorithms.

This paper is structured as follows. Section II describes
the DS-CDMA system model and briefly reviews linearly con-
strained receivers. Section III introduces the SM blind algo-
rithms with time-varying bound. Section IV proposes blind
parameter dependent and interference dependent bounds along
with blind channel and amplitude estimation algorithms. Sec-
tion V is dedicated to the analysis of the proposed algorithms.
Section VI is devoted to the presentation and discussion of nu-
merical results, while Section VII gives the conclusions.

II. DS-CDMA SYSTEM MODEL AND LINEARLY
CONSTRAINED RECEIVERS

Let us consider the uplink of a symbol synchronous DS-
CDMA system with K users, N chips per symbol and Lp prop-
agation paths. A synchronous model is assumed for simplic-
ity since it captures most of the features of more realistic asyn-
chronous models with small to moderate delay spreads. The
modulation is assumed to have constant modulus. Let us assume
that the signal has been demodulated at the base station, the
channel is constant during each symbol and the receiver is per-
fectly synchronized with the main channel path. The received
signal after filtering by a chip-pulse matched filter and sampled

at chip rate yields an M -dimensional received vector at time i

r[i] =
K∑

k=1

Ak[i]bk[i]Ckhk[i] + ηk[i] + n[i], (1)

where M = N +Lp− 1, n[i] = [n1[i] . . . nM [i]]T is the com-
plex Gaussian noise vector with zero mean and E[n[i]nH [i]] =
σ2I independent and identically distributed samples, (.)T and
(.)H denote transpose and Hermitian transpose, respectively,
and E[.] stands for expected value. The user symbols are de-
noted by bk[i], the amplitude of user k is Ak[i], and ηk[i] is the
intersymbol interference (ISI) for user k. The signature of user
k is represented by ck = [ck(1) . . . ck(N)]T , the M × Lp con-
straint matrix Ck that contains one-chip shifted versions of the
signature sequence for user k and the Lp × 1 vector hk[i] with
the multipath components are described by

Ck =


ck(1) 0

...
. . . ck(1)

ck(N)
...

0
. . . ck(N)

 ,hk[i] =

 hk,0[i]
...

hk,Lp−1[i]

 .
(2)

The MAI comes from the non-orthogonality between the re-
ceived signature sequences. The ISI originates from the mul-
tipath propagation effects of the channel, depends on the length
of the channel response and how it is related to the length of the
chip sequence. We define Ls as the ISI span, i.e., the number of
symbols affected by the channel. For Lp = 1, Ls = 1 (no ISI),
for 1 < Lp ≤ N,Ls = 3, for N < Lp ≤ 2N,Ls = 5, and so
on. At time instant i we will have ISI coming not only from the
previous time instants but also from the next symbols. The lin-
ear model in (1) can be used to represent other wireless commu-
nications systems including multi-input multi-output (MIMO)
and orthogonal frequency-division multiplexing (OFDM) sys-
tems. For example, the user signatures of a DS-CDMA system
are equivalent to the spatial signatures of a MIMO system.

In order to describe the design of linearly constrained re-
ceivers, we consider the received vector r[i], the M × Lp con-
straint matrix Ck that contains one-chip shifted versions of the
signature sequence for user k and the Lp × 1 vector hk[i] =
[hk,0[i] . . . hk,Lp−1[i]]

T with the multipath components to be
estimated. The CCM linear receiver design is equivalent to de-
termining an FIR filter wk[i] with M coefficients that provide
an estimate of the desired symbol as follows

zk[i] = wH
k [i]r[i], (3)

where the detected symbol is given by b̂k[i] = Q(wH
k [i]r[i]),

where Q(·) is a function that performs the detection according
to the constellation employed.

The design of the receive filter wk[i] is based on the optimiza-
tion of the CM cost function

JCM (wk[i]) = E
[
(|wH

k [i]r[i]|2 − 1)2
]

(4)

subject to the constraints given by wH
k [i]pk[i] = ν, where

pk[i] = Ckhk[i] is the effective signature vector that cor-
responds to the convolution between the original signature se-
quence and the channel gains, and ν is a constant to ensure the
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convexity of the optimization problem as will be discussed later
on. This approach assumes the knowledge of the channel. How-
ever, when multipath is present these parameters are unknown
and time-varying, requiring channel estimation. The CCM re-
ceive filter expression that iteratively solves the constrained op-
timization problem in (4) is given by

wk[i+ 1] = R−1
k [i]

[
dk[i]−

(
pH
k [i]R−1

k [i]pk[i]
)−1

·
(
pH
k [i]R−1

k [i]dk[i]− ν
)
pk[i]

]
, i = 1, 2, . . .

(5)

where zk[i] = wH
k [i]r[i], Rk[i] = E[|zk[i]|2r[i]rH [i]], dk[i] =

E[z∗k[i]r[i]]. A detailed derivation of the CCM estimation ap-
proach can be found in [33], [34], [36]. It should be remarked
that the expression in (5) is a function of previous values of the
filter wk[i] and therefore must be iterated in order to reach a so-
lution. In addition to this, the iterative method in (5) assumes
the knowledge of the channel parameters. Since there is a large
number of applications that have to deal with unknown multi-
path propagation, it is also important to be able to blindly esti-
mate the multipath components.

In order to blindly estimate the channel, a designer can adopt
the blind channel estimation procedure based on the subspace
approach reported in [26], [41] and which is described by

ĥk[i] = arg min
hk[i]

hH
k [i]CH

k R−1[i]Ckhk[i] (6)

subject to ||hk[i]|| = 1, where R[i] = E[r[i]rH [i]]. The so-
lution is the eigenvector of the Lp × Lp matrix corresponding
to the minimum eigenvalue of CH

k R−1[i]Ck obtained by an
eigenvalue decomposition (EVD). Here, we use Rk[i] in lieu
of R[i] to avoid the estimation of both R[i] and Rk[i], which
shows no performance loss as reported and investigated in [33],
[34], [36].

III. SET-MEMBERSHIP BLIND ADAPTIVE CONSTRAINED
ALGORITHMS WITH TIME VARYING ERROR BOUNDS

In this section, we describe an adaptive filtering framework
that combines the set-membership (SM) concept with blind con-
strained algorithms based on the CCM design. We also intro-
duce simple time-varying error bounds to take into considera-
tion the evolution of the receive filter and the MAI and ISI ef-
fects. In SM filtering [2], the parameter vector wk[i] for user
k is designed to achieve a specified bound on the magnitude of
an estimated quantity zk[i]. As a result of this constraint, the
SM blind adaptive algorithm will only perform filter updates for
certain data. Let Θ[i] represent the set containing all wk[i] that
yield an estimation quantity upper bounded in magnitude by a
time-varying error bound γk[i]. Thus, we can write

Θ[i] =
∩

(r[i])∈S

{wk ∈ CM :| zk[i] |≤ γk[i]}, (7)

where r[i] is the observation vector, S is the set of all possi-
ble data pairs (bk[i], r[i]) and the set Θ[i] is referred to as the
feasibility set, and any point in it is a valid estimate zk[i] =

wH
k [i]r[i]. Since it is not practical to predict all data pairs, adap-

tive methods work with the membership set ψi =
∩i

m=1Hm

provided by the observations, where Hm = {wk ∈ CM :
|zk[i]| ≤ γk[i]}. In order to devise an effective SM algo-
rithm, the bound γk[i] must be appropriately chosen. Due to
the time-varying nature of many practical environments, this
bound should also be adaptive and capable of estimating cer-
tain characteristics for the SM estimation technique. We devise
SM-CCM algorithms equipped with variable step sizes and for-
getting factors that are able to automatically tune to different
situations, which is an advantage over methods operating with
fixed parameters in time-varying scenarios. In what follows, we
derive SM-CCM algorithms for blind parameter estimation that
assume time-varying error bounds.

