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Abstract—In this paper, we propose adaptive algorithms for
system identification of sparse systems. We introduce a L1-
norm penalty to improve the performance of affine projection
algorithms. This strategy results in two new algorithms, the zero-
attracting APA (ZA-APA) and the reweighted zero-attracting AP
(RZA-APA). The ZA-APA is derived via the combination of a
L1-norm penalty on the coefficients into a standard APA cost
function, which generates a zero attractor in the update function.
The zero attractor promotes sparsity in the filter coefficients
during the update process, and therefore accelerates convergence
when identifying sparse systems. We show that the ZA-APA can
achieve a lower mean square error than the standard LMS
and AP algorithms. To further improve the performance, the
RZA-APA is developed using a reweighted zero attractor. The
performance of the RZA-APA is superior to that of the ZA-APA
numerically. Simulation results demonstrate the advantages of
the proposed adaptive algorithms in both convergence rate and
steady-state behavior under sparsity assumptions on the true
coefficient vector. The RZA-APA is also shown to be robust when
the number of non-zero taps increases.

I. INTRODUCTION

In general, the problem of system identification involves

constructing an estimate of an unknown system given only

two signals, namely 1) an input signal and 2) a reference

signal. Typically, the unknown system is modeled with a finite

impulse response (FIR) filter, and adaptive filtering algorithms

are employed to compute an estimate of the response of

the unknown system being identified. If the system is time-

varying, then the problem becomes more involved and includes

the task of tracking the unknown system as it changes over

time. When there is no available reference signal,we call the

problem blind system identification [15], [16]. The system

identification problem has numerous applications in control

systems, digital communications, and signal processing. [4]

The adaptive filters can be based on various basic algo-

rithms, of which the two most known are the least mean

squares (LMS) and the recursive least squares (RLS) [1].

The LMS algorithm is an extremely simple technique from

a computational complexity point of view, however, it may

have a poor performance with colored signals. The RLS algo-

rithm has often a high performance, however, it is often too

complex to implement in real time. This is one of the reasons

why designers seek solutions with an improved performance

as compared with the LMS and with a significantly lower

complexity than the RLS for applications with large filters [6].

As the required adaptive filter lengths grow, the conventional

LMS algorithm exhibits a slower convergence rate. For the

identification of sparse systems, the poor performance can be

explained by observing two aspects: (a) slow convergence of

the filter taps to their steady-state values since the convergence

rate of the algorithm is proportional to the total filter length;

(b) high steady-state misadjustment due to the estimation noise

that inevitably occurs during the adaptation of the so-called

inactive filter taps (i.e., taps with zero or close to zero values

at steady state) [7]. The affine projection algorithm (APA) [1]

and its variations [8]–[10], [14] is a popular method in adaptive

filtering applications, with complexity and performance inter-

mediary between those of LMS and of RLS. Its applications

include echo cancellation, channel equalization, interference

cancellation, and so forth.

In many scenarios, impulse responses of unknown systems

can be assumed to be sparse, containing only a few large coef-

ficients interspersed among many negligible ones. Using such

sparse prior information can improve the filtering/estimation

performance. However, standard LMS filters do not exploit

such information. In the past years, many algorithms exploiting

sparsity were based on applying a subset selection scheme

during the filtering process, which was implemented via statis-

tical detection of active taps or sequential partial updating [2]–

[4]. Other variants assign proportional step sizes to different

taps according to their magnitudes, such as the proportionate

normalized LMS (PNLMS) and its variations [5].

Motivated by recent progress in compressive sensing, sev-

eral authors have considered using the L1-norm penalty to



exploit the sparsity of the sparse systems or signals [2],

[3], [11], [12]. The basic idea is to introduce a penalty that

favors sparsity in the cost function. In this paper we propose

an alternative approach to identifying sparse systems using

an APA. We first incorporate an L1-norm penalty on the

coefficients into the quadratic cost function of the standard

APA. We incorporate an L1-norm penalty on the coefficients

into the cost function of the standard APA. This results in a

modified APA update with a zero attractor for all the taps,

which we term ZA-APA. We analytically demonstrate that the

ZA-APA achieves better steady-state performance than that

of the standard APA for sparse models. To further improve

the filtering performance, the reweighted zero-attracting APA

(RZA-APA) is also proposed, which employs reweighted step

sizes of the zero attractor for different taps, inducing the

attractor to selectively promote zero taps rather than uniformly

promote zeros on all the taps. Simulation results illustrate

that the proposed algorithms outperform the standard APA in

both convergence rate and steady-state performance for sparse

systems; and the RZA-APA outperforms the ZA-APA nu-

merically. Furthermore,the RZA-APA shows robustness when

the number of non-zero taps increases, with little loss in

performance with respect to the standard APA in non-sparse

situations.

The paper is organized as follows. Section II briefly de-

scribes the sparse system identification problem. Section III

reviews and develops the ZA-APA and RZA-APA adaptive

algorithms for sparse systems. In Section IV, simulation results

are provided. Finally, we conclude the paper and discuss

possible future directions in Section V.

II. SPARSE SYSTEM IDENTIFICATION PROBLEM

STATEMENT
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Fig. 1. Block diagram of sparse system identification using an adaptive

algorithm.

