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Low-Complexity Variable Step-Size Mechanism
for Code-Constrained Constant Modulus

Stochastic Gradient Algorithms Applied to
CDMA Interference Suppression
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Abstract—The code-constrained constant modulus algorithm
(CCM) implemented with a stochastic gradient (SG) technique
is a very effective and efficient blind approach for interference
suppression when a communication channel is frequency-selective.
In nonstationary wireless environments, users frequently enter
and exit the system, making it very difficult for the receiver to
compute a predetermined step-size. This suggests the deployment
of mechanisms to automatically adjust the step-size in order to
ensure good tracking of the interference and the channel. In this
paper, the performance of blind CCM adaptive receivers for direct
sequence code division multiple access (DS-CDMA) systems that
employ stochastic gradient (SG) algorithms with variable step-size
mechanisms is investigated. We propose a novel low-complexity
variable step-size mechanism for blind CCM CDMA receivers.
Convergence and tracking analyses of the proposed adaptation
techniques are carried out for multipath channels. Finally, numer-
ical experiments are presented for nonstationary environments,
showing that the new mechanism achieves superior performance
to previously reported methods at a reduced complexity.

Index Terms—Adaptive receivers, blind multiuser detection, di-
rect sequence code division multiple access (DS-CDMA), interfer-
ence suppression, variable step-size mechanisms.

I. INTRODUCTION

T HE constant modulus algorithm (CMA) is based on a
criterion that penalizes deviations of the modulus of

the received signal away from a fixed value determined by
the source alphabet [1], the original work on the CMA has
been done independently by Godard [2] and by Treichler and
Agee [3]. The code-constrained constant modulus algorithm
(CCM) is based on the CMA and forced to satisfy one or a
set of linear constraints such that signals from the desired
user are detected in a flat fading channel [4], [5] or multipath
environment [6], [7]. The CCM algorithm has been studied
and implemented in many wireless communication applica-
tions including blind multiuser detection, blind equalization,
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source separation, interference suppression, and antenna beam-
forming. A linear receiver equipped with the CCM algorithm
is a very effective blind approach for intersymbol interference
(ISI) and multiaccess interference (MAI) suppression when
a communication channel is frequency-selective [8], [9]. The
CCM design approach has proven to be highly suitable to
certain communications technologies such as spread spectrum
systems. In particular, DS-CDMA spread spectrum signalling
has become a highly popular multiple access technique which
is widely used for personal communications, third-generation
mobile telephony, and indoor wireless communications. The
advantages of DS-CDMA include superior operation in mul-
tipath environments, flexibility in the allocation of channels,
increased capacity in bursty and fading environments, and the
ability to share bandwidth with narrowband communication
systems without deterioration of either’s systems performance
[10], [11].

Detecting a desired user in a DS-CDMA system requires pro-
cessing the received signal in order to mitigate different types of
interference, namely, MAI, ISI, and the noise at the receiver. The
major source of interference in most CDMA systems is MAI,
which arises due to the fact that users communicate through the
same physical channel with nonorthogonal signals. Multiuser
detection has been proposed as a means to suppress MAI, in-
creasing the capacity and the performance of CDMA systems
[10], [12]. The optimal multiuser detector of Verdu [13] suf-
fers from exponential complexity and requires: the knowledge
of timing, amplitude and signature sequences. This fact has mo-
tivated the development of various suboptimal strategies with
affordable complexity. The linear minimum mean squared error
(MMSE) receiver implemented with an adaptive filter is one of
the most prominent schemes for use in the downlink because it
only requires the timing of the desired user and a training se-
quence. A blind adaptive linear receiver has been developed in
[11], and operates without knowledge of the channel input. In
[11] Honig et al. have shown that the minimum variance (MV)
criterion leads to a solution identical to that obtained from the
minimization of the mean squared error (MSE). A disadvantage
of the original MV detector is that it suffers from the problem
of signature mismatch and thus has to be modified for multipath
environments.