A. Set-Membership CCM Stochastic Gradient-Type Algorithm

Here we develop the set-membership CCM stochastic
gradient-type (SM-CCM-SG) algorithm. The basic idea is to de-
vise a gradient descent strategy to compute a parameter vector
wk for user k that minimizes the instantaneous CM cost func-
tion subject to certain constraints, which requires for adapta-
tion that the square of the error e2k[i] exceeds a specified error
bound γ2k[i]. Mathematically, the proposed SM-CCM-SG algo-
rithm solves the following optimization problem

minimize JCM (wk[i]) = (|wH
k [i]r[i]|2 − 1)2 = e2k[i]

subject to wH
k [i]pk[i] = ν

whenever e2k[i] ≥ γ2k[i]
(8)

This problem can be solved using the method of Lagrange mul-
tipliers using the equality constraint e2k[i] = γ2k[i] [1]:

L(wk[i], κk) = (|wH
k [i]r[i]|2 − 1)2 + [(wH

k [i]pk[i]− ν)κ∗k]
+ [κ∗k(p

H
k [i]wk[i]− ν)],

(9)

where κk is a Lagrange multiplier. Computing the gradient
terms of (9) and equating them to zero, we obtain

∇w∗
k[i]
L(wk[i], κk) = 2(ek[i]r[i]z

∗
k[i]) + pk[i]κk = 0

∇κ∗
k
L(wk[i], κk) = wH

k [i]pk[i]− ν = 0.
(10)

We employ a gradient descent rule to solve for the above equa-
tions. Using the first equation of (10), we have

wk[i+ 1] = wk[i]− µk(ek[i]z
∗
k[i]r[i] + pk[i]κk) (11)

Using the second equation of (10), we obtain

wk[i+1] = Πk[i](wk[i]−µkek[i]z
∗
k[i]r[i])+νpk[i](p

H
k [i]pk[i])

−1,
(12)

where µk is the effective step size, ek[i] = |zk[i]|2−1 is the error
signal for user k, and Πk[i] = I − pk[i](p

H
k [i]pk[i])

−1pH
k [i]

is a projection matrix that ensures the constraint and I is an
identity matrix. By imposing the condition to update whenever
e2k[i] ≥ γ2k[i] we arrive at the set of all wk that satisfy√

1− γk[i] ≤ |wH
k [i+ 1]r[i]| ≤

√
1 + γk[i] (13)
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It can be verified that the set above is non-convex and com-
prises two parallel hyper-strips in the parameter space. From the
above conditions we consider two cases: i) |wH

k [i + 1]r[i]| ≤√
1 + γk[i] and ii) |wH

k [i + 1]r[i]| ≥
√
1− γk[i]. By substi-

tuting the recursion obtained in (12) into |wH
k [i + 1]r[i]|, we

have

|wH
k [i+1]r[i]| = |zk[i]−µk[i]ek[i]zk[i]r

H [i]Πk[i]r[i]|. (14)

Using the above expression we have for case i):

|zk[i]− µk[i]ek[i]zk[i]r
H [i]Πk[i]r[i]| =

√
1 + γk[i] (15)

which leads to

µk[i] =

(
1−

√
1 + γk[i]

|zk[i]|

)
1

ek[i]rH [i]Πk[i]r[i]
(16)

Using (14) we have for case ii):

|zk[i]− µk[i]ek[i]zk[i]r
H [i]Πk[i]r[i]| =

√
1− γk[i] (17)

which results in the following

µk[i] =

(
1−

√
1− γk[i]
|zk[i]|

)
1

ek[i]rH [i]Πk[i]r[i]
(18)

The resulting SM-CCM-SG algorithm is described by

wk[i+1] = Πk[i](wk[i]−µk[i]ek[i]z
∗
k[i]r[i])+νpk[i](p

H
k [i]pk[i])

−1,
(19)

where

µk[i] =



(
1−
√

1+γk[i]

|zk[i]|

)
1

ek[i]rH [i]Πk[i]r[i]
if |zk[i]| ≥

√
(1 + γk[i](

1−
√

1−γk[i]

|zk[i]|

)
1

ek[i]rH [i]Πk[i]r[i]
if |zk[i]| ≤

√
(1− γk[i]

0 otherwise
(20)

The SM-CCM-SG algorithm described in (19)-(20) requires
M +UR(5M − 1) additions and M + 1 + UR(5M + 4) mul-
tiplications per received symbol, where UR is the update rate.

B. Set-Membership CCM RLS-Type Algorithm

In this part, we derive the set-membership CCM recursive
least-squares-type (SM-CCM-RLS) algorithm. The idea is to
devise a least-squares method to calculate a parameter vec-
tor wk used at the receiver for user k that minimizes the
exponentially-weighted CM cost function subject to constraints
that require that the squared error of the filter exceed a specified
time-varying error bound γ2k[i]. Mathematically, the proposed
SM-CCM-RLS algorithm solves the optimization problem

minimize JLS
CM (wk[i]) =

i∑
l=1

λi−l
k [i](|wH

k [i]r[l]|2 − 1)2

subject to wH
k [i]pk[i] = ν

whenever e2k[i] ≥ γ2k[i],
(21)

where λk[i] is a time-varying forgetting factor. Similarly to the
case of the SM-CCM-SG algorithm, this problem can be solved
with the method of Lagrange multipliers [1] along with the use
of the condition e2k[i] ≥ γ2k[i] to save computations

L(wk[i], ϵk) =
i∑

l=1

λi−l
k [i](|wH

k [i]r[l]|2 − 1)2

+ [ϵ∗k(p
H
k [i]wk[i]− ν)],

(22)

where ϵk is a Lagrange multiplier. Computing the gradient terms
of the Lagrangian in (22) and equating them to zero, we obtain

∇w∗
k[i]
L(wk[i], ϵk) =

i∑
l=1

λi−l
k [i](|zk[l]|2 − 1)(r[i]rH [i]wk[i] + pk[i]ϵk = 0

∇ϵ∗k
L(wk[i], ϵk) = wH

k [i]pk[i]− ν = 0.

