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Abstract

In this work, we propose a novel low-complexity variable forgetting factor (VFF) mechanism for blind adaptive

constrained constant modulus (CCM) recursive least squares (RLS) algorithms applied to linear interference suppres-

sion in direct-sequence code-division multiple access (DS-CDMA) systems. The proposed variable forgetting factor

mechanism employs an updated component related to the time average of the constant modulus (CM) cost function

to automatically adjust the forgetting factor in order to ensure good tracking of the interference and the channel.

Convergence and tracking analyses are carried out. Analytical expressions for predicting the mean-squared error of

the proposed adaptation technique are obtained. Simulation results are presented for nonstationary environments and

show that the proposed variable forgetting factor mechanism achieves superior performance to previously reported

methods at a reduced complexity.

Index Terms— Blind multiuser detection, adaptive filtering, variable forgetting factor mechanisms.

I. INTRODUCTION

Blind interference suppression techniques with adaptive implementation have attracted considerable interest and

found applications in beamforming, multiuser detection, source separation and radar systems [1]-[18]. They operate

without knowledge of the channel input, and lead to a solution comparable to that obtained from the minimization

of the mean squared error (MSE) [1], [5]. The constrained minimum variance (CMV) based algorithms are designed

in such a way that they attempt to minimize the filter output power while maintaining a constant response in the
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direction of a signal of interest [1]-[6]. In [1], the authors have investigated the adaptive blind CMV receiver

for direct-sequence code-division multiple access (DS-CDMA) systems in additive white Gaussian noise (AWGN)

channels, and have presented an analysis of the algorithm. The blind CMV receiver has been extended to multipath

fading channels in [2]. A novel variable step-size mechanism for CMV stochastic gradient (SG) algorithms has

been proposed in [3]. The work in [4] has developed a CMV beamforming algorithm using the Kalman Filter for

multiuser cooperative relay networks. A reduced-rank strategy based on the joint and iterative optimization (JIO) of

a subspace projection matrix and a reduced-rank filter has been reported in [5] for beamforming, whereas algorithms

with switching mechanisms have been considered in [6] for airborne radar systems. A drawback of CMV-based

algorithms is that they are sensitive to mismatches and imperfections.

The constrained constant modulus (CCM) based algorithms are based on a criterion that penalizes deviations of

the modulus of the received signal away from a fixed value and forced to satisfy one or a set of linear constraints such

that signals from the desired user are detected [13], [15]. In particular, the work in [13] and [15] has demonstrated

the robustness of the blind adaptive techniques with the CCM criterion against nonstationary environments, which

can be implemented with a SG or a recursive least squares (RLS) algorithm. The works in [7], [8] have considered

standard SG algorithms with fixed step sizes to implement the blind CCM receiver. Some previous works have

shown significant gains in performance due to the use of averaging methods [9], [10]. The authors in [11], [12],

[13] have proposed some variable step-size schemes to accelerate the convergence speed of the CCM-SG filters,

where one SG algorithm adapts the parameter vector and another SG recursion adapts the step-size. The work

of [14] has developed the blind CCM algorithm with adaptive RLS implementation in multipath fading channels.

Two novel reduced-rank techniques based on the blind CCM receivers have been recently proposed in [15], [16].

In addition, blind adaptive interference suppression techniques have also been developed for use with decision

feedback receivers in DS-CDMA systems [17], [18].

The RLS algorithm is considered as one of the fastest and most effective methods for adaptive implementation

[26]. However, in nonstationary wireless environments in which users often enter and exit the system, it is impractical

to compute a predetermined value for the forgetting factor. Furthermore, there is a very small number of works

employing variable forgetting factor (VFF) mechanisms and, to the best of our knowledge, there has been no work

with blind variable forgetting factor techniques using the constant modulus (CM) criterion. The most common

method is the gradient-based variable forgetting factor (GVFF) algorithm proposed in [26], where a GVFF scheme

with the MSE criterion is investigated. In this work, we propose a novel low-complexity variable forgetting factor

mechanism for blind linear receivers for DS-CDMA systems using the CCM criterion and RLS algorithms. The

proposed variable forgetting factor mechanism employs an updated component related to the time average of the CM

cost function to automatically adjust the forgetting factor in order to ensure good tracking of the interference and
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the channel. We refer to the proposed variable forgetting factor scheme as time-averaged variable forgetting factor

(TAVFF). Convergence and tracking analyses of the proposed adaptation technique are carried out and analytical

expressions to predict the MSE are obtained. Simulation results are presented for nonstationary environments,

showing that the new mechanism achieves superior performance to previously reported methods at a reduced

complexity. The main contributions of this paper are summarized as follows:

I) A low-complexity variable forgetting factor mechanism combined with blind CCM-RLS receivers is intro-

duced for multipath DS-CDMA channels.

II) We extend the conventional GVFF mechanism to blind adaptive algorithms with the CM criterion.

III) The convergence and tracking analyses of the adaptive CCM-RLS receiver with the proposed TAVFF mech-

anism are carried out. We derive formulas to predict the steady-state MSE and analyze the complexity of the

blind GVFF and proposed TAVFF mechanisms.

IV) We perform a simulation study of the proposed and existing techniques.

The paper is structured as follows. Section II briefly describes the system model and the design of linearly

constrained receivers. The adaptive blind CCM-RLS algorithm and the blind GVFF scheme are introduced in

section III. The proposed TAVFF mechanism and its steady-state analysis are described in section IV. Convergence

and tracking analyses of the resulting algorithm and the analytical formulas to predict the steady-state MSE are

developed in section V. The simulation results are presented in section VI. Finally, section VII draws the conclusions.

Below, we give a summary defining the abbreviations used in the paper to improve its readability.

• VFF: variable forgetting factor.

• CCM: constrained constant modulus.

• RLS: recursive least squares.

• DS-CDMA: direct-sequence code-division multiple access.

• CM: constant modulus.

• MSE: mean squared error.

• CMV: constrained minimum variance.

• AWGN: additive white Gaussian noise.

• SG: stochastic gradient.

• JIO: joint and iterative optimization.

• GVFF: gradient-based variable forgetting factor.

• TAVFF: time-averaged variable forgetting factor.

• BPSK: binary phase-shift keying.

• MIMO: multi-input multi-output.
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• OFDM: orthogonal frequency-division multiplexing.

• FIR: finite impulse response.

• LMS: least mean square.

• SINR: signal-to-interference-plus-noise ratio.

• BER: bit error rate.

• SNR: signal-to-noise ratio.

• ISI: intersymbol interference.

II. DS-CDMA SYSTEM MODEL AND DESIGN OF LINEARLY CONSTRAINED RECEIVERS

Let us consider the downlink of an uncoded synchronous binary phase-shift keying (BPSK) DS-CDMA system

with K users, N chips per symbol and Lp propagation paths. A synchronous model is assumed for simplicity since

it captures most of the features of more realistic asynchronous models with small to moderate delay spreads. Let

us assume that the signal has been demodulated at the mobile user, the channel is constant during each symbol and

the receiver is perfectly synchronized with the main channel path. The received signal after filtering by a chip-pulse

matched filter and sampled at chip rate yields an M -dimensional received vector at time i

r(i) =
K∑

k=1

(
Akbk(i)Ckh(i) + ηk(i)

)
+ n(i), (1)

where M = N + Lp − 1, n(i) = [n1(i) . . . nM (i)]T is the complex Gaussian noise vector with zero mean and

E[n(i)nH(i)] = σ2I whose components are independent and identically distributed, where (.)T and (.)H denote

transpose and Hermitian transpose, respectively, and E[.] stands for expected value. The user symbols are denoted

by bk(i), where we assume that the symbols are independent and identically distributed random variables with

equal probability from the set {±1}. The amplitude of user k is Ak, and the signature of user k is represented by

pk = [ak(1) . . . ak(N)]T . The M ×Lp constraint matrix Ck that contains one-chip shifted versions of the signature

sequence for user k and the Lp × 1 vector h(i) with the multipath components are described by

Ck =



ak(1) 0
...

. . . ak(1)

ak(N)
...