When designing an adaptive receiver for a DS-CDMA
system, we need to consider what kind of algorithm should be
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used. Despite the fast convergence of recursive least squares
(RLS) algorithms, however, it is preferable to implement adap-
tive receivers with stochastic gradient (SG) algorithms (e.g.,
LMS) due to complexity and cost issues. For this reason the
improvement of blind SG techniques is an important research
and development topic. In this regard, the works in [9] and [11]
employ standard SG algorithms with fixed step-size (FSS) that
are not efficient with respect to convergence and steady-state
performance. Indeed, the performance of adaptive SG receivers
is strongly dependent on the choice of the step-size in [14]. In
nonstationary wireless environments, users frequently enter and
exit the system, making it very difficult for the receiver to com-
pute a predetermined step-size. This suggests the deployment
of mechanisms to automatically adjust the step-size of an SG
algorithm in order to ensure good tracking of the interference
and the channel. Previous works have shown significant gains
in performance due to the use of averaging methods (AV) [15],
[16] or adaptive gradient step-size (AGSS) mechanism [17],
[18], where one SG algorithm adapts the parameter vector and
another SG recursion adapts the step-size. The works in [15]
and [16] have borrowed the idea of averaging originally devel-
oped by Polyak [19] and applied it to CDMA receivers with the
MV criterion. The AGSS algorithms in [17], [18] can be con-
sidered MV and CCM extensions of the papers [20]–[22]. All
these methods require an additional number of operations (i.e.,
additions and multiplications) proportional to the processing
gain and to the number of multipath components .

Furthermore, there is a very little number of works employing
variable step-size mechanisms with blind techniques using the
constant modulus criterion. In this work, we propose a novel
low-complexity variable step-size mechanism for blind CDMA
receivers in multipath channels that are used for MAI and ISI
suppression based on an SG algorithm and the CCM approach.
The additional number of operations of the proposed techniques
does not depend on the processing gain and the number of
paths of the channel . Convergence and tracking analyses of
the proposed adaptation techniques are carried out for a multi-
path scenario, and analytical results are derived for the computa-
tion of the excess MSE. We also generalize the CCM SG-AGSS
in [18] for multipath scenarios. In addition, simulation experi-
ments are presented for nonstationary environments, showing
that the new mechanisms are superior to previously reported
methods and exhibit a reduced complexity.

The paper is structured as follows. Section II briefly describes
the DS-CDMA system model. The adaptive blind SG CCM re-
ceiver design and CCM SG-AGSS algorithm extension for mul-
tipath channel are described in Section III. Section IV is de-
voted to the novel variable step-size mechanism. Convergence
and tracking analyses of the resulting algorithm are developed
in Section V. Section VI presents and discusses the simulation
results. Section VII draws the conclusions.

II. DS-CDMA SYSTEM MODEL

Let us consider the downlink of an uncoded synchronous
binary phase-shift keying (BPSK) DS-CDMA system with
users, chips per symbol and propagation paths. The signal

broadcasted by the base station intended for user has a base-
band representation given by

(1)

where denotes the th symbol for user , the
real valued spreading waveform and the amplitude associated
with user are and , respectively. The spreading wave-
forms are expressed by , where

, is the chip waveform, is the chip
duration and is the processing gain. Assuming that
the channel is constant during each symbol and the receiver is
synchronized with the main path, the received signal is

(2)

where and are, respectively, the channel coefficient and
the delay associated with the th path. Assuming that the delays
are multiples of the chip rate, the spreading codes are repeated
from symbol to symbol and the received signal after fil-
tering by a chip-pulse matched filter and sampled at chip rate
yields the -dimensional received vector

(3)

where , is the com-
plex Gaussian noise vector, and , where

and denotes transpose and Hermitian transpose, re-
spectively, and stands for expected value. The channel
vector is with
for , is the ISI, and assumes that the
channel order is not greater than , i.e. ,

is the signature sequence for user and
is the effective signature sequence for user

, the convolution matrix contains one-chip shifted
versions of .

...
. . .

...
...

. . .

. . .
...

...
. . .

...
. . .

III. BLIND ADAPTIVE SG CCM ALGORITHMS

The linear receiver design is equivalent to determining an FIR
filter with coefficients that provide an estimate of the
desired symbol, as illustrated in Fig. 1 and given by

(4)
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Fig. 1. Block diagram of the blind adaptive CCM receiver with variable step-
size mechanisms.

where selects the real part, is the signum function
and the receiver parameter vector is optimized according to
the CM cost function subject to appropriate constraints.

In this section, we describe the multipath blind adaptive SG
CCM algorithm for estimating the parameters of the linear re-
ceiver first, and then we generalize the blind CCM-AGSS [18]
for multipath scenarios.