(23)

Solving for the above equations, we have

wk[i+ 1] = R̂
−1

k [i]
[
d̂k[i]−

(
pH
k [i]R̂

−1

k [i]pk[i]
)−1

·
(
pH
k [i]R̂

−1

k [i]d̂k[i]− ν
)
pk[i]

]
,

(24)

where zk[i] = wH
k [i]r[i], R̂k[i] =

∑i
l=1 λ

i−l
k [i]|zk[l]|2r[l]rH [l],

d̂k[i] =
∑i

l=1 λ
i−l
k [i]z∗k[l]r[l]. Firstly, we need to compute d̂k[i]

and this is performed by the following recursion

d̂k[i] = d̂k[i− 1] + λk[i]z
∗
k[i]r[i]. (25)

At this point, we need to compute R̂
−1

k [i] efficiently and this is
done by applying the matrix inversion lemma [1], which yields

R̂
−1

k [i] = R̂
−1

k [i−1]−λk[i]|zk[i]|
2R̂

−1

k [i]r[i]rH [i]R̂
−1

k [i− 1]

1 + λk[i]|zk[i]|2rH [i]R̂
−1

k [i− 1]r[i]
(26)

The last step of the SM-CCM-RLS algorithm is the use of the
condition e2k[i] ≥ γ2k[i] to save computations and to adjust the
optimal λk[i]. In order to adjust λk[i], the authors in [6] have
advocated a strategy that yields bounding ellipsoids that lead to
a simple innovation check with linear complexity, which con-
siders the cost function

Cλk[i] = λk[i]

[
ek[i]

γ2k[i]

(
1

1 + λk[i]rH [i]R̂
−1

k [i− 1]r[i]

)
− 1

]
.

(27)
The maximization of the cost function in (27) leads to the inno-
vation check of the proposed SM-CCM-RLS algorithm:

λk[i] =


1

rH [i]R̂
−1
k [i−1]r[i]

(
|ek[i]|
γk[i]

− 1

)
if |e∗k[i]| > γk[i],

0 otherwise.
(28)

The SM-CCM-RLS algorithm described in (24)-(26) and (28)
requiresM+UR(4M2+3M) additions andM+2+UR(4M2+
6M + 3) multiplications per received symbol. It is worth men-
tioning that the computational savings can be quite substantial
if the algorithm operates with a low UR.
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IV. BLIND PARAMETER ESTIMATION AND TIME-VARYING
BOUNDS

This section presents a blind framework employed to com-
pute time-varying error bounds γk[i] based on parameter and
interference dependency. The proposed blind framework is an
extension of the approach in [21] that computes time-varying
error bounds, and performs interference estimation and track-
ing. In contrast to [21] that considers training-based recursions,
a blind procedure for estimating MAI and ISI power levels is
presented with a set-membership blind channel estimator and a
blind amplitude estimator, which are employed in the adaptive
error bound for the SM adaptive algorithms.

A. Parameter Dependent Bound

Here, we describe a parameter dependent bound (PDB), that
is similar to the one proposed in [13] and considers the evolution
of the parameter vector wk[i] for the desired user (user k). The
PDB recursion computes a bound for SM adaptive algorithms
and is described by

γk[i+ 1] = (1− β)γk[i] + β
√
α||wk[i]||2σ̂2[i], (29)

where β is a forgetting factor that should be adjusted to en-
sure an appropriate time-averaged estimate of the evolution
of the power of the parameter vector wk[i]. The quantity
α||wk[i]||2σ̂2[i] is the variance of the inner product of wk[i]
with n[i] which provides information on the evolution of wk[i],
where α is a tuning parameter and σ̂2[i] is an estimate of the
noise power. This kind of recursion helps avoiding too high
or low values of the squared norm of wk[i] and provides a
smoother evolution of its trajectory for use in the time-varying
bound. The noise power at the receiver should be estimated via
a time average recursion. In this work, we will assume that it is
known at the receiver.

B. Parameter and Interference Dependent Bound

In this part, we develop a blind interference estimation and
tracking procedure to be combined with a parameter dependent
bound and incorporated into a time-varying error bound for SM
recursions. The MAI and ISI power estimation scheme, out-
lined in Fig. 1, employs both the RAKE receiver and the linear
receiver described in (3) for subtracting the desired user signal
from r[i] and estimating MAI and ISI power levels. With the aid
of adaptive algorithms, we design the linear receiver, estimate
the channel modeled as an FIR filter for the RAKE receiver and
obtain the detected symbol b̂k[i], which is combined with an am-
plitude estimate Âk[i] for subtracting the desired signal from the
output xk[i] of the RAKE. Then, the difference dk[i] between
the desired signal and xk[i] is used to estimate the MAI and ISI
power.

C. Blind Interference Estimation and Tracking

Let us consider the RAKE receiver with perfect channel
knowledge, whose parameter vector fk[i] = Ckhk[i] for user
k (desired one) corresponds to the effective signature sequence
at the receiver, i.e. c̃k[i] = Ckhk[i]. The output of the RAKE

Blind linear
receiver wk[i]

Blind channel
estimation

RAKE receiver
fk[i]

Q(·)

Blind amplitude

estimation

MAI and ISI
power estimation

⊗

⊕

zk[i] b̂k[i]

Âk[i]

d̂k[i]

ĥk[i]

v̂k[i]
-

+

xk[i]

r[i]

-

Fig. 1. Block diagram of the proposed blind scheme.

receiver is given by

xk[i] = fH
k [i]r[i] = Ak[i]bk[i]f

H
k [i]c̃k[i]︸ ︷︷ ︸

desired signal

+
K∑
j=2
j ̸=k

Aj [i]bj [i]f
H
j [i]c̃j [i]

︸ ︷︷ ︸
MAI

+ fH
k [i]ηk[i]︸ ︷︷ ︸

ISI

+fH
k [i]n[i]︸ ︷︷ ︸
noise

,

(30)

where fH
k [i]c̃k[i] = ρk[i] and fH

k [i]c̃j [i] = ρ1,j [i] for j ̸= 1.
The symbol ρk represents the cross-correlation (or inner prod-
uct) between the effective signature and the RAKE with per-
fect channel estimates. The symbol ρ1,j [i] represents the cross-
correlation between the RAKE receiver and the effective signa-
ture of user j. The second-order statistics of the output of the
RAKE in (30) are described by

E[|xk[i]|2] = A2
k[i]ρ

2
k[i]E[|bk[i]|2]︸ ︷︷ ︸

→1

+
K∑
j=1
j ̸=k

K∑
l=1
j ̸=k

A2
j [i]E[bj [i]b

∗
l [i]]f

H
j c̃j c̃

H
l f j

︸ ︷︷ ︸
→

∑K
j=1,j ̸=k fH

j s̃j c̃H
j [i]fj

+ fH
k E[ηk[i]ηk

H [i]]fk + fH
k E[n[i]nH [i]]fk︸ ︷︷ ︸

→σ2fH
k fk

.

(31)

From the previous development, we can identify the sum of the
power levels of MAI, ISI and noise terms from the second-order
statistics. Our approach is to obtain instantaneous estimates of
the MAI, the ISI and the noise from the output of a RAKE re-
ceiver, subtract the detected symbol in (3) from this output (us-
ing the more reliable linear multiuser receiver (wk[i])) and to
track the interference (MAI + ISI + noise) power as shown in
Fig. 1. Let us define the difference between the output of the
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RAKE receiver and the detected symbol for user 1:

dk[i] = xk[i]− Âk[i]b̂k[i] ≈
K∑

k=2

Ak[i]bk[i]f
H
k [i]s̃k[i]︸ ︷︷ ︸

MAI

+fH
k [i]ηk[i]︸ ︷︷ ︸

ISI

+ fH
k [i]n[i]︸ ︷︷ ︸
noise

.

