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Abstract

Recently, wireless sensor networks (WSNs) have attracted a great deal of research inter-

est because of their unique features that allow a wide range of applications in the areas of

military, environment, health and home. One of the most important constraints on WSNs

is the low power consumption requirement as sensor nodes carry limited, generally irre-

placeable, power sources. Therefore, low complexity and high energy efficiency are the

most important design characteristics for WSNs. In this thesis, we focus on the devel-

opment of low complexity signal processing algorithms for the physical layer and cross

layer designs for WSNs. For the physical layer design, low-complexity set-membership

(SM) channel estimation algorithms for WSNs are investigated. Two matrix-based SM

algorithms are developed for the estimation of the complex matrix channel parameters.

The main goal is to reduce the computational complexity significantly as compared with

existing channel estimators and extend the lifetime of the WSN by reducing its power

consumption. For the cross layer design, strategies to jointly design linear receivers and

the power allocation parameters for WSNs via an alternating optimization approach are

proposed. We firstly consider a two-hop wireless sensor network with multiple relay

nodes. Two design criteria are considered: the first one minimizes the mean-square error

(MMSE) and the second one maximizes the sum-rate (MSR) of the wireless sensor net-

work. Then, in order to increase the applicability of our investigation, we develop joint

strategies for general multihop WSNs. They can be considered as the extension work of

the strategies proposed for the two-hop WSNs and more complex mathematical deriva-

tions are presented. The major advantage is that they are applicable to general multihop

WSNs which can provide larger coverage than the two-hop WSNs.
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Overview

Recently, there has been a growing research interest in wireless sensor networks (WSNs)

because of their unique features that allow a wide range of applications in the areas of

military, environment, health and home [1]. WSNs are usually composed of a large num-

ber of densely deployed sensing devices which can transmit their data to the desired user

through multihop relays [2]. Low complexity and high energy efficiency are the most

important design characteristics of communication protocols [3] and physical layer tech-

niques employed for WSNs. The performance and capacity of these networks can be

significantly enhanced by exploiting the spatial diversity with cooperation between the

nodes [2]. In a cooperative WSN, nodes relay signals to each other in order to propagate

T. Wang, Ph.D. Thesis, Department of Electronics, University of York
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CHAPTER 1. INTRODUCTION 2

redundant copies of the same signals to the destination nodes. Among the existing re-

laying schemes, the amplify-and-forward (AF) and the decode-and-forward (DF) are the

most popular approaches [4]. Array processing techniques have been used to the selection

and positioning of the nodes for WSNs [5, 6]. Due to limitations in sensor node power,

computational capacity and memory [1], some power-constrained relay strategies [7, 8]

and power allocation methods [35] have been proposed for WSNs to obtain the best pos-

sible SNR or best possible quality of service (QoS) at the destinations.

Considering the traditional wireless networks such as cellular systems, the primary

goal in such systems is to provide high QoS and bandwidth efficiency. The base stations

have easy access to the power supply and the mobile user can replace or recharge ex-

hausted batteries in the handset [1]. However, power conservation is getting more impor-

tant for wireless networks, especially for WSNs. It is because that one of the most impor-

tant constraints on WSNs is the low power consumption requirement as sensor nodes carry

limited, generally irreplaceable, power sources. Therefore, our research about WSNs will

focus primarily on power conservation.

The research project can be divided into two main parts: physical layer design and

cross layer design for WSNs. For the physical layer design, we focus on the low complex-

ity channel estimation methods for WSNs. Because most of the research on other layers

are based on the assumption of perfect synchronization and available channel state infor-

mation (CSI) at each node [1], more accurate estimates of the CSI will bring about better

performance in WSNs. We investigate the set-membership filtering (SMF) framework and

incorporate it into the conventional channel estimation methods. These set-membership

channel estimation methods can reduce the computational complexity significantly and

extend the lifetime of the WSN by reducing its power consumption. For the cross layer

design, we investigate strategies to jointly design linear receivers and the power allocation

parameters for WSNs via an alternating optimization approach subject to different kinds

of power constraints. These strategies are firstly considered for the two-hop WSNs for

simplicity. Then, in order to increase the applicability of our investigation, we develop

joint strategies in the general multihop WSNs which can provide larger coverage than the

two-hop WSNs. Therefore, more general and more complex mathematical derivations are

T. Wang, Ph.D. Thesis, Department of Electronics, University of York 2012



CHAPTER 1. INTRODUCTION 3

presented.

1.2 Contributions

The major contributions in this thesis can be structured as follows:

• Two matrix-based set-membership (SM) algorithms for channel estimation in co-

operative WSNs using the AF cooperation protocol are developed. It has been

shown that our proposed algorithms can achieve better or similar performance to

conventional NLMS and RLS channel estimation, offering reduced computational

complexity. The major novelty in these algorithms presented here is that they are

matrix-based SM channel estimation algorithms as opposed to vector-based SM

techniques for filtering applications [9–11]. Therefore we specify a bound on the

norm of the estimation error vector instead of the magnitude of the scalar estimation

error. A key contribution is the consideration of techniques to reduce the complex-

ity of the channel estimation for WSNs.

• A novel error bound function is introduced to change the error bound automatically

in order to obtain optimal performance with the proposed SM channel estimation al-

gorithms. The incorporation of the time-varying bound function makes them robust

to changes in the environment.

• Analytical expressions of the steady-state output excess mean-square error (MSE)

of the two SM channel estimation methods are proposed. The novelty in this anal-

ysis is that we employ the chi-square distribution to describe the probability of the

update for estimating the channel matrix as opposed to the Gaussian distribution for

estimating the filter vector [12–14].

• The strategies to jointly design linear receivers and the power allocation parameters

via an alternating optimization approach are presented for two-hop WSNs. Two

design criteria are considered: the first one minimizes the mean-square error and the

second one maximizes the sum-rate of the wireless sensor network. The constrained

T. Wang, Ph.D. Thesis, Department of Electronics, University of York 2012



CHAPTER 1. INTRODUCTION 4

MMSE and constrained MSR expressions for the design of linear receivers and the

power allocation parameters are derived subject to global, individual and neighbour-

based power constraints. Computer simulations show good performance of our

proposed methods in terms of bit error rate or sum-rate compared to the method with

equal power allocation. Furthermore, the methods with neighbour-based constraints

bring flexibility to balance the performance against the computational complexity

and the need for feedback information which is desirable for WSNs to extend their

lifetime.

• The strategies to jointly design linear receivers and the power allocation parameters

via an alternating optimization approach are presented for multihop WSNs. They

can be considered as the extension work of the strategies proposed for the two-

hop WSNs and more complex mathematical derivations are presented. The major

novelty is that they are applicable to general multihop WSNs which can provide

larger coverage than the two-hop WSNs.

1.3 Thesis Outline

The structure of the thesis is as follows:

• In Chapter 2, a literature review of WSNs is presented that describes their appli-

cations, design factors, relay strategies, channel estimation techniques and power

allocation methods. Also, a review of existing adaptive filtering, parameter estima-

tion and an introduction to the set-membership filtering framework are given.

• In Chapter 3, two SM channel estimation methods are proposed based on time-

varying bounds for cooperative wireless sensor networks. Analyses of the steady-

state MSE and computational complexity are presented for the two channel estima-

tion algorithms and closed-form expressions of the excess MSE and the probability

of update are provided. Furthermore, the incorporation of the time-varying bound

function makes it robust to changes in the environment.

T. Wang, Ph.D. Thesis, Department of Electronics, University of York 2012



CHAPTER 1. INTRODUCTION 5

• In Chapter 4, we consider a two-hop wireless sensor network with multiple relay

nodes where the amplify-and-forward scheme is employed. We firstly derive con-

strained MMSE expressions for the design of linear receivers and power allocation

parameters. The constraints include the global, individual and neighbour-based

power constraints. Then, we derive constrained MSR expressions for the design

of linear receivers and power allocation parameters. The constraints include the

global and neighbour-based power constraints. We make use of the alternating op-

timization algorithms to compute these expressions of linear receivers and power

allocation parameters to minimize the mean-square error or maximize the sum-rate

of the WSN. Finally, computational complexity and convergence analysis of the

proposed optimization algorithms are presented.

• In Chapter 5, we consider a general multihop wireless sensor network with multiple

relay nodes where the amplify-and-forward scheme is employed. We firstly derive

constrained MMSE expressions for the design of linear receivers and power allo-

cation parameters. The constraints include the global, local and individual power

constraints. Then, we derive constrained MSR expressions for the design of linear

receivers and power allocation parameters subject to local power constraints. We

make use of the alternating optimization algorithms to compute these expressions

of linear receivers and power allocation parameters to minimize the mean-square

error or maximize the sum-rate of the WSN. Finally, computational complexity and

convergence analysis of the proposed optimization algorithms are presented.

• In Chapter 6, we present conclusions and the possible future work based on the

content of the thesis.

1.4 Notation

In this thesis, we use bold upper case and lower case letters to denote matrices and vec-

tors, respectively. Unless otherwise stated, all vectors are column vectors. The symbol

I denotes the identity matrix of appropriate dimensions, and the boldface 0 denotes ei-
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ther a zero vector or a zero matrix. The notation ∥x∥ denotes the Euclidean norm of

a vector. R(·) and J(·) denote the real and imaginary components of a complex num-

ber, respectively. The notation (·)∗, (·)T , (·)H and (·)−1 denote the complex conjugate,

standard transpose, Hermitian transpose and matrix inverse, respectively. ⊙ denotes the

Hadamard (element-wise) product. E{·} denotes the statistical expectation operator and

tr{·} denotes the trace operator.
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2.1 Introduction

This chapter presents a literature review of the existing techniques developed for WSNs

and the adaptive filtering and estimation algorithms utilized for channel estimation in this

thesis. Firstly, a summary of the applications of WSNs is given alongside an introduc-

tion to their design factors. Following this, an overview and description of cooperative

communication techniques, power allocation and channel estimation methods for WSNs

are presented. Then, a review of existing adaptive filtering and parameter estimation al-
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CHAPTER 2. LITERATURE REVIEW 9

gorithms is introduced. Finally, an introduction to the set-membership filtering (SMF)

framework which has been widely applied to the adaptive filtering techniques to reduce

the computational complexity is given.

2.2 The Applications of WSNs and Design Factors

WSNs are usually composed of a large number of densely deployed sensing devices which

are required to sense, compute and transmit their data to the desired users [2]. Recently,

there has been a growing research interest in wireless sensor networks (WSNs) because

their unique features allow a wide range of applications that include the following [1]:

• Military applications: monitoring friendly forces, equipment and ammunition; bat-

tlefield surveillance; reconnaissance of opposing forces and terrain; targeting; battle

damage assessment; nuclear, biological and chemical (NBC) attack detection and

reconnaissance.

• Environmental applications: forest fire detection; biocomplexity mapping of the

environment; flood detection; precision agriculture.

• Health applications: telemonitoring of human physiological data; tracking and

monitoring doctors and patients inside a hospital; drug administration in hospitals.

• Home applications: home automation; smart environment.

• Other commercial applications: environmental control in office buildings; interac-

tive museums; detecting and monitoring car thefts; managing inventory control;

vehicle tracking and detection.

The design of WSNs is influenced by some factors which include fault tolerance, scala-

bility, production costs, operating environment, sensor network topology, hardware con-

straints, transmission media and power consumption [1]. Therefore, these factors can be

considered as the guideline for our future research. Since the sensors are typically small,
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power limited, and have low cost, low complexity and high energy-efficiency are the most

important design characteristics of communication protocols [3,15,16] and physical layer

techniques.

2.3 Cooperative Communication Techniques

Among the most promising wireless communication techniques that have emerged re-

cently, cooperative diversity [2, 17–20] has shown great potential for improving the per-

formance of wireless networks and meeting the demands of future wireless applications

such as WSNs. Cooperative communications [4] exploit spatial diversity through coop-

eration among distributed antennas belonging to multiple terminals in wireless systems.

Signal fading due to multipath propagation can be mitigated by enabling a set of coop-

erative relays to forward the received information to the destination. A key aspect of the

cooperative communications is to process the signal received from the source nodes by

the relay nodes [21].

2.3.1 Relay Schemes

A WSN consists of a large number of small sensors which are geographically distributed.

Due to limitations in sensor nodes size, power and cost, they are only able to communicate

in a short range. Therefore, many relay schemes are used to increase the transmission

range [4, 7, 8]. These relay schemes can be categorized into three general groups:

• Amplify-and-Forward (AF): In the AF scheme, the relay nodes amplify the received

signal and rebroadcast the amplified signals toward the destination. The advantage

of the AF scheme is that it is the simplest among the three schemes. However, the

relay nodes amplify not only the desired signal but also both the interference and

the noise which will impair the spectrum efficiency of the WSNs.

• Decode-and-Forward (DF): In the DF scheme, the relay nodes first decode the
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received signals and then regenerate new signals to the destination subsequently.

Compared with the AF scheme, the DF scheme has the advantage of reducing the

effect of the interference and the noise at the relay nodes while requiring a higher

computational complexity. The drawback is that it entails the possibility of for-

warding the incorrectly decoded signals to the destination which will lead to error

propagation and the decrease in the performance of the WSNs.

• Compress-and-Forward (CF): In the CF scheme, the relay nodes compress the re-

ceived signals, exploiting the statistical dependencies between the signals at the

nodes and then transmit the quantized signals to the destination. It is shown in [22]

that the CF scheme can be applied to a variety of wireless channels and can achieve

a rate gain over direct transmission. In [23] and [24], it is shown that CF outper-

forms DF when the channel between the relay and destination is better than that

between the source and relay or the cooperative clustered receivers are considered

in the system. The standard source coding and Wyner-Ziv coding (WZC) can be

employed by the relay nodes to compress the signal. Compared with the standard

source coding [23], the WZC using the rate distortion theory with side informa-

tion [25] could provide a higher achievable rate in theory.

Among these existing relay schemes, the AF and the DF are the most popular ones due

their simplicity in terms of design [4].

2.3.2 Relay Strategies

Another advantage of the relay schemes is that they can exploit the spatial diversity to

combat the fading effect of wireless links [7, 8]. This is because of that more than one

relay are used to transmit the same signal that forms multiple transmission paths to the

destination. In order to make use of this advantage, three distributed relay strategies are

proposed which can meet different requirement of the WSNs [7]:

• MMSE strategy with no power constraints: In this method, relays can have different
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power usage in order to achieve the desired QoS at the destination node. It can

be used to guarantee a certain QoS when QoS has the highest priority and avoid

spending more than the necessary amount of power in applications with low QoS

requirements.

• Relay strategy with local power constraints: This method is practical when the

power budget of each node is fixed and we want to get the best possible SNR or

QoS at the destination by spending this power budget.

• Relay strategy with global power constraints: This method is suggested when we

are given a global power budget and we can allocate different power shares to dif-

ferent nodes as long as their total power usage does not exceed the global power

constraint.

In the distributed relay strategies mentioned above, the relay nodes do not need to share

information about the received signals. Furthermore, a cooperative MMSE relay strat-

egy for WSNs is proposed which employs cooperation between relay nodes to forward

the signal [8]. A constraint on the global power is considered. Simulation results show

that the cooperation between relays can improve the BER performance compared with

noncooperative relays.

2.4 Power Allocation Algorithms

Due to the limitations in sensor node energy, computational capacity and memory [1], it

is important for WSNs to allocate appropriately their limited energy, radio bandwidth and

other resources to maximize the contribution of each node to the whole network. In [26],

a resource allocation approach called Self-Organizing Resource Allocation (SORA) is

presented which can increase the efficiency of the resource allocation compared with the

method manually tuning sensor resource usage.

In WSNs, the power control is one of the most critical roles of resource allocation tech-

niques. Some power allocation methods have been proposed for WSNs to obtain the best
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possible SNR or best possible quality of service (QoS) [27, 28] at the destinations. The

idea consists of formulating the power allocation problem as a centralized or distributed

optimization problem subject to power constraints on certain groups of signals. By adjust-

ing appropriately the power levels used for the links between the sources, the relays and

the destinations, significant performance gains can be obtained for a given power budget.

The majority of the previous literature considers a source and destination pair, with one

or more randomly placed relay nodes. These relay nodes are usually placed with uniform

distribution [29], equal distance [30], or in line [31] with the source and destination. The

reason for these simple considerations is that they can simplify complex problems and

obtain closed-form solutions.

The power allocation for WSNs can be approached in a centralized or a distributed

manner. For the centralized approaches [32, 33], a network controller is required which

is responsible for monitoring the information of the whole network such as the CSI and

SNR, calculating the optimum power allocation parameters of each link and sending them

to all nodes via feedback channels. This approach considers all the available links but it

has two major drawbacks. The first one is the high computational burden and storage

demand at the network controller. The second one is that it requires a significant amount

of control information provided by feedback channels which leads to the loss in band-

width efficiency. For the distributed approaches [34], each node only needs to have the

knowledge of its ’partner’ information and calculate its own power allocation parameter.

Therefore, this approach requires less control information and is ideally suited to dis-

tributed WSNs. However, the performance of the distributed approaches is inferior to the

centralized approaches.

Most of the research on power allocation for WSNs are based on the assumption of

perfect synchronization and available CSI at each node. A WSN is said to have full CSI

when all of its nodes have access to accurate and instantaneous CSI. When full CSI is

available to all the nodes, the power of each node can be optimally allocated to improve

the system efficiency and lower the outage probability [35] or BER [36]. However, it is

often difficult to have full CSI in a WSN since the channel state changes frequently and is

difficult to be tracked continuously. To address this issue, optimization techniques based
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on mean channel gains are known as partial CSI which is easier to obtain in practice. A

single relay AF system using mean channel gain CSI is analyzed in [37], where the outage

probability is the criterion used for optimization. For DF systems, a near-optimal power

allocation strategy called the Fixed-Sum-Power with Equal-Ratio (FSP-ER) scheme based

on partial CSI has been developed in [29]. This near-optimal scheme allocates one half

of the total power to the source node and splits the remaining half equally among selected

relay nodes. A node is selected for relay if its mean channel gain to the destination is

above a threshold. Simulation results show that this scheme significantly outperforms

two traditional power allocation schemes. One is the ’Constant-Power scheme’ where

all nodes serve as relay nodes and all nodes including the source node and relay nodes

transmit with the same power. The other one is the ’Best-Select scheme’ where only one

node with the largest mean channel gain to the destination is chosen as the relay node.

Due to the inherent limitations in sensor node size, power and cost [1], they are only

able to communicate in a short range. Therefore, multihop communication [38] is em-

ployed to provide a large coverage area of the WSNs. By using multihop transmission,

the rapid decay of the received signal which is caused by the increased transmission dis-

tance can be overcome. Moreover, the pathways around the obstacles between the source

and destination can be provided to avoid the signal fading [39]. Several works about the

power allocation of the multihop transmission systems have been proposed in [40]- [44].

The work reported in [40] develops a cross-layer model for multihop communication and

analyzes the energy consumption of multihop topologies with equal distance and optimal

node spacing. The centralized and the distributed schemes for power allocation are pre-

sented to minimize the total transmission power under the constraint on the BER at the

destination in [41] and [42]. In [43], two optimal power allocation schemes are proposed

to maximize the instantaneous received SNR under short-term and long-term power con-

straints. In [44], the outage probability is considered as the optimization criterion to derive

the optimal power allocation schemes under a given power budget for both regenerative

and non-regenerative systems.

The BER performance [33,35], capacity [45] and outage probability [46,47] are often

used as the optimization criterion for the power allocation performance. In [48], a power
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allocation method is proposed to maximize the Effective Configuration Duration (ECD) in

WSNs. It aims to minimize the signalling overhead for performing relay nodes selection

and power allocation which can save power and thus significantly extend the lifetime.

Compared with traditional power allocation schemes, this method jointly considers the

residual energy of sensors and the mean channel gains. Therefore, the feedback burden is

limited and the stability of the topology is increased.

2.5 Channel Estimation Techniques

Power allocation for WSNs has been studied under different CSI assumptions in section

2.4. It indicates that more accurate estimates of the CSI will bring about better perfor-

mance in WSNs. Moreover, most of the research on other layers are based on the assump-

tion of perfect synchronization and available CSI at each node [1]. Therefore, the method

used to estimate the channel coefficients of the WSNs need to be considered.

2.5.1 Conventional LS and MMSE Channel Estimation

Consider a channel estimation problem where the output error is defined as:

e = r − Hs, (2.1)

where s is the training sequence symbol vector, H is the estimated channel matrix and r

is the received signal vector at the destination. Conventional channel estimation schemes

seek to find the channel matrix H by minimizing a cost function which is a suitable ob-

jective function of the output error vector e. Among them, the LS and MMSE are the two

most widely applied channel estimation algorithms reported for WSNs in [49] and [50].
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The LS Channel Estimator

The least squares (LS) channel estimation algorithm minimizes the weighted sum of the

squared norm of the error vector ∥e∥2 which can be described as the following optimiza-

tion problem:

HLS(n) = argmin
H(n)

n∑
l=1

λn−l∥r(l)− H(n)s(l)∥2, (2.2)

where λ denotes the forgetting factor. Computing the gradient of the argument and equat-

ing it to a zero matrix, we obtain the LS channel estimator as given by [76]:

HLS(n) =

[
n∑

l=1

λn−lr(l)sH(l)

][
n∑

l=1

λn−ls(l)sH(l)

]−1

, (2.3)

where (·)H and (·)−1 denote the complex-conjugate (Hermitian) transpose and the inverse

respectively. The LS estimator has a cubic cost with the number of parameters. A com-

plexity reduction is possible by using a recursive procedure that yields the RLS algorithm

which has a quadratic cost.