0
. . . ak(N)


,h(i) =


h0(i)

...

hLp−1(i)

 , (2)

where the M × 1 vector Ckh(i) denotes the effective spreading code. The vector ηk(i) denotes the intersymbol

interference (ISI) for user k, here we express the ISI vector in a general form that is given by ηk(i) = Akbk(i −

1)Hppk + Akbk(i + 1)Hspk, where the M × N matrices Hp and Hs account for the ISI from previous and
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subsequent symbols, respectively, and can be given as follows

Hp =



0 . . . hLp−1(i − 1) . . . h1(i − 1)

0
. . .

...
... hLp−1(i − 1)

0
...

0 0 . . . 0 0


,Hs =



0 0 . . . 0 0
... 0

h0(i + 1)
...

...
. . . 0

hLp−2(i + 1) . . . h0(i + 1) . . . 0


. (3)

The linear model in (1) can be used to represent other wireless communications systems including multi-input

multi-output (MIMO) and orthogonal frequency-division multiplexing (OFDM) systems. For example, the user

signatures of a DS-CDMA system are equivalent to the spatial signatures of a MIMO system.

The CCM linear receiver design is equivalent to determining a finite impulse response (FIR) filter wk(i) with

M coefficients that provide an estimate of the desired symbol as follows

zk(i) = wH
k (i)r(i), (4)

where the detected symbol is given by b̂k(i) = sign{ℜ[wH
k (i)r(i)]}, where the operator ℜ[.] retains the real part

of the argument and sign{.} is the signum function.

The design of the receive filter wk(i) is based on the optimization of the CM cost function

J̄CM (wk(i)) = E
[
(|wH

k (i)r(i)|2 − 1)2
]

(5)

subject to the constraints given by wH
k (i)Ckh(i) = ν, where ν is a constant to ensure the convexity of the

optimization problem as discussed in [14]. The CCM receive filter expression that iteratively solves the constrained

optimization problem in (5) is given by

wk(i + 1) = Q̄−1
k (i)

(
d̄k(i) −

(
hH(i)CH

k Q̄−1
k (i)Ckh(i)

)−1(
hH(i)CH

k Q̄−1
k (i)d̄k(i) − ν

)
Ckh(i)

)
, (6)

where i = 1, 2, . . . and Q̄k(i) = E[|zk(i)|2r(i)rH(i)], d̄k(i) = E[z∗k(i)r(i)], zk(i) = wH
k (i)r(i). A detailed

derivation of the CCM estimation approach can be found in [14], [15], [16]. It should be remarked that the

expression in (6) is a function of previous values of the filter wk(i) and therefore must be iterated in order to

reach a solution. The CCM design can have its convexity enforced by adjusting the parameter ν [14], [5]. Thus,

we obtain the optimum CCM receiver for a given channel h(i) as follows

w0 = Q̄−1
0

(
d̄0 −

(
hH(i)CH

k Q̄−1
0 Ckh(i)

)−1(
hH(i)CH

k Q̄−1
0 d̄0 − ν

)
Ckh(i)

)
, (7)

where Q̄0 = E[|z0(i)|2r(i)rH(i)], d̄0 = E[z∗0(i)r(i)], z0(i) = wH
0 r(i) and w0 denotes the optimum CCM receiver.

In addition to this, the iterative method in (6) assumes the knowledge of the channel parameters. Since there is a

large number of applications that have to deal with unknown multipath propagation, it is also important to be able

to blindly estimate the multipath components.
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In order to blindly estimate the channel, a designer can adopt the blind channel estimation procedure based on

the subspace approach reported in [2], [30] and which is described by

ĥ(i) = arg min
h(i)

hH(i)CH
k R−1(i)Ckh(i) (8)

subject to ||h(i)|| = 1, where R(i) = E[r(i)rH(i)]. The solution is the eigenvector of the Lp × Lp matrix

corresponding to the minimum eigenvalue of CH
k R−1(i)Ck through eigenvalue decomposition.

III. BLIND ADAPTIVE CCM-RLS ALGORITHMS AND PROBLEM STATEMENT

In this section, we describe the multipath blind adaptive CCM-RLS algorithm for estimating the parameters of

the linear receiver first, and then we generalize the blind GVFF scheme [26] for the multipath adaptive CCM-RLS

receiver.

A. Multipath Blind Adaptive CCM-RLS Algorithm

Consider the time-averaged cost function JCM (i) =
∑i

n=1 γi−n
(
|wH

k (i)r(n)|2 − 1
)2 subject to the constraint

wH
k (i)Ckh(i) = ν, where γ denotes the forgetting factor. Given h(i), we take into account the unconstrained

optimization problem given in the form of a Lagrangian cost function

J
′

CM (i) =
i∑

n=1

γi−n
(
|wH

k (i)r(n)|2 − 1
)2 + λ(wH

k (i)Ckh(i) − ν) + λ∗(hH(i)CH
k wk(i) − ν), (9)

where λ denotes the Lagrangian multiplier. By taking the gradient of (9) with respect to w∗
k(i) and setting it to

zero, after further mathematical manipulations we have

wk(i) = Q−1
k (i)

(
dk(i) −

λ

2
Ckh(i)

)
(10)

where Qk(i) =
∑i

n=1 γi−n|wH
k (i)r(n)|2r(n)rH(n) and dk(i) =

∑i
n=1 γi−nr(n)rH(n)wk(i). By multiplying

hH(i)CH
k on the left side of (10), and using hH(i)CH

k wk(i) = ν, we have

λ = 2(hH(i)CH
k Q−1

k (i)Ckh(i))−1(hH(i)CH
k Q−1

k (i)dk(i) − ν). (11)

By substituting (11) into (10) we obtain

wk(i) = Q−1
k (i)

(
dk(i) −

(
hH(i)CH

k Q−1
k (i)Ckh(i)

)−1(hH(i)CH
k Q−1

k (i)dk(i)Ckh(i) − νCkh(i)
))

. (12)

Letting uk(i) = zk(i)r(i) and employing the matrix inversion lemma and Kalman RLS recursions [26], we have

the following expressions

sk(i) =
Q−1

k (i − 1)uk(i)
γ + uH

k (i)Q−1
k (i − 1)uk(i)

(13)

Q−1
k (i) = γ−1Q−1

k (i − 1) − γ−1sk(i)uH
k (i)Q−1

k (i − 1) (14)
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dk(i) = γdk(i − 1) + z∗k(i)r(i). (15)

The CCM-RLS algorithm is given by (12)-(15). The problem we are interested in solving is how to devise a cost-

effective mechanism to adjust γ, which is a key factor affecting the performance of CCM-RLS-based algorithms.

B. Blind GVFF Scheme in Multipath Channels

To adjust the forgetting factor automatically, let us extend the GVFF scheme in [26] to the adaptive CCM-

RLS algorithm in multipath CDMA channels. By taking the gradient of the instantaneous CM cost function

(|wH
k (i)r(i)|2 − 1)2 with respect to the variable forgetting factor γ(i) we obtain the following adaptive rule

γ(i + 1) =
[
γ(i) − µ

∂
(
(|wH

k (i)r(i)|2 − 1)2
)

∂γ

]γ+

γ−
, (16)

where
∂
(
(|wH

k (i)r(i)|2 − 1)2
)

∂γ
= (|wH

k (i)r(i)|2 − 1)ℜ[YH
k (i)r(i)rH(i)wk(i)], (17)

and Yk(i) denotes an M × 1 vector which is given by Yk(i) = ∂wk(i)
∂γ , [.]γ

+

γ− denotes the truncation to the limits

of the range [γ−, γ+], µ denotes a small, positive step-size. According to [26], the upper level of truncation, γ+,

plays a relatively insignificant role, we can set it equal to a positive value which is less than but close to 1. The

lower level of truncation, γ− that ensures the stability plays a more important role and should be determined by

simulations. Setting a too small value for γ− may cause the algorithm to become unstable. The updated equation

of Yk(i) can be obtained by taking the gradient of (12) with respect to γ(i). Thus, we generate two new quantities
∂Q−1

k (i)
∂γ and ∂dk(i)

∂γ , updated equations of which can be obtained by following the same approach using (14) and

(15). Note that we generate another new quantity ∂sk(i)
∂γ by computing ∂Q−1

k (i)
∂γ . The updated equation of ∂sk(i)

∂γ can

be similarly obtained by differentiating (13). For the details of the expressions, see (68), (69), (70) and (71) in the

appendix. The CCM-RLS receiver with the GVFF mechanism is implemented by using (12)-(16) and the updated

equations of Yk(i),
∂Q−1

k (i)
∂γ , ∂dk(i)

∂γ and ∂sk(i)
∂γ with initial values.