(32)

By taking expectations on |dk[i]|2 and taking into account the
assumption that MAI, ISI and noise are uncorrelated we have:

E[|dk[i]|2] ≈
K∑

k=2

fH
k [i]c̃k[i]c̃

H
k [i]fk[i]

+ fH
k [i]E[ηk[i]ηk

H [i]]fk[i] + σ2fH
k [i]fk[i],

(33)

where the above equation represents the interference power.
Based on time averages of the instantaneous values of the inter-
ference power, we consider the following algorithm to estimate
and track E[|dk[i]|2]

v̂[i+ 1] = (1− β)v̂[i] + β|dk[i]|2, (34)

where β is a forgetting factor. To incorporate parameter depen-
dency and interference power for computing a more effective
bound as an alternative to replace (29), we employ the parame-
ter and interference dependent bound (PIDB)

γk[i+ 1] = (1− β)γk[i] + β
(√

τ v̂2[i] +
√
α||wk||2σ̂2[i]

)
,

(35)
where v̂[i] is the estimated interference power in the multiuser
system and τ is a weighting parameter that must be set. The
equations in (34) and (35) are time-averaged recursions that
are aimed at tracking the quantities |dk[i]|2 and (

√
τ v̂2[i] +√

α||wk||2σ̂2[i]), respectively. The equations in (34) and (35)
also avoid undesirable too high or low instantaneous values
which may lead to inappropriate time-varying bound γk[i].

D. Blind Channel and Amplitude Estimation

Let us now present a set-membership blind channel estima-
tion (SM-BCE) algorithm to design the RAKE and linear re-
ceivers. Consider the constraint matrix Ck that contains one-
chip shifted versions of the signature sequence for user k de-
fined in (2) and the assumption that the symbols bk[i] are in-
dependent and identically distributed (i.i.d), and statistically in-
dependent from the symbols of the other users. Consider the
covariance matrix R = [r[i]rH [i]] and the transmitted signal
xk[i] = Ak[i]bk[i]pk[i], where pk[i] = Ckhk[i]. Let us now
perform an eigen-decomposition on R

R =

K∑
k=1

E[xk[i]x
H
k [i]] + E[ηk[i]η

H
k [i]] + σ2I

=
[
ϕs ϕn

] [ Λs + σ2I 0
0 σ2I

] [
ϕs ϕn

]H
,

(36)

where ϕs and ϕn are the signal and noise subspaces, respec-
tively. Since ϕs and ϕn are orthogonal, we have the condition
ϕH

n xk[i] = ϕH
n Ak[i]bk[i]pk[i] = ϕH

n Ak[i]bk[i]Ckhk[i] = 0.
Hence, we have

Γ = hH
k [i]CH

k b
∗
k[i]A

∗
k[i]ϕnϕ

H
n Ak[i]bk[i]Ck︸ ︷︷ ︸

Υk

hk[i] (37)

The above relation allows to blindly estimate the channel hk[i].
To this end, we need to compute the eigenvector corresponding
to the smallest eigenvalue of Υk. It turns out that we can use
the fact that limp→∞(R/σ2)−p = ϕnϕ

H
n [36] and, in practice,

it suffices to use p = 1 or 2. Therefore, to blindly estimate the
channel of user k in the DS-CDMA system we need to solve the
optimization problem

ĥk[i] = arg min
hk[i]

hH
k [i]Υkhk[i], subject to ||hk[i]|| = 1,

(38)
In order to solve (38) efficiently, we rely on the SM estimation
strategy and a variant of the power method [33] that uses a sim-
ple shift is adopted to yield the SM-BCE

ĥk[i] = (I − τk[i]Υ̂k[i])ĥk[i− 1], (39)

where τk[i] = 1/tr[Υ̂k[i]] and ĥk[i] ← ĥk[i]/||ĥk[i]|| to nor-
malize the channel. The quantity Υ̂k[i] is estimated by

Υ̂k[i] = Υ̂k[i− 1] + λk[i]C
H
k Â

∗
k[i]P̂

p

k[i]Âk[i]Ck, (40)

where λk[i] is a variable forgetting factor that is obtained by (28)
and P̂

p

k[i] is computed according to (26). Next, we describe a
procedure to estimate the amplitude.

In general, amplitude estimation is an important task at the
receiver that is useful for interference cancellation and power
control. The proposed blind interference estimation and track-
ing algorithm needs some form of amplitude estimation in order
to accurately compute the interference power. To estimate the
amplitudes of the associated user signals, we describe the fol-
lowing procedure to estimate the absolute value of the output of
the RAKE receiver defined in (30) as given by

qk[i+ 1] = (1− β)qk[i] + |xk[i]|. (41)

The amplitude can be estimated by removing the square-root of
the interference power from the above estimate according to

Âk[i+ 1] = (1− β)Âk[i] + (|qk[i]| − |vk[i]|) (42)

The above procedure is simple and effective to estimate the
amplitude for use in the interference power estimation proce-
dure. Since one recursion depends on the other, a designer shall
start the procedure with an interference power equal to zero (or
equivalently |vk[i]| = 0).

V. ANALYSIS OF THE ALGORITHMS

In this section, we study of the properties of the optimiza-
tion problems associated with the design of the SM-CCM-based
algorithms and examine the convergence and tracking perfor-
mances of the proposed algorithms. In order to ensure the con-
vergence of the SM-CCM-RLS a persistence of excitation con-
dition on the received data r[i] must hold and the transmitted
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symbols bk[i] and the noise n[i] have to be uncorrelated. To
this end, the variable bound must adapt such that the above con-
ditions are met, following the same procedure established for
OBE algorithms in [18]. Since the SM-CCM-RLS algorithm
is expected to converge without misadjustment to the Wiener
filter and certain aspects of the convergence analysis of the SM-
CCM-SG algorithm are of greater interest, we will focus on the
latter. The CCM-based algorithms are inherently nonlinear and
deal with time-varying environments, which leads to difficulties
in the study of their performance. For this reason, we will resort
to an effective approach termed energy conservation principle
[38] that lends itself to such analysis.

A. Analysis of the Optimization Problem

Let us consider the optimization problem that needs to be
solved for the design of the blind receiver and can be solved
by the algorithms proposed in Section III:

minimize JCM (wk[i]) = E[(wH
k [i]r[i]|2 − 1)2]

= E[|zk[i]|4 − 2|zk[i]|2 + 1]

subject to wH
k [i]pk[i] = ν

whenever (|wH
k [i]pk[i]|2 − 1)2 ≥ γ2k[i]

(43)

Let us rewrite the received vector as

r[i] =
K∑

k=1

Akbk[i]pk[i]︸ ︷︷ ︸
xk[i]

+ηk[i] + n[i], (44)

where pk[i] = Ckhk[i], R = S + G + σ2I , S =

E[
∑K

k=1 xk[i]x
H
k [i]], and G = E[

∑K
k=1 ηk[i]η

H
k [i]], bk[i] are

independent and identically distributed random variables, and
are statistically independent from n[i].

Consider user k as the desired user and let wk[i] be the re-
ceive filter for this user. Our strategy to analyze the above opti-
mization problem and its properties is to transform the variables
and rewrite the problem in a convenient form that provides more
insight about the nature of the problem. Let us now define the
signal of the desired and the signal of all the users after applying
the receive filter wk[i]:

tk , Akp
H
k wk[i], and t , APHwk = [t1 . . . tK ]T , (45)

where P , [p1 . . .pK ], A , diag[A1 . . . AK ] and b ,
[b1 . . . bK ]T . The relation between the receive filter, the chan-
nel and the signature sequence can be written as

wH
k [i]pk[i] = wH

k [i]Ckhk[i] = ν. (46)

Therefore, we have for the desired user k the following equiva-
lences

tk[i] = Akp
H
k [i]wk[i] = Akh

H
k [i]CH

k wk[i]︸ ︷︷ ︸
hk[i]

= Akh
H
k [i]hk[i].