The MMSE Channel Estimator

The minimum mean square error (MMSE) channel estimation algorithm minimizes the

expected value of the squared norm of the error vector ∥e∥2 which can be described as the

following optimization problem:

HMMSE = argmin
H
E[∥r − Hs∥2]. (2.4)

After some derivation, the MMSE channel estimator is given by [77]:

HMMSE =
ρ

M
RSH

(
E[HHH]−1 +

ρ

M
SSH

)−1

, (2.5)

where ρ is the signal to noise ratio (SNR), S and R are the training sequence symbol

matrix and the received symbol matrix, respectively, during a training period with length

M . The MMSE channel estimator requires the full a priori knowledge of the channel

correlation matrix and the SNR and has a cubic cost with the number of parameters.
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2.5.2 Channel Estimation for WSNs

Two different pilot-symbol-assisted channel estimation methods are proposed based on

the two-hop AF relay network [49]:

• The first estimation method is the cascaded channel estimation (C-CE). It estimates

the source-to-relay channel and the relay-to-destination channel together as a cas-

caded channel at the destination.

• The second estimation method is the disintegrated channel estimation (D-CE). It

estimates the source-to-relay channel and the relay-to-destination channel at the

relay and destination, respectively. This method feeds forward a quantized version

of the source-to-relay channel estimate to the destination.

Simulation results demonstrate that C-CE outperforms D-CE when the number of quan-

tization bits is small. As the number of employed quantization bits increase, D-CE will

outperform C-CE. It should be also noted that compared with D-CE, C-CE has an inher-

ent advantage which is the lower cost of equipping the relay with a channel estimator and

a vector quantizer. Therefore, C-CE becomes particularly attractive for WSNs.

The optimal training (pilot-symbol) design for channel estimation has been introduced

in [51] to improve the performance of cascaded channel estimation. It shows that the

optimal training can be achieved from an arbitrary sequence and a set of well designed

precoding matrices for all relay nodes. The whole design process is efficiently conducted

by dividing it into a convex optimization problem plus a matrix calculation problem. Also,

some popular space time coding (STC) techniques [52,53] are applied in [51] to simplify

the relay design. Besides these direct training-based methods, a semi-blind method which

only employs a very short training sequence is proposed in [54]. This efficient channel

estimation is analyzed theoretically and verified by simulations. They show that it can

achieve high estimation accuracy and outperform the direct training-based channel esti-

mation.
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2.6 Adaptive Filtering and Estimation Algorithms

A filter (or estimator) is a system which is designed to extract the desired information con-

tained in the input signal by mapping it to the output signal. Therefore, filtering is a signal

processing operation that processes the signal to manipulate the information contained in

the signal.

Figure 2.1 illustrates the block diagram of the general adaptive filtering system, where

n denotes the number of iterations. x(n) = [x1(n), x2(n), ..., xN(n)]
H is the input signal

vector. y(n) and d(n) are the output signal and desired signal, respectively. e(n) is the

error signal which is calculated by d(n)− y(n).

Adaptive Filter

Update Algorithm

x(n) y(n)

d(n)

e(n)

−

Figure 2.1: Block diagram of the general adaptive filtering

The classical applications of the adaptive filtering include system identification, beam-

forming, interference cancelation, channel equalization and channel estimation [55]- [61].
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2.6.1 Wiener Filter

The Wiener filter is a widely used filter which represents the optimal solution for the

parameters of the adaptive filter. It employs the mean-square error (MSE) cost function

defined as

JMSE(n) = E[|e(n)|2] = E[|d(n)− y(n)|2]

= E[|d(n)− wH(n)x(n)|2].
(2.6)

The aim of the Wiener filter is to minimize the MSE. Therefore, by setting the gradient of

JMSE in (2.6) with respect to the filter w(n) equal to zero:

∂JMSE(n)

∂w(n)
= −2p + 2Rw(n) = 0, (2.7)

where R = E[x(n)xH(n)] is the autocorrelation of the input signal, p = E[x(n)d∗(n)]

is the cross-correlation between the input signal and the desired signal. (.)∗ denotes the

complex conjugate. Then, we get the Wiener (optimal) solution

wMMSE(n) = R−1p, (2.8)

In practice, the perfect estimates of R and p are not available because they are statistical

values. When the input signals and desired signals are ergodic, the values of R and p can

be estimated by using time averages.

2.6.2 Least-Mean-Square Algorithm

As mentioned above, the parameters that determine the Wiener solution are not available

in practice. An alternative method is to estimate these parameters using known signals and

make use of these estimates to search the optimal values using the adaptive algorithms.

As a result, adaptive filter coefficients can converge to the Wiener solution in some sense.

Some classical searching methods of optimization theory [62]- [64] such as the Newton

and steepest-descent algorithms have been investigated for the adaptive filtering.

A steepest-descent-based algorithm can be used to search the Wiener solution in (2.8)

as follows:

w(n+ 1) = w(n+ 1) + µ[−2p̂(n) + 2R̂(n)w(n)], (2.9)
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where µ is the step size of the algorithm that controls the speed of the updating. R̂(n) and

p̂(n) denote the estimates of R and p at time instance n which can be obtained as follows:

R̂(n) = x(n)xH(n) (2.10)

p̂(n) = x(n)d∗(n) (2.11)

By substituting (2.10) and (2.11) into (2.9), we get

w(n+ 1) = w(n) + µ[−2x(n)d∗(n) + 2x(n)xH(n)w(n)]

= w(n) + 2µx(n)[d∗(n)− xH(n)w(n)]

= w(n) + 2µx(n)e∗(n).

(2.12)

Equation (2.12) is the updating equation of the gradient-based algorithm known as the

least-mean-square (LMS) algorithm.

The LMS algorithm is one of the most widely used algorithms in adaptive filtering.

The main advantage of it is the low computational complexity because it does not require

computing the correlation functions and the matrix inversion.

2.6.3 Least Squares Algorithm

Besides the MSE, the least squares (LS) error is another way to define the cost function

that satisfies the optimality. For the LS algorithms, the cost function is given by

JLS(n) =
n∑

i=0

λn−iϵ(i)2

=
n∑

i=0

λn−i[d(i)− wH(n)x(i)]2,
(2.13)

where λ is an exponential weighting factor called forgetting factor and ϵ(i) is the a pos-

teriori output error at time instant i which is computed after the adaptive filter coefficient

is updated. By setting the gradient of JLS in (2.13) with respect to the filter w(n) equal to

zero, we obtain

∂JLS(n)

∂w(n)
= −2

n∑
i=0

λn−ix(i)[d∗(i)− xH(i)w(n)] = 0. (2.14)
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Therefore, the expression for the optimal coefficient vector w(n) that minimizes the LS

error is given by

wLS(n) =

[
n∑

i=0

λn−ix(i)Hx(i)

]−1 n∑
i=0

λn−ix(i)d∗(i) (2.15)

When λ = 1 and n tends to infinity, it can be seen from (2.15) that the LS solution will

tend to the Wiener solution.

2.6.4 Recursive Least-Squares Algorithm

The main drawback of the LS algorithm is the high computational complexity caused by

the matrix inversion. In practice, the computation of the inverse matrix can be avoided by

employing the matrix inverse lemma [65] which reduces the computational complexity.

As a result, the LS solution can be computed in an recursive form resulting in the recursive

least-squares (RLS) algorithm.

Let

ϕ(n) =
n∑

i=0

λn−ix(i)Hx(i) (2.16)

and

z(n) =
n∑

i=0

λn−ix(i)d∗(i) (2.17)

Eqation (2.15) becomes:

w(n) = ϕ−1(n)z(n) (2.18)

Isolating the term corresponding to i = n from the rest of the summation on the right-hand

side of (2.16), we may write:

ϕ(n) = λ

[
n−1∑
i=0

λn−1−ix(i)xH(i)

]
+ x(n)xH(n) (2.19)

The expression inside the brackets on the right-hand side of (2.19) equals ϕ(n−1). Hence,

we have the following recursion for updating the value of ϕ(n):

ϕ(n) = λϕ(n− 1) + x(n)xH(n) (2.20)
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Similarly, we may use (2.17) to derive the following recursion for updating z(n):

z(n) = λz(n− 1) + x(i)d∗(i) (2.21)

Then, using the matrix inversion lemma, we obtain the following recursive equation for

the inverse of ϕ(n):

ϕ−1(n) = λ−1ϕ−1(n− 1)− λ−2ϕ−1(n− 1)x(n)xH(n)ϕ−1(n− 1)

1 + λ−1xH(n)ϕ−1(n− 1)x(n)
(2.22)

For convenience of computation, let:

P(n) = ϕ−1(n) (2.23)

and

k(n) =
λ−1P(n− 1)x(n)

1 + λ−1xH(n)P(n− 1)x(n)
(2.24)

Therefore, we may rewrite (2.18) and (2.22) as:

w(n) = P(n)z(n) (2.25)

P(n) = λ−1P(n− 1)− λ−1k(n)xH(n)P(n− 1) (2.26)

Then we substitute (2.21) and (2.26) into (2.25) to obtain a recursive equation for updating

the adaptive filter coefficient w(n):

w(n) = w(n− 1)− k(n)xH(n)w(n− 1) + P(n)x(n)d∗(n) (2.27)

By rearranging (2.24) , we can get:

k(n) = [λ−1P(n− 1)− λ−1k(n)xH(n)P(n− 1)]x(n)

= P(n)x(n)
(2.28)

Using (2.28) above, we get the desired recursive equation for updating w(n):

w(n) = w(n− 1) + k(n)ξ∗(n) (2.29)

where ξ(n) = d(n) − wH(n − 1)x(n) denotes the a priori output error at time instant n.

Table 2.1 and table 2.2 show the summary of the LMS and the RLS algorithms.
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Table 2.1: Summsary of the LMS Algorithm

Initialize the algorithm by setting

w(0) = 0

For each instant of time, n=0, 1, 2, ..., compute

e(n) = d(n)− wH(n)x(n)

w(n+ 1) = w(n) + 2µx(n)e∗(n)

Table 2.2: Summary of the RLS Algorithm

Initialize the algorithm by setting

w(0) = 0

P(0) = I

For each instant of time, n=1, 2, ..., compute

ξ(n) = d(n)− wH(n− 1)x(n)

k(n) = λ−1P(n−1)x(n)
1+λ−1xH(n)P(n−1)x(n)

w(n) = w(n− 1) + k(n)ξ∗(n)

P(n) = λ−1P(n− 1)− λ−1k(n)xH(n)P(n− 1)

2.7 Set-membership Filtering

Set-membership filtering (SMF) represents a class of recursive estimation algorithms

which have been applied to the conventional system identification problem in order to

improve the performance in terms of high convergence speed, low misadjustment and a

reduced number of updates.

Consider a general adaptive filter where the estimation error is defined as

e(n) = d(n)− wH(n)x(n), (2.30)

where x(n) = [x1(n), x2(n), ..., xN(n)]
H denotes the input signal vector, w(n) =

[w1(n), w2(n), ..., wN(n)]
H denotes the parameter vector and d(n) denotes the desired

signal sequence. The SMF specifies an upper bound γ on the magnitude of the estimation

output error over a model space of interest which is denoted as S, comprising all possi-

ble input-desired signal pairs (x, d). The set-membership (SM) criterion corresponds to
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finding w that satisfies

|e(n)|2 ≤ γ2 ∀(x, d) ∈ S. (2.31)

The set of all possible w that satisfy (2.31) is referred to as the feasibility set and can be

expressed as

Θ =
∩

(x,d)∈S

{
w ∈ CN : |d− wHx| ≤ γ

}
. (2.32)

At time instant n, the constraint set Cn is defined as the set of all w(n) that satisfy (2.31)

for the input-desired signal pairs (x(n), d(n))

Cn =
{

w(n) ∈ CN : |d(n)− wH(n)x(n)| ≤ γ
}
. (2.33)

where w(n) denotes a specific instance of w. It can be depicted in Figure 2.2 where Cn

comprises the region between the two lines d(n) − wH(n)x(n) = ±γ. The intersection

of the constraint sets Cn over all time instants i=1,2,...,n is called the exact membership

set and is given by

ψ(n) =
n∩

i=1

Ci. (2.34)

It can be seen that the feasibility set Θ is a subset of the exact membership set ψ(n) at any

given time instant.

The key strategy of the formulation is to find a feasibility set such that the bounded

error specification is met for any member of this set. As a result, the SMF is aimed at

estimating the feasibility set itself or a member of this set [61]. It employs a determin-

istic objective function related to a bounded error constraint on the filter output to make

sure that all the updates belong to a set of feasible solutions. Any update whose output

estimation error is smaller than the given bounds is an acceptable solution. Therefore,

Cn

d(n)−w
H(n)x(n) = γ

d(n)−w
H(n)x(n) = −γ

Figure 2.2: Constraint set Cn about w(n)
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SMF-based designs allow the reduction of computational complexity in detection, esti-

mation and filtering operations, as it updates the parameters only when the output error is

higher than a pre-determined upper bound.

The SMF framework has been applied to adaptive filtering algorithms widely. The

algorithms include the set-membership normalized LMS algorithm (SM-NLMS) [66],

the BEACON algorithm [10, 67], the set-membership affine projection algorithm (SM-

AP) [68] and the set-membership binormalized data-reusing LMS algorithms (SM-

BNDRLMS) [69]. As compared with their competing algorithms [65], these set-

membership algorithms offer a number of advantages. First, they are able to achieve

good convergence and tracking performance. Second, they can save a large number of

filter updates due to the data-selective updating. This allows a substantial reduction in

complexity and an extension of battery life, without performance degradation which is

desirable for the WSNs. Therefore, the SM-based algorithms can be also considered for

the receiver design, interference cancelation and channel estimation for the WSNs.

An open issue for the SM algorithms is the appropriate selection of the error bound,

because it has a critical effect on their performance. The extreme settings of the bound,

namely, overbounding (the error bound being too large) and underbounding (the error

bound being too small) will result in performance degradation [71, 72]. In practice, the

bound depends on the environmental parameters such as the SNR. It is very difficult to

determine the optimal error bound accurately because there is usually insufficient knowl-

edge about the underlying system. The required error bound may be time variant due to

changing environmental conditions. The parameter-dependent error bound [67, 71] and

an adaptive error bound [73] have been proposed to reduce the risk of overbounding and

underbounding of the SM algorithms.
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3.1 Introduction

Due to limitations in sensor node power, computational capacity and memory [1], some

power-constrained relay strategies [7, 8] and power allocation methods [35] have been

proposed for WSNs to obtain the best possible SNR or best possible quality of service
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(QoS) at the destinations. Most of these ideas are based on the assumption of perfect

synchronization and available channel state information (CSI) at each node [1]. This

shows the importance of channel estimation and suggests that more accurate estimates of

the CSI will bring about better performance in WSNs.

The normalized least mean squares (NLMS) estimation method is appropriate for

WSNs due to its simplicity. However, the main problem of the NLMS is that the tradeoff

between convergence speed and steady state performance is achieved through the intro-

duction of a step size [65]. It is not possible to achieve the best solution on these two

aspects using a conventional NLMS estimation method. Channel estimation with the

NLMS algorithm can be improved by introducing the set-membership filtering (SMF)

framework [67] which modifies the objective function of the NLMS algorithm. It speci-

fies an error bound on the magnitude of the estimation error, which can make the step size

adaptive. Therefore the SM-NLMS channel estimation method can achieve good con-

vergence and tracking performance for each update. An SM-NLMS channel estimation

algorithm for cooperative WSNs is proposed in [74]. Compared with the NLMS channel

estimation method, the RLS channel estimator can provide better performance in terms

of the convergence speed and steady state [65]. However, it is not suitable for WSNs

due to its high computational complexity [65]. In order to overcome this shortcoming,

the SMF framework can be employed to devise a computationally efficient version of the

conventional RLS channel estimation method, called BEACON channel estimation. It

can be considered as a constrained optimization problem where the objective function is

the least squares (LS) cost function and the constraint is a bound on the magnitude of

the estimation error. As a result, an adaptive forgetting factor can be derived to achieve

the optimal performance for each update. Most importantly, the set-membership (SM)

algorithms possess a feature that allows updating for only a small fraction of the time,

expressed as the update rate (UR). Therefore, the UR of the two SM channel estimation

algorithms decreases due to the data-selective update which can reduce the computational

complexity significantly and extend the lifetime of the WSN by reducing its power con-

sumption.

The biggest issue for the SM channel estimation is the appropriate selection of the er-

T. Wang, Ph.D. Thesis, Department of Electronics, University of York 2012



CHAPTER 3. LOW-COMPLEXITY SET-MEMBERSHIP CHANNEL ESTIMATION FOR

COOPERATIVE WSNS 28

ror bound, because it has a critical effect on the estimation performance. For SM-NLMS

channel estimation, the extreme settings of the bound, namely, overbounding (the error

bound being too large) and underbounding (the error bound being too small) will result

in performance degradation [71, 72]. In practice, the bound depends on the environmen-

tal parameters such as the SNR. It is very difficult to determine the optimal error bound

accurately because there is usually insufficient knowledge about the underlying system.

For the BEACON channel estimation, the value of the error bound can be varied to trade

off achievable performance against computational complexity [10]. A higher error bound

would result in lower UR but worse performance. For WSNs the aim is to achieve an ac-

ceptable CSI quickly with low power consumption. Therefore, the bound for BEACON

channel estimation should be adjusted to ensure good estimation performance, lower com-

putational complexity and a low UR. Also, the required error bound may be time variant

due to changing environmental conditions.

In this chapter, we develop two matrix-based SM algorithms for channel estimation

in cooperative WSNs using the AF cooperation protocol. The major novelty in these

algorithms presented here is that they are matrix-based SM channel estimation algorithms

as opposed to vector-based SM techniques for filtering applications [9–11]. Therefore we

specify a bound on the norm of the estimation error vector instead of the magnitude of

the scalar estimation error. Then, a novel error bound function is introduced to change

the error bound automatically in order to obtain optimal performance with the proposed

SM channel estimation. Furthermore, we propose analytical expressions of the steady-

state output excess mean-square error (MSE) of the two SM channel estimation methods.

Further novelty in this analysis is that we employ the chi-square distribution to describe

the probability of the update for estimating the channel matrix as opposed to the Gaussian

distribution for estimating the filter vector [12–14]. A key contribution of this work is the

consideration of techniques to reduce the complexity of the channel estimation for WSNs.

This chapter is organized as follows. Section 3.2 describes the general cooperative

WSN system model and its constrained form. Section 3.3 proposes two channel estima-

tion methods using the SMF framework and presents an error bound function which tunes

the error bound automatically. Section 3.4 contains the analysis of the steady-state output
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excess MSE and the computational complexity. Section 3.5 presents and discusses the

simulation results, while Section 3.6 provides some concluding remarks.

3.2 Cooperative WSN System Model

Consider a general m-hop wireless sensor network (WSN) with multiple parallel relay

nodes for each hop, as shown in Figure 3.1. The WSN consists of Ns sources, Nd desti-

nations and Nr relays which are separated into m − 1 groups: Nr(1),Nr(2), ... ,Nr(m−1).

All these nodes are assumed to be within communication range. We will concentrate on

a time division scheme with perfect synchronization, for which all signals are transmitted

and received in separate time slots. The sources first broadcast the Ns × 1 signal vec-

tor s to the destinations and all groups of relays. We consider an amplify-and-forward

(AF) cooperation protocol in this work. Each group of relays receives the signal from the

sources and the previous groups of relays, amplifies and rebroadcasts them to the next

groups of relays and the destinations. In practice, we need to consider the constraints on

the transmission policy. For example, each transmitting node would transmit during only

one phase. In our WSN system, we assume that each group of relays transmits the signal

to the nearest group of relays and the destinations directly. We can use a block diagram

to indicate the cooperative WSN system with these transmission constraints as shown in

Figure 3.2.

Let Hs,r(i) denote the Nr(i)×Ns channel matrix between the sources and the ith group

of relays, Hr(i),d denote the Nd × Nr(i) channel matrix between the ith group of relays

and destinations, and Hr(i−1),r(i) denote the Nr(i) × Nr(i−1) channel matrix between two

groups of relays. The received signal at the ith group of relays (xi) and destinations (d)

for each phase can be expressed as:

Phase 1:

x1 = Hs,r(1)s + vr(1), (3.1)

d1 = Hs,ds + v1
d, (3.2)
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Figure 3.1: An m-hop cooperative WSN with Ns sources, Nd destinations and Nr relays.
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Figure 3.2: Block diagram of the cooperative WSN system with transmission constraints.
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Phase 2:

x2 = Hr(1),r(2)A1x1 + vr(2), (3.3)

d2 = Hr(1),dA1x1 + v2
d, (3.4)

...

Phase i: (i = 3, 4, ...,m− 1)

xi = Hr(i−1),r(i)Ai−1xi−1 + vr(i), (3.5)

di = Hr(i−1),dAi−1xi−1 + vi
d, (3.6)

...

Phase m:

dm = Hr(m−1),dAm−1xm−1 + vm
d , (3.7)

where v is a zero-mean circularly symmetric complex additive white Gaussian noise

(AWGN) vector with covariance matrix σ2I. Ai is a diagonal matrix whose elements

represent the amplification coefficient of each relay of the ith group. The vectors di and

vi
d denote the received signal and noise at the destination nodes during the ith phase,

respectively. At the destination nodes, the received signal can be expressed as:

d = HdAy + vd, (3.8)

where,

d =



dm

−−−

dm−1

−−−
...

−−−

d2

−−−

d1



, vd =



vm
d

−−−

vm−1
d

−−−
...

−−−

v2
d

−−−

v1
d



, y =



xm−1

−−−

xm−2

−−−
...

−−−

x1

−−−

s



, (3.9)

(mNd × 1) (mNd × 1) ((Nr +Ns)× 1)
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Hd =



Hr(m−1),d · · · 0

Hr(m−2),d

... . . . ...

