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Abstract— This book chapter reviews signal detection and
parameter estimation techniques for multiuser multiple-antenna
wireless systems with a very large number of antennas, known as
massive multi-input multi-output (MIMO) systems. We consider
both centralized antenna systems (CAS) and distributed antenna
systems (DAS) architectures in which a large number of antenna
elements are employed and focus on the uplink of a mobile
cellular system. In particular, we focus on receive processing
techniques that include signal detection and parameter estimation
problems and discuss the specific needs of massive MIMO
systems. Simulation results illustrate the performance of detection
and estimation algorithms under several scenarios of interest.
Key problems are discussed and future trends in massive MIMO
systems are pointed out.

Index Terms— massive MIMO, signal detection, parameter
estimation, algorithms,

I. INTRODUCTION

Future wireless networks will have to deal with a substantial
increase of data transmission due to a number of emerging
applications that include machine-to-machine communications
and video streaming [1]- [4]. This very large amount of data
exchange is expected to continue and rise in the next decade
or so, presenting a very significant challenge to designers of
fifth-generation (5G) wireless communications systems [4].
Amongst the main problems are how to make the best use
of the available spectrum and how to increase the energy effi-
ciency in the transmission and reception of each information
unit. 5G communications will have to rely on technologies
that can offer a major increase in transmission capacity as
measured in bits/Hz/area but do not require increased spectrum
bandwidth or energy consumption.

Multiple-antenna or multi-input multi-output (MIMO) wire-
less communication devices that employ antenna arrays with
a very large number of antenna elements which are known as
massive MIMO systems have the potential to overcome those
challenges and deliver the required data rates, representing a
key enabling technology for 5G [5]- [8]. Among the devices of
massive MIMO networks are user terminals, tablets, machines
and base stations which could be equipped with a number
of antenna elements with orders of magnitude higher than
current devices. Massive MIMO networks will be structured by
the following key elements: antennas, electronic components,
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network architectures, protocols and signal processing. The
network architecture, in particular, will evolve from homo-
geneous cellular layouts to heterogeneous architectures that
include small cells and the use of coordination between cells
[9]. Since massive MIMO will be incorporated into mobile
cellular networks in the future, the network architecture will
necessitate special attention on how to manage the inter-
ference created [10] and measurements campaigns will be
of fundamental importance [11]- [13]. The coordination of
adjacent cells will be necessary due to the current trend
towards aggressive reuse factors for capacity reasons, which
inevitably leads to increased levels of inter-cell interference
and signalling. The need to accommodate multiple users while
keeping the interference at an acceptable level will also require
significant work in scheduling and medium-access protocols.

Another important aspect of massive MIMO networks lies
in the signal processing, which must be significantly advanced
for 5G. In particular, MIMO signal processing will play a
crucial role in dealing with the impairments of the physical
medium and in providing cost-effective tools for processing
information. Current state-of-the-art in MIMO signal process-
ing requires a computational cost for transmit and receive
processing that grows as a cubic or super-cubic function of the
number of antennas, which is clearly not scalable with a large
number of antenna elements. We advocate the need for simpler
solutions for both transmit and receive processing tasks, which
will require significant research effort in the next years.
Novel signal processing strategies will have to be developed
to deal with the problems associated with massive MIMO
networks like computational complexity and its scalability,
pilot contamination effects, RF impairments, coupling effects,
delay and calibration issues.

In this chapter, we focus on signal detection and parameter
estimation aspects of massive MIMO systems. We consider
both centralized antenna systems (CAS) and distributed an-
tenna systems (DAS) architectures in which a large number
of antenna elements are employed and focus on the uplink of
a mobile cellular system. In particular, we focus on the uplink
and receive processing techniques that include signal detection
and parameter estimation problems and discuss specific needs
of massive MIMO systems. We review the optimal maximum
likelihood detector, nonlinear and linear suboptimal detec-
tors and discuss potential contributions to the area. We also
describe iterative detection and decoding algorithms, which



exchange soft information in the form of log likelihood ratios
(LLRs) between detectors and channel decoders. Another
important area of investigation includes parameter estimation
techniques, which deal with methods to obtain the channel
state information, compute the parameters of the receive filters
and the hardware mismatch. Simulation results illustrate the
performance of detection and estimation algorithms under
scenarios of interest. Key problems are discussed and future
trends in massive MIMO systems are pointed out.

This chapter is structured as follows. Section II reviews the
signal models with CAS and DAS architectures and discusses
the application scenarios. Section III is dedicated to detec-
tion techniques, whereas Section IV is devoted to parameter
estimation methods. Section V discusses the results of some
simulations and Section VI presents some open problems and
suggestions for further work. The conclusions of this chapter
are given in Section VII.

II. SIGNAL MODELS AND APPLICATION SCENARIOS

In this section, we describe signal models for the uplink of
multiuser massive MIMO systems in mobile cellular networks.
In particular, we employ a linear algebra approach to describe
the transmission and how the signals are collected at the base
station or access point. We consider both CAS and DAS
[15], [16] configurations. In the CAS configuration a very
large array is employed at the rooftop or at the façade of a
building or even at the top of a tower. In the DAS scheme,
distributed radio heads are deployed over a given geographic
area associated with a cell and these radio devices are linked
to a base station equipped with an array through either fibre
optics or dedicated radio links. These models are based on
the assumption of a narrowband signal transmission over flat
fading channels which can be easily generalized to broadband
signal transmission with the use of multi-carrier systems.
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Fig. 1. Mobile cellular network with a CAS configuration.

The scenario we are interested in this work is that of mobile
cellular networks beyond LTE-A [2] and 5G communications

[4], which is illustrated in Fig. 1. In such networks, massive
MIMO will play a key role with the deployment of hundreds of
antenna elements at the base station using CAS or using DAS
over the cell of interest, coordination between cells and a more
modest number of antenna elements at the user terminals. At
the base station, very large antenna arrays could be deployed
on the roof or on the façade of buildings. With further
development in the area of compact antennas and techniques to
mitigate mutual coupling effects, it is likely that the number of
antenna elements at the user terminals (mobile phones, tables
and other gadgets) might also be significantly increased from
1−4 elements in current terminals to 10−20 in future devices.
In these networks, it is preferable to employ time-division-
duplexing (TDD) mode to perform uplink channel estimation
and obtain downlink CSI by reciprocity for signal processing
at the transmit side. This operation mode will require cost-
effective calibration algorithms. Another critical requirement is
the uplink channel estimation, which employs non-orthogonal
pilots and, due to the existence of adjacent cells and the
coherence time of the channel, needs to reuse the pilots [63].
Pilot contamination occurs when CSI at the base station in
one cell is affected by users from other cells. In particular, the
uplink (or multiple-access channel) will need CSI obtained
by uplink channel estimation, efficient multiuser detection
and decoding algorithms. The downlink (also known as the
broadcast channel) will require CSI obtained by reciprocity
for transmit processing and the development of cost-effective
scheduling and precoding algorithms. A key challenge in the
scenario of interest is how to deal with a very large number
of antenna elements and develop cost-effective algorithms,
resulting in excellent performance in terms of the metrics of
interest, namely, bit error rate (BER), sum-rate and throughput.
In what follows, signal models that can describe CAS and DAS
schemes will be detailed.