(47)

By considering the noise and the ISI negligible we can write the
cost function in (43) as

JCM (t) = E[|zk[i]|4 − 2|zk[i]|2 + 1]

= E[(tHbbHt)2]− 2E[(tHbbHt] + 1

= 8(

K∑
j=1

tjt
∗
j )

2 − 4

K∑
j=1

(tjt
∗
j )

2 − 4

K∑
j=1

tjt
∗
j + 1

= 8(D +
K∑
j=1

tjt
∗
j )

2 − 4D2 − 4
K∑
j=2

(tjt
∗
j )

2

− 4D − 4
K∑

j=1,j ̸=k

(tjt
∗
j ) + 1,

(48)

where t = f(wk[i]) is a linear function of the receive filter
wk[i], the terms multiplying the summations in the third line of
(48) are obtained by evaluating the expected values in the second
line of (48) [31], and D = tjt

∗
j = ν2|Ak|2|ĥ

H

k [i]hk[i]|. The
strategy we employ to enforce the convexity of the optimization
problem relies on the adjustment of the parameter ν and a trans-
formation of variables on the cost function in (48), which will
be detailed in what follows.

Let us now transform the above cost function taking into
account the constraint wH

k [i]pk[i] = ν and the fact that we
are interested in demodulating user k and rejecting the re-
maining users. Therefore, we introduce another parameter
vector t̄ = [t1 . . . tk−1 tk+1 . . . tK ]T = B̄wk[i] that ex-
cludes the user k and is responsible for the interference sup-
pression task of the remaining users (all but user k), where
B̄ = ĀP̄

H , P̄ [i] = [p1[i] . . . pk−1[i] pk+1[i] . . .pK [i]] and
A = diag[A1 . . . Ak−1 Ak+1 . . . AK ]. The transformed cost
function is given by

JCM (t̄) = 8(D + t̄
H
t̄)2 − 4(D2 + t̄

H
t̄)2

− 4(D + t̄
H
t̄) + 1.

(49)

At this point we need to take into account the constraint
JCM (wk[i]) ≤ γ2k[i]. Since t̄ = B̄wk[i] is a linear mapping
we have an equivalent constraint JCM (t̄) ≤ γ̄2k[i], where γ̄2k[i]
is the bound modified by the linear mapping. It can be veri-
fied that the constraint set generated by JCM (t̄) ≤ γ̄2k[i] is not
convex and leads to two disjoint parallel hyperstrips in the pa-
rameter space.

Given that the constraint is not convex, the optimization
problem is clearly non convex. However, in this context non-
convexity only poses a problem if local minima are present and
prevent an algorithm from reaching the global minimum. It
turns out that a designer can adjust the parameter ν in order to
enforce the convexity for each hyperstrip. Computing the Hes-
sian [43] H = ∂

∂t̄H
∂JCM (t)

∂t̄
we obtain

H = 16
[
(D − 1/4)I+

t̄
H
t̄I + t̄t̄

H − diag
(
|t1[i]|2 . . . |tk−1|2 |tk+1|2 . . . |tK [i]|2

)︸ ︷︷ ︸
positive or positive semi−definite terms

]
.

(50)
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The condition D = ν2|Ak|2|ĥ
H

k [i]ĥk[i]|2 ≥ 1/4 ensures that
there is no local minimum in each of the hyperstrips resulting
from the optimization problem and convexity can be enforced
in each of the hyperstrips. Since t = B̄wk[i] is a linear func-
tion of wk[i] then JCM (t̄) preserves the maxima and minima
properties of JCM (wk[i]). For sufficiently high signal-to-noise
ratio (SNR) values, the extrema of the cost function can be con-
sidered a small perturbation of the noise-free case [31].

B. Stability Analysis

In this part, we discuss the stability analysis of the SM-CCM-
SG algorithm described in subsection III.A. In particular, we
consider the range of step-size values for convergence. Let us
now rewrite the update equation of the algorithm as

wk[i+ 1] = Πk[i](wk[i]− µk[i]ek[i]z
∗
k[i]r[i]) + νpk[i](p

H
k [i]pk[i])

−1

= wk[i]− µk[i]ek[i]r
H [i]wk[i]

(
I − pk[i]p

H
k [i]

pH
k [i]pk[i]

)
r[i]

= wk[i]− µk[i]ek[i]v[i]r
H [i]wk[i]

= (I − µk[i]ek[i]v[i]r
H [i])wk[i],

(51)

where vk[i] = (I − pk[i]p
H
k [i]

pH
k [i]pk[i]

r[i]) and the expression in the
second line of (51) is obtained by substituting Πk[i] = I −
pk[i](p

H
k [i]pk[i])

−1pH
k [i] into the first line and further manipu-

lating the terms. Let us now define the error vector

ϵwk
[i+ 1] = wk,opt −wk[i+ 1]

= (I − µk[i]ek[i]vk[i]r
H [i])ϵwk

[i] + µk[i]ek[i]vk[i]r
H [i]wk,opt.

(52)

In order to proceed with the analysis, we need to resort to an
assumption.

Assumption 1: Let us suppose that for the algorithm in (51)
when i→∞

E[µk[i]e
2
k[i]] = E[µk[i]]E[e2k[i]]. (53)

This assumption holds if µk[i] is a constant, and we claim that
it is approximately true if µk[i] varies slowly around its mean
value. By writing

E[µk[i]e
2
k[i]] = E[µk[i]]E[e2k[i]] + E[(µk[i]− E[µk[i]])e

2
k[i]],
(54)

we can notice that the second term on the right-hand side will
be small compared with the first one provided that µk[i] varies
slowly around its mean value.

By taking expectations on both sides of (52) and using the
previous assumption, we have

E[ϵwk
[i+ 1]] = (I − E[µk[i]]Rrv)E[ϵwk

[i]], (55)

where Rrv = E[ek[i]vk[i]r
H [i]] and Rvrwopt = 0.

From the above, it can be concluded that wk[i] con-
verges to wk,opt and (55) is stable if and only if

∏∞
i=0(I −

E[µk[i]]Rvr) → 0, which is a necessary and sufficient con-
dition for limi→∞E[ϵwk

] = 0 and E[wk[i]] → wk,opt. For

stability, a sufficient condition for (55) to hold implies that

0 ≤ E[µ(∞)] < min
k

2

|λvrk |
, (56)

where λvrk is the kth eigenvalue of Rvr that is not necessarily
real since Rrv is not symmetric.