Hr(1),d

0 · · · Hs,d


, (3.10)

(mNd × (Nr +Ns))

A =



Am−1 · · · 0

Am−2

... . . . ...

A1

0 · · · I


. (3.11)

((Nr +Ns)× (Nr +Ns))

Here, we use dashed lines to separate the vectors d, vd and y in order to distinguish

between transmissions to the destinations inm different time slots. The matrix Hd consists

of all the channels between each group of relays and destinations. The matrix A consists

of the amplification coefficients of all relays.

In our transmission scheme, all the data packets transmitted from the source nodes

and relay nodes contain two parts: a preamble part with training sequence symbols and

another part with data symbols. Please see Figure 3.3. The source nodes transmit packets

and the relay nodes retransmit those packets that contain the identical training sequence

symbols which are known at the destination nodes. Therefore, we can make use of them

for channel estimation at the destination nodes. Moreover, the decision directed chan-

nel estimation (DD-CE) is exploited in our system by a scheme detailed in Figure 3.4

which is located at the final destination. We consider an MMSE detector whose formula

can be expressed as WMMSE(n) = [H(n)HH(n) + σ2
n

σ2
s
I]−1H(n) [65], where H(n) is the

estimated channel coefficient at time instant n which can be received from the channel

estimator. The block marked with a Q[·] represents a decision device. After the training

sequence, the channel estimation algorithm is switched to decision directed mode [75]
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and the detected data symbols are fed to the channel estimator. It can continue to estimate

and track the channel. Therefore, the channel variation can be tracked after the training

phase and this can yield better results. Furthermore, this decision directed approach can

reduce the length of the training sequence which increases the bandwidth efficiency of the

WSNs.

Figure 3.3: The structure of the packet transmitted from source nodes and relay nodes

Detector Q[ ]

Decision Directed

Channel Estimator

d(n)

H(n)

Figure 3.4: The structure of the decision directed channel estimation at the destination

3.3 Set-Membership Channel Estimation

In contrast with the two conventional channel estimation methods introduced in section

2.5.1, set-membership (SM) channel estimation specifies an upper bound γ on the norm

of the estimation error vector over a model space of interest which is denoted as S, com-

prising all possible received signal pairs (s, r). The SM criterion corresponds to finding

H that satisfies:

∥e(H)∥2 ≤ γ2, ∀(s, r) ∈ S. (3.12)
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where e(H) = r − Hs. The set of all possible H that satisfy (3.12) is referred to as the

feasibility set and can be expressed as:

Θ =
∩

(s,r)∈S

{
H ∈ CM×N : ∥r − Hs∥ ≤ γ

}
. (3.13)

At time instant n, the constraint set Cn is defined as the set of all H(n) that satisfy (3.12)

for the received signal pairs (s(n), r(n)):

Cn =
{

H(n) ∈ CM×N : ∥r(n)− H(n)s(n)∥ ≤ γ
}
. (3.14)

The idea behind the SM channel estimation is that if the estimated channel at a time

instant lies outside the constraint set Cn, the estimated channel at the next time instant

will lie on the closest boundary of Cn. Otherwise, there is no need to compute and the

power consumption can be significantly reduced. This SM approach makes the estimator

adapt only in the direction that is necessary.

3.3.1 Proposed SM-NLMS Channel Estimation

The basic update in the LMS Channel Estimation can be written as:

H(n+ 1) = H(n) + µ(n)e(n)sH(n), (3.15)

where e(n) = r(n) − H(n)s(n) denotes the a priori error vector at time instant n, and

µ(n) is the time-dependent step size. Then we can get a posterior error vector:

g(n) = r(n)− H(n+ 1)s(n). (3.16)

By substituting (3.15) into (3.16), we have:

g(n) = r(n)−
(
H(n) + µ(n)e(n)sH(n)

)
s(n)

= (r(n)− H(n)s(n))− µ(n)e(n)sH(n)s(n)

= e(n)− µ(n)e(n)sH(n)s(n).

(3.17)

The constraint set is described as:

∥g(n)∥ = ∥e(n)− µ(n)e(n)sH(n)s(n)∥ ≤ γ. (3.18)
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If ∥e(n)∥ > γ, then the previous solution lies outside the constraint set. We can choose

the constraint value ∥g(n)∥ equal to γ so that the new solution lies on the closest boundary

of the constraint set. Therefore:

∥g(n)∥ = ∥e(n)∥
∣∣1− µ(n)sH(n)s(n)

∣∣ = γ. (3.19)

Hence the step size at the nth iteration µ(n) can be expressed as:

µ(n) =
1

sH(n)s(n)

(
1− γ

∥e(n)∥

)
. (3.20)

Finally, we can write the update equation as:

H(n+ 1) = H(n) + µ(n)e(n)sH(n), (3.21)

where

µ(n) =


1

sH(n)s(n)

(
1− γ

∥e(n)∥

)
, if ∥e(n)∥ > γ,

0, otherwise.
(3.22)

Equation (3.22) shows that the estimated channel matrix updates with a specified step

size, only when the norm of the estimation error vector is larger than a fixed error bound

which we set. Otherwise, the step sizes are zeros which means there is no update at these

time instants.

3.3.2 Proposed BEACON Channel Estimation

Here, we propose The proposed BEACON channel estimation can be considered as the

following optimization problem:

H(n)opt = argmin
H(n)

n−1∑
l=1

λ(n)n−l∥r(l)− H(n)s(l)∥2,

subject to ∥r(n)− H(n)s(n)∥2 = γ2.

(3.23)

It is a modification for a computationally efficient version of an optimal bounding ellip-

soidal (OBE) algorithm [10], which is closely related to a constrained LS algorithm. To

solve this constrained optimization problem, we can modify the LS cost function using

the method of Lagrange multipliers which yields the following Lagrangian function:

L =
n−1∑
l=1

λ(n)n−l∥r(l)− H(n)s(l)∥2 + λ(n)
[
∥r(n)− H(n)s(n)∥2 − γ2

]
, (3.24)
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where λ(n) plays the role of both the Lagrange multiplier and the forgetting factor of the

LS cost function [67]. By setting the gradient of L with respect to H(n) equal to zero,

after some mathematical manipulations (see Appendix A), we get the desired recursive

equation for updating the channel matrix H(n):

H(n) = H(n− 1) + λ(n)ϵ(n)k(n), (3.25)

where ϵ(n) = r(n) − H(n − 1)s(n) denotes the prediction error vector at time instant n

and the recursive equation for updating the gain vector k(n) is

k(n) =
sH(n)P(n− 1)

1 + λ(n)sH(n)P(n− 1)s(n)
, (3.26)

where

P(n) = P(n− 1)− λ(n)P(n− 1)s(n)k(n). (3.27)

The error vector is

e(n) = r(n)− H(n)s(n). (3.28)

By substituting (3.25) into (3.28), we have:

e(n) = r(n)− [H(n− 1) + λ(n)ϵ(n)k(n)] s(n)

= r(n)− H(n− 1)s(n)− λ(n)ϵ(n)k(n)s(n)

= ϵ(n)− λ(n)ϵ(n)
sH(n)P(n− 1)s(n)

1 + λ(n)sH(n)P(n− 1)s(n)

= ϵ(n)− λ(n)ϵ(n)
G(n)

1 + λ(n)G(n)

= ϵ(n)

[
1− λ(n)G(n)

1 + λ(n)G(n)

]
= ϵ(n)

1

1 + λ(n)G(n)
,

(3.29)

where G(n) = sH(n)P(n− 1)s(n). The constraint set is described as:

∥e(n)∥ = ∥ϵ(n) 1

1 + λ(n)G(n)
∥ ≤ γ. (3.30)

If ∥ϵ(n)∥ > γ, then the previous solution lies outside the constraint set. We can choose

the constraint value ∥e(n)∥ equal to γ so that the new solution lies on the closest boundary

of the constraint set. Therefore:

∥e(n)∥ = ∥ϵ(n)∥ 1

|1 + λ(n)G(n)|
= γ. (3.31)
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Table 3.1: Summary of the BEACON Channel Estimation Algorithm

Initialize the algorithm by setting

H(0) = 0

P(0) = I

For each instant of time, n=1, 2, ..., compute

ϵ(n) = r(n)− H(n− 1)s(n)

λ(n) =


1

G(n)

(
∥ϵ(n)∥

γ
− 1
)
, if ∥ϵ(n)∥ > γ,

0, otherwise.

where G(n) = sH(n)P(n− 1)s(n)

k(n) = sH(n)P(n−1)
1+λ(n)G(n)

H(n) = H(n− 1) + λ(n)ϵ(n)k(n)

P(n) = P(n− 1)− λ(n)P(n− 1)s(n)k(n)

Hence the optimal forgetting factor at the nth iteration can be expressed as:

λ(n) =
1

G(n)

(
∥ϵ(n)∥
γ

− 1

)
. (3.32)

Table 3.1 shows a summary of the BEACON channel estimation algorithm which will be

used for the simulations.

3.3.3 Time-Varying Bound

In order to obtain the optimal error bound at each time instant, in this section we introduce

an error bound function which can adjust the error bound automatically with the update of

the channel estimate. A similar bound for the SM filtering techniques has been described

in [67]. For channel estimation, the bound is heuristic and employs the CSI parameter

matrix and the noise variance that should be related with the estimates of interest. It can

be expressed as:

γ(n+ 1) = (1− β)γ(n) + β
√
α∥H(n)∥2σ2, (3.33)

where β is the forgetting factor, α is the tuning parameter, and σ2 is the variance of the

noise which is assumed to be known at the destinations. This time-varying bound is

recursive so that it can be used to avoid too high or low values of ∥H(n)∥2.
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3.4 Analysis of the Proposed Algorithms

In this section, the analysis of the steady-state output MSE and the computational com-

plexity of the two SM algorithms are developed.

3.4.1 Steady-State Output MSE Analysis

In this subsection, we investigate the output MSE in the SM-NLMS and the BEACON

channel estimation. The received signal at time instant n is given by:

r(n) = H0s(n) + n(n), (3.34)

where H0 (M × N) is the channel matrix needed to be estimated and n(n) is the mea-

surement noise which is assumed here to be Gaussian with zero mean and variance σ2
n.

Defining the channel estimation error matrix as:

∆H(n) = H0 − H(n). (3.35)

We can express the output error vector as:

e(n) = r(n)− H(n)s(n)

= r(n)− [H0 −∆H(n)]s(n)

= r(n)− H0s(n) + ∆H(n)s(n)

= n(n) + ∆H(n)s(n).

(3.36)

Therefore, the output MSE expression can be derived as:

J(n) = E[∥e(n)∥2]

= E[eH(n)e(n)]

= E{[nH(n) + sH(n)∆HH(n)][n(n) + ∆H(n)s(n)]}

= E[∥n(n)∥2] + E[sH(n)∆HH(n)∆H(n)s(n)]

=Mσ2
n + E{tr[sH(n)∆HH(n)∆H(n)s(n)]}

=Mσ2
n + tr{E[sH(n)∆HH(n)∆H(n)s(n)]},

(3.37)
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where tr(·) denotes the trace of a matrix. The property of the matrix trace tr(XY) =

tr(YX) will be used in the following derivation. From (3.37), we can define the output

excess MSE as:

Jex(n) = tr{E[sH(n)∆HH(n)∆H(n)s(n)]}

= tr{E[s(n)sH(n)∆HH(n)∆H(n)]}.
(3.38)

For the SM-NLMS

The update equations for the SM-NLMS channel estimation are given by (3.21) and

(3.22). In (3.22) sH(n)s(n) is equal to Nσ2
s , where σ2

s is the variance of the pilot sig-

nal. By substituting (3.22) into (3.21), we can achieve an alternative update equation:

H(n+ 1) = H(n) +
1

Nσ2
s

(
1− γ

∥e0(n)∥

)
e(n)sH(n), (3.39)

where

∥e0(n)∥ =

 ∥e(n)∥, if ∥e(n)∥ > γ,

γ, otherwise.
(3.40)

As a consequence, the update equation of the channel estimation error can be expressed

as:

∆H(n+ 1) =∆H(n)− 1

Nσ2
s

(
1− γ

∥e0(n)∥

)
e(n)sH(n)

=∆H(n)− 1

Nσ2
s

e(n)sH(n) +
γ

Nσ2
s

e(n)
∥e0(n)∥

sH(n).
(3.41)

Then, we can use (3.41) to derive the update equation of the output excess MSE in (3.38)

(see Appendix B):

Jex(n+ 1) =Mσ2
n + 2γE

[
1

∥e0(n)∥

]
Jex(n)− 2γE

[
∥e(n)∥2

∥e0(n)∥

]
+ γ2E

[
∥e(n)∥2

∥e0(n)∥2

]
.

(3.42)

From (3.40), the three expected values in (3.42) can be expressed as:

E

[
1

∥e0(n)∥

]
= E

[
1

∥e(n)∥

∣∣∣∣∥e(n)∥ > γ

]
Pup +

1

γ
(1− Pup), (3.43)

E

[
∥e(n)∥2

∥e0(n)∥

]
= E

[
∥e(n)∥

∣∣∥e(n)∥ > γ
]
Pup +

1

γ
E
[
∥e(n)∥2

∣∣∥e(n)∥ ≤ γ
]
(1− Pup),

(3.44)
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E

[
∥e(n)∥2

∥e0(n)∥2

]
= Pup +

1

γ2
E
[
∥e(n)∥2

∣∣∥e(n)∥ ≤ γ
]
(1− Pup), (3.45)

where E[·
∣∣·] denotes the conditional expected value and Pup stands for the probability of

update in each recursion. Let:

X1 = E

[
1

∥e(n)∥

∣∣∣∣∥e(n)∥ > γ

]
, (3.46)

Y1 = E
[
∥e(n)∥

∣∣∥e(n)∥ > γ
]
, (3.47)

Z1 = E
[
∥e(n)∥2

∣∣∥e(n)∥ ≤ γ
]
. (3.48)

By substituting (3.43)-(3.45) into (3.42), we can get

Jex(n+ 1) =Mσ2
n + [2γX1Pup + 2(1− Pup)]Jex(n)− 2γY1Pup − 2Z1(1− Pup)

+ γ2Pup + Z1(1− Pup)

=[2γX1Pup + 2− 2Pup]Jex(n)− 2γY1Pup − Z1(1− Pup) +Mσ2
n + γ2Pup.

(3.49)

During the steady state, Jex(n + 1) → Jex(n). Therefore, the steady-state output excess

MSE expression of the SM-NLMS channel estimation is:

Jex(n) =
2γY1Pup + Z1(1− Pup)−Mσ2

n − γ2Pup

2γX1Pup − 2Pup + 1
. (3.50)

For the BEACON

According to Table 3.1, we can get the update equation of the channel estimation error

for the BEACON channel estimation which is very similar to (3.41):

∆H(n) = ∆H(n− 1)− ϵ(n)sH(n)P(n− 1)

G(n)
+ γ

ϵ(n)

∥ϵ0(n)∥
sH(n)P(n− 1)

G(n)
, (3.51)

where

∥ϵ0(n)∥ =

 ∥ϵ(n)∥, if ∥ϵ(n)∥ > γ,

γ, otherwise.
(3.52)

Following the same steps described for the SM-NLMS channel estimation in the Ap-

pendix, we find that the steady-state output excess MSE expression of the BEACON

channel estimation has the same style as (3.50):

Jex(n) =
2γY2Pup + Z2(1− Pup)−Mσ2

n − γ2Pup

2γX2Pup − 2Pup + 1
, (3.53)
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where

X2 = E

[
1

∥ϵ(n)∥

∣∣∣∣∥ϵ(n)∥ > γ

]
, (3.54)

Y2 = E
[
∥ϵ(n)∥

∣∣∥ϵ(n)∥ > γ
]
, (3.55)

Z2 = E
[
∥ϵ(n)∥2

∣∣∥ϵ(n)∥ ≤ γ
]
. (3.56)

The Probability of Update Pup

From (3.22), we can get the relation about the probability of update of the SM-NLMS

channel estimation:

Pup = Pr{∥e(n)∥ > γ} = Pr{∥e(n)∥2 > γ2}. (3.57)

Similarly, for the BEACON channel estimation we just need to use ϵ(n) instead of e(n).

It is easy to see that Pup depends on the distribution of ∥e(n)∥2. For the estimated channel

matrix H0 with size M ×N :

∥e(n)∥2 =
M∑
i=1

(R2[ei(n)] + I2[ei(n)])

=
σ2
n

2

M∑
i=1

(
R2[ei(n)]

σ2
n/2

+
I2[ei(n)]

σ2
n/2

).

(3.58)

During the steady state, assuming ∆H(n) → 0, the linear relationship between

e(n),∆H(n) and n(n) in (3.36) shows that the distribution of e(n) is typically Gaussian

unless a jamming or other interference signal with another distribution is present. There-

fore, the elements of the error vector e(n) have the same distribution as the elements of

the noise vector n(n). Recalling that R[ni(n)] and I[ni(n)] ∼ N (0, σ
2
n

2
), we can express

the distribution of (3.58) by a chi-square random variable with 2M degree of freedom as

follows:

∥e(n)∥2 ∼ σ2
n

2
X 2

2M . (3.59)
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Therefore, (3.57) becomes:

Pup =Pr

{
M∑
i=1

(
R2[ei(n)]

σ2
n/2

+
I2[ei(n)]

σ2
n/2

) > γ2
2

σ2
n

}

=1− Pr

{
M∑
i=1

(
R2[ei(n)]

σ2
n/2

+
I2[ei(n)]

σ2
n/2

) ≤ γ2
2

σ2
n

}

=1− F

(
γ2

2

σ2
n

; 2M

)
,

(3.60)

where F (·) is the chi-square cumulative distribution function (CDF) [78] defined by:

F (x; l) =
ΓL(l/2, x/2)

Γ(l/2)
. (3.61)

In (3.61) ΓL(s, x) is the lower incomplete Gamma function:

ΓL(s, x) =

∫ x

0

ts−1e−tdt, (3.62)

and Γ(x) is the gamma function:

Γ(x) =

∫ ∞

0

tx−1e−tdt. (3.63)

By substituting (3.62) and (3.63) into (3.61), we can finally obtain:

F (x; l) =

∫ x
2

0
t

l
2
−1e−tdt∫∞

0
t

l
2
−1e−tdt

, (3.64)

where l denotes the number of degrees of freedom.

3.4.2 Computational Complexity Analysis

Table 3.2 lists the computational complexity per update in terms of the number of multi-

plications, additions and divisions for the SM-NLMS and BEACON algorithms and their

competing algorithms. The size of the estimated channel matrix is M × N . For our

cooperative WSN system model, when Hd is chosen as the estimated channel, we can get:

M = mNd, (3.65)

and

N = Nr +Ns. (3.66)
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Table 3.2: Computational Complexity per Update
Algorithm Multiplication Addition Division

NLMS 2MN +N +min{M,N} 2MN +N − 1 1

SM-NLMS MN +M + Pup(MN +N +min{M,N}) MN +M − 1 + Pup(MN +N) 2

RLS 4N2 + 2MN +N 3N2 + 2MN −N 2

BEACON N2 +MN +M +N N2 +MN +M − 2 2

+Pup(2N2 +MN +N +min{M,N}) +Pup(2N2 +MN −N + 2)

Because the multiplication dominates the computational complexity of the algorithms,

in order to compare the computational complexity of our proposed algorithms with their

competing algorithms, the number of multiplications versus the size of the channel matrix

performance for each update is displayed in Figure 3.5. For the purpose of illustration,

we set M equal to N. It can be seen that our proposed SM-NLMS and BEACON channel

estimation algorithms have a significant complexity reduction compared with the conven-

tional NLMS and RLS channel estimation algorithms. Obviously, a lower Pup will cause

a lower computational complexity. Furthermore, assuming the linear MMSE detectors are

used in the destination nodes which require cubic complexity, we can get the conclusion

that the power used for our proposed channel estimation is only a small fraction of the

power budget of these nodes.
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Figure 3.5: The number of multiplications versus the size of the channel matrix.
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3.5 Simulations

In this section, we numerically study the performance of our two proposed SM estima-

tion methods as well as the design of the optimal error bound. We consider a 3-hop

(m=3) wireless sensor network. The number of source nodes (Ns), two groups of relay

nodes (Nr(1), Nr(2)) and destination nodes (Nd) are 2, 4, 4, 3, respectively. We consider

an AF cooperation protocol and the amplification coefficient of each relay is set to 1 for

the purpose of simplification. We choose Hd as our estimated channel because it is the

most significant and most complex channel among all channels of the WSN system. The

quasi-static fading channel (block fading channel) is considered in our simulations whose

elements are Rayleigh random variables (with zero mean and unit variance) and assumed

to be invariant during the transmission of each packet. Also, in order to test our proposed

channel estimation algorithms in a time-varying environment, we consider a typical fad-

ing channel for wireless communications systems, a Rayleigh fading channel which is

modeled according to Clarke’s Model [79]. According to the transmission scheme intro-

duced in Section 3.2, during each phase, the sources and each group of relays transmit the

QPSK modulated packets with np symbols among which nt are training symbols and nd

are data symbols (Note that np = nt + nd). The quantities np, nt and nd will be specified

in the following simulations. The noise at the destination nodes is modeled as circularly

symmetric complex Gaussian random variables with zero mean. The SNR is fixed at 10

dB.