IV. PROPOSED TAVFF SCHEME

In this section, we first introduce the proposed low-complexity variable forgetting factor scheme that adjusts

the forgetting factor of the adaptive CCM-RLS algorithm. Then, a steady-state analysis of the proposed variable

forgetting factor scheme is carried out. Finally, we present the computational complexity analysis for the proposed

TAVFF mechanism and the blind GVFF mechanism.
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A. Blind TAVFF Mechanism

Motivated by the variable step-size mechanism for least mean square (LMS) algorithms in [23], we have devised

the following time-averaged expression

ϕ(i) = δ1ϕ(i − 1) + δ2(|wH
k (i)r(i)|2 − 1)2, (18)

where ϕ(i) denotes an updated component that is controlled by the instantaneous CM cost function, 0 < δ1 < 1,

and δ2 > 0. The updated component ϕ(i) is a small value, and it changes rapidly as the instantaneous value of

the cost function [23], [13]. The use of ϕ(i) has the potential to provide a suitable indication of the evolution of

the cost function. Thus, unlike the blind GVFF mechanism we aim to design a simpler mechanism that adjusts the

forgetting factor automatically based on ϕ(i). Note that the forgetting factor should vary in an inversely proportional

way to the value of the cost function, we have experimented a number of rules and the following expression is a

result of several attempts to devise a simple and yet effective mechanism

γ(i) =
[

1
1 + ϕ(i)

]γ+

γ−

. (19)

The proposed low-complexity TAVFF mechanism is given by (18) and (19). The value of variable forgetting

factor γ(i) is close to 1, and it is controlled by the parameters δ1 and δ2. Normally, δ1 is close to 1, and δ2 is

set equal to a small value. A large prediction error will cause the updated component ϕ(i) to increase, which

simultaneously reduces the forgetting factor γ(i) and provides a faster tracking. While a small prediction error will

result in a decrease in the updated component ϕ(i), thereby the forgetting factor γ(i) is increased to yield a smaller

misadjustment.

We first show the convergence and derive the expressions for the steady-state statistical properties of the updated

component ϕ(i). Since 0 < δ1 < 1, by taking the expectation of (18) we can see that E[ϕ(i)] converges. According

to [22], [7] and [24], we assume limi→∞ E[(|wH
k (i)r(i)|2 − 1)2] = ξmin + ξex(∞), where we have ξmin =

3|wH
0 R(i)w0|2 − 2wH

0 R(i)w0 − 2||wH
0 C̄||44 + 1, C̄ = [A1C1h, A2C2h, . . . , AKCKh, A1Hpp1, . . . , AKHppK ,

A1Hsp1, . . . , AKHspK ], ||x||4 denotes the 4-norm computation defined by 4

√∑
i |x|4i , and ξex(∞) denotes the

steady-state excess error of the CM cost function, ξmin ≫ ξex(∞) [22]. We obtain

E[ϕ(∞)] ≈ δ2(ξmin + ξex(∞))
1 − δ1

≈ δ2ξmin

1 − δ1
. (20)

Using (18), by computing the square of ϕ(i) we obtain

ϕ2(i) = δ2
1ϕ

2(i − 1) + 2δ1δ2ϕ(i − 1)(|wH
k (i)r(i)|2 − 1)2 + δ2

2(|wH
k (i)r(i)|2 − 1)4

≈ δ2
1ϕ

2(i − 1) + 2δ1δ2ϕ(i − 1)(|wH
k (i)r(i)|2 − 1)2,

(21)

where we neglect the last term since δ2
2 is sufficiently small. By taking the expectation we have

E[ϕ2(i)] ≈ δ2
1E[ϕ2(i − 1)] + 2δ1δ2E[ϕ(i − 1)]E[(|wH

k (i)r(i)|2 − 1)2], (22)
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where when i → ∞, we assume that ϕ(i − 1) and (|wH
k (i)r(i)|2 − 1)2 are uncorrelated,

E[ϕ(i − 1)(|wH
k (i)r(i)|2 − 1)2] ≈ E[ϕ(i − 1)]E[(|wH

k (i)r(i)|2 − 1)2], (23)

the proof is given in the Appendix. Due to the fact that 0 < δ2
1 < 1, we can see that E[ϕ2(i)] converges. When

i → ∞, we obtain

E[ϕ2(∞)] ≈ 2δ1δ
2
2(ξmin + ξex(∞))2

(1 − δ2
1)(1 − δ1)

≈ 2δ1δ
2
2ξ

2
min

(1 − δ2
1)(1 − δ1)

, (24)

where we assume (ξmin + ξex(∞))2 ≈ ξ2
min, since ξmin ≫ ξex(∞).

Let us derive the steady-state first order and second order statistical properties for the variable forgetting factor.

From (18) and (21) we can see that the quantities ϕ(i) and ϕ2(i) are small values, and ϕ(i) and ϕ2(i) vary slowly

around their mean values, respectively. Thus, using (19), when i → ∞ we have

E[γ(∞)] ≈ 1
1 + E[ϕ(∞)]

. (25)

By squaring (19) and following the approximation, we have

E[γ2(∞)] ≈ 1
1 + 2E[ϕ(∞)] + E[ϕ2(∞)]

. (26)

By substituting (20) and (24) into (25) and (26), respectively, we have the steady-state statistical properties for the

variable forgetting factor

E[γ(∞)] ≈ 1 − δ1

1 + δ2ξmin − δ1
, (27)

and

E[γ2(∞)] ≈ (1 − δ1)2(1 + δ1)
(1 − δ1)2(1 + δ1) + 2δ2(1 − δ1)(1 + δ1)ξmin + 2δ1δ2ξ2

min

. (28)

B. Computational Complexity

We study the computational complexity of the CCM-RLS algorithm with the proposed TAVFF mechanism in

DS-CDMA systems. In Table I, we compute the number of additions and multiplications to compare the complexity

of the CCM-RLS algorithm with the TAVFF mechanism and the CCM-RLS algorithm with the conventional blind

GVFF mechanism. In particular, for a configuration with N = 15 and Lp = 3, the number of multiplications

for the conventional and the proposed algorithms are 4043 and 1550, respectively. The number of additions for

them are 3522 and 1185, respectively. Compared to the CCM-RLS algorithm with the blind GVFF mechanism, the

CCM-RLS algorithm with the proposed TAVFF mechanism reduces the computational complexity significantly. It

is worth mentioning that the TAVFF mechanism alone requires 4 multiplications and 2 additions, whereas the blind

GVFF algorithm alone requires 10M2 + 16M + 7 multiplications and 10M2 + 6M − 1 additions.
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TABLE I

COMPUTATIONAL COMPLEXITY.

Number of operations per symbol

Algorithm Multiplications Additions

TAVFF 6M2 + LpM + 10M + 5 5M2 + LpM + M

Blind GVFF 16M2 + LpM + 26M + 8 15M2 + LpM + 7M − 3

V. ANALYSES OF THE PROPOSED ALGORITHM

In this section, we first theoretically show the convergence of the mean weight vector of the CCM-RLS receiver

with the proposed TAVFF mechanism and derive the steady-state MSE expression of the proposed blind adaptive

algorithm in the scenario of time-invariant channels. Then, we examine the tracking properties of the proposed

algorithm in a time-varying environment.

A. Convergence of the Mean Weight Vector

In this part, we make some approximations and derive several expressions to show the convergence of the mean

weight vector for the CCM-RLS receivers with the proposed TAVFF mechanism in the scenario of time-invariant

channels.

Firstly, let us give two equations

sk(i) = Q−1
k (i)uk(i) (29)

and

γ(i)Γ(i) = β(i)hHCH
k sk(i). (30)

We will employ (29) and (30) in the following derivation. The proof is given in the appendix.