A. Multipath Blind Adaptive SG CCM Algorithm

First, let us describe the design of the blind adaptive SG CCM
algorithm in multipath channel. Consider the cost function,

, where subject to the multi-
path constraint given by , where the matrix
was introduced in Section II, and is the constraint
channel vector to be determined. The blind channel estimation
in [23] is employed in these algorithms. Thus, in order to derive
an adaptive expression for the SG CCM linear receiver let us
consider the unconstrained optimization problem given in the
form of a Lagrangian cost function:

(5)

where is a vector of Lagrange multipliers, we consider the
following gradient search procedure:

(6)

where is the SG algorithm step-size. The recursion in (6) may
be obtained from (5) by taking the gradient with respect to
we obtain . Then, (6) be-
comes

(7)

where also needs to be determined. By using (6) and enforcing
the constraints on as , can be solved

(8)

Substituting (8) in (7), we arrive at the update rule for the adap-
tive filter weight vector

(9)

where as reported in [24], and
is the blind channel estimation vector which has been pro-

posed in [23].

B. Blind CCM SG-AGSS in Multipath Channel

The CCM SG-AGSS algorithm in single path channel has
been proposed by Yuvapoositanon and Chambers in [18]. In this
part we extend the algorithm to multipath channels.

We treat as a function of , the step-size variation can
change the filter weights, and define . We
consider the gradient search procedures of variable step-size as
follows

(10)

where denotes the adaptation rate of the step-size
with . By taking the gradient of the cost function

with respect to the step-size we have

(11)

Based on (10) and (11), we can have another SG update equation
which is

(12)

where , and denotes the truncation to
the limits of the range , From (9) we can derive the
update equation of

(13)

By combining (9), (12), and (13) we obtain the multipath
blind CCM SG-AGSS algorithm.

IV. BLIND TIME AVERAGED VARIABLE STEP-SIZE ALGORITHM

This section describes the proposed low-complexity time av-
eraged variable step-size (TASS) mechanism for CDMA re-
ceivers that adjusts the step-size of the update equation of the
receiver. A convergence analysis of the mechanism is carried
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out and approximate expressions relating the mean convergence
factor , the mean square convergence factor
and the minimum variance are derived. It is worth noting that
in the mechanism, is truncated between . In
addition, the computational complexity of the novel mechanism
is presented in terms of additions and multiplications and com-
pared to the CCM-AGSS one.

A. TASS Mechanism

The proposed TASS mechanism employs the instantaneous
cost function , is denoted TASS
and uses the update rule

(14)

where , and is the parameter vector
of the receiver. In the proposed TASS algorithm the step-size
adjustment is controlled by the instantaneous constant modulus
cost function. The motivation is that a large prediction error will
cause the step-size to increase and provide faster tracking while
a small prediction error will result in a decrease in the step-size
to yield smaller misadjustment [25]. The step-size is always
positive and is controlled by the size of the prediction error and
the parameters and . Furthermore, it is worth pointing out that
other rules have been experimented and the TASS is a result of
several attempts to devise a simple and yet effective mechanism.
Indeed, the mechanism is simple to implement and a detailed
analysis of the algorithm is possible under a few assumptions.

Assumption 1: Let us consider that for the algorithms in (14)
when

This assumption holds if is a constant, and we claim that it
is approximately true if is small and also because should be
close to one (as will be shown in the simulations), because
will vary slowly around its mean value. By writing

(15)

we note that for sufficiently small, the second term on the
right-hand side (RHS) of (15) will be small compared to the
first one. Assumption 1 helps us to proceed with the analysis.

Let us define the first- and second-order
statistics of the proposed TASS mechanism

(16)

By computing the square of , we obtain
. Since is small, the last term

of the previous equation is negligible as compared to the other
terms, thus, with the help of Assumption 1 we assume that the
expected value of is approximately

(17)
If we consider the steady-state values of

and by making
and

TABLE I
ADDITIONAL COMPUTATIONAL COMPLEXITY IN MULTIPATH CHANNELS

, and using
[11],

[14] we have the following:

(18)

(19)

where the steady-state minimum value is provided by [26],
the blind CCM receiver is assuming convergence to the MMSE
receiver. The quantity is the steady-state excess error of the
CM cost function. To further simplify those expressions, let us
consider another assumption.