3.5.1 MSE performance

Figure 3.6 and Figure 3.7 show the channel matrix mean square error (MSE) performance

of our proposed SM-NLMS and BEACON channel estimation methods for the quasi-

static fading channel, and compare them with the conventional NLMS and RLS channel

estimation algorithms. For the SM-NLMS estimator, we transmit packets with 1000 (np)

symbols among which 100 (nt) are training symbols and 900 (nd) are data symbols. We

choose five fixed error bounds (γ) ranging from 0.3 to 1.1. It can be seen that increasing
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the error bound makes the update rate (UR) decrease. It means the update is selective

which can reduce the computational complexity and power consumption. In the case

of an error bound equal to 1.1, the UR can fall dramatically to 0.0868. Along with the

increasing of the error bound, the MSE performance become better firstly and then be-

come worse. The optimal error bound appears between 0.7 and 0.9. In that situation, the

SM-NLMS channel estimation achieves the fastest convergence speed and lowest steady

states. Otherwise, the performance degrades due to overbounding or underbounding. For

the BEACON estimator, we transmit packets with 2000 (np) symbols among which 100

(nt) are training symbols and 1900 (nd) are data symbols. We choose four fixed error

bounds ranging from 0.6 to 0.9. Also, the minimum-mean-square error (MMSE) channel

estimator which requires the full a priori knowledge of the channel correlation matrix and

the noise variance is used here for reference. It can be seen that a higher value of γ results

in worse MSE performance but a lower UR. In the case of an error bound equal to 0.6,

the BEACON algorithm outperforms the conventional RLS algorithm (with a forgetting

factor of 0.998) in terms of convergence speed and steady state with a slightly reduced

UR (0.9128). When the error bound is increased to 0.8, although its convergence speed

is slower than RLS channel estimation, the final MSE is comparable with a much lower

UR (0.4356). Figure 3.8 and Figure 3.9 illustrate the performance when we apply the

time-varying bound (TVB) into the SM-NLMS and BEACON channel estimation. For

the SM-NLMS estimator, we set α to 1.5 and β to 0.01. The curve of our proposed al-

gorithm lies on the optimal position which is very close to the curve of the SM-NLMS

with fixed error bound 0.8. Also, its update rate decreases further which is our expecta-

tion. For the BEACON estimator, we set α to 3 and β to 0.001. Our proposed algorithm

can achieve very similar performance to the conventional RLS channel estimation with a

substantial reduction in the UR. Therefore, the computational complexity is significantly

reduced. The MSE versus SNR performance of the SM-NLMS and BEACON channel

estimation methods are displayed with fixed error bounds and the proposed time-varying

error bounds in Figure 3.10 and Figure 3.11. In the cases of fixed error bounds, the MSE

is lower bounded at different values for different error bounds. For the SM-NLMS es-

timator, a higher SNR needs a specified lower error bound to achieve the optimal MSE

performance. When the time-varying error bound is applied, the MSE remains very close

to the optimal values for all SNRs. For the BEACON estimator, when the SNR is larger
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Figure 3.6: MSE performance of the SM-NLMS channel estimation of Hd for quasi-

static fading channel compared with the NLMS channel estimation. np=1000, nt=100

and nd=900.
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Figure 3.7: MSE performance of the BEACON channel estimation of Hd for quasi-

static fading channel compared with the RLS channel estimation. np=2000, nt=100 and

nd=1900.
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Figure 3.8: MSE performance of the SM-NLMS channel estimation with a time-varying

bound for quasi-static fading channel. np=1000, nt=100 and nd=900.
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Figure 3.9: MSE performance of the BEACON channel estimation with a time-varying

bound for quasi-static fading channel. np=2000, nt=100 and nd=1900.
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Figure 3.10: SM-NLMS channel estimation MSEs versus SNR for both the fixed bound

and time-varying bound for quasi-static fading channel. np=1000, nt=100 and nd=900.

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

M
S

E

 

 
RLS λ=0.998

BEACON γ=0.6 

BEACON γ=0.7

BEACON γ=0.8

BEACON γ=0.9

BEACON with TVB α=3 β=0.001 UR=0.4003

Figure 3.11: BEACON channel estimation MSEs versus SNR for both the fixed bound

and time-varying bound for quasi-static fading channel. np=2000, nt=100 and nd=1900.
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than a specified value, its MSE will become worse. However, when the time-varying error

bound (TVB) is applied, it can be observed that the MSE keeps on decreasing along with

the increase of the SNR. We can notice from Figure 3.11 that when the SNR is low, setting

fixed bounds can achieve better performance than setting time-varying bound. Therefore,

it would be possible to devise a ”hybrid” BEACON channel estimation that switches be-

tween fixed and time-varying bounds depending on the SNR. These two figures show the

robustness to the SNR variation of our proposed algorithms for the quasi-static fading

channel.

Figure 3.12 and Figure 3.13 show the MSE performance of our proposed channel es-

timation algorithms for the time-varying fading channel and three different fading rates

(normalized Doppler frequency fdT , where T is the symbol duration) are used in the

simulations: 10−5, 5 × 10−5, and 10−4. Because of the requirements of low power con-

sumption and the fact that a fast convergence speed of the proposed algorithms might

help reducing the need for long training sequences for the WSNs, we focus on the per-

formance of packets with 500 (np) symbols among which 50 (nt) are training symbols

and 450 (nd) are data symbols. For the SM-NLMS estimator, our proposed algorithm

can achieve better performance than the conventional NLMS algorithms for all the three

fading rates. Along with the increase of the fading rate, the advantage becomes less pro-

nounced and the update rate becomes higher. For the BEACON estimator, our proposed

algorithm can achieve very similar performance to the conventional RLS algorithms for

all the three fading rate. (Note that for the conventional RLS algorithms, when increasing

the fading rate, we have to lower the forgetting factor to get the optimal performance.)

Along with the increasing of the fading rate, the update rate becomes higher. In order

to show the performance tendency for higher fdT , we extend its range up to 5 × 10−3.

The performance curves are shown in Figure 3.14 which includes the MSE performance

versus fdT and update rate (UR) versus fdT of SM-NLMS and BEACON channel esti-

mation for Rayleigh fading channels. (Note that the MSE values we used in this figure

are chosen from the MSE when receiving 500 symbols.) This figure indicates that the

performance of our proposed algorithms is comparable to the existing NLMS and RLS

algorithms even for the fast fading channels. Therefore, we can conclude that our pro-

posed channel estimation algorithms can work well for the time-varying fading channel
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and for a wide range of values of fdT .
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Figure 3.12: MSE performance of the SM-NLMS channel estimation for Rayleigh fading

channels compared with the NLMS channel estimation. np=500, nt=50 and nd=450.
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BEACON channel estimation for Rayleigh fading channels.

3.5.2 BER performance

The MSE performance is very useful to give designers an idea of how well channel esti-

mators perform, whereas bit error rate (BER) performance is more meaningful in practice

to assess the performance of the data transmission. Therefore, in this subsection we focus

on the BER performance of our proposed algorithms. We consider a simulation where the

data packets transmitted at the sources nodes have 1000 (np) symbols and trained with

100 (nt) symbols. Linear MMSE detectors are used at the destination nodes. We choose

Hd as our estimated channel and other channels are assumed to be known. Quasi-static

fading channel and Rayleigh fading channel are considered. And for the Rayleigh fading

channel, the SNR is fixed at 5dB. It can be seen from Figure 3.15 that our two proposed

SM channel estimation algorithms with time varying bound can achieve a similar BER

performance to their competing algorithms no matter in a Quasi-static fading channel or

Rayleigh fading channel with a wide range values of fading rate. Also, the BEACON

channel estimator has lower BER than the SM-NLMS channel estimator due to the higher

computational complexity and the use of the second-order statistics.
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Figure 3.15: (a) BER performance versus SNR for quasi-static fading channel and (b)

BER performance versus fdT (SNR=5dB) for Rayleigh fading channel. np=1000, nt=100

and nd=900.

3.5.3 Verification of the Analysis

In this subsection, experiments were conducted to validate our analysis of the SM-NLMS

and BEACON algorithms. The basic idea is to evaluate the formulas derived in section

3.4 by comparing the analytical results with that obtained by computer simulations.

From (3.65) and (3.66), the two variables M and N used in section 3.4 can be obtained.

M=9 and N=10. First of all, the analysis of the probability of update is verified using

(3.60). It can be seen from Figure 3.16 that the Pup in simulations of the SM-NLMS

and BEACON channel estimation is close to and lower bounded by the Pup from our

analysis. The gap between the analytical curve and the simulations of two SM channel

estimation is due to the approximation made in the analysis. In section 3.4, we assume

that the channel matrix error ∆H approaches zero during the steady-state. However,

for the SM algorithms it is not accurate because the bound set for the output estimation

error would enlarge the ∆H. During the steady-state, the SM-NLMS channel estimation

has a larger ∆H than the BEACON channel estimation which therefore causes a larger
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gap between the analytical curve and the simulation. After that we continue to verify

the analysis of the steady-state output excess MSE using (3.50) and (3.53). Because it

is difficult to obtain the full-analytical expressions of the conditional expected values

X1, Y1, Z1, X2, Y2, Z2, a semi-analytical method is used here. It means that the data

from the simulations is used to calculate these conditional expected values in (3.50) and

(3.53). In order to lower the effect of the difference between the analytical Pup and the

simulation Pup of the SM-NLMS channel estimation, 1.1σ2
n is chosen approximately to

take the place of σ2
n in (3.60) which would produce a more accurate ∆H and Pup for the

SM-NLMS channel estimation. Figure 3.17 and Figure 3.18 show the steady-state output

excess MSE versus γ2/(mNdσ
2
n) of the two channel estimation algorithms. From the

figures, it can be seen that the semi-analytical curves can match the simulation curves

well. Therefore, it can be stated that our analysis is able to predict accurately the output

steady-state excess MSE for different choices of bound γ.
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Figure 3.16: Analysis of the probability of the update Pup.
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Figure 3.17: Steady-state excess MSE analysis for the SM-NLMS channel estimation.
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Figure 3.18: Steady-state excess MSE analysis for the BEACON channel estimation.
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3.6 Summary

Two SM channel estimation methods have been proposed based on time-varying bound

for cooperative wireless sensor networks. It has been shown that our proposed methods

can achieve better or similar performance to conventional NLMS and RLS channel es-

timation, offering reduced computational complexity. Analyses of the steady-state MSE

and computational complexity are presented for the two channel estimation and closed-

form expressions of the excess MSE and the probability of update are provided. Further-

more, the incorporation of the time-varying bound function makes it robust to changes

in the environment. These features are desirable for WSNs and bring about a significant

reduction in energy consumption.
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4.1 Introduction

In this chapter, we consider a general two-hop wireless sensor network where the AF

relaying scheme is employed. Our strategy is to jointly design the linear receivers and

the power allocation parameter vector that contains the optimal complex amplification

coefficients for each relay node via an alternating optimization approach. Two kinds of

receivers are designed, the minimum mean-square error (MMSE) receiver and the max-

imum sum-rate (MSR) receiver. They can be considered as solutions to constrained op-

timization problems where the objective function is the mean-square error (MSE) cost

function or the sum-rate (SR) and the constraint is a bound on the power levels among the

relay nodes. Then, the constrained MMSE or MSR expressions for the linear receiver and

the power allocation parameter can be derived. For the MMSE receiver, a closed form

solution for the Lagrangian multiplier (λ) that arises in the expressions of the power allo-

cation parameter can be achieved. For the MSR receiver, the novelty is that we make use

of the Generalized Rayleigh Quotient [83] to solve the optimization problem in an alter-

nating fashion. Finally, the optimal amplification coefficients are transmitted to the relay

nodes through the feedback channel. In this work, we first present the strategies where the

power allocation is considered for all of the relay nodes. They are subject to the global

or individual power constraints. Next, to reduce the computational complexity for the

power allocation, we choose the relay nodes which have good channel coefficients (when

a channel power gain is above a threshold) between them and the destination nodes called

neighbour relay nodes. Only the power allocation for these nodes are required and the re-

maining nodes use the equal power allocation method [29]. Therefore, the computational

complexity and feedback burden can be reduced.

The main contributions of this chapter can be summarized as:

1) Constrained MMSE expressions for the design of linear receivers and power allocation

parameters. The constraints include the global, individual and neighbour-based

power constraints.

2) Constrained MSR expressions for the design of linear receivers and power allocation
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parameters. The constraints include the global and neighbour-based power con-

straints.

3) Alternating optimization algorithms that compute the linear receivers and power allo-

cation parameters in 1) and 2) to minimize the mean-square error or maximize the

sum-rate of the WSN.

4) Computational complexity and convergence analysis of the proposed optimization al-

gorithms.

The rest of this chapter is organized as follows. Section 4.2 describes the general two-hop

WSN system model. Section 4.3 develops three joint MMSE receiver design and power

allocation strategies subject to three different power constraints. Section 4.4 develops two

joint MSR receiver design and power allocation strategies subject to two different power

constraints. Section 4.5 contains the analysis of the computational complexity and the

convergence. Section 4.6 presents and discusses the simulation results, while Section 4.7

provides some concluding remarks.

4.2 Two-Hop WSN System Model

Consider a general two-hop wireless sensor network (WSN) with multiple parallel relay

nodes, as shown in Figure 4.1. The WSN consists of Ns source nodes, Nd destination

nodes and Nr relay nodes. We concentrate on a time division scheme with perfect syn-

chronization, for which all signals are transmitted and received in separate time slots.

The sources first broadcast the Ns × 1 signal vector s to all relay nodes. We consider an

amplify-and-forward (AF) cooperation protocol in this work. Each relay node receives

the signal, amplifies and rebroadcasts them to the destination nodes. In practice, we need

to consider the constraints on the transmission policy. For example, each transmitting

node would transmit during only one phase. Let Hs denote the Nr × Ns channel matrix

between the source nodes and the relay nodes and Hd denote the Nd ×Nr channel matrix
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Figure 4.1: A two-hop cooperative WSN with Ns source nodes, Nd destination nodes and

Nr relay nodes.

between the relay nodes and the destination nodes as given by

Hs =


hs,1

hs,2

...

hs,Nr

 , Hd =


hd,1

hd,2

...

hd,Nd

 , (4.1)

where hs,i = [hs,i,1, hs,i,2, ..., hs,i,Ns ] for i = 1, 2, ..., Nr denotes the channel coefficients

between the source nodes and the ith relay node, and hd,i = [hd,i,1, hd,i,2, ..., hd,i,Nr ] for

i = 1, 2, ..., Nd denotes the channel coefficients between the relay nodes and the ith des-

tination node. The received signal at the relay nodes can be expressed as

x = Hss + vr, (4.2)

y = Fx, (4.3)

where v is a zero-mean circularly symmetric complex additive white

Gaussian noise (AWGN) vector with covariance matrix σ2
nI, and F =

diag
{
(σ2

s |hs,1|2 + σ2
n), (σ

2
s |hs,2|2 + σ2

n), ..., (σ
2
s |hs,Nr |2 + σ2

n)
}− 1

2 denotes the normal-

ization matrix which can normalize the power of the received signal for each relay node.
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At the destination nodes, the received signal can be expressed as

d = HdAy + vd, (4.4)

where A = diag{a1, a2, ..., aNr} is a diagonal matrix whose elements represent the ampli-

fication coefficient of each relay node. Please note that the property of the matrix vector

multiplication Ay = Ya will be used in the next section, where Y is the diagonal matrix

form of the vector y and a is the vector form of the diagonal matrix A. In our proposed

designs, the full CSI of the system is assumed to be known at all the destination nodes.

In practice, a fusion center [80] which contains the destination nodes is responsible for

gathering the CSI, computing the optimal linear filters and the optimal amplification co-

efficients. The fusion center also recovers the transmitted signal of the source nodes and

transmits the optimal amplification coefficients to the relay nodes via a feedback channel.

4.3 Proposed Joint MMSE Design of the Receiver and

Power Allocation

In this section, three constrained optimization problems are proposed to describe the joint

design of the MMSE linear receiver (W) and the power allocation parameter (a) subject

to a global, individual and neighbour-based power constraints.

4.3.1 MMSE Design with a Global Power Constraint

We first consider the case where the total power of all the relay nodes is limited to PT .

The proposed method can be considered as the following optimization problem

[Wopt, aopt] = argmin
W,a

E[∥s − WHd∥2],

subject to NdaHa = PT .

(4.5)

where (·)H denotes the complex-conjugate (Hermitian) transpose. To solve this con-

strained optimization problem, we modify the MSE cost function using the method of
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Lagrange multipliers [65] which yields the following Lagrangian function

L =E[∥s − WHd∥2] + λ(NdaHa − PT )

=E(sHs)− E(dHWs)− E(sHWHd) + E(dHWWHd) + λ(NdaHa − PT ).
(4.6)

By fixing a and setting the gradient of L in (4.6) with respect to the conjugate of the filter

W equal to zero, we get

Wopt = [E(ddH)]−1E(dsH)

=
[
HdAE(yyH)AHHH

d + σ2
nI
]−1 HdAE(ysH).

(4.7)

The optimal expression for the power allocation vector a is obtained by equating the

partial derivative of L with respect to a∗ to zero

∂L
∂a∗ = −E

(
∂dH

∂a∗ Ws
)
+ E

(
∂dH

∂a∗ WWHd
)
+Ndλa

=− E(YHHH
d Ws) + E[YHHH

d WWH(HdYa + vd)] +Ndλa

=0.

(4.8)

where (·)∗ denotes the complex-conjugate. Therefore, we get

aopt =[E(YHHH
d WWHHdY) +NdλI]−1E(YHHH

d Ws)

=[HH
d WWHHd ⊙ E(yyH)∗ +NdλI]−1[HH

d W ⊙ E(ysH)∗u]
(4.9)

where ⊙ denotes the Hadamard (element-wise) product and u = [1, 1, ..., 1]T . The ex-

pressions in (4.7) and (4.9) depend on each other. Thus, it is necessary to iterate them

with an initial value of a to obtain the solutions.

The Lagrange multiplier λ can be determined by solving

NdaH
optaopt = PT . (4.10)

Let

ϕ = E(YHHH
d WWHHdY) (4.11)

and

z = E(YHHH
d Ws). (4.12)

Equation (4.10) becomes

NdzH(ϕ+NdλI)−1(ϕ+NdλI)−1z = PT . (4.13)
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Using an eigenvalue decomposition (EVD), we have

ϕ = QΛQ−1 (4.14)

where Λ = diag{α1, α2, ..., αM , 0, ..., 0} consists of eigenvalues of ϕ, and M =

min{Ns, Nr, Nd}. Then, we get

ϕ+NdλI = Q(Λ+NdλI)Q−1. (4.15)

Therefore, (4.13) can be expressed as

NdzHQ(Λ+NdλI)−2Q−1z = PT . (4.16)

Using the properties of the trace operation, (4.16) can be written as

Ndtr
{
(Λ+NdλI)−2Q−1zzHQ

}
= PT . (4.17)

Defining C = Q−1zzHQ, (4.17) becomes

Nd

Nr∑
i=1

(Λ(i, i) +Ndλ)
−2C(i, i) = PT . (4.18)

Since ϕ is a matrix with at most rank M , only the first M columns of Q span the column

space of E(YHHH
d Ws)H which causes the last (Nr − M) columns of zHQ to become

zero vectors, and thus the last (Nr −M) diagonal elements of C are zero. Therefore, we

obtain the {2M}th-order polynomial in λ

Nd

M∑
i=1

(αi +Ndλ)
−2C(i, i) = PT . (4.19)

4.3.2 MMSE Design with Individual Power Constraints

Secondly, we consider the case where the power of each relay node is limited to some

value PT,i. The proposed method can be considered as the following optimization problem

[Wopt, aopt] = arg min
W,a1,...,aNr

E[∥s − WHd∥2],

subject to Pi = PT,i, i = 1, 2, ..., Nr,

(4.20)
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where Pi is the transmitted power of the ith relay node, and Pi = Nda
∗
i ai. Using the

method of Lagrange multipliers, we have the following Lagrangian function

L = E[∥s − WHd∥2] +
Nr∑
i=1

λi(Nda
∗
i ai − PT,i). (4.21)

Following the same steps as described in Section 4.3.1, we get the same optimal expres-

sion for the W as in (4.7), and the optimal expression for the ai

ai,opt = [ϕ(i, i) +Ndλi]
−1[z(i)−

∑
l∈I,l ̸=i

ϕ(i, l)al] (4.22)

where I = {1, 2, ..., Nr}, ϕ and z have the same expression as in (4.11) and (4.12). The

Lagrange multiplier λi can be determined by solving

Nda
∗
i,optai,opt = PT,i i = 1, 2, ..., Nr. (4.23)

4.3.3 MMSE Design with a Neighbour-based Power Constraint

In order to reduce the computational complexity for power allocation and the need for

feedback, we choose the relay nodes which have good channel coefficients between them

and the destination nodes called neighbour relay nodes. Only the power allocation for

these nodes are required and the remaining nodes employ the equal power allocation

method. Therefore, the computational complexity and feedback burden can be reduced.

The received signal at the destination nodes can be rewritten as

d = HdAy + vd

= HNANyN + HoAoyo + vd,
(4.24)

where AN and yN denote the amplification matrix and normalized signal for the neighbour

relay nodes, Ao and yo denote the amplification matrix and normalized signal for the non-

neighbour relay nodes, respectively.

We consider the case where the total power of all the neighbour relay nodes is limited

to PN and PN +NdaH
o ao = PT . The proposed method can be considered as the following
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optimization problem

[Wopt, aN,opt] = arg min
W,aN

E[∥s − WHd∥2],

subject to NdaH
NaN = PN .

(4.25)

Using the method of Lagrange multipliers, we have the following Lagrangian function

L = E[∥s − WHd∥2] + λN(NdaH
NaN − PN). (4.26)

Following the same steps as described in Section 4.3.1, we get the same optimal expres-

sion for W as in (4.7). Substituting (4.24) into (4.26), equating the partial derivative of L

with respect to a∗
N to zero gives

∂L
∂a∗

N

=− E(YH
NHH

NWs) + E(YH
NHH

NWWHHNYN)aN

+ E(YH
NHH

NWWHHoYoao) +NdλNaN

=0.