Let β(i) = 1
hHCH

k f(i)
, where f(i) = Q−1

k (i)Ckh, β−1(i) = hHCH
k f(i). Here, we use h in lieu of h(i). By

multiplying Ckh on both sides of (14), we have

f(i) = γ−1(i)f(i − 1) − γ−1(i)sk(i)uH
k (i)f(i − 1), (31)

and

β−1(i) = γ−1(i)hHCH
k f(i − 1) − γ−1(i)hHCH

k sk(i)uH
k (i)f(i − 1)

= γ−1(i)[β−1(i − 1) − hHCH
k sk(i)uH

k (i)f(i − 1)].
(32)

Thus, we can write

β(i) = γ(i)[β(i − 1) + β(i − 1)Γ(i)uH
k (i)f(i − 1)], (33)
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where

Γ(i) =
β(i − 1)hHCH

k sk(i)
1 − hHCH

k sk(i)uH
k (i)f(i − 1)β(i − 1)

. (34)

By defining ω(i) = hHCH
k Q−1

k (i)dk(i)Ckh − νCkh, we rewrite (12) as

wk(i) = β(i)Q−1
k (i)(β−1(i)dk(i) − ω(i))

= γ(i)β(i − 1)
(
γ−1(i)Q−1

k (i − 1)(β−1(i)dk(i) − ω(i))

− γ−1(i)sk(i)uH
k (i)Q−1

k (i − 1)(β−1(i)dk(i) − ω(i))
)

+ γ(i)β(i − 1)Γ(i)uH
k (i)f(i − 1)Q−1

k (i)(β−1(i)dk(i) − ω(i)).

(35)

Let χ(i) = β(i − 1)uH
k (i)f(i − 1), and using (29) we have

wk(i) = β(i − 1)Q−1
k (i − 1)(β−1(i)dk(i) − ω(i))

− Q−1
k (i)uk(i)uH

k (i)β(i − 1)Q−1
k (i − 1)(β−1(i)dk(i) − ω(i))

+ γ(i)Γ(i)χ(i)Q−1
k (i)(β−1(i)dk(i) − ω(i)).

(36)

Based on [19], [20], [21], [25] and by adjusting the parameter ν to have the convexity of the CCM design [14],

[15] , we make the following assumptions

lim
i→∞

Q−1
k (i) ≈ lim

i→∞
E[Q−1

k (i)] ≈ (1 − E[γ(∞)])Q̄−1
0

≈ (1 − E[γ(∞)])E−1[|z0(i)|2]R−1,

(37)

and

lim
i→∞

dk(i) ≈ lim
i→∞

E[dk(i)] ≈
1

1 − E[γ(∞)]
d̄0. (38)

The derivation of (37) and (38) is shown in the Appendix. Thus, when i → ∞ we assume β−1(i)dk(i) − ω(i) ≈

β−1(i − 1)dk(i − 1) − ω(i − 1). Subsequently, we rewrite (36) as

wk(i) ≈ wk(i − 1) − Q−1
k (i)uk(i)uH

k (i)wk(i − 1)

+ γ(i)Γ(i)χ(i)Q−1
k (i)(β−1(i)dk(i) − ω(i)).

(39)

By multiplying Qk(i) and substituting Qk(i) = γ(i)Qk(i − 1) + uk(i)uH
k (i) we obtain

Qk(i)wk(i) ≈ γ(i)Qk(i − 1)wk(i − 1) + uk(i)uH
k (i)wk(i − 1) − uk(i)uH

k (i)wk(i − 1)

+ γ(i)Qk(i)Γ(i)χ(i)Q−1
k (i)(β−1(i)dk(i) − ω(i))

= γ(i)Qk(i − 1)wk(i − 1) + γ(i)Γ(i)χ(i)(β−1(i)dk(i) − ω(i)).

(40)

Let ϵ(i) = wk(i) − w0, and we have

Qk(i)ϵ(i) ≈ γ(i)Qk(i − 1)ϵ(i − 1) + y(i), (41)
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where

y(i) = γ(i)Γ(i)χ(i)(β−1(i)dk(i) − ω(i)) − uk(i)uH
k (i)w0

= β(i)(β−1(i)dk(i) − ω(i))hHCH
k sk(i)uH

k (i)β(i − 1)f(i − 1) − uk(i)uH
k (i)w0,

(42)

where we have used (30). Using (37), when i becomes large, note that β(i − 1)f(i − 1) = Q−1(i−1)Ckh
hHCH

k Q−1(i−1)Ckh
≈

R−1Ckh
hHCH

k R−1Ckh
is the optimum minimum variance receiver in multipath channels [3]. Letting v0 = R−1Ckh

hHCH
k R−1Ckh

,

we obtain

Q−1
k (i)y(i) = β(i)Q−1

k (i)(β−1(i)dk(i) − ω(i))hHCH
k sk(i)uH

k (i)v0 − Q−1
k (i)uk(i)uH

k (i)w0. (43)

Using (37) and (38) and recalling (7), we have

lim
i→∞

β(i)Q−1
k (i)(β−1(i)dk(i) − ω(i)) ≈ w0. (44)

Thus, we obtain

lim
i→∞

Q−1
k (i)y(i) ≈ w0hHCH

k sk(i)uH
k (i)v0 − Q−1

k (i)uk(i)uH
k (i)w0. (45)

By multiplying Q−1
k (i) on both sides of (41) we have ϵ(i) ≈ γ(i)Q−1

k (i)Qk(i− 1)ϵ(i− 1)+Q−1
k (i)y(i). When

i → ∞, it is given by

ϵ(i) ≈ γ(i)ϵ(i − 1) + w0hHCH
k sk(i)uH

k (i)v0 − Q−1
k (i)uk(i)uH

k (i)w0, (46)

where Q−1
k (i)Qk(i − 1) ≈ I.

By taking the expectation and due to the fact that, when i becomes large,

E[sk(i)uH
k (i)] = E[Q−1

k (i)uk(i)uH
k (i)]

≈ (1 − E[γ(i)])Q̄−1
0 E[uk(i)uH

k (i)]

= (1 − E[γ(i)])I,

(47)

we have

E[ϵ(i)] ≈ E[γ(i)]E[ϵ(i − 1)] + (1 − E[γ(i)])w0hHCH
k v0 − (1 − E[γ(i)])w0. (48)

Using hHCH
k v0 = 1, finally we obtain

E[ϵ(i)] ≈ E[γ(i)]E[ϵ(i − 1)]. (49)

Since 0 < E[γ(i)] < 1, the expected weight error converges to zero.
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B. Convergence of MSE

Then, we show the convergence of MSE for the proposed algorithm and give an analytical expression to predict

the steady-state MSE.

When i → ∞, we assume

E[uk(i)uH
k (i)] = E[|z0(i)|2rk(i)rH

k (i)]

≈ E[|z0(i)|2]E[rk(i)rH
k (i)]

= E[|z0(i)|2]R.

(50)

Using (46) we have

Θ(i) = E[ϵ(i)ϵH(i)]

≈ E[γ2(i)]Θ(i − 1) + (1 − E[γ(i)])2ζ̄1w0hHCH
k R−1CkhwH

0 − (1 − E[γ(i)])2ζ̄2w0hHCH
k R−1

− (1 − E[γ(i)])2ζ̄3R−1CkhwH
0 + (1 − E[γ(i)])2ζ̄4R−1,

(51)

where ζ̄1 = E[|vH
0 r(i)|2] = vH

0 Rv0, ζ̄2 = E[wH
0 r(i)rH(i)v0] = wH

0 Rv0, ζ̄3 = E[vH
0 r(i)rH(i)w0] = vH

0 Rw0,

and ζ̄4 = E[|wH
0 r(i)|2] = wH

0 Rw0. Note that the steady-state MSE is given by

lim
i→∞

ξmse(i) = lim
i→∞

E[|Akb(i) − wH
k (i)r(i)|2]

≈ lim
i→∞

(Ξ(i) + A2
k − A2

kw
H
0 Ckh − A2

kh
HCH

k w0)

= lim
i→∞

Ξ(i) + (1 − 2ν)A2
k,

(52)

where wH
0 Ckh = ν and

Ξ(i) = E[(ϵH(i) + wH
0 )r(i)rH(i)(ϵ(i) + w0)]

≈ ζ̄4 + tr[RΘ(i)] + E[ϵH(i)]E[r(i)rH(i)w0] + E[wH
0 r(i)rH(i)]E[ϵ(i)].