Assumption 2: Let us consider that for (18) and (19),
and , respectively.

This assumption holds if and we claim that
it is approximately true when the SG adaptive algorithm is close
to the optimum solution and is a small fraction of .

By using Assumption 2 we have the following:

(20)

(21)

Note that (20) and (21) will be used for the computational of
the excess MSE of the algorithm. Our studies reveal that (20)
and (21) have proven to be valid and useful for predicting the
steady-state performance of the TASS mechanism.

B. Computational Complexity

In this section, we focus on the additional computational com-
plexity of the proposed TASS mechanism and AGSS mecha-
nism. We compute the number of additions and multiplications
to compare the different parts of those two variable step-size
mechanisms. In Table I, we show the additional computational
complexity of the algorithms for multipath channels. An im-
portant advantage of the proposed adaptation rule is that it re-
quires only a few fixed number of operations while the other
existing technique has additional complexity proportional to the
processing gain and to the number of propagation paths .
Note that we estimated the number of arithmetic operations by
taking into account the number of complex additions and mul-
tiplications required by the mechanisms.

V. ANALYSES OF THE PROPOSED ALGORITHM

In this section, we investigate the convergence behavior
and tracking analysis of our mechanism when used in the
CCM-based algorithm in terms of the steady-state excess MSE
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(EMSE). The CCM blind receivers are inherently nonlinear and
time-variant systems. The nonlinearities in the update equations
of these receivers usually lead to significant difficulties in the
study of their performance. A very efficient approach named
energy conservation principle has been proposed by Sayed
and Rupp in [27] and [28], and it was extended by Mai and
Sayed in [29] and Yousef and Sayed in [30] to the steady-state
and tracking analyses of CMA that bypasses many of these
difficulties. This approach has been proposed with CCM algo-
rithms for analyzing adaptive multiuser receivers by Whitehead
and Takawira in [31]. Our work makes two contributions, the
first of which is the derivation of the steady-state and tracking
performance of the blind CCM receiver in multipath channels.
The second contribution is that we focus on the analysis of the
novel variable step-size mechanism and incorporate them in the
derived expressions.

A. The Modification of the CCM Update Equation

In order to use the energy conservation principle to do the
steady-state and tracking analyses, we write the multipath
channel CCM filter weights update equation in another way.

We consider an equivalent Lagrangian cost function

(22)

where is the effective signature waveform of user ,
. By taking the gradient with respect to , we get the new

filter weight vector update equation

(23)

where , . These two
(9) and (23) are equivalent with different forms. We will drop
the index for notation simplicity in what follows.

B. The Range of Step-Size Values for Convergence

Before the convergence analysis of the proposed variable
step-size algorithm, we discuss the range of the step-size for
convergence. Here, let us consider the blind CCM filter weight
update equation:

(24)

(25)

where . By taking expectations on
both sides of (25) and using Assumption 1 we have

(26)

where and [11].
Therefore, it can be concluded that converges to and
(26) is stable if and only if , which
is necessary and sufficient condition for
and . For stability, a sufficient condition for
(26) to hold implies that

(27)

[14] where is the th eigenvalue of that is not real since
is not symmetric.

C. Steady-State Analysis

The EMSE arises and depends on the presence of MAI, ISI,
AWGN in multipath channels and the nature of the SG algo-
rithm. It is related to the error in the filter coefficients via
the a priori estimation error, which is defined as

(28)

where , and is the optimum filter in
terms of the blind algorithm. Let us define the MSE at time
using the fact that

(29)

where

(30)

When , since and we have
the steady-state MSE

(31)

The steady-state EMSE is then defined as [29]

(32)

The feedback approach was derived in [29], [30] and [32],
which is based on the energy conservation principle made in
those papers. By following the idea of Sayed [29], we provide a
unified approach to quantifying the EMSE of our adaptive blind
receiver that can be made to fit the general class of adaptive SG
algorithms given by

(33)

where is a generic scalar function determined by the adap-
tive algorithm. The major result of the feedback approach is
the energy-preserving equation which relates the a priori es-
timation error to the error function and the vector in
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(33) once the algorithm has reached the steady state. In our case
, and .