C. Steady-State Analysis

In this part of the analysis we are interested in devising a for-
mula to predict the excess MSE, which depends on the MAI,
the ISI, the noise at the receiver and the parameters of the SM-
CCM-SG algorithm. The excess MSE is related to the error
in the filter coefficients ϵwk

[i] via the a priori estimation error,
which is defined as

ea[i] , ϵHwk
[i]r[i], (57)

where ϵwk
[i] = wopt −wk[i], and wopt is the optimum linear

MMSE receiver. Consider the MSE at time i:

MSE[i] = E[|bk[i]−wH
k [i]r[i]|2]

= ϵmin + E[|ea[i]|2] + pH
k [i]E[ϵwk

[i]] + E[ϵHwk
[i]]pk[i]

− E[wH
optr[i]r

H [i]ϵwk
[i]]− E[ϵHwk

[i]r[i]rH [i]wk,opt],

(58)

where ea[i] , ϵHwk
[i]r[i] = (wopt − wk[i])

Hr[i] and ϵmin =

E[|bk[i]−wH
optr[i]|2]. When i→∞, we have wk[i]→ wk,opt

and E[ϵwk
[i]]→ 0 and the steady-state MSE

lim
i→∞

MSE[i] = ϵmin + lim
i→∞

E[|ea[i]|2] (59)

The steady-state excess MSE is then defined [1] as

ξ , lim
i→∞

E[|ea[i]|2] (60)

Using the energy conservation principle [38], the proposed SM-
CCM-SG algorithm can be written in the form

wk[i+1] = wk[i]+µk[i] (−ek[i]z∗k[i])︸ ︷︷ ︸
Fek

[i]

(
I − pk[i]p

H
k [i]

pH
k [i]pk[i]

)
r[i]︸ ︷︷ ︸

uk[i]

,

(61)
where Fek [i] is a generic scalar function determined by the adap-
tive algorithm. Subtracting the above recursion for wk[i + 1]
from wk,opt, we obtain

ϵwk
[i+ 1] = ϵwk

[i]− µk[i]uk[i]Fek [i] (62)

Using the a priori estimation error ea[i] , ϵHwk
[i]r[i]. Rewriting

the previous equation, we obtain

ea[i] = ep[i] + µk[i]u
H
k [i]r[i]F ∗

ek
[i]

= ep[i] + µk[i]r
H [i]

(
I − pk[i]p

H
k [i]

pH
k [i]pk[i]

)
r[i]F ∗

ek
[i]

(63)

Since rH [i]

(
I − pk[i]p

H
k [i]

pH
k [i]pk[i]

)
r[i] = uH

k [i]uk[i], we have

ep[i] = ea[i]− µk[i]u
H
k [i]uk[i]F

∗
ek
[i]. (64)
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Using the fact that F ∗
ek
[i] =

ea[i]−ep[i]

µk[i]uH
k [i]uk[i]

, we can rewrite
ϵwk

[i] as

ϵwk
[i+ 1] = ϵwk

[i]− uk[i]

uH
k [i]uk[i]

[e∗a[i]− e∗p[i]] (65)

Rearranging, we obtain

ϵwk
[i+1]+

uk[i]

uH
k [i]uk[i]

e∗p[i] = ϵwk
[i]+

uk[i]

uH
k [i]uk[i]

e∗a[i] (66)

By defining µ̄[i] = 1/(uH
k [i]uk[i]), squaring the previous equa-

tion and taking expectations, we obtain the relation

E[||ϵwk
[i+1]||2]+E[µ̄k[i]|ep[i]|2] = E[||ϵwk

[i+1]||2]+E[µ̄k[i]|ea[i]|2],
(67)

In the steady state, we can write

E[||ϵwk
[i]||2] = E[||ϵwk

[i+1]||2], and E[µ̄k[i]|ea[i]|2] = E[µ̄k[i]|ep[i]|2]
(68)

The energy preserving equation can be used to compute
the excess MSE. It can be obtained by cancelling the terms
E[||ϵwk

[i+ 1]||2] and E[||ϵwk
[i]||2] in (67) and by substituting

(64) into (67), which yields

E[µ̄k[i]|ea[i]|2] = E[µ̄k[i]|ea[i]−
µk[i]

µ̄k[i]
F ∗
ek
[i]|2], (69)

where Fek [i] = −ek[i]z∗k[i] = (1 − |zk[i]|2)z∗k[i] and zk[i] =
(wk,opt−ϵwk

[i])Hr[i] = wH
k,optr[i]−ea[i] = Akbk[i]+MAI+

ηk[i] + v[i] − ea[i]. Substituting Fek [i] and (64) into (69) and
manipulating the terms, we obtain

E[µk[i]]E[ea[i]zk[i](1− |zk[i]|2)]
+E[µk[i]]E[µk[i]]E[ea[i]z

∗
k[i](1− |zk[i]|2)]︸ ︷︷ ︸

C

= E[µ2
k[i]]E[uH

k [i]uk[i]|zk[i]|2(1− |zk[i]|2)2]︸ ︷︷ ︸
F

.

(70)

At this point we need to resort to another assumption to continue
with our analysis.

Assumption 2: In the steady state, uH
k [i]uk[i] and |Fek [i]|2

are uncorrelated. The quantities {bk[i],MAI,η[i], v[i], ea[i]}
are zero mean random variables, and are mutually independent.
We use the fact that E[b2mk ] = 1 for any positive integer m and
that the residual MAI and ISI are Gaussian random variables.

Using the previous assumption and substituting zk[i] =
wH

k [i]r[i] into (70), we obtain

E[µ2
k[i]]E[uH

k [i]uk[i]]AE[|ea[i]|2]
+ 3E[µ2

k[i]]E[uH
k [i]uk[i]]E[MAI2]E[|ea[i]|4]

+ 3E[µ2
k[i]]E[uH

k [i]uk[i]]E[v2[i]]E[|ea[i]|4]
+ E[µ2[i]]E[uH

k [i]uk[i]](3E[µ2[i]] + 1)E[|ea[i]|4]
E[µ2

k[i]]E[uH
k [i]uk[i]]B + E[µ2

k[i]]E[uH
k [i]uk[i]]E[|ea[i]|6]︸ ︷︷ ︸

C

= 2E[µk[i]](E[MAI2]E[|ea[i]|2] + E[v2[i]]E[|ea[i]|2]
+E[η2[i]]E[|ea[i]|2] + E[|ea[i]|4]︸ ︷︷ ︸

D

,

(71)

where A = 3 + 3σ4MAI + 6σ2
MAIσ

2
v + 6σMAIσ

2
n + 3σ4

v +
6σ2

vσ
2
n + 3σ4

n and B = σ6
η + 3σ2

vσ
4
η + 3σ2

MAIσ
4
η + σ6

v + 6σ2
v +

σ2
ησ

2
MAI + 3σ4

MAIσ
2
n + 3σ4

MAIσ
2
v + σ6

MAI + σ4
MAI + 2σ2

vσ
2
n +

σ4
v + 2σ2

MAI + 2σ2
MAIσ

2
v + σ4

MAI + 4σ2
v + 2σ2

η + 2σ2
MAI + 2.

Upon convergence(i → ∞), we can assume that
E[MAI2m](E[MAI2])m = σ2m

MAI, E[η2m] = (E[η2])m =
σ2m
η , and E[v2m] = (E[v2])m = σ2m

v , where σMAI, ση , and
σv are the variances of the Gaussian distribution. In this sit-
uation, the high power terms E[|ea[i]|4] and E[|ea[i]|6] may be
neglected as these values are typically very small compared with
the remaining terms. The excess MSE is obtained as follows

ξ = E[|ea[i]|2] =
E[µ2

k(∞)]E[uH
k [i]uk[i]]B

2E[µk(∞)](σ2
MAI + σ2

v + σ2
η)− E[µ2

k(∞)]E[uH
k [i]uk[i]]A

(72)

D. Tracking Analysis

In this subsection, we assess the proposed SM-CCM-SG al-
gorithm in a non-stationary environment, in which the algorithm
has to track the minimum point of the error-performance sur-
face. Specifically, we derive an expression for the excess MSE
of a blind adaptive linear receiver when the channel varies in
time. Differently from the works in [38], [40], where expres-
sions were derived for the constant modulus (CM) algorithm and
the CCM algorithm, respectively, we consider a set-membership
approach. In the time-varying scenarios of interest, the optimum
receive filter coefficients are assumed to vary according to the
model wopt[i + 1] = wopt + q[i], where q[i] denotes a ran-
dom perturbation. This is consistent with tracking analyses of
adaptive filtering algorithms and requires an assumption.

