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Abstract—A novel algorithm to construct structured LDPC
codes based on graph connectivity and cycle quality is proposed.
The performance of the constructed QC-LDPC and IRA codes is
investigated and a performance improvement in the error floor
region is demonstrated. The code constructions provided are
flexible in rate and length and demonstrate that the enhanced
EMD-driven PEG-based approach proposed may be applied
to a number of other structured LDPC code classes, given
consideration of correct constraints of the construction.

Index Terms—Channel coding, Low-density parity-check
codes, Iterative decoding

I. I NTRODUCTION

Low-density parity-check (LDPC) codes, and Turbo Codes,
have seen much interest due to their impressive performance
combined with low complexity iterative decoding principles.
Structured LDPC codes impose exploitable constraints on the
parity-check matrix (PCM) of the LDPC code, allowing for
a reduction in encoding complexity and further benefits in
decoding. Quasi-cyclic (QC) LDPC codes are defined by a
PCM made up of tiled circulant permutation matrices, allow-
ing for complexity reduction and parallelisation [1]. Repeat
accumulate (RA) codes are a class of codes which may be
viewed as LDPC codes with a dual-diagonal substructure in
their PCM, allowing for linear encoding complexity [2][3].

Asymptotic analysis of LDPC codes, through density evo-
lution (DE) [4] provides a detailed view of the behaviour of
LDPC codes under iterative decoding in the limit of very
large block lengths. However, at short to medium lengths,
this analysis fails to give a complete picture. Recent effort
has focused on understanding the cycle structures present in
the graph of these shorter length codes. To this end, the
notions of stopping sets and trapping sets, also known as near-
codewords, were developed. Stopping sets of a code graph
entirely dictate the performance of the corresponding codeon
the binary erasure channel [5], while trapping sets account
for further errors encountered on the additive white Gaussian
noise (AWGN) channel [6].

In code construction, the girth has conventionally been
viewed as the dominant feature of a particular graph influ-
encing the performance of the corresponding code. Tian et al.
[7] suggested, influenced by the idea of stopping sets, that
the quality of particular cycles through their connection to
the rest of the graph in certain cases has greater influence

than cycle length. Based on the extrinsic message degree
(EMD) of the cycle, the approximate cycle EMD (ACE) metric
was then proposed as a measure of the graph connectivity
of a cycle. The ACE metric was used with the powerful
progressive edge growth (PEG) algorithm [8], a sub-optimal
code construction which produces code graphs with large girth,
in order to construct irregular LDPC codes with improved error
floor performance [9]. A precise measure of cycle EMD was
developed for use in a PEG-based construction method [10].
Other PEG-based designs have also been reported [11][12].

In this paper, we propose a PEG-based construction method
which produces graphs with improved connectivity. The pro-
posed construction avoids connections associated with large
numbers of short cycles and uses the EMD information
of all shortest-length cycles created by each potential edge
placement. In this way, the connections made increase the like-
lihood of good overall graph connectivity and so decrease the
likelihood of stopping set creation. This enhanced EMD-driven
construction method shares the flexibility of other PEG-based
designs [13][12]. This is demonstrated in the constructionof
irregular QC-LDPC and IRA codes which exhibit improved
performance over previous constructions while maintaining
the attractive properties of those structured classes of codes
previously detailed.

The rest of the paper is organised as follows. In Section II
the LDPC coding system is detailed and the challenges of short
length code construction are discussed. In Section III the par-
ticular structures of QC-LDPC and IRA codes are briefly in-
troduced. Section IV introduces the proposed enhanced EMD
metric central to the structured code constructions proposed.
Section V provides a detailed description of the proposed
PEG-based construction using the criteria discussed in Section
IV. Simulation results for the two structured code classes are
presented in Section VI while Section VII concludes.

II. LDPC CODING SYSTEM AND PROBLEM STATEMENT
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Fig. 1. Block diagram of the LDPC coding system
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Fig. 2. Sample QC-LDPC PCM and associated graph

LDPC codes are iteratively decoded linear block codes.
The PCMH fully characterises the code. The codewordc
satisfies the constraintcHT = 0. The LDPC coding system
is illustrated in Fig. 1. For the AWGN channel considered, at
the receiver we observe

rℓ = (2cℓ − 1) + nℓ, (1)

whererℓ is theℓ-th entry of the received vectorr, ℓ = 1 : N
andnℓ ∼ N (0, σ2). The generator matrixG is derived from
H and used in encoding. For QC-LDPC codes,G has QC
structure and efficient encoding may be performed by shift
registers. For IRA codes, encoding may be carried out by
serial concatenated irregular repeater, interleaver, combiner
and accumulator. The properties of these constituent operations
are specified by the the PCM. The structures of both classes of
codes are considered in more detail in Section III. Decoding
is performed by the sum-product algorithm (SPA), operating
on the graph of the code, with edges specified by the entries
of H. In Fig. 2, a sample is given of a particular PCM with
the QC structure and its associated Tanner graph. An edge
connects check node (CN)cm to variable node (VN)vℓ in the
Tanner graph of the code only if the the entry inH(m,ℓ) = 1.