(53)

Since limi→∞ E[ϵ(i)] = 0, we have Ξ(i) ≈ ζ̄4 +Ξex(i), where Ξex(i) = tr[RΘ(i)] denotes the steady-state excess

MSE. Multiplying (51) by R we have

tr[RΘ(i)] ≈ E[γ2(i)]tr[RΘ(i − 1)] + (1 − E[γ(i)])2ζ̄1tr[Rw0hHCH
k R−1CkhwH

0 ]

− (1 − E[γ(i)])2ζ̄2tr[Rw0hHCH
k R−1] − (1 − E[γ(i)])2ζ̄3tr[CkhwH

0 ]

+ (1 − E[γ(i)])2ζ̄4M

= E[γ2(i)]tr[RΘ(i − 1)] + (1 − E[γ(i)])2ζ̄1tr[Rw0hHCH
k R−1CkhwH

0 ]

− (1 − E[γ(i)])2ζ̄2ν − (1 − E[γ(i)])2ζ̄3ν + (1 − E[γ(i)])2ζ̄4M.

(54)

Since 0 < E[γ2(i)] < 1, tr[RΘ(i)] converges. Finally, we have

Ξex(∞) ≈ (1 − E[γ(∞)])2

1 − E[γ2(∞)]
{ζ̄1tr[Rw0hHCH

k R−1CkhwH
0 ] − ζ̄2ν − ζ̄3ν + ζ̄4M}, (55)

where E[γ(∞)] and E[γ2(∞)] are given in (27) and (28).
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C. Tracking Analysis

In this part, we examine the tracking properties of the proposed TAVFF scheme in a nonstationary environment,

for which the optimum solution takes on a time-varying form. In this scenario, the blind adaptive algorithm is given

the task of tracking the minimum point of the error-performance surface, which is no longer fixed. In time-varying

channels, the optimum filter coefficients are considered to vary according to the model w0(i) = w0(i− 1) + q(i),

where q(i) denotes a random perturbation [26]. We assume that q(i) is an independently generated sequence with

zero mean and positive definite autocorrelation matrix E[q(i)qH(i)]. This is typical in the context of tracking

analyses of adaptive filters [27], [28], [29].

In this work, we consider the case that the channel varies slowly. For large i, there exists an interval [Ni, i], for

which the channel coefficients are approximately equivalent. Since the channel varies slowly, the variance of the

element in q(i), namely,
tr
[
E[q(i)qH(i)]

]
M is a small value. From the above, we assume that when i becomes large

we have

β(i)Q−1
k (i)(β−1(i)dk(i) − ω(i)) ≈ w0(i), (56)

β(i − 1)f(i − 1) ≈ v0(i − 1), (57)

Q−1
k (i)Qk(i − 1) ≈ I, (58)

where w0(i) and v0(i−1) denote the optimum CCM receiver of time instant i and the optimum minimum variance

receiver of time instant i − 1, respectively, and the expression (40) still holds.

By redefining ϵ(i) = w(i) − w0(i) and recalling (40) we have

Qk(i)ϵ(i) ≈ γ(i)Qk(i − 1)ϵ(i − 1) + ȳ(i), (59)

where

ȳ(i) = γ(i)Γ(i)χ(i)(β−1(i)dk(i) − ω(i)) − γ(i)Qk(i − 1)q(i) − uk(i)uH
k (i)w0(i)

= β(i)(β−1(i)dk(i) − ω(i))hH(i)CH
k sk(i)uH

k (i)β(i − 1)f(i − 1)

− γ(i)Qk(i − 1)q(i) − uk(i)uH
k (i)w0(i).

(60)

By multiplying Q−1
k (i) on both sides of (59) we have

ϵ(i) ≈ γ(i)Q−1
k (i)Qk(i − 1)ϵ(i − 1) + Q−1

k (i)ȳ(i), (61)

where

Q−1
k (i)ȳ(i) = β(i)Q−1

k (i)(β−1(i)dk(i) − ω(i))hH(i)CH
k sk(i)uH

k (i)v0(i − 1)

− γ(i)Q−1
k (i)Qk(i − 1)q(i) − Q−1

k (i)uk(i)uH
k (i)w0(i)

≈ w0(i)hH(i)CH
k sk(i)uH

k (i)v0(i − 1) − γ(i)q(i) − Q−1
k (i)uk(i)uH

k (i)w0(i).

(62)
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Based on (61) and (62), we obtain

ϵ(i) ≈ γ(i)ϵ(i − 1) + w0(i)hH(i)CH
k sk(i)uH

k (i)v0(i − 1) − γ(i)q(i)

− Q−1
k (i)uk(i)uH

k (i)w0(i).
(63)

By taking the expectation of (63) and following the aforementioned approach, we can see that the expected weight

error E[ϵ(i)] converges to zero when the channel varies slowly.

Subsequently, we have

Θ(i) = E[ϵ(i)ϵH(i)]

≈ E[γ2(i)]Θ(i − 1) + (1 − E[γ(i)])2ζ̄1(i)w0(i)hH(i)CH
k R−1(i)Ckh(i)wH

0 (i)

− (1 − E[γ(i)])2ζ̄2(i)w0(i)hH(i)CH
k R−1(i) − (1 − E[γ(i)])2ζ̄3(i)R−1(i)Ckh(i)wH

0 (i)

+ (1 − E[γ(i)])2ζ̄4(i)R−1(i) + E[γ2(i)]E[q(i)qH(i)],

(64)

where ζ̄1(i) = E[|vH
0 (i−1)r(i)|2] = vH

0 (i−1)R(i)v0(i−1), ζ̄2(i) = E[wH
0 (i)r(i)rH(i)v0(i−1)] = wH

0 (i)R(i)v0(i−

1), ζ̄3(i) = E[vH
0 (i−1)r(i)rH(i)w0(i)] = vH

0 (i−1)R(i)w0(i), and ζ̄4(i) = E[|wH
0 (i)r(i)|2] = wH

0 (i)R(i)w0(i).

When i becomes large, the steady-state MSE in the time-varying environment is given by

ξmse(i) = E[|Akb(i) − wH
k (i)r(i)|2]

≈ ζ̄4(i) + Ξex(i) + A2
k − A2

kw
H
0 (i)Ckh(i) − A2

kh
H(i)CH

k w0(i)

= ζ̄4(i) + Ξex(i) + (1 − 2ν)A2
k,

(65)

where wH
0 (i)Ckh(i) = ν and Ξex(i) = tr[R(i)Θ(i)] denotes the steady-state excess MSE in the time-varying

scenario. By following the aforementioned approach we obtain

Ξex(i) ≈ (1 − E[γ(∞)])2

1 − E[γ2(∞)]
{ζ̄1(i)tr[R(i)w0(i)hH(i)CH

k R−1(i)Ckh(i)wH
0 (i)] − ζ̄2(i)ν − ζ̄3(i)ν + ζ̄4(i)M

+
E[γ2(∞)]

(1 − E[γ(∞)])2
tr

[
R(i)E[q(i)qH(i)]

]
}.

(66)

VI. SIMULATIONS

In this section, we evaluate the performance of the proposed TAVFF mechanism with the blind adaptive CCM-RLS

receiver and compare it with the GVFF mechanism with the blind CCM-RLS receiver and the adaptive CCM-RLS

and CMV-RLS receivers with the fixed forgetting factor mechanism. We adopt a simulation approach and conduct

several experiments in order to verify the effectiveness of the TAVFF adaptive algorithm. The DS-CDMA system

employs Gold sequences as the spreading codes, and the spreading gain is N = 15. The sequence of channel

coefficients for each path is given by hf (i) = pfαf (i)(f = 0, 1, 2). All channels are normalized so that

Lp−1∑
f=0

p2
f = 1, (67)
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where αf (i) is computed according to the Jakes’ model [31]. For the blind CCM-RLS algorithms, the performance

is not sensitive to the initial values, we set dk(0) = 0, Q−1
k (0) = I and wk(0) = Ckĥ(0), where ĥ(i) denotes

the estimate of h(i) and we employ the blind adaptive channel estimation algorithm in [30]. The simulations are

averaged over 10000 runs. We set the parameter ν = 1 [14] and the power of the desired user |A1|2 = 1.