Assumption 3: The sequence q[i] is a stationary sequence of
independent zero-mean vectors and positive definite autocorre-
lation matrix Q = E[q[i]qH [i]], which is mutually independent
of the sequences {uk[i]}, {v[i]}, {MAI[i]}, {η[i]}.

Let us consider the weight-error vector ϵwk
[i] = wk,opt −

wk[i], which satisfies

ϵwk
[i+ 1] = ϵwk

[i]− µk[i]uk[i]Fek [i] + q[i]. (73)

With ea[i] = ϵHwk
[i]r[i] and ep[i] = ϵHwk

[i+ 1]r[i], we have

ea[i] = ep[i] + µk[i]||uk[i]||2F ∗
ek
[i]. (74)

Using (73) and (74), we obtain

ϵwk
[i+ 1] + µ̄k[i]uk[i]e

∗
a[i] = ϵwk

[i] + q[i] + µ̄k[i]uk[i]e
∗
p[i].
(75)

Squaring (75) and taking the expected value on both sides, we
obtain

E[||ϵwk
[i+ 1]||2] + E[µ̄k[i]|ea[i]|2] = E[||ϵwk

[i] + q[i]||2]
+ E[µ̄k[i]|ep[i]|2],

(76)

where

E[||ϵwk
[i] + q[i]||2] = E[||ϵwk

[i]||2] + E[ϵwk
[i] + q[i]]

+ E[qH [i]ϵwk
[i]] + E[qH [i]q[i]].

(77)
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Using Assumption 3, we haveE[ϵHwk
[i]q[i]] = E[qH [i]ϵwk

[i] =
0. When i → ∞ E[||ϵwk

[i + 1]||2] = E[||ϵwk
[i]||2], the en-

ergy preserving equation describing the tracking performance is
given by

E[µ̄k[i]|ea[i]|2] = Tr(Q)+E[µ̄k[i]|ea[i]−
µk[i]

µ̄k[i]
F ∗
ek
[i]|2 (78)

Expanding the equation above, it can be simplified to

C = Tr(Q) +D, (79)

where C and D are defined in (71). The excess MSE is then
obtained as

ξ = E[|ea[i]|2]

=
E[µ2

k(∞)]E[||uk[i]||2]B +Tr(Q)

2E[µk(∞)(σ2
MAI + σ2

v + σ2
η)− E[µ2

k(∞)]E[|uk[i]|2]A
(80)

E. Computation of Moments

In order to compute the expressions obtained in (72) and (80),
we need to obtain the first and second-order moments of µk[∞].
To this end, we resort to the expression for the variable step size
in (20) and the methodology employed in [3], which after some
algebraic manipulations yields

E[µk[∞]] = E[γk[i]]Pup +
(1− Pup)

E[γk[i]]

E[Ak[i]]

E[|uk[i]|2]
, (81)

E[µ2
k[∞]] = E[γk[i]]Pup +

(1− Pup)

E[γk[i]]

E[A2
k[i]]

E[|uk[i]|4]
, (82)

where the probability of update Pup is given by

Pup = Pr
[
|ek[i]| > E[γk[i]]

]
= Pr

[
|ek[i]|2 > E[|γk[i]|2

]
= 2Q

(
E[γk[i]]

σe

)
,

(83)

where Pr[·] denotes the probability Q(x) is the complementary
Gaussian cumulative distribution function [44] given by

Q(x) =

∫ ∞

x

1√
2π
e−t2/2dt. (84)

VI. SIMULATION RESULTS

In this section we assess the performance of the proposed
and analyzed adaptive algorithms in terms of mean-square er-
ror (MSE) and bit error rate (BER). In particular, we consider
the proposed SM-CCM-SG and SM-CCM-RLS adaptive algo-
rithms and the existing CMV-SG and CMV-RLS reported in
[26], the CCM-SG [32] and the CCM-RLS [33] algorithms, the
SM-CMV-SG and SM-CMV-RLS reported in [7] with and with-
out the proposed blind PDB and PIDB time-varying bounds de-
scribed in Section IV. The DS-CDMA network employs Gold
sequences of length N = 31, the users are randomly dis-
tributed and communicate over multipath channels. The chan-
nels experienced by different users are independent and differ-
ent since we focus on an uplink scenario. The DS-CDMA sys-
tem under consideration employs quadrature phase-shift key-
ing (QPSK) modulation. The channel coefficients are given

by hk,l[i] = pk,lαk,l[i], where αk,l[i] (l = 0, 1, . . . , Lp − 1,
k = 1, 2, . . . ,K) are obtained with Clarke’s model [44] and
pk,l represent the powers of each channel path. We show the
results in terms of the normalized Doppler frequency fdT (cy-
cles/symbol), where fd is the maximum Doppler shift and T
is the symbol interval. We use three-path channels with relative
powers given by 0,−3 and−6 dB,where in each run the spacing
between paths is obtained from a discrete uniform random vari-
able between 1 and 2 chips. The proposed blind channel estima-
tor described in Section IV and that of [41] model the channel as
a finite impulse response (FIR) filter and we employ a filter with
6 taps as an upper bound for the experiments. The phase ambi-
guity derived from the blind channel estimation method in [41]
is addressed in our simulations by using the phase of ĥk(0) as
a reference to remove the ambiguity and for time-varying chan-
nels we assume ideal phase tracking. Alternatively, differential
modulation can be used to account for the phase rotations. The
tuning parameter α, the forgetting factor β and the weighting
parameter τ required by the time-varying bounds described in
Section IV have been obtained by experimentation and chosen
such that the performance of the algorithms is optimized. The
update rate (UR) has been computed by counting, for each sim-
ulation trial t, the number of updates (Nu,t) performed and then
dividing it by the number of received symbols (Ns,t). Then, the
UR is given by UR = 1

T

∑T
t

Nu,t

Ns,t
, where T = 1000 is the total

number of trials.

A. MSE Analytical Results

The aim of this part is to verify the validity of the analytical
results obtained in Section V. Specifically, we shall evaluate the
analytical MSE obtained with the analytical formulas in (72) and
(80), and compare them to the results obtained by simulations.
We consider first a scenario with fixed channels (fd = 0) and as-
sess the MSE curves using (72) against the number of received
symbols and also versus the signal-to-noise ratio (SNR) defined
by Eb/N0, as shown in Fig. 2. The results show that the an-
alytical curves match very well those obtained via simulations,
showing the validity of our analysis and assumptions.
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Fig. 2. MSE performance against a) the number of received symbols at
Eb/N0 = 15dB and b) Eb/N0 (dB).
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The tracking analysis of the proposed SM-CCM-SG algo-
rithm in a time-varying multipath fading channel is discussed
next. We consider the same scenario as before except for the
fact that the channel is now time-varying and the analytical re-
sults of the tracking analysis in (80) are employed. We consider
a Jakes’ model with a typical normalized fading rate fdT . We
compute Tr(Q) with the aid of J0(2πfdT ) [44], which is the
autocorrelation function of the Jakes’ model and where J0 is the
zero-order Bessel function of the first kind. A comparison of
the curves obtained by simulations and by the analytical formu-
las is shown in Fig. 3. Similarly to the case of fixed channels,
the analytical and simulated curves agree and show the validity
of the proposed formulas. Nevertheless, the curves indicate a
higher misadjustment as compared to the curves in Fig. 2 due to
the time-varying process and extra effort of the adaptive filters
to track the channel variations.
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Fig. 3. MSE performance against a) the number of received symbols at
Eb/N0 = 15dB and b) Eb/N0 (dB).