The code construction problem considered in this paper is
to choose the explicit connections of the graph, satisfying
all given code parameters, such as VN degree distribution,
dimensions of the PCM and the required code structure with
no repeated edge. The goal in constructing the code is then to
ensure the best possible code performance.

For large block lengths, the performance of any particular
member of an ensemble of LDPC codes tends towards the
average performance of the ensemble [4]. This convenient fact
allows for meaningful analysis of ensemble performance. It
also means that in general for large block lengths, great care
is not needed in choosing a particular graph from the ensemble
for use in transmission.

It has been observed that asymptotic analysis does not

completely describe the behaviour of the short length codes
considered in this paper [7]-[10]. The threshold prediction
of DE remains valid and the performance in the waterfall
region of the bit error rate (BER) plot at low signal-to-noise
ratio (SNR) behaves as expected. However, at short block
lengths there is an observable error floor at higher SNRs, a
decrease in improved performance with increasing SNR. This
is well established, and has motivated the efforts mentioned in
Section I [7]-[10]. The following gives a brief overview of the
mechanisms through which the messages passed during SPA
decoding become degraded, leading to poor performance.

The cycles present in short length graphs result in propa-
gation of dependent messages in iterative decoding by SPA.
The quality of messages passed is particularly harmed in
the presence of short and interconnected cycles. In [7], an
edge with only one connection to a given set of nodes,
and therefore any cycles those nodes may participate in, is
termed an extrinsic connection. The node it connects to is an
extrinsic node. A set of VNs with no extrinsic connections
is termed a stopping set and is known to be made up of
one or more connected cycles. Enumeration of all stopping
sets of a graph is a prohibitively complex problem, even for
relatively short block lengths. As a result, attempts have been
made to influence stopping set creation indirectly by ensuring
short cycles had a high likelihood of numerous extrinsic
connections, making the creation of a stopping set involving
those cycles much less likely. This was initially done by means
of the ACE metric [7]. This concept has been expanded upon
to view the ACE properties of larger cycles [14], through the
ACE spectrum of a code. In [14], it was clear that the number
of short cycles a node is involved in, along with cycle length
and its extrinsic connection properties, is important.

III. STRUCTUREDLDPC CODES

A. QC-LDPC Codes

The PCM of QC-LDPC codes have the form
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, (2)

where eachAa,b is a Q × Q submatrix, either a circulant
permutation or a null matrix. The positions of the nonempty
submatrices and the shift from the zeroth position of the
first entry in those nonempty matrices entirely determines the
graph of the QC-LDPC code. It is clear from this where
the advantages of these codes may be found in terms of
complexity. In [13] the position of and the first entry in
eachAa,b is determined by a modified PEG algorithm which
operates on everyQ-th column. The remaining entries inAa,b

are found by cyclic shifts. Care must be taken in the code
construction of [13] that no more than one one entry is placed
in one row or column of any one submatrixAa,b.



B. IRA Codes

IRA PCMs are structured as

HIRA =
[

H1 H2

]

, (3)

where H2 is the dual diagonal matrix corresponding to
the accumulator in the serial concatenated interpretationof
IRA codes, whileH1 is a low-density matrix with irregular
column weights and row weights corresponding to the irregular
repeat and combine stages of the serial encoder. As the form
of H2 is predetermined, construction of an IRA code graph
means setting the connections ofH1 only. In a progressive
columnwise construction, such as the one we deal with, we
initialise the PCM as

Hinit =
[

H2 0
]

, (4)

and start from the(m+1)-th column, wherem is the num-
ber of CNs. Once construction is complete, the submatrices
positions may be reversed to give the PCM the form of (3).