A. Effects of δ1 and δ2

We investigate the effects of δ1 and δ2 on the TAVFF mechanism, we show the received steady-state signal

to interference plus noise ratio (SINR) versus δ1 for δ2 = 0.00015, 0.00008, 0.00003, 0.000015, 0.000006 under

different scenarios. We use 15dB for the input signal to noise ratio (SNR), and set γ− = 0.95 and γ+ = 0.99998

for the TAVFF mechanism to guarantee the stability. The results shown in Fig. 1 (a) and (b) are based on the

channel with the normalized Doppler frequency fdT = 0.0001. The channel has a power profile given by p0 = 0dB,

p1 = −6dB and p2 = −10dB. In Fig. 1 (a), the system has 8 users including three users operating at a power

level 3dB above and one user operating at a power level 6dB above the desired user’s power level. In Fig. 1 (b),

the system has 5 users including one with a power level 3dB above the desired user’s power level. It is observed

that, firstly, the optimum choice of the pair (δ1, δ2) is not unique, for each value of δ2 we can find a relevant δ1 to

have the best performance. Secondly, when we increase the value of δ2, δ1 should be reduced for an optimum pair.

Thirdly, with the increasing of δ2 the performance becomes less sensitive to δ1. Moreover, for a system with a low

load, the performance becomes insensitive to δ1 before it decreases dramatically. From the results, we can obtain

that δ1 = 0.9896 and δ2 = 0.00008 are one of the best choices for the scenario in Fig. 1 (a) and δ1 = 0.9822 and

δ2 = 0.00015 are one of the best choices for both scenarios.

The results in Fig. 2 (a) and (b) show the steady-state SINR versus δ1 for different values of δ2 based on the

channel with fdT = 0.00005. The channel has a power profile given by p0 = 0dB, p1 = −6dB and p2 = −10dB.

In Fig. 2 (a), the system includes 8 users with the same power level. In Fig. 2 (b), the system has 5 users, power of

which are equivalent. We can see that the previous findings on effects of δ1 and δ2 still hold for the experiments.

In this case, we found that δ1 = 0.9970 and δ2 = 0.000015 are one of the best choices for both scenarios. In Fig.

3, we show the SINR performance versus the number of received symbols in terms of the simulation environment

of Fig. 1 (a), where three pairs (0.9970, 0.000015), (0.9822, 0.00015) and (0.9896, 0.00008) are employed for

δ1 and δ2. From the results in Fig. 3, we can see that the three choices provide almost the same convergence

performance, which shows that it is possible for us to find a pair (δ1, δ2) that works well for different scenarios. In

the following experiments, for a given scenario we first choose the optimum parameters, and then fix them through

the simulations. In practice, these optimized values should be obtained by experimentation for a given range of

values or a specific operating point, and stored at the receiver.
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Fig. 1. Steady-state SINR versus δ1 for different values of δ2, (a) K = 8, with three 3dB and one 6dB high power level interferers, (b)

K = 5, with one 3dB high power level interferer. SNR= 15dB, fdT = 1 × 10−4.
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Fig. 2. Steady-state SINR versus δ1 for different values of δ2, (a) K = 8, with equal power level interferers, (b) K = 5, with equal power

level interferers. SNR= 15dB, fdT = 5 × 10−5.

B. SINR Convergence Performance

We choose the received SINR as the performance index to evaluate the convergence performance in nonstationary

scenarios. In the following experiments, we assess the SINR performance of the analyzed schemes, namely, the
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Fig. 3. SINR performance versus the number of received symbols for different values of δ1 and δ2. K = 8, with three 3dB and one 6dB

high power level interferers. SNR= 15dB, fdT = 1 × 10−4.

proposed TAVFF, the multipath blind GVFF and the fixed forgetting factor mechanisms. The first experiment shown

in Fig. 4 illustrates that the performance in terms of SINR of the analyzed algorithms in a nonstationary scenario

with high power interferers. The system starts with five users including one high-power level interferer with 3dB

above the desired one and after 1000 symbols, three new interferers including two users operating at a power level

3dB above and one user operating at a power level 6dB above the desired user’s power level enter the system,

where fdT = 1× 10−4. The channel has a power profile given by p0 = 0dB, p1 = −6dB and p2 = −10dB. From

Fig. 4, we can see that the proposed TAVFF mechanism with the blind adaptive CCM-RLS receiver achieves the

best performance, followed by the GVFF mechanism with the blind adaptive CCM-RLS receiver, the blind adaptive

CCM-RLS and CMV-RLS receivers with the fixed forgetting factor mechanism. In this simulation, we have tuned

the parameters of the mechanisms, as shown in Table II, where 1 denotes an all-one vector. We remark that the

parameters of the blind GVFF and fixed forgetting factor mechanisms are tuned to optimize the performance.

TABLE II

OPTIMIZED PARAMETERS FOR CASE 1

Fixed Schemes γ = 0.998

Blind GVFF γ(0) = 0.999, µ = 0.00025, ∂Q−1
k

(0)

∂γ
= I,

Yk(0) = 0.01 × 1, ∂dk(0)
∂γ

= 0, sk(0) = 0

γ− = 0.98, γ+ = 0.99998

TAVFF ϕ(0) = 0, δ1 = 0.9822, δ2 = 0.00015

γ− = 0.95, γ+ = 0.99998
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Fig. 4. SINR performance in nonstationary environment of multipath time varying channels. Case 1: with high power interferers. SNR=

15dB. fdT = 0.0001.

The second experiment shown in Fig. 5 shows the SINR performance of the desired user versus the number of

received symbols in a nonstationary scenario with equal power interferers for the proposed TAVFF scheme, the

blind GVFF scheme and the conventional fixed forgetting factor schemes. In the simulation, the system starts with

five users operating at equal power levels. At 1000 symbols, three interferers having the same power level as the

first five users’ enter the system. The normalized Doppler frequency is fdT = 5× 10−5. The channel has a power

profile given by p0 = 0dB, p1 = −6dB and p2 = −10dB. We can see that the overall performance increases

compared to the first experiment in Fig. 4 due to the lower power interferers and the CCM-RLS algorithm with the

TAVFF scheme converges much faster than the GVFF scheme and fixed forgetting factor algorithms in multipath

fading channels. For this case, we tuned the parameters of the mechanisms, as shown in Table III.

TABLE III

OPTIMIZED PARAMETERS FOR CASE 2

Fixed Schemes γ = 0.9992

Blind GVFF γ(0) = 0.999, µ = 0.0001, ∂Q−1
k

(0)

∂γ
= I,

Yk(0) = 0.01 × 1, ∂dk(0)
∂γ

= 0, sk(0) = 0

γ− = 0.98, γ+ = 0.99998

TAVFF ϕ(0) = 0, δ1 = 0.9970, δ2 = 0.000015

γ− = 0.95, γ+ = 0.99998

The third experiment shown in Fig. 6 illustrates the variation of the forgetting factor values versus the number

of received systems. The curves “Case 1” and “Case 2” correspond to the proposed TAVFF mechanism in the first
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Fig. 5. SINR performance in nonstationary environment of multipath time varying channels. Case 2: with equal power interferers. SNR=

15dB. fdT = 0.00005.

and second experiments, respectively. We can see that the forgetting factor value becomes small at the first several

iterations due to the large prediction error and it increases gradually until the system converges. At 1000 symbols,

when the new interferers enter the system, the forgetting factor will be recomputed.
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Fig. 6. Forgetting factor variation of the proposed TAVFF scheme in nonstationary scenarios. SNR= 15dB.

Next, we study the finite-word length effects on the variable forgetting factor γ(i) for the proposed TAVFF

mechanism. We employ B bits to represent the true value of γ(i), which varies in the range from γ− to γ+, where

γ− = 0.95 and γ+ = 0.99998. We divide the range [γ−, γ+] equally into 2B intervals. When the true value drops
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into a particular interval, we will use the left end-point of the relevant interval to replace it. Fig. 7 and 8 show

the SINR convergence performance in nonstationary environments for finite-word length effects in terms of “Case

1” and “Case 2”, respectively. We use B = 12 and 8 bits for the simulation. From the results, we can see that

using 12 bits to represent the variable forgetting factor does not degrade the performance. However, it degrades

slightly when we reduce the number of bits to 8 for the variable forgetting factor. It shows the ability of the TAVFF

mechanism to deal with finite-word length effects.
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Fig. 7. SINR performance in a nonstationary environment for the finite-word length effects. Case 1: with high power interferers. SNR= 15dB.

fdT = 0.0001.