A. Centralized Antenna System Model

In this subsection, we consider a multiuser massive MIMO
system with CAS using NA antenna elements at the receiver,
which is located at a base station of a cellular network installed
at the rooftop of a building or a tower, as illustrated in Fig. 1.
Following this description, we consider a multiuser massive
MIMO system with K users that are equipped with NU

antenna elements and communicate with a receiver with NA

antenna elements, where NA ≥ KNU . At each time instant,
the K users transmit NU symbols which are organized into a
NU ×1 vector sk[i] =

[
sk,1[i], sk,2[i], . . . , sk,NU

[i]
]T taken

from a modulation constellation A = {a1, a2, . . . , aN}.
The data vectors sk[i] are then transmitted over flat fad-
ing channels. The received signal after demodulation, pulse-
matched filtering and sampling is collected in an NA×1 vector
r[i] =

[
r1[i], r2[i], . . . , rNA

[i]
]T with sufficient statistics for

estimation and detection as described by

r[i] =
K∑

k=1

γkHksk[i] + n[i]

=
K∑

k=1

Gksk[i] + n[i],

(1)



where the NA × 1 vector n[i] is a zero mean complex
circular symmetric Gaussian noise with covariance matrix
E
[
n[i]nH [i]

]
= σ2

nI . The data vectors sk[i] have zero mean
and covariance matrices E

[
sk[i]s

H
k [i]

]
= σ2

sk
I , where σ2

sk
is the user k transmit signal power. The elements hk

i,j of the
NA×NU channel matrices Hk are the complex channel gains
from the jth transmit antenna of user k to the ith receive
antenna. For a CAS architecture, the channel matrices Hk

can be modeled using the Kronecker channel model [14] as
detailed by

Hk = Θ
1/2
R Ho

kΘ
1/2
T , (2)

where Ho
k has complex channel gains obtained from complex

Gaussian random variables with zero mean and unit variance,
ΘR and ΘT denote the receive and transmit correlation
matrices, respectively. The components of correlation matrices
ΘR and ΘT are of the form

ΘR/T =



1 ρ ρ4 . . . ρ(Na−1)2

ρ 1 ρ . . .
...

ρ4 ρ 1
... ρ4

...
...

...
...

...
ρ(Na−1)2 . . . ρ4 ρ 1


(3)

where ρ is the correlation index of neighboring antennas and
Na is the number of antennas of the transmit or receive array.
When ρ = 0 we have an uncorrelated scenario and when
ρ = 1 we have a fully correlated scenario. The channels
between the different users are assumed uncorrelated due to
their geographical location.

The parameters γk represent the large-scale propagation
effects for user k such as path loss and shadowing which are
represented by

γk = αkβk, (4)

where the path loss αk for each user is computed by

αk =

√
Lk

dτk
, (5)

where Lk is the power path loss of the link associated with
user k, dk is the relative distance between the user and the
base station, τ is the path loss exponent chosen between 2
and 4 depending on the environment.

The log-normal shadowing βk is given by

βk = 10
σkvk
10 , (6)

where σk is the shadowing spread in dB and vk corresponds
to a real-valued Gaussian random variable with zero mean
and unit variance. The NA × NU composite channel matrix
that includes both large-scale and small-scale fading effects is
denoted as Gk.

B. Distributed Antenna Systems Model
In this subsection, we consider a multiuser massive MIMO

system with a DAS configuration using NB antenna elements
at the base station and L remote radio heads each with Q
antenna elements, which are distributed over the cell and
linked to the base station via wired links, as illustrated in
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Fig. 2. Mobile cellular network with a DAS configuration.

Fig. 2. Following this description, we consider a multiuser
massive MIMO system with K users that are equipped with
NU antenna elements and communicate with a receiver with
a DAS architecture with a total of NA = NB + LQ antenna
elements, where NA ≥ KNU . In our exposition, when the
number of remote radio heads is set to zero, i.e., L = 0, the
DAS architecture reduces to the CAS scheme with NA = NB .

At each time instant, the K users transmit NU sym-
bols which are organized into a NU × 1 vector sk[i] =[
sk,1[i], sk,2[i], . . . , sk,NU

[i]
]T taken from a modulation

constellation A = {a1, a2, . . . , aN}. The data vectors
sk[i] are then transmitted over flat fading channels. The
received signal after demodulation, pulse-matched filtering
and sampling is collected in an NA × 1 vector r[i] =[
r1[i], r2[i], . . . , rNA [i]

]T
with sufficient statistics for es-

timation and detection as described by

r[i] =

K∑
k=1

γkHksk[i] + n[i]

=
K∑

k=1

Gksk[i] + n[i],

(7)

where the NA × 1 vector n[i] is a zero mean complex
circular symmetric Gaussian noise with covariance matrix
E
[
n[i]nH [i]

]
= σ2

nI . The data vectors sk[i] have zero mean
and covariance matrices E

[
sk[i]s

H
k [i]

]
= σ2

sk
I , where σ2

sk
is

the user k signal power. The elements hi,j of the NA × NU

channel matrices Hk are the complex channel gains from the
jth transmit antenna to the ith receive antenna. Unlike the CAS
architecture, in a DAS setting the channels between remote
radio heads are less likely to suffer from correlation due to
the fact that they are geographically separated. However, for
the antenna elements located at the base station and at each
remote radio head, the L + 1 submatrices of Hk can be
modeled using the Kronecker channel model [14] as detailed
in the previous subsection. The major difference between CAS



and DAS schemes lies in the large-scale propagation effects.
Specifically, with DAS the links between the users and the
distributed antennas experience in average lower path loss
effects because of the reduced distance between their antennas.
This helps to create better wireless links and coverage of the
cell. Therefore, the large-scale propagation effects are modeled
by an NA ×NA diagonal matrix given by