Now, subtract both sides of (33) from some vector to
get the weight error equation

(34)

where . Define a priori and a posteriori
estimation errors and

. We now show how to rewrite (34) in terms of the error
measures alone. For this purpose,
we note that if we multiply the Hermitian of (34) by from
the right, we obtain

(35)

Since , we can obtain

(36)

Solving for gives

(37)

so that we can rewrite (34) as

(38)

Rearranging (38) leads to

(39)

If we define

(40)

then by squaring (39), we observe that the following energy re-
lation is obtained:

(41)

By taking expectations of both sides of (41), when the filter
operation is in steady state, namely , we can obtain

(42)

When the filter operation is in steady state for , we also
can write

(43)

Now, with (33), the effect of the weight error vector is canceled
out from (42), and we are reduced to studying only the equality

. Substituting (36) into the
equation we can have the energy preserving equation.

The energy preserving equation in the steady state is used to
solve for the EMSE and is given as

(44)

where , and

, where is the desired user’s signal,
is the residual MAI as the output of the optimum filter, is the
filtered ISI, and is the filtered AWGN.

By expanding the RHS of (44), the equation can be sim-
plified to , where

and
. Based on the analyt-

ical results in [30] and [31], we can make several assumptions.
Assumption 3: In the steady state, and are

uncorrelated. The quantities are zero-mean
random variables, and are mutually independent. We also have

for any positive integer m. The user’s power
is equal to 1. The residual MAI and ISI are Gaussian random
variables.

By using Assumption 3 and substituting into equation
, we have

(45)

(46)

(47)

It is the convergence state , so we can assume
,

, and , where , and
are the variances of the Gaussian distribution.

In this circumstance, the high power terms and
may be neglected. So we obtain the EMSE

(48)
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where ,
and, the details of and

are given by (46) and (47), respectively.
Assumption 4: The residual MAI and ISI powers and

at the output of the optimum filter are significantly lower than
the output noise power , namely, and .

Thus, a simplified expression can be derived if all the terms
that contain and are removed. The simplified expression is
then given by

(49)

D. Tracking Analysis

Here, we examine the operation of these novel step-size algo-
rithms in a nonstationary environment, for which the optimum
solution takes on a time-varying form. The minimum point of
the error-performance surface is no longer fixed. Consequently,
the adaptive blind algorithm now has the added task of tracking
the minimum point of the error-performance surface. In other
words, the algorithm is required to continuously track the statis-
tical variations of the input, the occurrence of which is assumed
to be “slow” enough for tracking to be feasible. We shall con-
tinue to rely on the energy-conservation framework [30] and use
it to derive expressions for the excess MSE of an adaptive filter
when the input signal properties vary with time. The presenta-
tion will reveal that there are actually minor differences between
mean-square analysis and tracking analysis.

EMSE expressions for the tracking performance of the CCM
algorithm were published in [30]. The derivation of tracking per-
formance EMSE for the blind MUD was proposed in [31]. Here
we focus on the analysis of the novel variable step-size mecha-
nism incorporated in the parameter estimation of the CCM-SG
algorithm.

In the time-varying channel, the optimum filter coefficients
are assumed to vary according to the model

, where denotes a random perturbation. This
is typical in the context of tracking analyses of adaptive filters
[14], [33], and [34]. Based on these works, we make an assump-
tion.

Assumption 5: The sequence is a stationary sequence of
independent zero-mean vectors and positive definite autocorre-
lation matrix , which is mutually indepen-
dent of the sequences , , and .

Now, we first redefine the weight error vector as
and then, satisfies

(50)

We define and
, so from (33) we have

(51)

We obtain that (36) and (38) still hold for the nonstationary case,
from (50) and (51) we obtain

(52)

As aforementioned, by squaring (52) and taking the expected
value, when the filter is operating in steady state we have

(53)

(54)

by using Assumption 5, we have
.

When , , so based
on Assumption 5 the energy preserving equation of tracking per-
formance is given as

(55)
Expanding the equation, it can be simplified to

(56)

where and were described before,
. By using the previous assumptions, the high

power terms and may be neglected. Finally,
we obtain

(57)

where ,
.

By using assumption 4, a simplified expression can be derived
if all the terms that contain and are removed. The simplified
solution is given by (58) shown at the bottom of the page.

(58)
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Fig. 2. (a) MSE performance in nonstationary environment of AWGN channel,
start with four users including a 5-dB high power level interferer, after 1000
received symbols four new users including a 5-dB high power level interferer
enter in the system. (b) Step-size variation in the nonstationary environment.