(4.27)

Therefore, we obtain the optimal expression for aN

aN,opt =[E(YH
NHH

NWWHHNYN) +NdλNI]−1[E(YH
NHH

NWs)− E(YH
NHH

NWWHHoYoao)].

(4.28)

The Lagrange multiplier λN can be determined by solving

NdaH
N,optaN,opt = PN . (4.29)

Let

ϕN = E(YH
NHH

NWWHHNYN) (4.30)

and

zN = E(YH
NHH

NWs)− E(YH
NHH

NWWHHoYoao). (4.31)

Equation (4.29) becomes

NdzHN(ϕN +NdλNI)−1(ϕN +NdλNI)−1zN = PN . (4.32)

Using an EVD,

ϕN = QNΛNQ−1
N (4.33)
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where ΛN = diag{α1, α2, ..., αM , 0, ..., 0} consists of the eigenvalues of ϕN , and MN =

min{Ns, NN , Nd} (NN is the number of neighbour relay nodes), we get

ϕN +NdλNI = QN(ΛN +NdλNI)Q−1
N . (4.34)

Therefore, (4.32) can be expressed as

NdzHNQN(ΛN +NdλNI)−2Q−1
N zN = PN . (4.35)

Using the properties of the trace operation, (4.35) can be written as

Ndtr
{
(ΛN +NdλNI)−2Q−1

N zNzHNQN

}
= PN . (4.36)

Defining CN = Q−1
N zNzHNQN , (4.36) becomes

Nd

NN∑
i=1

(ΛN(i, i) +NdλN)
−2CN(i, i) = PN . (4.37)

Since ϕN is a matrix with at most rank MN , only the first MN columns of QN span

the column space of E(YH
NHH

NWs)H and E(YH
NHH

NWWHHoYoao)
H which cause the

last (NN − MN) columns of zHNQN to become zero vectors and thus the last (NN −

MN) diagonal elements of CN are zero. Therefore, we can obtain the {2M}th-order

polynomial in λN

Nd

MN∑
i=1

(αi +NdλN)
−2CN(i, i) = PN . (4.38)

We notice from the equations in this section that when all the relay nodes are chosen as

the neighbour relay nodes, the MMSE design with a neighbour-based power constraint

is equivalent to the MMSE design with a global power constraint. Therefore, the global

approach can be considered as a specific case of the neighbour-based approach. Table 4.1

shows a summary of our proposed MMSE design with global, individual and neighbour-

based power constraints which will be used for the simulations. If the quasi-static fading

channel (block fading) is considered in the simulations, we only need two iterations.

T. Wang, Ph.D. Thesis, Department of Electronics, University of York 2012



CHAPTER 4. JOINT LINEAR RECEIVER DESIGN AND POWER ALLOCATION USING

ALTERNATING OPTIMIZATION ALGORITHMS FOR TWO-HOP WSNS 66

Table 4.1: Summary of the Proposed MMSE Design with Global, Individual and

Neighbour-based Power Constraints for two-Hop WSNs

Global Constraint Individual Constraints Neighbour-based Constraint

Initialize the algorithm by set-

ting:

Initialize the algorithm by set-

ting:

Initialize the algorithm by set-

ting:

A =
√

PT
NrNd

I ai =
√

PT,i

Nd
for i =

1, 2, ..., Nr

A =
√

PT
NrNd

I

For each iteration: For each iteration: For each iteration:

1. Compute Wopt in (4.7). 1. Compute Wopt in (4.7). 1. Compute Wopt in (4.7).

2. Compute ϕ and z in (4.11)

and (4.12).

2. Compute ϕ and z in (4.11)

and (4.12).

2. Compute ϕN and zN in

(4.30) and (4.31).

3. Calculate the EVD of ϕ in

(4.14).

3. For i = 1, 2, ..., Nr 3. Calculate the EVD of ϕN

in (4.33).

4. Solve λ in (4.19). a)Solve λi in (4.23). 4. Solve λN in (4.38)

5. Compute aopt in (4.9). b) Compute ai,opt in (4.22). 5. Compute aN,opt in (4.28).

4.4 Proposed Joint Maximum Sum-Rate Design of the

Receiver and Power Allocation

In this section, two constrained optimization problems are proposed to describe the joint

MSR design of the linear receiver (w) and power allocation parameter (a) subject to a

global and neighbour-based power constraints. By the MSR designs, the best possible

SNR and QoS can be obtained at the destinations. They will improve the spectrum effi-

ciency which is desirable for the WSNs with the limitation in the sensor node computa-

tional capacity. The individual power constraints are not considered here, because of the

MSR receiver we make use of the Generalized Rayleigh Quotient which is only suitable

to solve optimization problems for vectors.
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4.4.1 MSR Design with a Global Power Constraint

We first consider the case where the total power of all the relay nodes is limited to PT . By

substituting (4.2) and (4.3) into (4.4), we get

d = HdAFHss + HdAFvr + vd. (4.39)

We focus on a system with one source node for simplicity. Therefore, the expression of

the SR in terms of bps/Hz for our two-hop WSN is

SR =
1

2
log2

[
1 +

σ2
s

σ2
n

wHHdAFHsHH
s FHAHHH

d w
wH(HdAFFHAHHH

d + I)w

]
(bps/Hz), (4.40)

where w is the linear receiver. Let

ϕ = HdAFHsHH
s FHAHHH

d , (4.41)

and

Z = HdAFFHAHHH
d + I. (4.42)

Equation (4.40) becomes

SR =
1

2
log2

(
1 +

σ2
s

σ2
n

wHϕw
wHZw

)
=

1

2
log2(1 + ax), (4.43)

where

a =
σ2
s

σ2
n

(4.44)

and

x =
wHϕw
wHZw

. (4.45)

Since 1
2
log2(1 + ax) is a monotonically increasing function of x (a > 0), the problem of

maximizing the sum-rate is equivalent to maximizing x. Therefore, the proposed method

can be considered as the following optimization problem:

[wopt, aopt] = argmax
w,a

wHϕw
wHZw

,

subject to NdaHa = PT .

(4.46)

We note that the expression wHϕw
wHZw in (4.46) is the Generalized Rayleigh Quotient. Thus,

the optimal solution of our maximization problem can be solved: wopt is any eigenvector

corresponding to the dominant eigenvalue of Z−1ϕ.
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In order to obtain the optimal power allocation vector aopt, we rewrite wHϕw
wHZw and the

expression is given by

wHϕw
wHZw

=
aHdiag{wHHdF}HsHH

s diag{FHHH
d w}a

aHdiag{wHHdF}diag{FHHH
d w}a + wHw

. (4.47)

Since the multiplication of any constant value and an eigenvector is still an eigenvector of

the matrix, we express the receive filter as

w =
wopt√

wH
optwopt

. (4.48)

Hence, we obtain

wHw = 1 =
NdaHa
PT

. (4.49)

By substituting (4.49) into (4.47), we get

wHϕw
wHZw

=
aHdiag{wHHdF}HsHH

s diag{FHHH
d w}a

aH(diag{wHHdF}diag{FHHH
d w}+ Nd

PT
I)a

. (4.50)

Let

M = diag{wHHdF}HsHH
s diag{FHHH

d w}, (4.51)

and

N = diag{wHHdF}diag{FHHH
d w}+ Nd

PT

I. (4.52)

Equation (4.50) becomes
wHϕw
wHZw

=
aHMa
aHNa

. (4.53)

Likewise, we note that the expression aHMa
aHNa in (4.53) is the Generalized Rayleigh Quo-

tient. Thus, the optimal solution of our maximization problem can be solved: aopt

is any eigenvector corresponding to the dominant eigenvalue of N−1M, and satisfying

aH
optaopt =

PT

Nd
. The solutions of wopt and aopt depend on each other. Thus, it is necessary

to iterate them with an initial value of a to obtain the optimum solutions.

4.4.2 MSR Design with a Neighbour-based Power Constraint

Similarly to the steps described in Section 4.3.3, we separate the relay nodes into neigh-

bour relay nodes and non-neighbour nodes in the expressions of the system model. There-

fore, (4.2) and (4.3) can be rewritten as

xN = Hs,Ns + vN , (4.54)
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xo = Hs,os + vo, (4.55)

yN = FNxN , (4.56)

yo = Foxo, (4.57)

where the subscript N is denoted for the neighbour relay nodes and the subscript o is used

for the non-neighbour relay nodes. By substituting (4.54)-(4.57) into (4.24), we get

d = (HNANFNHs,N + HoAoFoHs,o)s + HNANFNvN + HoAoFovo + vd. (4.58)

We focus on the system which consists of one source node. Therefore, the expression

of the SR in terms of bps/Hz for our two-hop WSN is

SR =
1

2
log2

[
1 +

σ2
s

σ2
n

wH(HNANFNHs,N + HoAoFoHs,o)(HNANFNHs,N + HoAoFoHs,o)
Hw

wH(HNANFNFH
NAH

NHH
N + HoAoFoFH

o AH
o HH

o + I)w

]
.

(4.59)

Let

ϕ = (HNANFNHs,N + HoAoFoHs,o)(HNANFNHs,N + HoAoFoHs,o)
H , (4.60)

and

Z = HNANFNFH
NAH

NHH
N + HoAoFoFH

o AH
o HH

o + I. (4.61)

Equation (4.59) becomes

SR =
1

2
log2

(
1 +

σ2
s

σ2
n

wHϕw
wHZw

)
(bps/Hz). (4.62)

We consider the case where the total power of all the neighbour relay nodes is limited to

PN and PN +NdaH
o ao = PT . Following the same steps as described in Section 4.4.1, the

proposed method can be considered as the following optimization problem

[wopt, aN,opt] = argmax
w,aN

wHϕw
wHZw

,

subject to NdaH
NaN = PN .

(4.63)

We note that the expression wHϕw
wHZw in (4.63) is the Generalized Rayleigh Quotient. Thus,

the optimal solution of our maximization problem can be solved: wopt is any eigenvector

corresponding to the dominant eigenvalue of Z−1ϕ.
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In order to obtain the optimal power allocation vector for the neighbour relay nodes

aN,opt, we rewrite wHϕw
wHZw

wHϕw
wHZw

=
aH
NM1aN + aH

NM2ao + aH
o M3aN + aH

o M4ao

aH
Ndiag{wHHNFN}diag{FH

NHH
Nw}aN + wH(HoAoFoFH

o AH
o HH

o + I)w
(4.64)

where

M1 = diag{wHHNFN}Hs,NHH
s,Ndiag{FH

NHH
Nw}, (4.65)

M2 = diag{wHHNFN}Hs,NHH
s,odiag{FH

o HH
o w}, (4.66)

M3 = diag{wHHoFo}Hs,oHH
s,Ndiag{FH

NHH
Nw}, (4.67)

M4 = diag{wHHoFo}Hs,oHH
s,odiag{FH

o HH
o w}. (4.68)

Since the multiplication of any constant value and an eigenvector is still an eigenvector of

the matrix, we express the receive filter as

w =
wopt√

wH
opt(HoAoFoFH

o AH
o HH

o + I)wopt

. (4.69)

Therefore, we obtain

wH(HoAoFoFH
o AH

o HH
o + I)w = 1 =

Nd

PN

aH
NaN . (4.70)

By substituting (4.70) into (4.64), we obtain

wHϕw
wHZw

=
aH
NM1aN + aH

NM2ao + aH
o M3aN + aH

o M4ao

aH
NNaN

, (4.71)

where

N = diag{wHHNFN}diag{FH
NHH

Nw}+ Nd

PN

I. (4.72)

The expression aHMa
aHNa in (4.71) can be divided into four terms and only the first term is

the Generalized Rayleigh Quotient. In order to make use of the Generalized Rayleigh

Quotient to solve the optimization problem, our aim is to transform the remaining three

terms into the Generalized Rayleigh Quotient. For the fourth term, we have

aH
o M4ao = aH

o M4ao
NdaH

NaN

PN

= aH
N

(
NdaH

o M4ao

PN

I
)

aN .

(4.73)
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For the second and third terms, we can achieve the Generalized Rayleigh Quotient by

solving the following optimization problem:

[Topt, aN,opt] = argmin
T,aN

(aH
NM2ao + aH

o M3aN − aH
NTaN)

2,

subject to NdaH
NaN = PN .

(4.74)

By fixing aN , we obtain

T =
Nd

PN

(M2aoaH
N + aNaH

o M3) (4.75)

which satisfies the following equation

aH
NM2ao + aH

o M3aN = aH
NTaN (4.76)

for any value of aN . Let us define

M = M1 + T +
NdaH

o M4ao

PN

I. (4.77)

Then, equation (4.71) becomes

wHϕw
wHZw

=
aH
NMaN

aH
NNaN

, (4.78)

which is a Generalized Rayleigh Quotient. Therefore, the optimal solution of our maxi-

mization problem can be solved: aN,opt is any eigenvector corresponding to the dominant

eigenvalue of N−1M and satisfies aH
N,optaN,opt =

PN

Nd
.

In this section, two methods are employed to calculate the dominant eigenvectors. The

first one is the QR algorithm [87] which calculates all the eigenvalues and eigenvectors

of a matrix. We can choose the dominant eigenvector among them. The second one

is the power method [87] which only calculates the dominant eigenvector of a matrix.

Hence, the computational complexity can be reduced. Table 4.2 shows a summary of our

proposed MSR design with global and neighbour-based power constraints which will be

used for the simulations. If the quasi-static fading channel (block fading) is considered in

the simulations, we only need two iterations.
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Table 4.2: Summary of the Proposed MSR Design with Global and Neighbour-based

Power Constraints for two-Hop WSNs

Global Power Constraint Neighbour-based Power Constraint

Initialize the algorithm by setting: Initialize the algorithm by setting:

A =
√

PT
NrNd

I A =
√

PT
NrNd

I (include aN and ao)

For each iteration: For each iteration:

1. Compute ϕ and Z in (4.41) and (4.42). 1. Compute ϕ and Z in (4.60) and (4.61).

2. Use the QR algorithm or the power method

to compute the dominant eigenvector of Z−1ϕ,

denoted as wopt.

2. Use the QR algorithm or the power method

to compute the dominant eigenvector of Z−1ϕ,

denoted as wopt.

3. Compute T in (4.75).

3. Compute M and N in (4.51) and (4.52). 4. Compute M and N in (4.77) and (4.72).

4. Use the QR algorithm or the power

method to compute the dominant eigenvector

of N−1M, denoted as a.

5. Use the QR algorithm or the power

method to compute the dominant eigenvector

of N−1M, denoted as aN .

5. To ensure the power constraint 6. To ensure the power constraint

aHoptaopt =
PT
Nd

, compute aopt =
√

PT

NdaHa a. aHN,optaN,opt =
PN
Nd

,

compute aN,opt =
√

PN

NdaHNaN
aN .

4.5 Analysis of the proposed algorithms

In this section, an analysis of the computational complexity and the convergence of the

algorithms are developed. We first illustrate the computational complexity requirements

of the proposed MMSE and MSR designs by tables and figures. Then, we make use of the

convergence results for the alternating optimization algorithms in [85,86] and particularly

present a set of sufficient conditions under which our proposed algorithms will converge

to the optimal solutions.
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4.5.1 Computational Complexity Analysis

Table 4.3 and Table 4.4 list the computational complexity per iteration in terms of the

number of multiplications, additions and divisions for our proposed joint linear receiver

design (MMSE and MSR) and power allocation strategies. For the joint MMSE de-

signs, we use the QR algorithm to perform the eigendecomposition of the matrix. We

set M = min{Ns, Nr, Nd} = 1 and MN = min{Ns, NN , Nd} = 1 to simplify the pro-

cessing of solving the equations in (4.19) and (4.38). Please note that in this work the

QR decomposition by Householder transformation [87, 88] is employed by the QR algo-

rithms. The quantities nQ and nP denote the number of iterations of the QR algorithm

and the power method, respectively. Because the multiplication dominates the compu-

tational complexity, in order to compare the computational complexity of our proposed

joint MMSE and MSR designs, the number of multiplications versus the number of relay

nodes for each iteration are displayed in Figure 4.2 and Figure 4.3. For the purpose of

illustration, we set Ns = 1, Nd = 2 and nQ = nP = 10. R denotes the averaged ratio

of the number of neighbour relay nodes to the number of relay nodes. It can be seen that

our proposed MMSE and MSR receivers with a neighbour-based power constraint have

a significant complexity reduction compared with the proposed receivers with a global

power constraint. Obviously, a lower R will lead to a lower computational complexity.

For the MMSE design, when the individual power constrains are considered, the compu-

tational complexity is lower than other constraints because there is no need to compute

the eigendecomposition for it. For the MSR design, employing the power method to cal-

culate the dominant eigenvectors has a lower computational complexity than employing

the QR algorithm.

4.5.2 Sufficient Conditions for Convergence

To develop the analysis and proofs, we need to define a metric space and the Hausdorff

distance that will extensively be used. A metric space is an ordered pair (M, d), where

M is a nonempty set, and d is a metric on M, i.e., a function d : M×M → R such that
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Table 4.3: Computational Complexity per Iteration of the joint MMSE Designs for two-

Hop WSNs
Constraint Multiplications Additions Divisions

Nd(Nd − 1)(4Nd + 1)/6 Nd(Nd − 1)(4Nd + 1)/6

W All +(Ns +Nr)N2
d +N2

rNd +(Ns +Nr)N2
d +N2

rNd +NsNrNd Nd(3Nd − 1)/2

+NsNrNd +NrNd −(N2
d + 2NsNd +NrNd) +Nd

nQ( 13
6
N3

r + 3
2
N2

r + 1
3
Nr − 2) nQ( 13

6
N3

r −N2
r − 1

6
Nr + 1)

Global −N3
r + 3NsN2

r +NsNrNd −N3
r + 3NsN2

r +NsNrNd nQ(Nr − 1) + 1

+N2
r +NsNr + 1 −N2

r − 2NsNr −Nr + 1

Individual NsN2
r +NsNrNd + 2N2

r NsN2
r +NsNrNd −NsNr Nr

+NsNr +Nr

λ

nQ( 13
6
N3

N + 3
2
N2

N + 1
3
NN − 2) nQ( 13

6
N3

N −N2
N − 1

6
NN + 1)

Neighbour-based −N3
N + 2NsN2

N +NsNrNd −N3
N + 2NsN2

N +NsNrNd nQ(NN − 1) + 1

+NsNrNN −N2
N + 2NrNN +NsNrNN −N2

N −NsNN

+NsNN + 1 −NsNr − 2NN + 2

Global Nr(Nr − 1)(4Nr + 1)/6 Nr(Nr − 1)(4Nr + 1)/6 Nr(3Nr − 1)/2

+N2
r + 1 +N2

r

a Individual 2Nr Nr Nr

Neighbour-based NN (NN − 1)(4NN + 1)/6 NN (NN − 1)(4NN + 1)/6 NN (3NN − 1)/2

+N2
N + 1 +N2

N

for any x, y, z ∈M, the following conditions hold:

1) d(x, y) ≥ 0.

2) d(x, y) = 0 iff x = y.

3) d(x, y) = d(y, x).

4) d(x, y) ≤ d(x, y) + d(y, z).

The Hausdorff distance measures how far two subsets of a metric space are from each
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Table 4.4: Computational Complexity per Iteration of the joint MSR Designs for two-Hop

WSNs
Constraint Multiplications Additions Divisions

Global/Neighbour-based nQ( 13
6
N3

d + 3
2
N2

d + 1
3
Nd − 2) nQ( 13

6
N3

d −N2
d − 1

6
Nd + 1) nQ(Nd − 1)

QR Algorithm +Nd(Nd − 1)(4Nd + 1)/6 +Nd(Nd − 1)(4Nd + 1)/6 +Nd(3Nd − 1)/2

+NrN2
d +N2

d + 3NrNd +NrN2
d −N2

d +NrNd

w

Global/Neighbour-based nPN2
d nPNd(Nd − 1)

Power Method +Nd(Nd − 1)(4Nd + 1)/6 +Nd(Nd − 1)(4Nd + 1)/6 Nd(3Nd − 1)/2

+N3
d +NrN2

d +N2
d + 3NrNd +N3

d +NrN2
d − 2N2

d +NrNd

Global nQ( 13
6
N3

r + 3
2
N2

r + 1
3
Nr − 2) nQ( 13

6
N3

r −N2
r − 1

6
Nr + 1) nQ(Nr − 1)

QR Algorithm +Nr(Nr − 1)(4Nr + 1)/6 +Nr(Nr − 1)(4Nr + 1)/6 +Nr(3Nr − 1)/2

+N2
r +NrNd + 4Nr +Nd +NrNd +Nr +Nd − 2 +Nd + 1

Global nPN2
r nPNr(Nr − 1)

Power Method +Nr(Nr − 1)(4Nr + 1)/6 +Nr(Nr − 1)(4Nr + 1)/6 Nr(3Nr − 1)/2

+N3
r +N2

r +NrNd +N3
r −N2

r +NrNd +Nd + 1

+4Nr +Nd +Nr +Nd − 2

a

nQ( 13
6
N3

N + 3
2
N2

N + 1
3
NN − 2) nQ( 13

6
N3

N −N2
N − 1

6
NN + 1) nQ(NN − 1)

Neighbour-based +NN (NN − 1)(4NN + 1)/6 +NN (NN − 1)(4NN + 1)/6 +NN (3NN − 1)/2

QR Algorithm −N3
N +NrN2

N + 2N2
r + 2N2

N −N3
N +NrN2

N +N2
r + 2N2

N +Nd + 1

+N2
d +NrNd − 2NrNN +N2

d +NrNd − 2NrNN

+2Nr + 2NN +Nd + 1 −Nr + 3NN − 3

nPN2
N nPNr(Nr − 1)

Neighbour-based +NN (NN − 1)(4NN + 1)/6 +NN (NN − 1)(4NN + 1)/6 NN (3NN − 1)/2

Power Method +NrN2
N + 2N2

r + 2N2
N +N2

d +NrN2
N +N2

r +N2
N +N2

d +Nd + 1

+NrNd − 2NrNN + 2Nr +NrNd − 2NrNN

+2NN +Nd + 1 −Nr + 3NN − 3

other and is defined by

dH(X, Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
. (4.79)

The proposed joint MMSE designs can be stated as an alternating minimization strat-

egy based on the MSE defined in (4.5) and expressed as

Wn ∈ arg min
W∈Wn

MSE(W, an−1) (4.80)

an ∈ argmin
a∈an

MSE(Wn, a) (4.81)
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Figure 4.2: Number of multiplications versus the number of relay nodes of our proposed

joint MMSE design of the receiver and power allocation strategies for two-hop WSNs.
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Figure 4.3: Number of multiplications versus the number of relay nodes of our proposed

joint MSR design of the receiver and power allocation strategies for two-hop WSNs.
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where the sets W, a ⊂ M, and the sequences of compact sets {Wn}n≥0 and {an}n≥0

converge to the sets W and a, respectively.