γk = diag

γk,1 . . . γk,1︸ ︷︷ ︸
NB

γk,2 . . . γk,2︸ ︷︷ ︸
Q

. . . γk,L+1 . . . γk,L+1︸ ︷︷ ︸
Q

 ,

(8)
where the parameters γk,j for j = 1, . . . , L + 1 denote the
large-scale propagation effects like shadowing and pathloss
from the kth user to the jth radio head. The parameters γk,j
for user k and distributed antenna j are described by

γk,j = αk,jβk,j , j = 1, . . . , L+ 1 (9)

where the path loss αk,j for each user and antenna is computed
by

αk,j =

√
Lk,j

dτk,j
, (10)

where Lk,j is the power path loss of the link associated
with user k and the jth radio head, dk,j is the relative
distance between the user and the radio head, τ is the path
loss exponent chosen between 2 and 4 depending on the
environment. The log-normal shadowing βk,j is given by

βk,j = 10
σkvk,j

10 , (11)

where σk is the shadowing spread in dB and vk,j corresponds
to a real-valued Gaussian random variable with zero mean
and unit variance. The NA × NU composite channel matrix
that includes both large-scale and small-scale fading effects is
denoted as Gk.

III. DETECTION TECHNIQUES

In this section, we examine signal detection algorithms
for massive MIMO systems. In particular, we review various
detection techniques and also describe iterative detection and
decoding schemes that bring together detection algorithms and
error control coding.

A. Detection Algorithms

In the uplink of the multiuser massive MIMO systems under
consideration, the signals or data streams transmitted by the
users to the receiver overlap and typically result in multiuser
interference at the receiver. This means that the interfering
signals cannot be easily demodulated at the receiver unless
there is a method to separate them. In order to separate the
data streams transmitted by the different users, a designer must
resort to detection techniques, which are similar to multiuser
detection methods [17].

The optimal maximum likelihood (ML) detector is de-
scribed by

ŝML[i] = arg min
s[i]∈A

||r[i]−Gs[i]||2 (12)

where the KNU × 1 data vector s[i] has the symbols of
all users stacked and the KNU × NA channel matrix G =
[G1 . . .GK ] contains the channels of all users concatenated.
The ML detector has a cost that is exponential in the number
of data streams and the modulation order which is too costly
for systems with a large number of antennas. Even though
the ML solution can be alternatively computed using sphere
decoder (SD) algorithms [19]- [22] that are very efficient for
MIMO systems with a small number of antennas, the cost
of SD algorithms depends on the noise variance, the number
of data streams to be detected and the signal constellation,
resulting in high computational costs for low SNR values,
high-order constellations and a large number of data streams.

The high computational cost of the ML detector and the
SD algorithms in scenarios with large arrays have motivated
the development of numerous alternative strategies for MIMO
detection, which are based on the computation of receive filters
and interference cancellation strategies. The key advantage of
these approaches with receive filters is that the cost is typically
not dependent on the modulation, the receive filter is computed
only once per data packet and performs detection with the
aid of decision thresholds. Algorithms that can compute the
parameters of receive filters with low cost are of central
importance to massive MIMO systems. In what follows, we
will briefly review some relevant suboptimal detectors, which
include linear and decision-driven strategies.

Linear detectors [23] include approaches based on the
receive matched filter (RMF), zero forcing (ZF) and minimum
mean-square error (MMSE) designs that are described by

ŝ[i] = Q
(
WHr[i]

)
, (13)

where the receive filters are

WRMF = G, for the RMF, (14)

WMMSE = G(GHG+ σ2
s/σ

2
nI)

−1, for the MMSE design,
(15)

and
W ZF = G(GHG)−1, for the ZF design, (16)

and Q(·) represents the slicer used for detection.
Decision-driven detection algorithms such as successive in-

terference cancellation (SIC) approaches used in the Vertical-
Bell Laboratories Layered Space-Time (VBLAST) systems
[24]- [28] and decision feedback (DF) [29]- [46] detectors
are techniques that can offer attractive trade-offs between
performance and complexity. Prior work on SIC and DF
schemes has been reported with DF detectors with SIC (S-
DF) [24]- [28] and DF receivers with parallel interference
cancellation (PIC) (P-DF) [39], [40], [44], combinations of
these schemes and mechanisms to mitigate error propagation
[43], [46], [47].

SIC detectors [24]- [28] apply linear receive filters to
the received data followed by subtraction of the interference
and subsequent processing of the remaining users. Ordering
algorithms play an important role as they significantly affect
the performance of SIC receivers. Amongst the existing criteria
for ordering are those based on the channel norm, the SINR,
the SNR and on exhaustive search strategies. The perfor-
mance of exhaustive search strategies is the best followed by



SINR-based ordering, SNR-based ordering and channel norm-
based ordering, whereas the computational complexity of an
exhaustive search is by far the highest, followed by SINR-
based ordering, SNR-based ordering and channel norm-based
ordering. The data symbol of each user is detected according
to:

ŝk[i] = Q
(
wH

k rk[i]
)
, (17)

where the successively cancelled received data vector that
follows a chosen ordering in the k-th stage is given by

rk[i] = r[i]−
k−1∑
j=1

gj ŝj [i], (18)

where gj corresponds to the columns of the composite channel
matrix Gj . After subtracting the detected symbols from the
received signal vector, the remaining signal vector is processed
either by an MMSE or a ZF receive filter for the data estima-
tion of the remaining users. The computational complexity of
the SIC detector based on either the MMSE or the ZF criteria
is similar and requires a cubic cost in NA (O(N3

A)) although
the performance of MMSE-based receive filters is superior to
that of ZF-based detectors.

A generalization of SIC techniques, the multi-branch suc-
cessive interference cancellation (MB-SIC) algorithm, em-
ploys multiple SIC algorithms in parallel branches. The
MB-SIC algorithm relies on different ordering patterns and
produces multiple candidates for detection, approaching the
performance of the ML detector. The ordering of the first
branch is identical to a standard SIC algorithm and could
be based on the channel norm or the SINR, whereas the
remaining branches are ordered by shifted orderings relative
to the first branch. In the ℓ-th branch, the MB-SIC detector
successively detects the symbols given by the vector ŝℓ[i] =
[ŝℓ,1[i], ŝℓ,2[i], . . . , ŝℓ,K [i]]T . The term ŝℓ[i] represents the
K × 1 ordered estimated symbol vector, which is detected
according to the ordering pattern Tℓ, ℓ = 1, . . . , S for the
ℓ-th branch. The interference cancellation performed on the
received vector r[i] is described by:

rℓ,k[i] = r[i]−
k−1∑
j=1

gℓ,j ŝℓ,j [i] (19)

where the transformed channel column g is obtained by gℓ =
T ℓg, the term g′

k represents the k-th column of the ordered
channel G′ and ŝℓ,k denotes the estimated symbol for each
data stream obtained by the MB-SIC algorithm.