IRA codes offer linear complexity encoding and greater
flexibility in degree distributions over QC-LDPC codes. How-
ever at low rates, the dual diagonal structure of the accu-
mulator takes up a larger proportion of the PCM, causing
greater deviation from DE derived degree distributions and
harming performance. QC-LDPC codes offer flexibility in
rate, provided the submatrix structure of (2) is adhered to.
This structure also imposes some limitations on allowable
degree distributions. The option of further parallelisation of
both encoder and decoder makes QC-LDPC codes very useful
for applications requiring low latency.

IV. ENHANCED EMD METRIC CALCULATION

The proposed enhanced EMD (EEMD) metric gives a
measure of the likely effect of performance of a particular
edge placement(ci, vj), allowing comparison of a set of CN
candidates in a particular construction. CNs are compared first
by the number of shortest paths they will create, with only
those nodes creating the smallest number of shortest paths
surviving to the next round of comparison. For each survivor,
the average EMD across all shortest paths is computed,
giving a measure of overall graph connectivity of the cycles
associated with that prospective edge. The CN with the largest
average EMD is selected. This process is described in more
depth for the PEG-based construction in (5)-(7), Section V.

The novelty of the proposed construction is that it accounts
for the case where multiple paths exist between root VN and
a particular CN. This is a particularly important distinction
at short block lengths, where multiple paths occur frequently.
This issue was not considered in [10], where medium block
lengths were considered and the distinction is less critical. Fig.
4 shows the performance of the QC-LDPC code constructed
using the proposed PEG-based EEMD algorithm of Section V
and a QC-LDPC PEG-based construction using the metric of
[10]. The proposed construction outperforms both the previous
EMD-based construction algorithm and the code constructed
by the IPEG algorithm.

sj

ci

Fig. 3. PEG-like tree expansion

The computation of the proposed metric is carried out as
follows. A PEG-like tree is expanded from bothvj and ci,
downwards and upwards, respectively, as illustrated in Fig. 3.
It is clear that if a particular node is found at the same levelof
both downward and upward trees, then that node is present in a
shortest path betweenvj andci at that level. From knowledge
of the VNs which appear in shortest paths at particular levels,
it is then a trivial task to identify all distinct paths. The number
of distinct paths each candidate CN is involved is the first piece
of information we will use to separate good candidates from
poor ones. Once all distinct shortest paths have been identified
for a given candidate CN, the EMD of a path is simply the
number of CNs connected to that path by a single link. For
each extrinsic connection of a particular (CN,VN) path there
will be a “1” in the sum of all columns, corresponding to VNs,
which take part in the path. The EMD of that path is simply
the number of “1”s present in the resulting vector. This is the
second property of each candidate we will use in determining
the best choice for placement.
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Fig. 4. Plot of performance of the proposed metric and previouswork for
PEG-based constructions



V. PROPOSEDEMD-DRIVEN PEG DESIGN

The previously discussed metric calculation is versatile,it
can be computed for any (CN,VN) pair. An exhaustive search
of every CN for connection to a given VN, and repeated at
every VN for the required number of connections to that VN
would be prohibitively complex. It is necessary to produce
a shorter list of candidate CNs. As previously discussed, the
PEG algorithm is a sub-optimal graph construction algorithm
which operates edge by edge and at each placement produces
the longest cycle possible given the current graph configu-
ration. This algorithm produces a list of CNs at maximum
distance from the VN of interest and equal minimum current
weight. This provides a good subset of CNs which can then
be compared by means of the metric described in Section IV.

The set of CNs, provided by the PEG algorithm, at equal
maximum distance from the root VNvj is denotedN l

vj
in the

notation introduced in [8]. In the original PEG algorithm the
successful candidate is taken at random among the minimum
weight CNs of this set. This set of minimum weight furthest
CNs is denotedC in the pseudocode below. In defining this
set, the notation of [8] for the neighbourhood of a node has
been used. Specifically,N1

ci
denotes the set of VNs reached by

a tree emanating from the CNci and expanded only one level,
meaning in this case the weight of the CNci. If there is more
than one CN in the setC, then for eachci in the set, all distinct
paths fromvj to ci are found as described in Section IV and
the choice is made based on the number of shortest cycles
which would be created by each candidate connection, and
the average EMD of those shortest cycles which the candidate
CN would participate in, if placement was made.