Although we are not given the sets W and a directly, we have the sequence of compact

sets {Wn}n≥0 and {an}n≥0. The aim of our proposed joint MMSE designs is to find a

sequence of Wn and an such that

lim
n→∞

MSE(Wn, an) = MSE(Wopt, aopt) (4.82)

where Wopt and aopt correspond to the optimal values of Wn and an, respectively. To

present a set of sufficient conditions under which the proposed algorithms converge, we

need the so-called three-point and four-point properties [85,86]. Let us assume that there

is a function f : M×M → R such that the following conditions are satisfied.

1) Three-point property (W, W̃, a):

For all n ≥ 1, W ∈ Wn, a ∈ an−1, and W̃ ∈ argminW∈Wn
MSE(W, a), we have

f(W, W̃) + MSE(W̃, a) ≤ MSE(W, a) (4.83)

2) Four-point property (W, a, W̃, ã):

For all n ≥ 1, W, W̃ ∈ Wn, a ∈ an, and ã ∈ argmina∈an MSE(W̃, a), we have

MSE(W, ã) ≤ MSE(W, a) + f(W, W̃) (4.84)

These two properties are the mathematical expressions of the sufficient conditions for the

convergence of the alternating minimization algorithms which are stated in [85] and [86].

It means that if there exists a function f(W, W̃) with the parameter W during two it-

erations that satisfies the two inequalities about the MSE in (4.83) and (4.84), the con-

vergence of our proposed MMSE designs that make use of the alternating minimization

algorithm can be proved by the theorem below.

Theorem: Let {(Wn, an)}n≥0, W, a be compact subsects of the compact metric space

(M, d) such that

Wn

dH→ W an

dH→ a (4.85)
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and let MSE : M × M → R be a continuous function. Let conditions 1) and 2) hold.

Then, for the proposed algorithms we have

lim
n→∞

MSE(Wn, an) = MSE(Wopt, aopt) (4.86)

A general proof of this theorem is detailed in [85] and [86]. The proposed joint MSR

designs can be stated as an alternating maximization strategy based on the SR defined in

(4.40) that follow a similar procedure to the one above.

4.6 Simulations

In this section, we numerically study the performance of our proposed joint designs of the

linear receiver and the power allocation parameters and compare them with the equal

power allocation method [29] which allocates the same power level for all links be-

tween relay nodes and destination nodes. For the purpose of fairness, we assume that

the total power for all relay nodes in the network is the same which can be indicated as∑Nr

i=1 PT,i = PT . We consider a two-hop wireless sensor network. The number of source

nodes (Ns), relay nodes (Nr) and destination nodes (Nd) are 1, 4 and 2 respectively. We

consider an AF cooperation protocol. The quasi-static fading channel (block fading chan-

nel) is considered in our simulations whose elements are Rayleigh random variables (with

zero mean and unit variance) and assumed to be invariant during the transmission of each

packet. In our simulations, the channel is assumed to be known at the destination nodes.

For channel estimation algorithms for WSNs and other low-complexity parameter esti-

mation algorithms, one refers to [74] and [89]. During each phase, the source transmits

the QPSK modulated packets with 1500 symbols. The noise at the relay and destination

nodes is modeled as circularly symmetric complex Gaussian random variables with zero

mean. A perfect (error free) feedback channel between the destination nodes and the relay

nodes is assumed to transmit the amplification coefficients.

For the MMSE design, it can be seen from Figure 4.4 that our three proposed methods

achieve a better BER performance than the equal power allocation method. Among them,
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Figure 4.4: BER performance versus SNR of our proposed joint MMSE design of the

receiver and power allocation strategies, compared to the equal power allocation method

for two-hop WSNs.

the method with a global constraint has the best performance. This result is what we ex-

pected because a global constraint provides the largest degrees of freedom for allocating

the power among the relay nodes. For the method with a neighbour-based constraint, we

introduce a bound B, which is set to 0.6, for the channel power gain between the relay

nodes and the destination nodes to choose the neighbour relay nodes. Although it has a

higher BER compared to the method with a global constraint, the averaged ratio of the

number of neighbour relay nodes to the number of relay nodes (R) is 0.7843 which in-

dicates a reduced computational complexity. For the MSR design, it can be seen from

Figure 4.5 and Figure 4.6 that our proposed methods achieve a better sum-rate perfor-

mance than the equal power allocation method. Using the power method to calculate

the dominant eigenvector yields a very similar result to the QR algorithm but requires a

lower complexity. For the method with a neighbour-based constraint, when we introduce

a bound B = 0.6, a similar performance to the method with a global constraint can be

achieved with a reduced R (0.7830). To show the performance trend for other values

of B, we fix the SNR at 10 dB and choose B ranging form 0 to 1.5. The performance
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Figure 4.5: Sum-rate performance versus SNR of our proposed joint MSR design of the

receiver and power allocation strategies with a global constraint, compared to the equal

power allocation method for two-hop WSNs.

curves are shown in Figure 4.7 and Figure 4.8, which include the BER and sum-rate per-

formance versus B and R versus B of the MMSE design and MSR design respectively

with a neighbour-based power constraint. It can be seen that along with the increase in B,

their performance becomes worse, and the R becomes lower. It demonstrates that for our

joint designs of the receivers with a neighbour-based power constraint, the value of B can

be varied to trade off achievable performance against computation complexity. In prac-

tice, the feedback channel cannot be error free. In order to study the impact of feedback

channel errors on the performance, we employ the binary symmetric channel (BSC) as the

model for the feedback channel and quantize each complex amplification coefficient to an

8-bit binary value (4 bits for the real part, 4 bits for the imaginary part). The error prob-

ability (Pe) of the BSC is fixed at 10−3. The dashed curves in Figure 4.4, Figure 4.5 and

Figure 4.6 show the performance degradation compared to the performance when using

a perfect feedback channel. To show the performance trend of the BSC for other values

of Pe, we fix the SNR at 10 dB and choose Pe ranging from 0 to 10−2. The performance

curves are shown in Figure 4.9, which illustrate the BER and the sum-rate performance
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Figure 4.6: Sum-rate performance versus SNR of our proposed joint MSR design of the

receiver and power allocation strategies with a neighbour-based constraint, compared to

the equal power allocation method for two-hop WSNs.

versus Pe of our two proposed joint designs of the receivers with neighbour-based power

constraints. It can be seen that along with the increase in Pe, their performance becomes

worse.

Finally, we replace the perfect CSI with the estimated channel coefficients to com-

pute the receive filters and power allocation parameters at the destinations. We employ

the BEACON channel estimation which is proposed in [74]. Figure 4.10 illustrates the

impact of the channel estimation on the performance of our proposed MMSE and MSR

design with a global power constraint by comparing to the performance of perfect CSI.

The quantity nt denotes the number of training sequence symbols per data packet. Please

note that in these simulations a perfect feedback channel is considered and the QR algo-

rithm is used in the MSR design. For both the MMSE and MSR designs, it can be seen

that when nt is set to 10, the BEACON channel estimation lead to an obvious perfor-

mance degradation compared to the perfect CSI. However, when nt is increased to 50,
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Figure 4.7: (a) BER performance versus the bound and (b) R versus the bound of the

MMSE design with a neighbour-based power constraint for two-hop WSNs.
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Figure 4.8: (a) Sum-rate performance versus the bound and (b) R versus the bound of the

MSR design with a neighbour-based power constraint for two-hop WSNs.
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Figure 4.9: (a) BER performance versus Pe of our proposed MMSE design (b) Sum-

rate performance versus Pe of our proposed MSR design with a neighbour-based power

constraint when employing the BSC as the model for the feedback channel for two-hop

WSNs.

the BEACON channel estimation can achieve a similar performance to the perfect CSI.

Other scenarios and network topologies have been investigated and the results show that

the proposed algorithms work very well with channel estimation algorithms and a small

number of training symbols.

4.7 Summary

Two kinds of joint receiver design and power allocation strategies via an alternating op-

timization approach have been proposed for two-hop WSNs. The first one minimizes

the mean-square error and the second one maximizes the sum-rate of the WSN. We de-

rive constrained MMSE and constrained MSR expressions for the linear receivers and the

power allocation parameters that contain the optimal complex amplification coefficients
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Figure 4.10: (a) BER performance versus SNR of our proposed MMSE design (b) Sum-

rate performance versus SNR our proposed MSR design with a global power constraint

when employing the BEACON channel estimation, compared to the performance of per-

fect CSI for two-hop WSNs

for each relay node. The power constraints include the global, individual and neighbour-

based ones. An analysis of the computational complexity and the convergence of the

algorithms is also presented. It has been shown that our proposed strategies achieve

a significantly better performance than the equal power allocation method. Moreover,

when the neighbour-based constraint is considered, it brings a feature to balance the per-

formance against the computational complexity and the need for feedback information

which is desirable for WSNs to extend their lifetime.
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5.1 Introduction

In this chapter, we consider a general multihop WSN where the AF relaying scheme is

employed. The proposed strategy is to jointly design the linear receivers and the power

allocation parameters that contain the optimal complex amplification coefficients for each

relay nodes via an alternating optimization approach. Two kinds of linear receivers are

designed, the minimum mean-square error (MMSE) receiver and the maximum sum-rate

(MSR) receiver. They can be considered as solutions to constrained optimization prob-

lems where the objective function is the mean-square error (MSE) cost function or the

sum-rate (SR) and the constraint is a bound on the power levels among the relay nodes.

Then, the constrained MMSE or MSR expressions for the linear receiver and the power

allocation parameter can be derived. The major novelty in these strategies presented here

is that they are applicable to general multihop WSNs with multi source nodes and desti-

nation nodes, as opposed to the simple two-hop WSNs with one pair of source-destination

nodes [27, 37, 82]. Unlike the previous works on the power allocation for multihop sys-

tems in [40]- [44], in our work, the power allocation and receiver coefficients are jointly

optimized. For the MMSE receiver, we present three strategies where the allocation of

power level across the relay nodes is subject to global, local and individual power con-

straints. Another fundamental contribution of this work is that a closed-form solution

for the Lagrangian multiplier (λ) that arises in the expressions of the power allocation

parameters can be achieved. For the MSR receiver, the local power constraints are con-

sidered. We propose a strategy that employs iterations with the Generalized Rayleigh

Quotient [83] to solve the optimization problem in an alternating fashion.

The main contributions of this chapter can be summarized as:

1) Constrained MMSE expressions for the design of linear receivers and power alloca-

tion parameters for multihop WSNs. The constraints include the global, local and

individual power constraints.

2) Constrained MSR expressions for the design of linear receivers and power allocation

parameters for multihop WSNs subject to local power constraints.

T. Wang, Ph.D. Thesis, Department of Electronics, University of York 2012



CHAPTER 5. JOINT LINEAR RECEIVER DESIGN AND POWER ALLOCATION USING

ALTERNATING OPTIMIZATION ALGORITHMS FOR MULTIHOP WSNS 87

3) Alternating optimization algorithms that compute the linear receivers and power allo-

cation parameters in 1) and 2) to minimize the mean-square error or maximize the

sum-rate of the WSN.

4) A study detailing the computational complexity and the convergence analysis of the

proposed optimization algorithms.

The rest of this chapter is organized as follows. Section 5.2 describes the general

multihop WSN system model. Section 5.3 develops three joint MMSE receiver design

and power allocation strategies subject to three different power constraints. Section 5.4

develops the joint MSR receiver design and power allocation strategy subject to local

power constraints. Section 5.5 contains the analysis of the computational complexity and

the convergence. Section 5.6 presents and discusses the simulation results, while Section

5.7 provides some concluding remarks.

5.2 Multihop WSN System Model

Consider a general m-hop wireless sensor network (WSN) with multiple parallel relay

nodes for each hop, as shown in Figure 5.1. The WSN consists of N0 source nodes, Nm

destination nodes and Nr relay nodes which are separated into m − 1 groups: N1,N2,

... ,Nm−1. We concentrate on a time division scheme with perfect synchronization, for

which all signals are transmitted and received in separate time slots. The sources first

broadcast the N0 × 1 signal vector s to the first group of relay nodes. We consider an

amplify-and-forward (AF) cooperation protocol in this work. Each group of relay nodes

receives the signal, amplifies and rebroadcasts them to the next group of relay nodes (or

the destination nodes). In practice, we need to consider the constraints on the transmission

policy. For example, each transmitting node would transmit during only one phase. In our

WSN system, we assume that each group of relay nodes transmits the signal to the nearest

group of relay nodes (or the destination nodes) directly. We can use a block diagram to

illustrate the multihop WSN system as shown in Figure 5.2.

T. Wang, Ph.D. Thesis, Department of Electronics, University of York 2012



CHAPTER 5. JOINT LINEAR RECEIVER DESIGN AND POWER ALLOCATION USING

ALTERNATING OPTIMIZATION ALGORITHMS FOR MULTIHOP WSNS 88

Source Nodes Destination NodesRelay Nodes

N0 N1 Nm
N2 Nm-1

Feedback

Channel

Figure 5.1: An m-hop WSN with N0 source nodes, Nm destination nodes and Nr relay

nodes.
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Figure 5.2: Block diagram of the multihop WSN system.

Let Hs denote theN1×N0 channel matrix between the source nodes and the first group

of relay nodes, Hd denote the Nm × Nm−1 channel matrix between the (m − 1)th group

of relay nodes and destination nodes, and Hi−1,i denote the Ni × Ni−1 channel matrix
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between two groups of relay nodes as described by

Hs =


hs,1

hs,2

...

hs,N1

 , Hd =


hm−1,1

hm−1,2

...

hm−1,Nm

 , Hi−1,i =


hi−1,1

hi−1,2

...

hi−1,Ni

 , (5.1)

where hs,j = [hs,j,1, hs,j,2, ..., hs,j,N0 ] for j = 1, 2, ..., N1 denote the channel coeffi-

cients between the source nodes and the jth relay of the first group of relay nodes,

hm−1,j = [hm−1,j,1, hm−1,j,2, ..., hm−1,j,Nm−1 ] for j = 1, 2, ..., Nm denote the channel co-

efficients between the (m − 1)th group of relay nodes and the jth destination node and

hi−1,j = [hi−1,j,1, hi−1,j,2, ..., hi−1,j,Ni−1
] for j = 1, 2, ..., Ni denote the channel coeffi-

cients between the (i − 1)th group of relay nodes and the jth relay of the ith group of

relay nodes. The received signal at the ith group of relay nodes (xi) for each phase can be

expressed as:

Phase 1:

x1 = Hss + v1, (5.2)

y1 = F1x1, (5.3)

Phase 2:

x2 = H1,2A1y1 + v2, (5.4)

y2 = F2x2, (5.5)

...

Phase i: (i = 3, 4, ...,m− 1)

xi = Hi−1,iAi−1yi−1 + vi, (5.6)

yi = Fixi, (5.7)

At the destination nodes, the received signal can be expressed as

d = HdAm−1ym−1 + vd, (5.8)
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where v is a zero-mean circularly symmetric complex additive white Gaussian noise

(AWGN) vector with covariance matrix σ2I. The matrix Ai = diag{ai,1, ai,2, ..., ai,Ni
}

is a diagonal matrix whose elements represent the amplification coefficient of each relay

of the ith group. The matrix Fi = diag{E(|xi,1|2), E(|xi,2|2), ..., E(|xi,Ni
|2)}− 1

2 denotes

the normalization matrix which can normalize the power of the received signal for each

relay of the ith group of relays. Please note that the property of the matrix vector multi-

plication Ay = Ya will be used in the next section, where Y is the diagonal matrix form

of the vector y and a is the vector form of the diagonal matrix A. In our proposed designs,

the full CSI of the system is assumed to be known at all the destination nodes. In practice,

a fusion center [80] which contains the destination nodes is responsible for gathering the

CSI, computing the optimal linear filters and the optimal amplification coefficients. The

fusion center also recovers the transmitted signal of the source nodes and transmits the

optimal amplification coefficients to the relay nodes via a feedback channel.

5.3 Proposed Joint MMSE Design of the Receiver and

Power Allocation

In this section, three constrained optimization problems are proposed to describe the joint

design of the linear receiver (W) and the power allocation parameter (a) subject to a

global, local and individual power constraints. They impose different power limitations

on all the relay nodes, each group of relay nodes and each relay node, respectively. The

assumptions of these power constraints could determine the degrees of freedom for allo-

cating the power among the relay nodes which will affect the performance and the life

time of the networks.
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5.3.1 MMSE Design with a Global Power Constraint

We first consider the case where the total power of all the relay nodes is limited to PT .

The proposed method can be considered as the following optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[∥s − WHd∥2],

subject to
m−1∑
i=1

Pi = PT

(5.9)

where (·)H denotes the complex-conjugate (Hermitian) transpose, Pi is the transmitted

power of the ith group of relay nodes, and Pi = Ni+1aH
i ai.

To solve this constrained optimization problem, we modify the MSE cost function

using the method of Lagrange multipliers [65] which yields the following Lagrangian

function

L =E[∥s − WHd∥2] + λ(
m−1∑
i=1

Ni+1aH
i ai − PT )

=E(sHs)− E(dHWs)− E(sHWHd) + E(dHWWHd) + λ(
m−1∑
i=1

Ni+1aH
i ai − PT ).

(5.10)

By fixing a1, ..., am−1 and setting the gradient of L in (5.10) with respect to the conjugate

of the filter W equal to zero, we get

Wopt =[E(ddH)]−1E(dsH)

=
[
HdAm−1E(ym−1y

H
m−1)A

H
m−1H

H
d + σ2

nI
]−1 HdAm−1E(ym−1sH).

(5.11)

The optimal expression for am−1 is obtained by equating the partial derivative of L with

respect to a∗
m−1 to zero

∂L
∂a∗

m−1

=− E(
∂dH

∂a∗
m−1

Ws) + E(
∂dH

∂a∗
m−1

WWHd) +Nmλam−1

=− E(YH
m−1HH

d Ws) + E[YH
m−1H

H
d WWH(HdYm−1am−1 + vd)] +Nmλam−1

=0.

(5.12)
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where (·)∗ denotes the complex-conjugate. Therefore, we obtain

am−1,opt =[E(YH
m−1HH

d WWHHdYm−1) +NmλI]−1E(YH
m−1H

H
d Ws)

=[HH
d WWHHd ⊙ E(ym−1y

H
m−1)

∗ +NmλI]−1[HH
d W ⊙ E(ym−1s

H)∗u]
(5.13)

where ⊙ denotes the Hadamard (element-wise) product and u = [1, 1, ..., 1]T .

Similarly, for i = 2, 3, ...m− 1, we have

∂L
∂a∗

i−1

= −E( ∂dH

∂a∗
i−1

Ws) + (
∂dH

∂a∗
i−1

WWHd) +Niλai−1

= 0
(5.14)

where
∂dH

∂a∗
i−1

= YH
i−1

(
m−1∏
k=i

HH
k−1,kFH

k AH
k

)
HH

d . (5.15)

Let

Bi−1 =
m−1∏
k=i

HH
k−1,kFH

k AH
k . (5.16)

Then, we get

ai−1,opt =[E(YH
i−1Bi−1HH

d WWHHdBH
i−1Yi−1) +NiλI]−1E(YH

i−1Bi−1HH
d Ws)

=[Bi−1HH
d WWHHdBH

i−1 ⊙ E(yi−1y
H
i−1)

∗ +NiλI]−1[Bi−1HH
d W ⊙ E(yi−1s

H)∗u].

(5.17)

From (5.13) and (5.17), we conclude that

ai,opt =[E(YH
i BiHH

d WWHHdBH
i Yi) +Ni+1λI]−1E(YH

i BiHH
d Ws)

=[BiHH
d WWHHdBH

i ⊙ E(yiy
H
i )

∗ +Ni+1λI]−1[BiHH
d W ⊙ E(yis

H)∗u]
(5.18)

where

Bi =


∏m−1

k=i+1 HH
k−1,kFH

k AH
k , for i = 1, 2, ...,m− 2,

I, for i = m− 1.
(5.19)

Please see the Appendix C to find the expressions of Fi, E(yiyH
i ), and E(yisH). The

expressions in (5.11) and (5.18) depend on each other. Thus, it is necessary to iterate

them with an initial value of ai (i = 1, 2, ...,m− 1) to obtain the solutions.