At the end of each branch we can transform ŝℓ[i] back to
the original order s̃ℓ[i] by using T ℓ as s̃ℓ[i] = T T

ℓ ŝℓ[i]. At the
end of the MB-SIC structure, the algorithm selects the branch
with the minimum Euclidean distance according to

ℓopt = arg min
1≤ℓ≤S

C(ℓ) (20)

where C(ℓ) = ||r[i] − T ℓGs̃ℓ[i]|| is the Euclidean distance
for the ℓ-th branch. The final detected symbol vector is

ŝj [i] = Q(wH
ℓopt,jrℓopt,j [i]), j = 1, . . . ,KNU . (21)

The MB-SIC algorithm can bring a close-to-optimal perfor-
mance, however, the exhaustive search of S = K! branches is

not practical. Therefore, a reduced number of branches S must
be employed. In terms of computational complexity, the MB-
SIC algorithm requires S times the complexity of a standard
SIC algorithm. However, it is possible to implement it using
a multi-branch decision feedback structure [27], [42] that is
equivalent in performance but which only requires a single
matrix inversion as opposed to K matrix inversions required
by the standard SIC algorithm and SK matrix inversions
required by the MB-SIC algorithm.

DF detectors employ feedforward and feedback matrices
that perform interference cancellation as described by

ŝ = Q
(
WHr[i]− FH ŝo[i]

)
, (22)

where ŝo corresponds to the initial decision vector that is
usually performed by the linear section represented by W of
the DF receiver (e.g., ŝo = Q(WHr)) prior to the application
of the feedback section F , which may have a strictly lower
triangular structure for performing successive cancellation or
zeros on the main diagonal when performing parallel can-
cellation. The receive filters W and F can be computed
using various parameter estimation algorithms which will be
discussed in the next section. Specifically, the receive filters
can be based on the RMF, ZF and MMSE design criteria.

An often criticized aspect of these sub-optimal schemes is
that they typically do not achieve the full receive-diversity
order of the ML algorithm. This led to the investigation of
detection strategies such as lattice-reduction (LR) schemes
[30], [31], QR decomposition, M-algorithm (QRD-M) de-
tectors [33], probabilistic data association (PDA) [34], [35],
multi-branch [42], [45] detectors and likelihood ascent search
techniques [48], [49], which can approach the ML perfor-
mance at an acceptable cost for moderate to large systems.
The development of cost-effective detection algorithms for
massive MIMO systems is a challenging topic that calls for
new approaches and ideas in this important research area.

B. Iterative Detection and Decoding Techniques

Iterative detection and decoding (IDD) techniques have
received considerable attention in the last years following
the discovery of Turbo codes [50] and the application of
the Turbo principle to interference mitigation [29], [50]–[58].
More recently, work on IDD schemes has been extended to
low-density parity-check codes (LDPC) [54] and [57] and their
extensions which compete with Turbo codes. The goal of an
IDD system is to combine an efficient soft-input soft-output
(SISO) detection algorithm and a SISO decoding technique
as illustrated in Fig. 3. Specifically, the detector produces
log-likelihood ratios (LLRs) associated with the encoded bits
and these LLRs serve as input to the decoder. Then, in the
second phase of the detection/decoding iteration, the decoder
generates a posteriori probabilities (APPs) after a number
of (inner) decoding iterations for encoded bits of each data
stream. These APPs are fed to the detector to help in the next
iterations between the detector and the decoder, which are
called outer iterations. The joint process of detection/decoding
is then repeated in an iterative manner until the maximum
number of (inner and outer) iterations is reached. In mobile
cellular networks, a designer can employ convolutional, Turbo



or LDPC codes in IDD schemes for interference mitigation.
LDPC codes exhibit some advantages over Turbo codes that
include simpler decoding and implementation issues. However,
LDPC codes often require a higher number of decoding
iterations which translate into delays or increased complexity.
The development of IDD schemes and decoding algorithms
that perform message passing with reduced delays are of
fundamental importance in massive MIMO systems because
they will be able to cope with audio and 3D video which are
delay sensitive.

Joint Detector Decoder

Iterative

Processing

r[i]

λ2[bj,c]

λ1[bj,c] Λ2[bj,c]

Fig. 3. Block diagram of an IDD scheme.

The massive MIMO systems described at the beginning of
this chapter are considered here with convolutional codes and
an iterative receiver structure consists of the following stages:
A soft-input-soft-output (SISO) detector and a maximum a
posteriori (MAP) decoder. Extensions to other channel codes
are straightforward. These stages are separated by interleavers
and deinterleavers. The soft outputs from the detector are used
to estimate LLRs which are interleaved and serve as input
to the MAP decoder for the convolutional code. The MAP
decoder [52] computes a posteriori probabilities (APPs) for
each stream’s encoded symbols, which are used to generate
soft estimates. These soft estimates are subsequently used to
update the receive filters of the detector, de-interleaved and
fed back through the feedback filter. The detector computes
the a posteriori log-likelihood ratio (LLR) of a symbol (+1
or −1) for every code bit of each data stream in a packet with
P symbols as given by

Λ1[bj,c[i]] = log
P [bj,c[i] = +1|r[i]]
P [bj,c[i] = −1|r[i]]

,

j = 1, . . . ,KNU , c = 1, . . . , C,

(23)

where C is the number of bits used to map the constellation.
Using Bayes’ rule, the above equation can be written as

Λ1[bj,c[i]] = log
P [r|bj,c[i] = +1]

P [r[i]|bj,c[i] = −1]
+ log

P [bj,c[i] = +1]

P [bj,c[i] = −1]

= λ1[bj,c[i]] + λp
2[bj,c[i]],

(24)

where λp
2[bj,c[i]] = log

P [bj,c[i]=+1]
P [bj,c[i]=−1] is the a priori LLR of

the code bit bj,c[i], which is computed by the MAP decoder
processing the jth data/user stream in the previous iteration,
interleaved and then fed back to the detector. The superscript
p denotes the quantity obtained in the previous iteration.
Assuming equally likely bits, we have λp

2[bj,c[i]] = 0 in the
first iteration for all streams/users. The quantity λ1[bj,c[i]] =

log
P [r[i]|bj,c[i]=+1]
P [r[i]|bj,c[i]=−1] represents the extrinsic information com-

puted by the SISO detector based on the received data r[i],
and the prior information about the code bits λp

2[bj,c[i]], j =
1, . . . ,KNU , c = 1, . . . , C and the ith data symbol. The
extrinsic information λ1[bj,c[i]] is obtained from the detector
and the prior information provided by the MAP decoder, which
is de-interleaved and fed back into the MAP decoder of the
jth data/user stream as the a priori information in the next
iteration.