VI. SIMULATIONS

In this section, we evaluate the performance of the proposed
variable step-size mechanism and compare it to the existing
algorithms. First, the MSE performance of nonstationary sce-
nario is compared in AWGN single-path channel to evaluate
the mechanisms, and then we carry out simulations to assess
the signal-to-interference-plus-noise ratio (SINR) performance
of the algorithms in nonstationary environments for multipath
time-varying channel. The bit error rate (BER) performance is
also taken into account, and at last we focus on the conver-
gence and tracking analytical works to compare the simulation
and analysis results. The DS-CDMA system employs spreading
codes with spreading gain , the users in the system are
assumed to have perfect power control. Our simulation results
are based on the downlink of an uncoded system.

The first experiment studies the performance of the proposed
CCM SG-TASS algorithm, the existing CCM SG-AGSS and
the CCM SG fixed step-size algorithms in an AWGN channel.
The DS-CDMA system employs random sequences as the
spreading codes. Fig. 2(a) shows the MSE performance of the
algorithms in a nonstationary environment of AWGN channel,
SNR is 15 dB, where the SNR is defined as the received desired
user’s signal to noise power ratio. We show the convergence of
the receivers in terms of MSE. For the nonstationary case the
system starts with four users including one high power level
interferer with 5 dB and after 1000 symbols, four new users
including a 5-dB high power level user enter in the system.
These results in Fig. 2(a) indicate that the convergence of the
proposed CCM SG-TASS outperforms the convergence of the
CCM SG-AGSS and the fixed step-size algorithms in AWGN
nonstationary environment. Fig. 2(b) shows the variation of
the step-size values in the nonstationary environment. In this
experiment, the parameters of the TASS mechanism have been
optimized with , , ,

, and . The optimized parameters of
AGSS mechanism are , , ,

, and fixed step-size is . The optimized

Fig. 3. (a) SINR performance in nonstationary environment of multipath time-
varying channel. (b) Step-size values for the variable step-size mechanisms in
the nonstationary environment, ��� � �� ��, � � � � � �	 , FSS is
�	 .

parameters are chosen based on simulations results, to make
the system work in a stable way and obtain good performance.

The second experiment considers the algorithms in multipath
time-varying channel. In order to avoid the ambiguity, we only
considered real channel models. Thus, the algorithm deals with
the amplitude variation of the channel. The channel has a pro-
file with three paths, and it is normalized. The channel param-
eters for these experiments are , ,

. The sequence of channel coefficients is
( ), where is computed according to the

Jakes’ model. We optimized the limits of the parameters of the
variable step-size mechanisms with , ,
and , 2000 symbols are transmitted. The channel es-
timation algorithm in [23] is employed in the simulation.

First, we assess the SINR performance of the proposed TASS
mechanism, the AGSS and fixed step-size (FSS) mechanisms,
all based on the SG CCM blind algorithm. In this case, the
random sequence is employed for the spreading code. Fig. 3(a)
shows the convergence of the receivers in terms of SINR, in a
scenario where the power levels of three interferers are 5 dB
above the desired user, whilst the remaining interferers work
at the same power level of the desired signal. In order to test
the nonstationary scenario, the system starts with five users and
three new users enter after 1000 symbols. We optimized the pa-
rameters of the mechanisms with , for the
TASS and for the AGSS. These results indicate that
the proposed TASS mechanism converges to a higher SINR than
the other methods. Fig. 3(b) shows the variation of the step-size
values. Finally, we can see that the novel variable step-size al-
gorithm can work very well in the nonstationary environment of
the multipath time-varying channel.

The BER performance is studied next. In particular, we show
the BER performance versus the received desired user’s signal
to noise power ratio and number of users for the analyzed
algorithms. Here, we use Gold sequences with , and
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Fig. 4. (a) BER versus the SNR with multipath channels. (b) BER versus
number of users with multipath channels. � � � �� �� , FSS is �� .

assume every user’s power is equal to 1, the fading rate
is , and 2000 symbols are transmitted. The results in
Fig. 4(a) indicate that the best performance is achieved with
the proposed CCM SG-TASS algorithm, followed by the CCM
SG-AGSS and the CCM SG fixed step-size algorithms. Fig. 4(b)
shows us that with an increase in the number of users in the
system, our proposed algorithm still has the best performance.
Specifically, CCM SG-TASS algorithm can save up to 4 dB and
support up to three more users in comparison with the CCM
SG-AGSS algorithm for the same performance.