The Lagrange multiplier λ can be determined by solving

m−1∑
i=1

Ni+1aH
i,optai,opt = PT . (5.20)
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Let

ϕi = E(YH
i BiHH

d WWHHdBH
i Yi) (5.21)

and

zi = E(YH
i BiHH

d Ws). (5.22)

Then, we get

ai = (ϕi +Ni+1λI)−1zi. (5.23)

When λ is a real value,

[(ϕi +Ni+1λI)−1]H = [(ϕi +Ni+1λI)H ]−1 = (ϕi +Ni+1λI)−1. (5.24)

Equation (5.20) becomes
m−1∑
i=1

Ni+1zHi (ϕi +Ni+1λI)−1(ϕi +Ni+1λI)−1zi = PT . (5.25)

Using an EVD, we have

ϕi = QiΛiQ−1
i (5.26)

where Λi = diag{αi,1, αi,2, ..., αi,Mi
, 0, ..., 0} consists of eigenvalues of ϕi and Mi =

min{N0, Ni, Nm}. Then, we get

ϕi +Ni+1λI = Qi(Λi +Ni+1λI)Q−1
i . (5.27)

Therefore, (5.25) can be expressed as
m−1∑
i=1

Ni+1zHi Qi(Λi +Ni+1λI)−2Q−1
i zi = PT . (5.28)

Using the properties of the trace operation, (5.28) can be written as
m−1∑
i=1

Ni+1tr
(
(Λi +Ni+1λI)−2Q−1

i zizHi Qi

)
= PT . (5.29)

Defining Ci = Q−1
i zizHi Qi, (5.29) becomes

m−1∑
i=1

Ni∑
j=1

Ni+1(αi,j +Ni+1λ)
−2Ci(j, j) = PT . (5.30)

Since ϕi is a matrix with at most rank Mi, only the first Mi columns of Qi span the

column space of E(YH
i BiHH

d Ws)H which causes the last (Ni −Mi) columns of zHi Qi to

become zero vectors and the last (Ni −Mi) diagonal elements of Ci are zero. Therefore,

we obtain the {
∑m−1

i=1 2Mi}th-order polynomial in λ
m−1∑
i=1

Mi∑
j=1

Ni+1(αi,j +Ni+1λ)
−2Ci(j, j) = PT . (5.31)
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5.3.2 MMSE Design with Local Power Constraints

Secondly, we consider the case where the total power of the relay nodes in each group

is limited to some value PT,i. The proposed method can be considered as the following

optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[∥s − WHd∥2],

subject to Pi = PT,i, i = 1, 2, ...,m− 1,

(5.32)

where Pi as defined above is the transmitted power of the ith group of relays, and Pi =

Ni+1aH
i ai. Using the method of Lagrange multipliers again, we obtain the following

Lagrangian function

L = E[∥s − WHd∥2] +
m−1∑
i=1

λi(Ni+1aH
i ai − PT,i). (5.33)

Following the same steps described in Section 5.3.1, we get the same optimal expression

for W as in (5.11). The optimal expression for the power allocation vector ai is different

from (5.18) and given by

ai,opt =[BiHH
d WWHHdBH

i ⊙ E(yiy
H
i )

∗ +Ni+1λiI]−1[BiHH
d W ⊙ E(yis

H)∗u], (5.34)

where

Bi =


∏m−1

k=i+1 HH
k−1,kFH

k AH
k , for i = 1, 2, ...,m− 2,

I, for i = m− 1.
(5.35)

The Lagrange multiplier λi can be determined by solving

Ni+1aH
i,optai,opt = PT,i i = 1, 2, ...,m− 1. (5.36)

Following the same steps as in Section 5.3.1, we obtain (m − 1) {2Mi}th-order polyno-

mials in λi

Mi∑
j=1

Ni+1(αi,j +Ni+1λi)
−2Ci(j, j) = PT,i, i = 1, 2, ...,m− 1. (5.37)
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5.3.3 MMSE Design with Individual Power Constraints

Thirdly, we consider the case where the power of each relay node is limited to some value

PT,i,j . The proposed method can be considered as the following optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[∥s − WHd∥2],

subject to Pi,j = PT,i,j, i = 1, 2, ...,m− 1, j = 1, 2, ..., Ni,

(5.38)

where Pi,j is the transmitted power of the jth relay node in the ith group, and Pi,j =

Ni+1a
∗
i,jai,j . Using the method of Lagrange multipliers once again, we have the following

Lagrangian function

L = E[∥s − WHd∥2] +
m−1∑
i=1

Ni∑
j=1

λi,j(Ni+1a
∗
i,jai,j − PT,i,j). (5.39)

Following the same steps as described in Section 5.3.1, we get the same optimal expres-

sion for the W as in (5.11), and the optimal expression for the ai,j

ai,j,opt = [ϕi(j, j) +Ni+1λi,j]
−1[zi(j)−

∑
l∈I,l ̸=j

ϕi(j, l)ai,l], (5.40)

where I = {1, 2, ..., Ni}, ϕi and zi have the same expression as in (5.21) and (5.22). The

Lagrange multiplier λi,j can be determined by solving

Ni+1a
∗
i,j,optai,j,opt = PT,i,j i = 1, 2, ...,m− 1, j = 1, 2, ...Ni. (5.41)

Table 5.1 shows a summary of our proposed MMSE designs with global, local and indi-

vidual power constraints which will be used for the simulations. If the quasi-static fading

channel (block fading) is considered in the simulations, we only need two iterations. Al-

ternatively, low-complexity adaptive algorithms can be used to compute the linear receiver

Wopt and the power allocation parameter vector ai,opt.

5.4 Proposed Joint Maximum Sum-Rate Design of the

Receiver and the Power Allocation

In this section, we detail the proposed joint MSR design of the receiver and the power

allocation. By the MSR designs, the best possible SNR and QoS can be obtained at
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Table 5.1: Summary of the Proposed MMSE Design with Global, local and individual

Power Constraints for Multihop WSNs

Global Power Constraint Local Power Constraints Individual Power Constraint

Initialize the algorithm by set-

ting:

Initialize the algorithm by set-

ting:

Initialize the algorithm by set-

ting:

A =
√

PT∑m−1
i=1 NiNi+1

I Ai =
√

PT,i

NiNi+1
I for i =

1, 2, ...,m− 1

ai,j =
√

PT,i,j

Ni+1
for i =

1, 2, ...,m−1, j = 1, 2, ..., Ni

For each iteration: For each iteration: For each iteration:

1. Compute Wopt in (5.11). 1. Compute Wopt in (5.11). 1. Compute Wopt in (5.11).

2. For i = 1, 2, ...,m− 1 2. For i = 1, 2, ...,m− 1 2. For i = 1, 2, ...,m− 1

a) Compute ϕi and zi in

(5.21) and (5.22).

a) Compute ϕi and zi in

(5.21) and (5.22).

a) Compute ϕi and zi in

(5.21) and (5.22).

b) Calculate the EVD of ϕi in

(5.26).

b) Calculate the EVD of ϕi in

(5.26).

b) For j = 1, 2, ..., Ni

c) Solve λ in (5.31). c) Solve λi in (5.37). i) Solve λi,j in (5.41).

d) Compute ai,opt in (5.18). d) Compute ai,opt in (5.34). ii) Compute ai,j,opt in (5.40).

the destinations. They will improve the spectrum efficiency which is desirable for the

WSNs with the limitation in the sensor node computational capacity. Only the local con-

straints are considered here, because of the MSR receiver we make use of the Generalized

Rayleigh Quotient which is only suitable to solve optimization problems with vectors. It

limits the types of power constraints. By substituting (5.2)-(5.7) into (5.8), we get

d =C0,m−1s + C1,m−1v1 + C2,m−1v2 + ...+ Cm−1,m−1vm−1 + vd

=C0,m−1s +
m−1∑
i=1

Ci,m−1vi + vd,
(5.42)

where

Ci,j =


∏j

k=i Bk, if i 6 j,

I, if i > j,
(5.43)

and

B0 = Hs, (5.44)

Bi = Hi,i+1AiFi for i = 1, 2, ..., m− 2, (5.45)

Bm−1 = HdAm−1Fm−1. (5.46)
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We focus on a system with one source node for simplicity. The generalization to multiple

sources amounts to performing the optimization of the additional filters. Therefore, the

expression of the sum-rate (SR) in terms of bps/Hz for our m-hop WSN is expressed as

SR =
1

m
log2

[
1 +

σ2
s

σ2
n

wHC0,m−1CH
0,m−1w

wH(
∑m

i=1 Ci,m−1CH
i,m−1)w

]
(bps/Hz), (5.47)

where w is the linear receiver, and (·)H denotes the complex-conjugate (Hermitian) trans-

pose. Let

ϕ = C0,m−1CH
0,m−1 (5.48)

and

Z =
m∑
i=1

Ci,m−1CH
i,m−1. (5.49)

The expression for the sum-rate can be written as

SR =
1

m
log2

(
1 +

σ2
s

σ2
n

wHϕw
wHZw

)
=

1

m
log2(1 + ax), (5.50)

where

a =
σ2
s

σ2
n

(5.51)

and

x =
wHϕw
wHZw

. (5.52)

Since 1
m
log2(1 + ax) is a monotonically increasing function of x (a > 0), the problem of

maximizing the sum-rate is equivalent to maximizing x. In this section, we consider the

case where the total power of the relay nodes in each group is limited to some value PT,i

(local constraints). The proposed method can be considered as the following optimization

problem:

[wopt, a1,opt, ..., am−1,opt] = arg max
w,a1,...,am−1

wHϕw
wHZw

,

subject to Pi = PT,i, i = 1, 2, ...,m− 1

(5.53)

where Pi as defined above is the transmitted power of the ith group of relays, and

Pi = Ni+1aH
i ai. We note that the expression wHϕw

wHZw in (5.53) is the Generalized Rayleigh

Quotient. Thus, the optimal solution of our maximization problem can be obtained: wopt

is any eigenvector corresponding to the dominant eigenvalue of Z−1ϕ.
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In order to obtain the optimal power allocation vector aopt, we rewrite wHϕw
wHZw and the

expression is given by

wHϕw
wHZw

=
aH
i Miai

aH
i Piai + wH

i Tiwi

, for i = 1, 2, ..., m− 1, (5.54)

where

Mi =diag{wH
i Ci+1,m−1Hi,i+1Fi}C0,i−1CH

0,i−1diag{FH
i HH

i,i+1CH
i+1,m−1wi}, (5.55)

Pi =diag{wH
i Ci+1,m−1Hi,i+1Fi}(

i∑
k=1

Ck,i−1CH
k,i−1)diag{FH

i HH
i,i+1CH

i+1,m−1wi}, (5.56)

and

Ti =
m∑

k=i+1

Ck,m−1CH
k,m−1. (5.57)

Since the multiplication of any constant value and an eigenvector is still an eigenvector of

the matrix, we express the receive filter as

wi =
wopt√

wH
optTiwopt

. (5.58)

Hence, we obtain

wH
i Tiwi = 1 =

Ni+1aH
i ai

PT,i

. (5.59)

By substituting (5.59) into (5.54), we obtain

wHϕw
wHZw

=
aH
i Miai

aH
i Niai

for i = 1, 2, ..., m− 1, (5.60)

where

Ni = Pi +
Ni+1

PT,i

I. (5.61)

Likewise, we note that the expression aHMia
aHi Niai

in (5.60) is the Generalized Rayleigh Quo-

tient. Thus, the optimal solution of our maximization problem can be solved: ai,opt

is any eigenvector corresponding to the dominant eigenvalue of N−1
i Mi and satisfies

aH
i,optai,opt =

PT,i

Ni+1
. Here, the local power constraints can be satisfied by employing a

normalization. When considering the global power constraint PT , there is no unique solu-

tion of ai,opt (i = 1, 2, ...,m− 1) that satisfy
∑m−1

i=1 Ni+1aH
i,optai,opt = PT . Thus, for this

reason, we do not consider the global power constraint. The solutions of wopt and ai,opt

depend on each other. Therefore it is necessary to iterate them with an initial value of ai

(i = 1, 2, ...,m− 1) to obtain the optimum solutions.
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In this section, two methods are employed to calculate the dominant eigenvectors. The

first one is the QR algorithm [87] which calculates all the eigenvalues and eigenvectors

of a matrix. We can choose the dominant eigenvector among them. The second one

is the power method [87] which only calculates the dominant eigenvector of a matrix.

Hence, the computational complexity can be reduced. Table 5.2 shows a summary of our

proposed MSR design with local power constraint which will be used for the simulations.

If the quasi-static fading channel (block fading) is considered in the simulations, we only

need two iterations.

Table 5.2: Summary of the Proposed MSR Design with Local Power Constraints for

Multihop WSNs

Initialize the algorithm by setting

Ai =
√

PT,i

NiNi+1
I for i = 1, 2, ...,m− 1

For each iteration:

1. Compute ϕ and Z in (5.48) and (5.49).

2. Using the QR algorithm or the power method to compute the

dominant eigenvector of Z−1ϕ, denoted as wopt.

3. For i = 1, 2, ...,m− 1

a) Compute Mi and Ni in (5.55) and (5.61).

b) Using the QR algorithm or the power method to compute the

dominant eigenvector of N−1
i Mi, denoted as ai.

c) To ensure the local power constraint aHi,optai,opt =
PT,i

Ni+1
,

compute ai,opt =
√

PT,i

Ni+1aHi ai
ai.

5.5 Analysis of the proposed algorithms

In this section, an analysis of the computational complexity and the convergence of the

algorithms are developed. We first illustrate the computational complexity requirements

of the proposed MMSE and MSR designs by tables and figures. Then, we make use of the

convergence results for the alternating optimization algorithms in [85,86] and particularly

present a set of sufficient conditions under which our proposed algorithms will converge
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to the optimal solutions.

5.5.1 Computational Complexity Analysis

Table 5.3 and Table 5.4 list the computational complexity per iteration in terms of the

number of multiplications, additions and divisions for our proposed joint linear receiver

design (MMSE and MSR) and power allocation strategies. For the joint MMSE designs,

we use the QR algorithm to perform the eigendecomposition of the matrix. Please note

that in this work the QR decomposition by the Householder transformation [87, 88] is

employed by the QR algorithms. The quantities nQ and nP denote the number of iter-

ations of the QR algorithm and the power method, respectively. For the computational

complexity of λ in Table 5.3, it does not include the processing of solving the equation

in (5.31), (5.37) and (5.41), because of the method with a global power constraint, equa-

tion (5.31) is a higher order polynomial whose complexity is difficult to be summarized.

As the multiplication dominates the computational complexity, in order to compare the

computational complexity of our proposed joint MMSE and MSR designs, the number

of multiplications versus the number of relay nodes in each group for each iteration are

displayed in Figure 5.3 and Figure 5.4. For the purpose of illustration, we set m = 3,

N0 = 1, N3 = 2 and nQ = nP = 10. For the MMSE design, it can be seen that our pro-

posed receiver with a global constraint has the same complexity as the receiver with local

constraints. In practice, when considering the processing of solving the equation in (5.31),

(5.37), the method with a global constraint will require higher computational complexity

than the local constraints and the difference will become larger along with the increase of

the number of hops (m). When the individual power constraints are considered, the com-

putational complexity is lower than other constraints because there is no need to compute

the eigendecomposition for it. For the MSR design, employing the power method to cal-

culate the dominant eigenvectors has a lower computational complexity than employing

the QR algorithm.
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Table 5.3: Computational Complexity per Iteration of the joint MMSE Designs for Mul-

tihop WSNs
Constraint Multiplications Additions Divisions

Nm(Nm − 1)(4Nm + 1)/6 Nm(Nm − 1)(4Nm + 1)/6 +Nm

+(N0 +Nm−1)N2
d +N2

m−1Nm +(N0 +Nm−1)N2
m +N2

m−1Nm

W All +N0Nm−1Nm +Nm−1Nm +N0Nm−1Nm −N2
m + 2N0Nm Nm(3Nm − 1)/2

+
∑m−1

i=2 {2N2
i−1Ni +Ni−1N

2
i +Nm−1Nm +

∑m−1
i=2 {2Ni−1N

2
i

+N0Ni−1Ni + 4Ni−1Ni + 2Ni} +N0(Ni−1 − 1)Ni −N2
i +Ni}

∑m−1
i=1 {nQ( 13

6
N3

i + 3
2
N2

i

∑m−1
i=1 {nQ( 13

6
N3

i −N2
i

Global + 1
3
Ni − 2)−N3

i − 1
6
Ni + 1)−N3

i

∑m−1
i=1 {nQ(Ni − 1)}

+3N0N2
i +N0NiNi+1 +N2

i } +3N0N2
i +N0NiNi+1

+
∑m−2

i=1 {NiNi+1 +Ni+1} −N2
i −N0Ni −Ni}

∑m−1
i=1 {nQ( 13

6
N3

i + 3
2
N2

i

∑m−1
i=1 {nQ( 13

6
N3

i −N2
i

λ Local + 1
3
Ni − 2)−N3

i − 1
6
Ni + 1)−N3

i

∑m−1
i=1 {nQ(Ni − 1)}

+3N0N2
i +N0NiNi+1 +N2

i } +3N0N2
i +N0NiNi+1

+
∑m−2

i=1 {NiNi+1 +Ni+1} −N2
i −N0Ni −Ni}

∑m−1
i=1 {N0N2

i +N0NiNi+1
∑m−1

i=1 {N0N2
i +N0NiNi+1

Individual +N2
i +N0Ni} −N2

i −Ni}

+
∑m−2

i=1 {NiNi+1 +Ni+1}

Global
∑m−1

i=1 {Ni(Ni − 1)(4Ni + 1)/6
∑m−1

i=1 {Ni(Ni − 1)(4Ni + 1)/6
∑m−1

i=1 {Ni(3Ni − 1)/2}

+N2
i + 1} +N2

i }

a Local
∑m−1

i=1 {Ni(Ni − 1)(4Ni + 1)/6
∑m−1

i=1 {Ni(Ni − 1)(4Ni + 1)/6
∑m−1

i=1 {Ni(3Ni − 1)/2}

+N2
i + 1} +N2

i }

Individual 2
∑m−1

i=1 Ni
∑m−1

i=1 Ni
∑m−1

i=1 Ni

5.5.2 Sufficient Conditions for Convergence

Following the similar statements in section 4.5.2, the proposed joint MMSE designs can

be stated as an alternating minimization strategy based on the MSE defined in (5.9) and

expressed as

Wn ∈ arg min
W∈Wn

MSE(W, ai,n−1) (5.62)

ai,n ∈ arg min
a∈ai,n

MSE(Wn, ai) for i = 1, 2, ...,m− 1 (5.63)
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Table 5.4: Computational Complexity per Iteration of the joint MSR Designs for Multihop

WSNs
Multiplications Additions Divisions

nQ( 13
6
N3

m + 3
2
N2

m + 1
3
Nm − 2) +N2

m nQ( 13
6
N3

d −N2
d − 1

6
Nd + 1)

+Nm(Nm − 1)(4Nm + 1)/6 +N1Nm +Nm(Nm − 1)(4Nm + 1)/6 nQ(Nm − 1)

QR +
∑m−1

i=1 {NiN
2
m +NiNi+1 +Ni} −N2

m +N1Nm +
∑m−1

i=1 NiN
2
m +Nm(3Nm − 1)/2

Algorithm +
∑m−1

i=2 {2N2
i−1Ni +Ni−1N

2
i +

∑m−1
i=2 {2Ni−1N

2
i

+Ni−1NiNm + 4Ni−1Ni + 2Ni} +Ni−1(Ni − 1)Nm −N2
i +Ni}

w

nPN2
m +Nm(Nm − 1)(4Nm + 1)/6 nPNm(Nm − 1)

Power +N3
m +N2

m +N1Nm +Nm(Nm − 1)(4Nm + 1)/6 +N3
m

Method +
∑m−1

i=1 {NiN
2
m +NiNi+1 +Ni} −2N2

m +N1Nm +
∑m−1

i=1 NiN
2
m Nm(3Nm − 1)/2

+
∑m−1

i=2 {2N2
i−1Ni +Ni−1N

2
i +

∑m−1
i=2 {2Ni−1N

2
i

+Ni−1NiNm + 4Ni−1Ni + 2Ni} +Ni−1(Ni − 1)Nm −N2
i +Ni}

∑m−1
i=1 {nQ( 13

6
N3

i + 3
2
N2

i

∑m−1
i=1 {nQ( 13

6
N3

i −N2
i

QR + 1
3
Ni − 2) − 1

6
Ni + 1) +NiNi+1

Algorithm +Ni(Ni − 1)(4Ni + 1)/6 +Ni(Ni − 1)(4Ni + 1)/6
∑m−1

i=1 {nQ(Ni − 1)

+
∑i

k=1 NkN
2
i + 3N2

i + 2NiNi+1 +Ni+1Nm −Ni+1 +Ni − 1} +Ni(3Ni − 1)/2}

+Ni+1Nm + 3Ni + 2}+ 2N2
m +

∑m−1
i=2 {

∑i−1
k=1(Nk − 1)N2

i +Nm +m− 1

a +N2
i (i− 2) +Ni}+ 2N2

m − 2Nm

∑m−1
i=1 {nPN2

i

∑m−1
i=1 {nPNr(Nr − 1)

Power +Ni(Ni − 1)(4Ni + 1)/6 +Ni(Ni − 1)(4Ni + 1)/6 +N3
i

∑m−1
i=1 {Ni(3Ni − 1)/2}

Method +
∑i

k=1 NkN
2
i +N3

i + 3N2
i −N2

i +NiNi+1 +Ni+1Nm +Nm +m− 1

+2NiNi+1 +Ni+1Nm −Ni+1 +Ni − 1}

+3Ni + 2}+ 2N2
m +

∑m−1
i=2 {

∑i−1
k=1(Nk − 1)N2

i

+N2
i (i− 2) +Ni}+ 2N2

m − 2Nm

where the sets W, ai ⊂ M, and the sequences of compact sets {Wn}n≥0 and {ai,n}n≥0

converge to the sets W and ai, respectively.