For the MAP decoding, we assume that the interference plus
noise at the output zj [i] of the receive filters is Gaussian. This
assumption has been reported in previous works and provides
an efficient and accurate way of computing the extrinsic
information. Thus, for the jth stream/user and the qth iteration
the soft output of the detector is

z
(q)
j [i] = V

(q)
j sj [i] + ξ

(q)
j [i], (25)

where V
(q)
j [i] is a scalar variable equivalent to the magnitude

of the channel corresponding to the jth data stream and ξ
(q)
j [i]

is a Gaussian random variable with variance σ2

ξ
(q)
j

[i]. Since we

have
V

(q)
j = E

[
s∗j [i]z

(q)[i]
j

]
(26)

and
σ2

ξ
(q)
j

= E
[
|z(q)j [i]− V

(q)
j [i]sj [i]|2

]
, (27)

the receiver can obtain the estimates V̂
(q)
j and σ̂2

ξ
(q)
j

via cor-

responding sample averages over the received symbols. These
estimates are used to compute the a posteriori probabilities
P [bj,c[i] = ±1|z(q)j,l [i]] which are de-interleaved and used as
input to the MAP decoder. In what follows, it is assumed
that the MAP decoder generates APPs P [bj,c[i] = ±1], which
are used to compute the input to the receiver. From (25)
the extrinsic information generated by the iterative receiver
is given by

λ1[bj,c][i] = log
P [z

(q)
j |bj,c[i] = +1]

P [z
(q)
j |bj,c[i] = −1]

, i = 1, . . . , P,

= log

∑
S∈S+1

c

exp
(
− |z(q)

j −V
(q)
j S|2

2σ2

ξ
(q)
j

)
∑

S∈S−1
c

exp
(
− |z(q)

j −V
(q)
j S|2

2σ2

ξ
(q)
j

) ,
(28)

where S+1
c and S−1

c are the sets of all possible constellations
that a symbol can take on such that the cth bit is 1 and −1,
respectively. Based on the trellis structure of the code, the
MAP decoder processing the jth data stream computes the a
posteriori LLR of each coded bit as described by

Λ2[bj,c[i]] = log
P [bj,c[i] = +1|λp

1[bj,c[i]; decoding]

P [bj,c[i] = −1|λp
1[bj,c[i]; decoding]

= λ2[bj,c[i]] + λp
1[bj,c[i]],

for j = 1, . . . ,KNU , c = 1, . . . , C.

(29)

The computational burden can be significantly reduced using
the max-log approximation. From the above, it can be seen
that the output of the MAP decoder is the sum of the prior



information λp
1[bj,c[i]] and the extrinsic information λ2[bj,c[i]]

produced by the MAP decoder. This extrinsic information
is the information about the coded bit bj,c[i] obtained from
the selected prior information about the other coded bits
λp
1[bj,c[i]], j ̸= k. The MAP decoder also computes the a

posteriori LLR of every information bit, which is used to
make a decision on the decoded bit at the last iteration. After
interleaving, the extrinsic information obtained by the MAP
decoder λ2[bj,c[i]] for j = 1, . . .KNU , c = 1, . . . , C is fed
back to the detector, as prior information about the coded bits
of all streams in the subsequent iteration. For the first iteration,
λ1[bj,c[i]] and λ2[bj,c[i]] are statistically independent and as
the iterations are computed they become more correlated and
the improvement due to each iteration is gradually reduced.
It is well known in the field of IDD schemes that there is no
performance gain when using more than 5− 8 iterations.

The choice of channel coding scheme is fundamental for
the performance of iterative joint detection schemes. More
sophisticated schemes than convolutional codes such as Turbo
or LDPC codes can be considered in IDD schemes for the
mitigation of multi-beam and other sources of interference.
LDPC codes exhibit some advantages over Turbo codes that
include simpler decoding and implementation issues. However,
LDPC codes often require a higher number of decoding
iterations which translate into delays or increased complexity.
The development of IDD schemes and decoding algorithms
that perform message passing with reduced delays [60]–[62]
are of great importance in massive MIMO systems.

IV. PARAMETER ESTIMATION TECHNIQUES

Amongst the key problems in the uplink of multiuser
massive MIMO systems are the estimation of parameters such
as channels gains and receive filter coefficients of each user as
described by the signal models in Section II. The parameter
estimation task usually relies on pilot (or training) sequences,
the structure of the data for blind estimation and signal
processing algorithms. In multiuser massive MIMO networks,
non-orthogonal training sequences are likely to be used in most
application scenarios and the estimation algorithms must be
able to provide the most accurate estimates and to track the
variations due to mobility within a reduced training period.
Standard MIMO linear MMSE and least-squares (LS) channel
estimation algorithms [67] can be used for obtaining CSI.
However, the cost associated with these algorithms is often
cubic in the number of antenna elements at the receiver,
i.e., NA in the uplink. Moreover, in scenarios with mobility
the receiver will need to employ adaptive algorithms [66]
which can track the channel variations. Interestingly, massive
MIMO systems may have an excess of degrees of freedom that
translates into a reduced-rank structure to perform parameter
estimation. This is an excellent opportunity that massive
MIMO offers to apply reduced-rank algorithms [72]- [82] and
further develop these techniques. In this section, we review
several parameter estimation algorithms and discuss several
aspects that are specific for massive MIMO systems such as
TDD operation, pilot contamination and the need for scalable
estimation algorithms.