In the third experiment, we consider the convergence and
tracking analyses. The multipath channel model is the same as
before. In order to simplify the simulations we employ the nor-
malized fixed vector as the vector to calculate
the effective signature waveform , where , and are the
values in the second experiment. The steady-state MSE between
the desired and the estimated symbol obtained through simula-
tion is compared with the steady-state MSE computed via the
expressions derived in Section V. Before using (49) and (58) we
have to calculate several values. From the conclusion in [26], we
know that the optimal CCM minimum roughly corresponds
to the minimum mean square error. So, ,
where , and , ,
the here is the additive noise power in the receiver. The
residual noise power in (49) is equal to , where

.
, where . The results can be de-

rived by using a similar approach to [31], and they are shown in
the Appendix.

First, let us verify that the results (20), (21), and (49) of the
section on convergence analysis of the mechanism can provide
a means of estimating the excess MSE. In this simulation of
convergence analysis, we employ random sequences of length

, and assume that four users operate in the system and
they have the same power level. The time-invariant multipath
scenario with AWGN is considered. The results are shown in
Fig. 5(a), for the multipath case. By comparing the curves, it can

Fig. 5. MSE analytical versus simulated performance for the proposed TASS
mechanism convergence analysis. (a) Number of users is 4, the SNR is 16 dB.
(b) Number of users is 4.

be seen that as the number of received symbols increases and the
simulated MSE converges to the analytical result, showing the
usefulness of our analysis and assumptions, where ,

. The Fig. 5(b) shows the effect that the desired
user’s signal-to-noise power ratio has on the MSE, and a com-
parison between the steady-state analysis and simulation results.
The results confirm that the MSE decreases monotonically with
SNR. For each input SNR we can find suitable values of param-
eters and to let the simulation and analysis results agree well
with each other.

The tracking analysis of the CCM SG-TASS algorithm in a
fading channel has been discussed in Section V-D. Here, we
verify that the results (20), (21), and (58) of the section on
tracking analysis of the mechanism can provide a means of es-
timating the MSE. The tracking analysis has been evaluated by
using random sequences with spreading gain 31, and we assume
that six users operate with the same power level in the system.
A time-varying multipath channel has been taken into account,
the fading rate Jakes’ model is employed. The value
of was computed with the aid of [35], which
is the autocorrelation function of Jakes’ model, where is the
zero-order Bessel function of the first kind. is the maximum
Doppler shift, and is the symbol interval [36]. is equal
to . Fig. 6 indicates that as the number of received
symbols increases, the simulated MSE converges to the analyt-
ical result, showing the usefulness of our analysis and assump-
tions, where , .

VII. CONCLUSION

In this paper, we have investigated blind adaptive CCM
receivers for DS-CDMA systems that employ SG algorithms
with variable step-size mechanisms. A low-complexity variable
step-size mechanism has been proposed and analyzed for
estimating the parameters of linear CDMA receiver that op-
erate with SG algorithms in multipath channels. We compared
the computational complexity of the new algorithm with the
existent methods and further investigated the characteristics of
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Fig. 6. MSE analytical versus simulated performance for the proposed TASS
mechanism tracking analysis. Number of users is 6, the SNR is 15 dB, � � �

� � �� .

the new mechanism via derived analytical expressions using
the energy-preserving approach to predict the EMSE for con-
vergence and tracking analyses. Simulation experiments were
conducted to verify the analytical results and illustrate that the
new blind adaptation mechanism significantly outperforms the
conventional variable step-size mechanisms for blind CCM
receivers at a lower complexity in both stationary and nonsta-
tionary scenarios.

APPENDIX

Derivation of , , and in the third experi-
ment.

Let us consider the MSE function as

(59)

Because BPSK signal and received noise are generated
independently with zero mean, where , ,
so the (59) can be simplified as

(60)

where we assume that every user’s power is equal to 1, and
, By taking the gradient of (60) with respect

to and letting it to zero, we have the

(61)

substituting in (60), we obtain the MMSE value, because
the optimal CCM minimum is roughly correspondent to
the MMSE so

(62)

,
.

We know that , and we as-
sume user 1 is the desired user. Hence

(63)

where .
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