Finally, we examine the SINR performance of the TAVFF mechanism in a static environment. We compare the

TAVFF mechanism with the blind GVFF and the fixed forgetting factor mechanisms. Fig. 9 illustrates the SINR

performance versus the number of received symbols for a static environment, where the time-invariant channel

parameters are given by h0 = 0dB, h1 = −3dB and h2 = −6dB. The system includes 5 users which have

equal power level, SNR= 15dB. Fig. 9 shows that the proposed TAVFF mechanism still works well in a static

environment, and it outperforms the other conventional schemes. In this simulation, we tuned the parameters of the

mechanisms, as shown in Table IV.

C. BER Performance

In Fig. 10, we show the bit error rate (BER) performance of the following algorithms as the fading rate of

the channel varies: the CCM-RLS receiver with the TAVFF mechanism, the CCM-RLS receiver with the GVFF

mechanism, the CCM-RLS receiver with the fixed forgetting factor mechanism and the CMV-RLS receiver with the

fixed forgetting factor mechanism. Monte-carlo simulations are conducted, for each simulation we use data packets
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15dB. fdT = 0.00005.

TABLE IV

OPTIMIZED PARAMETERS FOR INVARIANT CHANNELS

Fixed Schemes γ = 0.999

Blind GVFF γ(0) = 0.999, µ = 0.005, ∂Q−1
k

(0)

∂γ
= I,

Yk(0) = 0.01 × 1, ∂dk(0)
∂γ

= 0, sk(0) = 0

γ− = 0.998, γ+ = 0.99998

TAVFF ϕ(0) = 0, δ1 = 0.98, δ2 = 0.00025

γ− = 0.95, γ+ = 0.99998

with 1500 symbols for the blind adaptive algorithms. The system has five users operating at the same power level,

and the SNR is 15dB. The channel has a power profile given by p0 = 0dB, p1 = −6dB and p2 = −10dB.

We used δ1 = 0.9822, δ2 = 0.00015, γ− = 0.95 and γ+ = 0.99998 for the TAVFF mechanism. For the GVFF

mechanism, we used γ− = 0.98 and γ+ = 0.99998, and tuned µ = 0.0001, 0.00016, 0.00026, 0.00045, 0.00045 for

fdT = 5× 10−5, 5× 10−4, 5× 10−3, 5× 10−2, 0.5, respectively. First, we can see that, as the fading rate increases,

the performance gets worse, and our proposed TAVFF scheme outperforms the existing schemes. Moreover, we

observe that the CCM-RLS algorithm is better than the CMV-RLS algorithm. Second, Fig. 10 shows the ability of

the CCM-RLS receiver with the TAVFF mechanism to deal with channel uncertainties. Note that the values of the

forgetting factors for the algorithms which employ fixed forgetting factors are optimized. In this experiment, we

tuned suitable forgetting factors for each “fdT ”.

The results in Fig. 11 (a) and (b) show the BER performance of the desired user versus the SNR and the number of
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Fig. 9. SINR performance in a static environment. SNR= 15dB. K = 5.
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Fig. 10. BER versus fdT (cycles/symbol) in multipath time varying channels. SNR= 15dB, K= 5.

users K for a static environment, where the time-invariant channel parameters are given by h0 = 0dB, h1 = −3dB

and h2 = −6dB. We assume that the users operate with the same power level. For the TAVFF mechanism, we

tuned γ− = 0.95, γ+ = 0.99998, δ1 = 0.98 and δ2 = 0.00015. For the GVFF mechanism, we tuned γ− = 0.998,

γ+ = 0.99998 and µ = 0.001. The results in Fig. 11 (a) and (b) indicate that the best performance is achieved with

the proposed TAVFF mechanism, followed by the existing forgetting factor schemes. In particular, the CCM-RLS

receiver with the TAVFF mechanism can save up to 3dB and support up to two more users in comparison with

the CCM-RLS receiver with the blind GVFF mechanism at the BER level of 10−2.

Fig. 12 (a) and (b) illustrate the BER performance of the desired user versus the SNR and the number of users
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Fig. 11. BER performance versus (a) SNR and (b) the number of users (K) in a static environment.

K, where we set fdT = 5 × 10−5. We assume that the users operate with the same power level. The channel

has a power profile given by p0 = 0dB, p1 = −6dB and p2 = −10dB. For the TAVFF mechanism, we tuned

γ− = 0.95, γ+ = 0.99998, δ1 = 0.9822 and δ2 = 0.00015. For the GVFF mechanism, we tuned γ− = 0.98,

γ+ = 0.99998 and µ = 0.0001. We can see that the best performance is achieved by the CCM-RLS receiver with

the TAVFF mechanism, followed by the CCM-RLS receiver with the GVFF mechanism, the CCM-RLS receiver

with the fixed forgetting factor mechanism, the CMV-RLS receiver with the fixed forgetting factor mechanism and

the conventional Rake receiver. In particular, the CCM-RLS receiver with the TAVFF mechanism can save up to

5dB and support up to two more users in comparison with the CCM-RLS receiver with the fixed forgetting factor

mechanism at the BER level of 10−2.

D. MSE Performance: Analytical Results

In this part, we consider the convergence and tracking analyses of the proposed TAVFF mechanism with the CCM-

RLS receiver. The steady-state MSE between the desired and the estimated symbol obtained through simulation

is compared with the steady-state MSE computed via the expressions derived in Section V. Firstly, we verify that

the analytical results (27), (28), (52) and (55) to predict the steady-state MSE in the case of invariant channels.

Note that the work in [32] used a scaled version of the Wiener filter to approximate the optimum CCM solution

w0. In this work, we employ the steady-state filter weights of the CCM-RLS algorithm as w0. The adaptive CCM

algorithm has been verified to converge to a very close MSE value to that of the Wiener filter [15], [16], [32].

In this simulation of convergence analysis, we assume that five users having the same power level operate in the

system. The time-invariant multipath scenario with AWGN is considered. The time-invariant channel parameters
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Fig. 12. BER performance versus (a) SNR and (b) the number of users (K) in multipath time varying channels, fdT = 5 × 10−5.

are given by h0 = 0dB, h1 = −6dB and h2 = −10dB. By comparing the curves in Fig. 13 (a), it can be seen that

as the number of received symbols increases and the simulated MSE converges to the analytical result, showing

the usefulness of our analysis and assumptions, where δ1 = 0.95 and δ2 = 0.00015. Fig. 13 (b) shows the MSE

performance versus the desired user’s SNR, and a comparison between the steady-state analysis and simulation

results. The simulation and analysis results agree well with each other.
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Fig. 13. Analytical MSE versus simulated performance for convergence analysis of the proposed TAVFF scheme in invariant

channels. (a) the number of users is 5, SNR= 15dB. (b) the number of users is 5.

Secondly, we discuss the tracking analysis of the proposed TAVFF mechanism with the CCM-RLS receiver in a
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fading channel. Here, we verify that the analytical results (27), (28), (65) and (66) are able to provide an accurate

prediction of the steady-state MSE in a fading channel. In order to obtain the value of E[q(i)qH(i)], we run 10000

independent experiments, and for each experiment, q(i) is computed by q(i) = w0(i) − w0(i − 1), where i is a

large number to guarantee that the receiver works at the steady-state. The quantity of E[q(i)qH(i)] is estimated by

using the average over the 10000 independent experiments, namely,
( ∑Ne

i=1 q(i)qH(i)
)
/Ne, where Ne = 10000.