A. TDD operation
One of the key problems in modern wireless systems is the

acquisition of CSI in a timely way. In time-varying channels,
TDD offers the most suitable alternative to obtain CSI because
the training requirements in a TDD system are independent of
the number of antennas at the base station (or access point) [6],
[63], [64] and there is no need for CSI feedback. In particular,
TDD systems rely on reciprocity by which the uplink channel
estimate is used as an estimate of the downlink channel.
An issue in this operation mode is the difference in the
transfer characteristics of the amplifiers and the filters in the
two directions. This can be addressed through measurements
and appropriate calibration [65]. In contrast, in a frequency
division duplexing (FDD) system the training requirements
is proportional to the number of antennas and CSI feedback
is essential. For this reason, massive MIMO systems will
most likely operate in TDD mode and will require further
investigation in calibration methods.

B. Pilot contamination
The adoption of TDD mode and uplink training in massive

MIMO systems with multiple cells results in a phenomenon
called pilot contamination. In multi-cell scenarios, it is difficult
to employ orthogonal pilot sequences because the duration of
the pilot sequences depends on the number of cells and this
duration is severely limited by the channel coherence time due
to mobility. Therefore, non-orthogonal pilot sequences must be
employed and this affects the CSI employed at the transmitter.
Specifically, the channel estimate is contaminated by a linear
combination of channels of other users that share the same
pilot [63], [64]. Consequently, the detectors, precoders and
resource allocation algorithms will be highly affected by
the contaminated CSI. Strategies to control or mitigate pilot
contamination and its effects are very important for massive
MIMO networks.

C. Estimation of Channel Parameters
Let us now consider channel estimation techniques for mul-

tiuser Massive MIMO systems and employ the signal models
of Section II. The channel estimation problem corresponds to
solving the following least-squares (LS) optimization problem:

Ĝ[i] = argmin
G[i]

i∑
l=1

λi−l||r[l]−G[i]s[l]||2, (30)

where the NA × KNU matrix G = [G1 . . .GK ] contains
the channel parameters of the K users, the KNU × 1 vector
contains the symbols of the K users stacked and λ is a
forgetting factor chosen between 0 and 1. In particular, it is
common to use known pilot symbols s[i] in the beginning of
the transmission for estimation of the channels and the other
receive parameters. This problem can be solved by computing
the gradient terms of (30), equating them to a zero matrix and
manipulating the terms which yields the LS estimate

Ĝ[i] = Q[i]R−1[i], (31)

where Q[i] =
∑i

l=1 λ
i−lr[l]sH [l] is a NA × KNU matrix

with estimates of cross-correlations between the pilots and



the received data r[i] and R[i] =
∑i

l=1 λ
i−ls[i]sH [i] is an

estimate of the auto-correlation matrix of the pilots. When
the channel is static over the duration of the transmission, it
is common to set the forgetting factor λ to one. In contrast,
when the channel is time-varying one needs to set λ to a value
that corresponds to the coherence time of the channel in order
to track the channel variations.

The LS estimate of the channel can also be computed recur-
sively by using the matrix inversion lemma [66], [67], which
yields the recursive LS (RLS) channel estimation algorithm
[27] described by

P [i] = λ−1P [i− 1]− λ−2P [i− 1]s[i]sH [i]P [i− 1]

1 + λ−1sH [i]P [i− 1]
s[i],

(32)
T [i] = λT [i− 1] + r[i]sH [i], (33)

Ĝ[i] = T [i]P [i], (34)

where the computational complexity of the RLS channel esti-
mation algorithm is NA(KNU )

2+4(KNU )
2+2NA(KNU )+

2KNU + 2 multiplications and NA(KNU )
2 + 4(KNU )

2 −
KNU additions [27].

An alternative to using LS-based algorithms is to em-
ploy least-mean square (LMS) techniques [68], which can
reduce the computational cost. Consider the mean-square error
(MSE)-based optimization problem:

Ĝ[i] = argmin
G[i]

E||r[i]−G[i]s[i]||2], (35)

where E[·] stands for expected value. This problem can be
solved by computing the instantaneous gradient terms of (35),
using a gradient descent rule and manipulating the terms which
results in the LMS channel estimation algorithm given by

Ĝ[i+ 1] = Ĝ[i] + µe[i]sH [i], (36)

where the error vector signal is e[i] = r[i]− Ĝ[i]s[i] and the
step size µ should be chosen between 0 and 2/tr[R] [66].
The cost of the LMS channel estimation algorithm in this
scheme is NA(KNU )

2 +NA(KNU ) +KNU multiplications
and NA(KNU )

2+NAKNU+NA−KNU additions. The LMS
approach has a cost that is one order of magnitude lower than
the RLS but the performance in terms of training speed is
worse. The channel estimates obtained can be used in the ML
rule for ML detectors and SD algorithms, and also to design
the receive filters of ZF and MMSE type detectors outlined in
the previous section.

D. Estimation of Receive Filter Parameters

An alternative to channel estimation techniques is the direct
computation of the receive filters using LS techniques or adap-
tive algorithms. In this subsection, we consider the estimation
of the receive filters for multiuser Massive MIMO systems and
employ again the signal models of Section II. The receive filter
estimation problem corresponds to solving the LS optimization
problem described by

wk,o[i] = arg min
wk[i]

i∑
l=1

λi−l|sk[l]−wH
k [i]r[l]|2, (37)

where the NA × 1 vector wk contains the parameters of the
receive filters for the kth data stream, the symbol sk[i] contains
the symbols of the kth data stream. Similarly to channel
estimation, it is common to use known pilot symbols sk[i] in
the beginning of the transmission for estimation of the receiver
filters. This problem can be solved by computing the gradient
terms of (37), equating them to a null vector and manipulating
the terms which yields the LS estimate

wk,o[i] = R−1
r [i]pk[i], (38)

where Rr[i] =
∑i

l=1 λ
i−lr[i]rH [i] is the auto-correlation

matrix of the received data and pk[i] =
∑i

l=1 λ
i−lr[l]sHk [l]

is a NA × 1 vector with cross-correlations between the pilots
and the received data r[i]. When the channel is static over
the duration of the transmission, it is common to set the
forgetting factor λ to one. Conversely, when the channel is
time-varying one needs to set λ to a value that corresponds to
the coherence time of the channel in order to track the channel
variations. In these situations, a designer can also compute
the parameters recursively, thereby taking advantage of the
previously computed LS estimates and leading to the RLS
algorithm [66] given by

k[i] =
λ−1P [i− 1]r[i]

1 + λ−1rH [i]P [i− 1]r[i]
, (39)