B. Interference Power and Channel Estimation
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Fig. 4. Performance of the a) interference power estimation and tracking and b)
amplitude estimation algorithms at Eb/N0 = 12dB.

At this point, we wish to evaluate the effectiveness of the pro-
posed algorithms for estimating and tracking the interference
power and the amplitude. To this end, we have carried out an
experiment, depicted in Fig. 4, where the proposed algorithm
estimates of the MAI and ISI powers and the amplitude of the
desired user are compared to the actual interference power and
amplitude. The results show that the proposed algorithms are
very effective for estimating and tracking the interference power
in dynamic environments, as depicted in Fig. 4.

We assess the proposed channel estimation (CE) algorithm,
called SM-CCM-CE, with the time-varying bounds PDB and
PIDB, and also with a fixed bound, and compare them to the
CMV-based method (CMV-CE) reported in [41] and the sub-
space algorithm of [42] in terms of the MSE between the ac-
tual and the estimated channels using the following dynamic
scenario. The system has initially 10 users, the power distri-
bution among the interferers follows a log-normal distribution
with associated standard deviation of 3 dB. After 1500 sym-
bols, 6 additional users enter the system and the power distri-
bution among interferers is loosen to 6 dB. The results, shown
in Fig 5, reveal that the proposed SM-CCM-CE algorithm out-
performs the CMV-CE technique reported in [41] because SM-
CCM-CE uses a variable forgetting factor. The proposed SM-
CCM is also computationally simpler than CMV-CE due to the
sparse updates, whereas it is substantially less complex than the
subspace method of [42]. This is because the SM-CCM-CE
needs to compute the principal eigenvector of the Lp × Lp ma-

trix CkR̂
−1

k [i]Ck, while the subspace technique in [42] requires
the principal eigenvector of the M ×M matrix R̂

−1
[i]. Since

Lp ≪ M in most practical scenarios SM-CCM-CE is typically
considerably simpler than the subspace method.
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Fig. 5. MSE performance of channel estimation versus number of received sym-
bols in a dynamic scenario where receivers operate at SNR = Eb/N0 =
15 dB for the desired user.

C. BER Performance

The SM-CCM algorithms are assessed in a non-stationary en-
vironment where users enter and exit the system, as depicted in
Figs. 6 and 7. The system starts with 2 interferers with 7 dB
above the desired user’s power level and 5 interferers with the
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same power level of the desired one, which corresponds to the
signal-to-noise ratio Eb/N0 = 15 dB. At 1000 symbols, 2 in-
terferers with 10 dB above the desired signal power level and 1
with the same power level enter the system, whereas 1 interferer
with 7 dB above the desired signal power level leaves it. At 2000
symbols, 1 interferer with 10 dB above, and 5 interferers with
the same power level of the desired signal exit the system, while
1 interferer with 15 dB above the desired user enters the system.
The results for 100 runs show that the proposed SM-CCM-RLS
algorithm achieves the best performance, followed by the pro-
posed SM-CMV-RLS recursion, the CCM-SG and the CMV-SG
methods. In summary the SM-CCM algorithms outperform the
SM-CMV techniques in all scenarios and the SM-CCM-RLS al-
gorithm is the best among the analyzed algorithms.

In a near-far scenario the eigenvalue spread of the covariance
matrix of the received vector r[i] is large, affecting the conver-
gence performance of the SG algorithms with fixed step size and
making it very difficult to compute a pre-determined value [1]
for the step size. In this case, the SM-CCM algorithms are able
to deal with near-far situations since they adopt variable step size
or variable forgetting factor mechanisms, ensuring good track-
ing performance in dynamic scenarios and an improved perfor-
mance over the existing CCM-type algorithms. In addition, due
to their data-selective update feature the SM algorithms can save
significant computational resources as they only require parame-
ter updates for about 20% of the time for the SG-type recursions
and around 12% for the RLS-based techniques.
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Fig. 6. BER performance of the algorithms versus number of symbols for a
non-stationary scenario. The parameters are γ = 1.3 for the SM-CMV,
γ = 0.65 for the SM-CCM.

The same scenario illustrated in Fig. 6 is considered for the
SM-CCM algorithms with time-varying error bounds, as shown
in Figs. 8 and 9. The results indicate that the proposed time-
varying bounds are capable of improving the performance of
SM algorithms, while further reducing the number of updates.
The RLS-type algorithms outperform the SG-based techniques
as expected and have lower UR. Moreover, the algorithms with
the PIDB approach achieve the best performance, followed by
the algorithms with the PDB method and the SM recursions with
fixed bounds. With respect to the UR, the PIDB technique re-
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Fig. 7. BER performance of the algorithms versus number of symbols for a
non-stationary scenario. The parameters are γ = 1.3 for the SM-CMV,
γ = 0.65 for the SM-CCM.

sults in the smallest number of updates, followed by the PDB
approach and the fixed bound.
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Fig. 8. BER performance of the SG algorithms versus number of symbols for
a non-stationary scenario with time-varying bounds. The parameters are
α = 8, τ = 0.35 and β = 0.95 for the time-varying bounds.

The BER performance versus Eb/N0 and number of users is
shown in Fig. 10. We consider data packets of P = 1500 sym-
bols and compare the proposed SM-CCM-RLS algorithm with
a fixed bound, with the PIDB mechanism, the training-based
BEACON algorithm with the PIDB mechanism [21] and the
linear MMSE receiver that assumes perfect knowledge of the
channels and the noise variance. We have measured the BER
after 200 independent transmissions and the BEACON algo-
rithm [6],[21] is trained with 200 symbols and is then switched
to decision-directed mode. The curves illustrate that the pro-
posed blind SM-CCM-RLS algorithm can approach the perfor-
mance of the supervised BEACON algorithm and that of the
linear MMSE receiver.
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VII. CONCLUSIONS

We have proposed SM-CCM adaptive algorithms for inter-
ference suppression in DS-CDMA systems. We have analyzed
the optimization problem that gives rise to the SM-CCM algo-
rithms and devised analytical expressions to predict their MSE
performance with a good accuracy. The proposed SM-CCM al-
gorithms are equipped with variable step sizes and forgetting
factors and are only updated for a small fraction of time without
incurring any performance degradation. A blind framework for
SM estimation that takes into account parameter estimation de-
pendency and MAI and ISI for multiuser communications has
also been introduced to provide a time-varying bound that is
robust against channel and SNR variations. Simulations have
shown that the proposed SM-CCM algorithms outperform pre-
viously reported blind techniques for several scenarios.
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