In this simulation, we assume that five users operate with the same power level in the system. A time-varying

channel with the normalized Doppler frequency fdT = 1 × 10−5 is considered. The channel has a power profile

given by p0 = 0dB, p1 = −6dB and p2 = −10dB. Fig. 14 (a) indicates that as the number of received symbols

increases, the simulated MSE converges to the analytical result, showing the usefulness of our tracking analysis,

where δ1 = 0.98 and δ2 = 0.000015. Fig. 14 (b) shows the effect that the desired user’s SNR has on the MSE. We

also can see that the simulation and analysis results agree well with each other.
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Fig. 14. Analytical MSE versus simulated performance for tracking analysis of the proposed TAVFF scheme. (a) the number

of users is 5, SNR= 15dB. (b) the number of users is 5. fdT = 1 × 10−5.

VII. CONCLUSION

In this paper, we proposed a low-complexity variable forgetting factor mechanism for estimating the parameters of

linear CDMA receivers that operate with RLS algorithms, and we also extended the conventional GVFF scheme to

the blind CCM-RLS receiver in multipath fading channels. We compared the computational complexity of the new

algorithm with the existent methods and further investigated the convergence and tracking analyses of the proposed

TAVFF scheme. We also derived expressions to predict the steady-state MSE of the adaptive CCM-RLS algorithm

with the TAVFF mechanism. The simulation results verify the analytical results and show that the proposed scheme
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significantly outperforms existing algorithms and supports systems with higher loads. We remark that our proposed

algorithm also can be extended to take into account other types of applications.

APPENDIX

A. The updated equations of Yk(i),
∂Q−1

k (i)
∂γ , ∂dk(i)

∂γ and ∂sk(i)
∂γ for the blind GVFF mechanism in multipath channels.

Yk =
∂Q−1

k (i)
∂γ

(
dk(i) −

(
hHCH

k Q−1
k (i)dk(i)Ckh − νCkh

)
(hHCH

k Q−1
k (i)Ckh)−1

)
+ Q−1

k (i)
(∂dk(i)

∂γ
−

(((
hHCH

k

∂Q−1
k (i)
∂γ

dk(i)Ckh + hHCH
k Q−1

k (i)
∂dk(i)

∂γ
Ckh

)
×

(
hHCH

k Q−1
k (i)Ckh

)
−

(
hHCH

k

∂Q−1
k (i)
∂γ

Ckh
)

×
(
hHCH

k Q−1
k (i)dk(i)Ckh − νCkh

)))(
hHCH

k Q−1
k (i)Ckh

)−2
)
,

(68)

∂Q−1
k (i)
∂γ

= −γ−2Q−1
k (i − 1) + γ−1 ∂Q−1

k (i − 1)
∂γ

+ γ−2sk(i)uH
k (i)Q−1

k (i − 1) − γ−1 ∂sk(i)
∂γ

uH
k (i)

× Q−1
k (i − 1) − γ−1sk(i)rH(i)(rH(i)Yk(i))Q−1

k (i − 1) − γ−1sk(i)uH
k (i)

∂Q−1
k (i − 1)
∂γ

,

(69)

∂dk(i)
∂γ

= dk(i − 1) + γ
∂dk(i − 1)

∂γ
− z∗k(i)r(i) + (1 − γ)rH(i)Yk(i)r(i), (70)

and

∂sk(i)
∂γ

=
{(∂Q−1

k (i − 1)
∂γ

uk(i) + Q−1
k (i − 1)(YH

k (i)r(i))r(i)
)(

γ + uH
k (i)Q−1

k (i − 1)uk(i)
)

− Q−1
k (i − 1)uk(i)

(
1 + rH(i)(rH(i)Yk(i))Q−1

k (i − 1)uk(i)

+ uH
k (i)

∂Q−1
k (i − 1)
∂γ

uk(i) + uH
k (i)Q−1

k (i − 1)(YH
k (i)r(i))r(i)

)}
× (γ + uH

k (i)Q−1
k (i − 1)uk(i))−2.

(71)

B. Proof of (23)

Using (18) we write

E[ϕ(i − 1)(|wH
k (i)r(i)|2 − 1)2] = E[ϕ(i − 1)]E[(|wH

k (i)r(i)|2 − 1)2]

+ E[(ϕ(i − 1) − E[ϕ(i − 1)])(|wH
k (i)r(i)|2 − 1)2].

(72)

Note that δ2 is sufficiently small, and ϕ(i) is a small value. Based on (18), we claim that ϕ(i) varies slowly around

its mean value. The second term on the right side of (72) is very small compared to the first term. Thus, we neglect

the second term and obtain (23).
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C. Proof of (29)

By multiplying uk(i) on both sides of (14) we have

Q−1
k (i)uk(i) = γ−1(i)Q−1

k (i − 1)uk(i) − γ−1(i)sk(i)uH
k (i)Q−1

k (i − 1)uk(i). (73)

Rewrite (13) as

sk(i) = γ−1(i)Q−1
k (i − 1)uk(i) − γ−1(i)sk(i)uH

k (i)Q−1
k (i − 1)uk(i). (74)

Based on (73) and (74) we have (29).

D. Proof of (30)

By multiplying hHCH
k sk(i) on both sides of (33) we have

β(i)hHCH
k sk(i) = γ(i)

(
β(i − 1)hHCH

k sk(i) + β(i − 1)Γ(i)uH
k (i)f(i − 1)hHCH

k sk(i)
)
. (75)

Rewrite (34) as

Γ(i) = β(i − 1)hHCH
k sk(i) + β(i − 1)Γ(i)uH

k (i)f(i − 1)hHCH
k sk(i). (76)

Comparing (75) and (76) we obtain (30).

E. Derivation of (37) and (38)

We have

Qk(i) = γ(i)Qk(i − 1) + uk(i)uH
k (i)

= uk(i)uH
k (i) + γ(i)uk(i − 1)uH

k (i − 1)

+ γ(i)γ(i − 1)uk(i − 2)uH
k (i − 2) + · · · + γ(i)γ(i − 1) · · · γ(2)uk(1)uH

k (1)

+ γ(i)γ(i − 1) · · · γ(2)γ(1)uk(0)uH
k (0).

(77)

For large i, there exists a number Ni > 0, when i ≥ Ni, for which we have that the forgetting factor γ(i) varies

slowly around its mean value and E[γ(Ni)] ≈ E[γ(Ni + 1)] ≈ · · · ≈ E[γ(i)] ≈ E[γ(∞)].

By taking the expectation of (77) we obtain

E[Qk(i)] ≈ E[1 + γ(i) + γ(i)γ(i − 1) + · · · + γ(i)γ(i − 1) · · · γ(Ni)]E[uk(i)uH
k (i)]

+ E[γ(i)γ(i − 1) · · · γ(Ni)]E[γ(Ni − 1)uk(Ni − 2)uH
k (Ni − 2) + · · ·

+ γ(Ni − 1)γ(Ni − 2) · · · γ(2)γ(1)uk(0)uH
k (0)]

≈
(
1 + E[γ(i)] + E2[γ(i)] + · · · + Ei−Ni+1[γ(i)])E[uk(i)uH

k (i)] + Ei−Ni+1[γ(i)]∆,

(78)
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where ∆ = E[γ(Ni − 1)uk(Ni − 2)uH
k (Ni − 2)+ · · ·+ γ(Ni − 1)γ(Ni − 2) · · · γ(2)γ(1)uk(0)uH

k (0)] is a constant

matrix. Note that 0 < E[γ(i)] < 1, when i → ∞, we obtain

E[Qk(i)] ≈
1

1 − E[γ(∞)]
E[uk(i)uH

k (i)]. (79)

By adjusting the parameter ν to have the convexity of the CCM design [14], [15] and using the expressions of

the adaptive CCM-RLS receiver (12)-(15), when i → ∞, due to the fact that the time average approximates the

statistical ensemble average, we have E[uk(i)uH
k (i)] = Q̄0 and

E−1[Qk(i)] ≈ (1 − E[γ(∞)])Q̄−1
0

≈ (1 − E[γ(∞)])E−1[|z0(i)|2]R−1.

(80)

Note that, when i → ∞, Qk(i) and Q−1
k (i) converge. Thus, we assume limi→∞ Q−1

k (i) ≈ limi→∞ E[Q−1
k (i)] ≈

limi→∞ E−1[Qk(i)]. Finally, we obtain (37).

By using the expression

dk(i) = γ(i)dk(i − 1) + z∗k(i)r(i) (81)

and following the same approach we can have (38).
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