P [i] = λ−1P [i− 1]− λ−1k[i]rH [i]P [i− 1], (40)

wk[i] = wk[i− 1]− k[i]e∗k,a[i], (41)

where ek,a[i] = sk[i]−wH
k [i−1]r[i] is the a priori error signal

for the kth data stream. Several other variants of the RLS algo-
rithm could be used to compute the parameters of the receive
filters [69]. The computational cost of this RLS algorithm
for all data streams corresponds to KNU (3N

2
A + 4NA + 1)

multiplications and KNU (3N
2
A + 2NA − 1) + 2NAKNU

additions

A reduced complexity alternative to the RLS algorithms is to
employ the LMS algorithm to estimate the parameters of the
receive filters. Consider the mean-square error (MSE)-based
optimization problem:

wk,o[i] = arg min
wk[i]

E[|sk[i]−wH
k [i]r[i]|2], (42)

Similarly to the case of channel estimation, this problem can
be solved by computing the instantaneous gradient terms of
(42), using a gradient descent rule and manipulating the terms
which results in the LMS estimation algorithm given by

ŵk[i+ 1] = ŵk[i] + µe∗k[i]r[i], (43)

where the error signal for the kth data stream is ek[i] = sk[i]−
wH

k [i]r[i] and the step size µ should be chosen between 0 and
2/tr[R] [66]. The cost of the LMS estimation algorithm in
this scheme is KNU (NA + 1) multiplications and KNUNA

additions.

In parameter estimation problems with a large number of
parameters such as those found in massive MIMO systems,
an effective technique is to employ reduced-rank algorithms
which perform dimensionality reduction followed by parame-
ter estimation with a reduced number of parameters. Consider



the mean-square error (MSE)-based optimization problem:[
w̄k,o[i],TD,k,o[i]

]
= arg min

w̄k[i],TD,k

E[|sk[i]−w̄H
k [i]TH

D,k[i]r[i]|2],
(44)

where TD,k[i] is an NA × D matrix that performs dimen-
sionality reduction and w̄k[i] is a D × 1 parameter vector.
Given TD,k[i], a generic reduced-rank RLS algorithm [82]
with D-dimensional quantities can be obtained from (39)-(41)
by substituting the NA×1 received vector r[i] by the reduced-
dimension D × 1 vector r̄[i] = TH

D,k[i]r[i].
A central design problem is how to compute the dimen-

sionality reduction matrix TD,k[i] and several techniques have
been considered in the literature, namely:

• Principal components (PC): TD,k[i] = ϕD[i], where
ϕD[i] corresponds to a unitary matrix whose columns
are the D eigenvectors corresponding to the D largest
eigenvectors of an estimate of the covariance matrix R̂[i].

• Krylov subspace techniques: TD,k[i] =

[tk[i]R̂[i]tk[i] . . . R̂
D−1

[i]tk[i], where tk[i] = tk[i]
||pk[i]||

,
for k = 1, 2, . . . , D correspond to the bases of the
Krylov subspace [70]- [74].

• Joint iterative optimization methods: TD,k[i] is estimated
along with w̄k[i] using an alternating optimization strat-
egy and adaptive algorithms [75]- [83].

V. SIMULATION RESULTS

In this section, we illustrate some of the techniques outlined
in this article using massive MIMO configurations, namely,
a very large antenna array, an excess of degrees of freedom
provided by the array and a large number of users with mul-
tiple antennas. We consider QPSK modulation, data packets
of 1500 symbols and channels that are fixed during each data
packet and that are modeled by complex Gaussian random
variables with zero mean and variance equal to unity. For
coded systems and iterative detection and decoding, a non-
recursive convolutional code with rate R = 1/2, constraint
length 3, generator polynomial g = [7 5]oct and 4 decoding
iterations is adopted. The numerical results are averaged over
106 runs . For the CAS configuration, we employ Lk =
0.7, τ = 2, the distance dk to the BS is obtained from a
uniform discrete random variable between 0.1 and 0.95 , the
shadowing spread is σk = 3 dB and the transmit and receive
correlation coefficients are equal to ρ = 0.2. The signal-to-
noise ratio (SNR) in dB per receive antenna is given by SNR =

10 log10
KNUσ2

sr

RC σ2 , where σ2
sr = σ2

sE[|γk|2] is the variance of
the received symbols, σ2

n is the noise variance, R < 1 is the
rate of the channel code and C is the number of bits used to
represent the constellation. For the DAS configuration, we use
Lk,j taken from a uniform random variable between 0.7 and 1,
τ = 2, the distance dk,j for each link to an antenna is obtained
from a uniform discrete random variable between 0.1 and 0.5
, the shadowing spread is σk,j = 3 dB and the transmit and
receive correlation coefficients for the antennas that are co-
located are equal to ρ = 0.2. The signal-to-noise ratio (SNR)
in dB per receive antenna for the DAS configuration is given
by SNR = 10 log10

KNUσ2
sr

RC σ2 , where σ2
sr = σ2

sE[|γk,j |2] is the
variance of the received symbols.

In the first example, we compare the BER performance
against the SNR of several detection algorithms, namely, the
RMF with multiple users and with a single user denoted
as single user bound, the linear MMSE detector [17], the
SIC-MMSE detector using a successive interference cancella-
tion [26] and the multi-branch SIC-MMSE (MB-SIC-MMSE)
detector [27], [42], [45]. We assume perfect channel state
information and synchronization. In particular, a scenario
with NA = 64 antenna elements at the receiver, K = 32
users and NU = 2 antenna elements at the user devices is
considered, which corresponds to a scenario without an excess
of degrees of freedom with NA ≈ KNU . The results shown
in Fig. 4 indicate that the RMF with a single user has the
best performance, followed by the MB-SIC-MMSE, the SIC-
MMSE, the linear MMSE and the RMF detectors. Unlike
previous works [6] that advocate the use of the RMF, it is clear
that the BER performance loss experienced by the RMF should
be avoided and more advanced receivers should be considered.
However, the cost of linear and SIC receivers is dictated by
the matrix inversion of NA × NA matrices which must be
reduced for large systems. Moreover, it is clear that a DAS
configuration is able to offer a superior BER performance due
to a reduction of the average distance from the users to the
receive antennas and a reduced correlation amongst the set of
Na receive antennas, resulting in improved links.
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Fig. 4. BER performance against SNR of detection algorithms in a scenario
with NA = 64, NB = 32, L = 32, Q = 1, K = 32 users and NU = 2
antenna elements.