Although we are not given the sets W and ai directly, we have the sequence of compact

sets {Wn}n≥0 and {ai,n}n≥0. The aim of our proposed joint MMSE designs is to find a

sequence of Wn and ai,n(i = 1, 2, ...,m− 1) such that

lim
n→∞

MSE(Wn, a1,n, a2,n, ..., am−1,n) = MSE(Wopt, a1,opt, a2,opt, ..., am−1,opt) (5.64)

where Wopt and ai,opt correspond to the optimal values of Wn and ai,n, respectively. The
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Figure 5.3: Number of multiplications versus the number of relay nodes of our pro-

posed joint MMSE design of the receiver and the power allocation strategies for multihop

WSNs.
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Figure 5.4: Number of multiplications versus the number of relay nodes of our proposed

joint MSR design of the receiver and the power allocation strategies for multihop WSNs.
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equation (5.64) can be considered as the necessary condition of the following equations

lim
n→∞

MSE(Wn, ai,n) = MSE(Wopt, ai,opt) for i = 1, 2, ...,m− 1 (5.65)

if the other power allocation parameters aj,n(j ̸= i) are kept constant when computing ai,n

during the iterations. To present a set of sufficient conditions under which the proposed

algorithms converge, we need the so-called three-point and four-point properties [85,86].

Let us assume that there is a function f : M×M → R such that the following conditions

are satisfied.

1) Three-point property (W, W̃, ai):

For all n ≥ 1, W ∈ Wn, ai ∈ ai,n−1, and W̃ ∈ argminW∈Wn
MSE(W, ai), we have

f(W, W̃) + MSE(W̃, ai) ≤ MSE(W, ai) (5.66)

2) Four-point property (W, ai, W̃, ãi):

For all n ≥ 1, W, W̃ ∈ Wn, ai ∈ ai,n, and ãi ∈ argminai∈ai,n MSE(W̃, ai), we

have

MSE(W, ãi) ≤ MSE(W, ai) + f(W, W̃) (5.67)

These two properties are the mathematical expressions of the sufficient conditions for the

convergence of the alternating minimization algorithms which are stated in [85] and [86].

It means that if there exists a function f(W, W̃) with the parameter W during two it-

erations that satisfies the two inequalities about the MSE in (5.66) and (5.67), the con-

vergence of our proposed MMSE designs that make use of the alternating minimization

algorithm can be proved by the theorem below.

Theorem: Let {(Wn, ai,n)}n≥0, W, ai be compact subsects of the compact metric space

(M, d) such that

Wn

dH→ W ai,n

dH→ ai (5.68)

and let MSE : M × M → R be a continuous function. Let conditions 1) and 2) hold.

Then, for the proposed algorithms, we have

lim
n→∞

MSE(Wn, ai,n) = MSE(Wopt, ai,opt) for i = 1, 2, ...,m− 1. (5.69)
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Thus, equation (5.64) can be satisfied. A general proof of this theorem is detailed in [85]

and [86]. The proposed joint MSR designs can be stated as an alternating maximization

strategy based on the SR defined in (5.47) that follow a similar procedure to the one above.

5.6 Simulations

In this section, we assess the performance of our proposed joint MMSE designs of the

linear receiver and power allocation methods and compare them with the equal power

allocation method which allocates the same power level equally for all links from the relay

nodes. For the purpose of fairness, we assume that the total power for all relay nodes in

the network is the same which can be indicated as
∑m−1

i=1 PT,i =
∑m−1

i=1

∑Ni

j=1 PT,i,j =

PT . We consider a 3-hop (m=3) wireless sensor network as an example even though the

algorithms can be used with any number of hops. The number of source nodes (N0), two

groups of relay nodes (N1, N2) and destination nodes (N3) are 1, 4, 4 and 2, respectively.

We consider an AF cooperation protocol. The quasi-static fading channel (block fading

channel) is considered in our simulations whose elements are Rayleigh random variables

(with zero mean and unit variance) and assumed to be invariant during the transmission

of each packet. In our simulations, the channel is assumed to be known at the destination

nodes. For channel estimation algorithms for WSNs and other low-complexity parameter

estimation algorithms, one refers to [74] and [89]. During each phase, the sources transmit

the QPSK modulated packets with 1500 symbols. The noise at the destination nodes is

modeled as circularly symmetric complex Gaussian random variables with zero mean.

A perfect (error free) feedback channel between destination nodes and relay nodes is

assumed to transmit the amplification coefficients.

For the MMSE design, it can be seen from Figure 5.5 that our three proposed meth-

ods achieve a better performance than the equal power allocation method. Among them,

the method with a global constraint has the best performance whereas the method with

individual constraints has the worst performance. This result is what we expect because a

global constraint provides the largest degrees of freedom for allocating the power among
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Figure 5.5: BER performance versus SNR of our proposed joint MMSE design of the

receiver and power allocation strategies, compared to the equal power allocation method

for multihop WSNs.

the relay nodes whereas an individual constraint provides the least. For the MSR design,

it can be seen from Figure 5.6 that our proposed method achieves a better sum-rate per-

formance than the equal power allocation method. Using the power method to calculate

the dominant eigenvector yields a very similar result to the QR algorithm but requires a

lower complexity. In practice, the feedback channel cannot be error free. In order to

study the impact of feedback channel errors on the performance, we employ the binary

symmetric channel (BSC) as the model for the feedback channel and quantize each com-

plex amplification coefficient to an 8-bit binary value (4 bits for the real part, 4 bits for

the imaginary part). The error probability (Pe) of the BSC is fixed at 10−3. The dashed

curves in Figure 5.5 and Figure 5.6 show the performance degradation compared to the

performance when using a perfect feedback channel. To show the performance tendency

of the BSC for other values of Pe, we fix the SNR at 10 dB and choose Pe ranging from 0

to 10−2. The performance curves are shown in Figure 5.7 and Figure 5.8 , which illustrate
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Figure 5.6: Sum-rate performance versus SNR of our proposed joint MSR design of the

receiver and power allocation strategies with local constraints, compared to the equal

power allocation method for multihop WSNs.

the BER and the sum-rate performance versus Pe of our two proposed joint designs of the

receivers. It can be seen that along with the increase in Pe, their performance becomes

worse.

Finally, we replace the perfect CSI with the estimated channel coefficients to compute

the receive filters and power allocation parameters at the destinations. We employ the

BEACON channel estimation which is proposed in [74]. Figure 5.9 illustrates the impact

of the channel estimation on the performance of our proposed MMSE and MSR design

with local constraints by comparing to the performance of perfect CSI. The quantity nt

denotes the number of training sequence symbol per data packet. Please note that in

these simulations perfect feedback channel is considered and the QR algorithm is used in

the MSR design. For both the MMSE and MSR designs, it can be seen that when nt is

set to 10, the BEACON channel estimation lead to an obvious performance degradation

compared to the perfect CSI. However, when nt is increased to 50, the BEACON chan-

nel estimation can achieve a similar performance to the perfect CSI. Other scenarios and
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Figure 5.7: BER performance versus Pe of our proposed MMSE designs when employing

the BSC as the model for the feedback channel for multihop WSNs.
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Figure 5.8: Sum-rate performance versus Pe of our proposed MSR design when employ-

ing the BSC as the model for the feedback channel for multihop WSNs.
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Figure 5.9: (a) BER performance versus SNR of our proposed MMSE design (b) Sum-rate

performance versus SNR our proposed MSR design with local power constraints when

employing the BEACON channel estimation, compared to the performance of perfect

CSI for multihop WSNs

network topologies have been investigated and the results show that the proposed algo-

rithms work very well with channel estimation algorithms and a small number of training

symbols.

5.7 Summary

In this chapter, we present a study of the alternating optimization algorithms for receive

filter design and power adjustment which can be applied to the general multihop WSNs.

MMSE and MSR criteria have been considered in the development of the algorithmic so-

lutions. They can be considered as the extension work of the strategies proposed for the

two-hop WSNs in Chapter 4 and more complex mathematical derivations are presented.

Three different power constraints are considered which include the global, local and indi-
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vidual ones. Simulations have shown that our proposed algorithms achieve a significantly

better performance than the equal power allocation method. The major advantage is that

they are applicable to general multihop WSNs which can provide larger coverage than the

two-hop WSNs.
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6.1 Conclusions

In this thesis, our research focused on the development of low-complexity signal process-

ing algorithms for the physical layer and cross layer designs for WSNs. For the physical

layer design, low-complexity SM channel estimation algorithms have been investigated.

For the cross layer design, strategies to jointly design linear receivers and the power allo-

cation parameters via an alternating optimization approach have been proposed.

In Chapter 3, the SM-NLMS and BEACON channel estimation algorithms have been

proposed based on time-varying bound for cooperative WSNs. It has been shown that our

proposed algorithms can achieve better or similar performance to conventional NLMS

and RLS channel estimation, offering reduced computational complexity. Analyses of

the steady-state MSE and computational complexity are presented for the two channel

estimation and closed-form expressions of the excess MSE and the probability of update
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are provided. Furthermore, the incorporation of the time-varying bound function makes

it robust to changes in the environment. These features are desirable for WSNs and bring

about a significant reduction in energy consumption.

In Chapter 4, two kinds of joint receiver design and power allocation strategies have

been proposed for two-hop WSNs. Firstly, the constrained MMSE expressions for the

design of linear receivers and power allocation parameters are derived. The constraints

include the global, individual and neighbour-based power constraints. Secondly, the con-

strained MSR expressions for the design of linear receivers and power allocation param-

eters are derived. The constraints include the global and neighbour-based power con-

straints. Finally, computational complexity and convergence analysis of the proposed

optimization algorithms are presented. It has been shown that our proposed strategies

achieve a significantly better performance than the equal power allocation method. More-

over, when the neighbour-based constraint is considered, it brings a feature to balance the

performance against the computational complexity and the need for feedback information

which is desirable for WSNs to extend their lifetime.

In Chapter 5, two kinds of joint receiver design and power allocation strategies have

been proposed for general multihop WSNs. They can be considered as the extension work

of the strategies proposed for the two-hop WSNs in Chapter 4 and more complex math-

ematical derivations are presented. Firstly, the constrained MMSE expressions for the

design of linear receivers and power allocation parameters are derived. The constraints

include the global, local and individual power constraints. Secondly, the constrained MSR

expressions for the design of linear receivers and power allocation parameters subject to

local power constraints. Finally, computational complexity and convergence analysis of

the proposed optimization algorithms are also presented. It has been shown that our pro-

posed strategies achieve a significantly better performance than the equal power allocation

method. The major advantage is that they are applicable to general multihop WSNs which

can provide larger coverage than the two-hop WSNs.
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6.2 Further Work

Some suggestions for further work based on this thesis are given below:

• For Chapter 3, we can extend the family of set-membership channel estimation

methods by applying the SMF framework to other algorithms such as the conjugate

gradient (CG) algorithm and affine projection (AP) algorithm. It will increase the

flexibility for us to address the trade off between the performance and computa-

tional complexity. These SM algorithms can be very attractive for the WSNs where

by avoiding unnecessary computation the battery life is increased.

• For Chapter 4 and Chapter 5, we can employ low-complexity adaptive algorithms

(i.e. the RLS, CG and SM algorithms) to compute the linear receiver and power

allocation parameters. Compared with the MMSE design, these adaptive algo-

rithms can bring a significant reduction in energy consumption which is desirable

for WSNs. Other possible extensions to these work may include the design of non-

linear receivers [90–97] and the reduced-rank processing for reduced complexity

and data compression [98–115].

Also, two topics for WSNs that we are interested in investigating in our future research

are follows:

• Relay selection: For WSNs, various protocols are proposed to choose the best relay

to forward the information from all the available nodes. The best relay is usually

selected depending on its geographic position [116], mean SNR to the destination

node [117], or CSI at the source and relay nodes [118]. The relay selection can help

to improve the symbol error probability [119, 120], increase the data transmission

rate [121], and reduce the energy consumption [122] which is important for WSNs.

One idea for our future work is to jointly design the relay selection and the power

allocation to improve the performance for two-hop and general multihop WSNs.
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• Energy harvesting [123]- [128]: It is refereed as the process that captures the energy

from the environment (i.e. solar power, thermal energy, wind energy) and converts

it to electricity. By employing the energy harvesting techniques, the lifetime of

the sensor nodes can be extended significantly compared with the battery-powered

sensor nodes. During the energy harvesting interval, some system parameters of

the node can be tuned to increase the performance of the network with the support

of more power. Therefore, how to exploit the energy harvesting opportunities to

dynamically tune system parameters and decide which parameters should be tuned

become the future challenges of energy harvesting techniques.
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Appendix A

The Derivation of the Proposed

BEACON Channel Estimation

Algorithm

By setting the gradient of L in (3.24) with respect to H(n) equal to zero, we have

∂L
∂H(n)

=2
n−1∑
l=1

λ(n)n−l [r(l)− H(n)s(l)] [−sH(l)]

+ 2λ(n)[∥r(n)− H(n)s(n)][−sH(n)] = 0.

(A.1)

Therefore,

H(n)

[
n−1∑
l=1

λ(n)n−ls(l)sH(l) + λ(n)s(n)sH(n)

]
=

n−1∑
l=1

λ(n)n−lr(l)sH(l)+λ(n)r(n)sH(n).

(A.2)

Then we can get

H(n) =

[
n−1∑
l=1

λ(n)n−lr(l)sH(l) + λ(n)r(n)sH(n)

]

·

[
n−1∑
l=1

λ(n)n−ls(l)sH(l) + λ(n)s(n)sH(n)

]−1

.

(A.3)

Let:

ϕ(n) =
n−1∑
l=1

λ(n)n−ls(l)sH(l) + λ(n)s(n)sH(n), (A.4)
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and

Z(n) =
n−1∑
l=1

λ(n)n−lr(l)sH(l) + λ(n)r(n)sH(n). (A.5)

Equation (A.3) becomes:

H(n) = Z(n)ϕ−1(n). (A.6)

Isolating the term corresponding to l = n − 1 from the rest of the summation on the

right-hand side of (A.4), we may write:

ϕ(n) =

[
n−2∑
l=1

λ(n)n−ls(l)sH(l) + λ(n)s(n− 1)sH(n− 1)

]
+ λ(n)s(n)sH(n). (A.7)

The expression inside the brackets on the right-hand side of (A.7) equals ϕ(n−1) assum-

ing the forgetting factor of the cost function is close to 1. Hence, we have the following

recursion for updating the value of ϕ(n):

ϕ(n) = ϕ(n− 1) + λ(n)s(n)sH(n). (A.8)

Similarly, we may use (A.5) to derive the following recursion for updating Z(n):

Z(n) = Z(n− 1) + λ(n)r(n)sH(n). (A.9)

Then, using the matrix inversion lemma [65], we obtain the following recursive equation

for the inverse of ϕ(n):

ϕ−1(n) = ϕ−1(n− 1)− λ(n)ϕ−1(n− 1)s(n)sH(n)λ(n)ϕ−1(n− 1)

1 + λ(n)sH(n)ϕ−1(n− 1)s(n)
. (A.10)

For convenience of computation, let:

P(n) = ϕ−1(n), (A.11)

and

k(n) =
sH(n)P(n− 1)

1 + λ(n)sH(n)P(n− 1)s(n)
. (A.12)

Therefore, we may rewrite (A.6) and (A.10) as:

H(n) = Z(n)P(n), (A.13)

P(n) = P(n− 1)− λ(n)P(n− 1)s(n)k(n). (A.14)
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Then we substitute (A.9) and (A.14) into (A.13) to obtain a recursive equation for updat-

ing the channel matrix H(n):

H(n) = H(n− 1)− λ(n)H(n− 1)s(n)k(n) + λ(n)r(n)sH(n)P(n). (A.15)

By rearranging (A.12) , we can get:

k(n) = sH(n)P(n− 1)− λ(n)sH(n)P(n− 1)s(n)k(n)

= sH(n) [P(n− 1)− λ(n)P(n− 1)s(n)k(n)]

= sH(n)P(n).

(A.16)

Using (A.16) above, we get the desired recursive equation for updating the channel matrix

H(n):

H(n) = H(n− 1)− λ(n)H(n− 1)s(n)k(n) + λ(n)r(n)k(n)

= H(n− 1) + λ(n) [r(n)− H(n− 1)s(n)] k(n)

= H(n− 1) + λ(n)ϵ(n)k(n),

(A.17)

where ϵ(n) = r(n)− H(n− 1)s(n) denotes the prediction error vector at time instant n.
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Appendix B

Analysis of the Proposed SM-NLMS

Channel Estimation Algorithm

From (3.41), the update equation of the channel estimation error is:

∆H(n+ 1) = ∆H(n)− 1

Nσ2
s

e(n)sH(n) +
γ

Nσ2
s

e(n)
∥e0(n)∥

sH(n). (B.1)

Let:

A = ∆H(n)− 1

Nσ2
s

e(n)sH(n), (B.2)

and

B =
γ

Nσ2
s

e(n)
∥e0(n)∥

sH(n). (B.3)

Equation (B.1) becomes:

∆H(n+ 1) = A + B. (B.4)

From (3.38), we can get the output excess MSE at time instant n+ 1:

Jex(n+ 1) = tr{E[s(n+ 1)sH(n+ 1)∆HH(n+ 1)∆H(n+ 1)]}

= tr{E[s(n)sH(n)∆HH(n+ 1)∆H(n+ 1)]}

= ψ1 + ψ2 + ψ3 + ψ4.

(B.5)

Then we analyze each term separately:

ψ1 = tr{E[s(n)sH(n)AHA]} = ρ1 + ρ2, (B.6)
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ρ1 = Jex(n)− 2Nσ2
s

1

Nσ2
s

Jex(n) +N2σ4
s

1

N2σ4
s

Jex(n) = 0, (B.7)

ρ2 = N2σ4
sMσ2

n

1

N2σ4
s

=Mσ2
n, (B.8)

ψ2 =tr{E[s(n)sH(n)AHB]}

=tr{E[s(n)sH(n)∆HH(n)
γ

Nσ2
s

e(n)
∥e0(n)∥

sH(n)]}

− tr{E[s(n)sH(n) γ

N2σ4
s

s(n)
eH(n)e(n)
∥e0(n)∥

sH(n)]}

=γtr{E[sH(n)∆HH(n)
e(n)

∥e0(n)∥
]} − γE

[
∥e(n)∥2

∥e0(n)∥

]
=γtr{E[sH(n)∆HH(n)

n(n) + ∆H(n)s(n)
∥e0(n)∥

]} − γE

[
∥e(n)∥2

∥e0(n)∥

]
=γtr{E[sH(n)∆HH(n)

∆H(n)s(n)
∥e0(n)∥

]} − γE

[
∥e(n)∥2

∥e0(n)∥

]
=γE

[
1

∥e0(n)∥

]
Jex(n)− γE

[
∥e(n)∥2

∥e0(n)∥

]
,

(B.9)

ψ3 = tr{E[s(n)sH(n)BHA]} = ψ2, (B.10)

ψ4 =tr{E[s(n)sH(n)BHB]}

=tr{E[s(n)sH(n) γ2

N2σ4
s

s(n)
eH(n)e(n)
∥e0(n)∥2

sH(n)]}

=γ2E

[
∥e(n)∥2

∥e0(n)∥2

]
.

(B.11)

Finally, we can obtain the update equation of the output excess MSE:

Jex(n+ 1) =Mσ2
n + 2γE

[
1

∥e0(n)∥

]
Jex(n)− 2γE

[
∥e(n)∥2

∥e0(n)∥

]
+ γ2E

[
∥e(n)∥2

∥e0(n)∥2

]
.

(B.12)
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Appendix C

The Expressions of Fi, E(yiyHi ), and

E(yisH)

Here, we derive the the expressions of Fi, E(yiyH
i ), and E(yisH) that are used in Sections

5.2, 5.3 and 5.4.

Fi = diag{E(|xi,1|2), E(|xi,2|2), ..., E(|xi,Ni
|2)}−

1
2 (C.1)

where

E(|xi,j|2 =

 σ2
s |hs,j|2 + σ2

n, for i = 1,

hi−1,jAi−1E(yi−1yH
i−1)A

H
i−1h

H
i−1,j + σ2

n, for i = 2, 3, ...,m.
(C.2)

E(yiy
H
i ) =

 Fi(σ
2
sHsHH

s + σ2
nI)FH

i , for i = 1,

Fi[Hi−1,iAi−1E(yi−1yH
i−1)A

H
i−1H

H
i−1,i + σ2

nI]FH
i , for i = 2, 3, ...,m.

(C.3)

E(yis
H) =

 σ2
sFiHs, for i = 1,

FiHi−1,iAi−1E(yi−1sH), for i = 2, 3, ...,m.
(C.4)
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Glossary

AF Amplify-and-Forward

AP Affine Projection

AWGN Additional White Gaussian Noise

BER Bit Error Rate

bps Bit per Second

BSC Binary Symmetric Channel

C-CE Cascaded Channel Estimation

CF Compress-and-Forward

CSI Channel State Information

dB Decibel

D-CE Disintegrated Channel Estimation

DF Decode-and-Forward

ECD Effective Configuration Duration

EVD Eigenvalue Decomposition

Hz Hertz

LMS Least Mean Square

LS Least Squares

MMSE Minimum Mean Square Error

MSE Mean Square Error

MSR Maximum Sum-Rate

NBC Biological and Chemical

NLMS Normalized Least Mean Square

QoS Quality of Service

OBE Optimal Bounding Ellipsoidal

QPSK Quadrature Phase Shift Keying

RLS Recursive Least Squares

SM Set-Membership

SM-AP Set-Membership Affine Projection

SM-BNDRLMS Set-Membership Date-Reusing Least Mean Square

SMF Set-Membership Filtering
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SM-NLMS Set-Membership Normalized Least Mean Square

SNR Signal to Noise Ratio

SORA Self-Organizing Resource Allocation

SR Sum-Rate

STC Space Time Coding

UR Update Rate

WSNs Wireless Sensor Networks

WZC Wyner-Ziv Coding
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