The set of candidates presented by the PEG algorithm is

C = {ci : |N
1
ci
| = min

cx∈N l
vj

|N1
cx
|}. (5)

From this set the surviving CNs are

D = {ck : ck ∈ C,Pk = min
x=1:|C|

Px}, (6)

wherePx, x = 1 : |C| is defined in Step 8 of the pseudocode
of Algorithm 1. The CN finally chosen for placement, provided
multiple options remain, is then

ci : ci ∈ D,Metrici = max
x=1:|D|

Metricx, (7)

whereMetricx for x = 1 : |D|, defined by Steps 14-18 of
Algorithm 1, is the average of the EMD values of all shortest
paths from the current VN of interestvj to thex-th CN in the
set D. This gives a clearer indication of likely stopping set
creation when there are many paths fromvj to ci, as is often
the case for short codes.

VI. SIMULATION RESULTS

Results are presented for irregular structured short-length
LDPC codes for the rate12 case. The codes were constructed
based on the DE derived VN degree distribution with maxi-
mum degree 8, presented in [4], Table II:

Algorithm 1 Proposed EMD-Driven PEG Design

1. Given the setN l
vj

:
2. The setC = {ci : |N

1
ci
| = min

cx∈N l
vj

|N1
cx
|}

3. if |C| == 1 then
4. The edge(C, vj) is placed
5. else
6. for y = 1 : |C| do
7. The downward/upward PEG-like trees of Fig. 3 are

expanded fromvj , Cy respectively.
8. From this operation, all distinct paths are discovered

for this VN, CN pair. Denote the number of paths
Py. Then the VNs making up the shortest paths are
stored as the rows of thePy × l matrix Vy.

9. end for
10. The setD = {ck : ck ∈ C,Pk = min

x=1:|C|
Px}

11. if |D| == 1 then
12. The edge(D, vj) is placed
13. else
14. for w = 1 : |D| do
15. for z = 1 : Pw do
16. EMDz = sum(sum(H(:,Vw(z, :)), 2) == 1)
17. end for
18. Metricw = mean(EMD)
19. end for
20. The chosen CN is thenci : ci ∈ D,

21. Metrici = max
x=1:|D|

Metricx.

22. The edge(ci, vj) is placed.
23. end if
24. end if

λ(x) = .30013x+ .28395x2 + .41592x7 (8)

As we consider PEG-based constructions only, the DE
derivedρ(x) is not considered, the graphs produced have near-
regular check degree of the form:

ρ(x) = axb + (1− a)xb−1. (9)

A number of necessary alterations were made to the VN
degree distribution of (8), to account for the short lengthsof
the codes and the structured codes considered. Following [3],
the number of weight-2 nodes of the distribution was limited
to less than the number of CNs. For the QC-LDPC codes
the distribution was further altered to take into account the
submatrix structure of the PCM. For the rate12 IRA codes,
H1 is constructed such that its columns have weights equal
to theM higher degree VNs prescribed by (8). The otherM

VNs required by our constrained version of (8) correspond to
the columns of the accumulatorH2, with a single weight-1
entry required in order to allow efficient encoding.

For the BER plots presented, transmission was simulated on
the AWGN channel. The decoder was operated to a maximum
of 40 iterations and 100 block errors were gathered for each



point in the plots. Improved performance is seen in the error
floor region for both the QC-LDPC and IRA codes constructed
by the proposed QC-PEG-EMD algorithm compared with both
the IPEG-based constructions using the ACE metric and the
original PEG-based constructions.
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Fig. 5. Performance of QC-LDPC codes of different constructions
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VII. C ONCLUSION

For both types of structured LDPC codes an improved error
floor performance is observed. This improvement is due to
improved connections among potentially harmful short cycles,
resulting from two decision criteria developed in order to
compare placement choices, namely the number of shortest
cycles which would be created by a given placement and the
average EMD across those shortest cycles. This approach leads
to a lower probability of stopping set creation.

The structured codes considered are very practical, particu-
larly at the short lengths for which results are presented. The
proposed EMD-driven design requires increased complexity
compared to the PEG-based designs previously used to con-
struct codes of these classes, however this extra effort is re-
quired only during the construction phase, during transmission
the codes constructed by this method incur no extra cost and
provide an improved performance at medium to high SNRs.

The versatility of the proposed design method should also
be noted. It is flexible in rate, length and with appropriate
constraints, structure. This has been observed for the Root-
LDPC class of structured LDPC codes designed to achieve
the diversity of the block fading channel [15]. Previous work
has shown the success of PEG-designed Root-LDPC codes
[12] and preliminary results indicate coding gains when the
proposed method is used for code construction. Further inves-
tigation of the achievable gains of the proposed EMD-driven
construction for Root-LDPC codes remains as a future work.
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