In the second example, we consider the coded BER perfor-
mance against the SNR of several detection algorithms with a
DAS configuration using perfect channel state information, as
illustrated in Fig. 5. The results show that the BER is much
lower than that obtained for an uncoded systems as indicated
in Fig. 4. Specifically, the MB-SIC-MMSE algorithm obtains
the best performance followed by the SIC-MMSE, the linear
MMSE and the RMF techniques. Techniques like the MB-
SIC-MMSE and SIC-MMSE are more promising for systems
with a large number of antennas and users as they can operate
with lower SNR values and are therefore more energy efficient.
Interestingly, the RMF can offer a BER performance that is
acceptable when operating with a high SNR that is not energy



efficient and has the advantage that it does not require a
matrix inversion. If a designer chooses stronger channel codes
like Turbo and LDPC techniques, this choice might allow the
operation of the system at lower SNR values.
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Fig. 5. Coded BER performance against SNR of detection algorithms with
DAS in a scenario with NA = 64, NB = 32, L = 32, Q = 1, K = 32
users, NU = 2 antenna elements and 4 iterations.

In the third example, we assess the estimation algorithms
when applied to the analyzed detectors. In particular, we
compare the BER performance against the SNR of several
detection algorithms with a DAS configuration using perfect
channel state information and estimated channels with the RLS
and the LMS algorithms. The channels are estimated with 250
pilot symbols which are sent at the beginning of packets with
1500 symbols. The results shown in Fig. 6 indicate that the
performance loss caused by the use of the estimated channels
is not significant as it remains within 1-2 dB for the same BER
performance. The main problems of the use of the standard
RLS and LMS is that they require a reasonably large number
of pilot symbols to obtain accurate estimates of the channels,
resulting in reduced transmission efficiency.

In the fourth example, we evaluate the more sophisticated
reduced-rank estimation algorithms to reduce the number of
pilot symbols for the training of the receiver filters. In partic-
ular, we compare the BER performance against the number
of received symbols for a SIC type receiver using a DAS
configuration and the standard RLS [66], the Krylov-RLS [?]
and JIO-RLS [82] and the JIDF-RLS [80] algorithms. We
provide the algorithms pilots for the adjustment of the receive
filters and assess the BER convergence performance. The
results shown in Fig. 7 illustrate that the performance of the
reduced-rank algorithms is significantly better than the stan-
dard RLS algorithm, indicating that the use of reduced-rank
algorithms can reduce the need for pilot symbols. Specifically,
the best performance is obtained by the JIDF-RLS algorithm,
followed by the JIO-RLS, the Krylov-RLS and the standard
RLS techniques. In particular, the reduced-rank algorithms
can obtain a performance comparable to the standard RLS
algorithm with a fraction of the number of pilot symbols
required by the RLS algorithm. It should be remarked that
for larger training periods the standard RLS algorithm will

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

N
A
 = 64, N

B
 = 32, L = 32, Q = 1, K = 32, N

U
 = 2 users

 

 

DAS−RMF
DAS−Linear−MMSE
DAS−SIC−MMSE
DAS−MB−SIC−MMSE

Fig. 6. BER performance against SNR of detection algorithms in a scenario
with channel estimation, NA = 64, NB = 32, L = 32, Q = 1, K = 32
users and NU = 2 antenna elements. Parameters: λ = 0.999 and µ = 0.05.
The solid lines correspond to perfect channel state information, the dashed
lines correspond to channel estimation with the RLS algorithm and the dotted
lines correspond to channel estimation with the LMS algorithm.

converge to the MMSE bound and the reduced-rank algorithms
might converge to the MMSE bound or to higher MSE values
depending on the structure of the covariance matrix R and the
choice of the rank D.
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Fig. 7. BER performance against the number of received symbols for SIC
receivers with a DAS architecture operating at SNR = 15 dB in a scenario with
the estimation of the receive filters, NA = 64, NB = 32, L = 32, Q = 1,
K = 32 users and NU = 2 antenna elements. Parameters: λ = 0.999,
D = 5 for all reduced-rank methods, and interpolators with I = 3 parameters
and 12 branches for the JIDF scheme.

VI. FUTURE TRENDS AND EMERGING TOPICS

In this section, we discuss some future signal detection
and estimation trends in the area of massive MIMO systems
and point out some topics that might attract the interest of
researchers. The topics are structured as:

• Signal detection:



→ Cost-effective detection algorithms: Techiques to
perform dimensionality reduction [71]- [83] for detection
problems will play an important role in massive MIMO
devices. By reducing the number of effective processing
elements, detection algorithms could be applied. In
addition, the development of schemes based on RMF
with non-linear interference cancellation capabilities
might be a promising option that can close the complexity
gap between RMF and more costly detectors.

→ Decoding strategies with low delay: The development
of decoding strategies for DAS configurations with
reduced delay will play a key role in applications such
as audio and video streaming because of their delay
sensitivity. Therefore, we novel message passing
algorithms with smarter strategies to exchange
information should be investigated along with their
application to IDD schemes [60]–[62].

→ Mitigation of impairments: The identification of
impairments originated in the RF chains of massive
MIMO systems, delays caused by DAS schemes will
need mitigation by smart signal processing algorithms.
For example, I/Q imbalance might be dealt with using
widely-linear signal processing algorithms [74], [87],
[88].

→ Detection techniques for multicell scenarios: The
development of detection algorithms for scenarios with
multiple and small cells requires approaches which
minimize the need for channel state information from
adjacent cells and the decoding delay [84]- [86].

• Parameter estimation:

→ Blind algorithms: The development of blind
estimation algorithms for the channel and receive filter
parameters is important for mitigating the problem of
pilot contamination [89]- [94].

→ Reduced-rank and sparsity-aware algorithms: the de-
velopment of reduced-rank and sparsity-aware algorithms
that exploit the mathematical structure of massive MIMO
channels is an important topic for the future along with
features that lend themselves to implementation [70]-
[83].

VII. CONCLUDING REMARKS

This chapter has presented signal detection and estimation
techniques for multiuser massive MIMO systems. We consider
the application to cellular networks with massive MIMO along
with CAS and DAS configurations. Recent signal detection
algorithms have been discussed and their use with iteration de-
tection and decoding schemes has been considered. Parameter
estimation algorithms have also been reviewed and studied in
several scenarios of interest. Numerical results have illustrated
some of the discussions on signal detection and estimation
techniques along with future trends in the field.
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