In a sparse system identification application, the desired

signal is the output of an unknown sparse system when excited

by an input signal. The input signal is also used as an input

for an adaptive filter ŵ(n) with M coefficients to produce

an output estimate y(n) which is compared to the reference

signal d(n). The error signal e(n) consists of the difference

between the desired signal d(n) and the output of the sparse

adaptive filter y(n). When the output error e(n) is minimized,

the adaptive filter represents a model for the unknown sparse

system. The block diagram of the system identification scheme

is shown in Fig. 1. Here, u(n) is the input signal with M

samples that is applied to the unknown sparse system, and the

response signal d(n) is the reference signal. The problem we

are interested in solving is how to identify the unknown sparse

system using an adaptive algorithm that is able to identify and

exploit the sparse nature of the system.

III. ADAPTIVE ALGORITHMS

In this section, we review the standard APA and derive the

proposed ZA-APA and RZA-APA.

A. Review of the Standard Affine Projection Algorithm

Let us assume that the last N input signal vectors are

organized in a matrix as follows [1]:

U(n) = [uT (n),uT (n− 1), ...,uT (n−N + 1)], (1)

where the u(n) denotes the vector of the input signal at time n,

and N denotes the APA order. We can also define some vectors

representing the filter output y(n), the desired signal d(n) and

the error vectors v(n). These vectors are, respectively given

by

y(n) = [y(n), y(n− 1), ..., y(n−N + 1)]T , (2)

d(n) = [d(n), d(n− 1), ..., d(n−N + 1)]T , (3)

v(n) = [v(n), v(n− 1), ..., v(n−N + 1)]T . (4)

From (1)-(4), we can obtain the following equation

y(n) = ŵTU(n) + v(n) (5)

For the APA, the tap-weight vector variation is defined as

Δŵ(n+1) = ŵ(n+1)− ŵ(n). The objective of the APA is

to minimize

‖ŵ(n+ 1)− ŵ(n)‖2
subject to d(n)−U(n)ŵ(n+ 1) = 0

(6)

Here the Lagrange multiplier can be used to find out the

solution that minimizes the cost function J(n).

J(n) = ‖ŵ(n+ 1)− ŵ(n)‖2
+Re{[d(n)−U(n)ŵ(n+ 1)]Hλ} (7)

where λ = [λ(0), λ(1), ..., λ(N − 1)]T denotes the vector

of Lagrange multipliers. By using the method of Lagrange

multipliers, the solution of this optimization problem would

be the following filter coefficient update equation

ŵ(n+ 1) = ŵ(n) + μUH(n)[U(n)UH(n)]−1e(n) (8)



with μ = 1. In general, a step-size μ < 1 is used to

control where μ is the step-size controlling convergence and

the steady-state behavior of the APA.

The APA is a generalization of the normalized least mean

square (NLMS) adaptive filtering algorithm. When the AP

order N is set to one, relations (8) will reduce to the familiar

NLMS algorithm.

B. Zero-Attracting Affine Projection Algorithm (ZA-APA)

In the ZA-APA, a new cost function J1(n) is defined by

combining the instantaneous square error with the L1-norm

penalty of the coefficient vector as given by

J1(n) = ‖ŵ(n+ 1)− ŵ(n)‖2
+Re{[d(n)−U(n)ŵ(n+ 1)]Hλ}
+ ‖ŵ(n+ 1)‖1

(9)

To minimize the cost function, we can use the method of

Lagrange multipliers,

∂J

∂ŵ∗(n+ 1)
= ŵ(n+1)−ŵ(n)−UH(n)λ+α sgn[ŵ(n+1)]

(10)

where sgn[ ] is a function that returns the sign of the argu-

ments. By equating (10) to zero, then we can get

ŵ(n+ 1) = ŵ(n) +UH(n)λ− α sgn[ŵ(n+ 1)] (11)

Multiplying both sides by U(n), we can obtain

d(n) = U(n)ŵ(n) +U(n)UH(n)λ

−αU(n)sgn[ŵ(n+ 1)]
(12)

Because e(n) = d(n) − U(n)ŵ(n) we can solve for λ.

Assuming that sgn[ŵ(n + 1)] ≈ sgn[ŵ(n)], we can obtain

with further manipulations the new filter coefficient update

equation

ŵ(n+ 1) = ŵ(n) + μU+(n)e(n)

+ αU+(n)U(n)sgn[ŵ(n)]

− αsgn[ŵ(n)]

(13)

where U+(n) = UH(n)[U(n)UH(n)]−1.

Comparing the ZA-APA update (13) to the standard APA

update (8), the ZA-APA has two additional terms, which attract

the tap coefficients to zero whenever the magnitudes of the

weight vector are close to zero. We call this the zero attractor

feature [2], whose strength is controlled by α. Intuitively, the

zero attractor will speed-up convergence when the majority of

coefficients of ŵ are zero, i.e., the system is sparse.

In addition, if we set the AP order N to one, (13) could

also be considered as the update formula for Zero-Attracting

NLMS (ZA-NLMS) algorithm.

C. Reweighted Zero-Attracting Affine Projection Algorithm
(RZA-APA)

Unfortunately, the ZA-APA does not distinguish between

zero taps and non-zero taps. Since all the taps are forced

to zero uniformly, the performance of ZA-APA would be

deteriorated when applied to less sparse systems. In order

to solve this problem, we adopt a heuristic approach first

reported in [13] and employed in [2] to reinforce the zero

attractor called the reweighted zero-attracting affine projection

algorithm (RZA-APA). For the RZA-APA, we use a new L1-

norm penalty to minimize the cost function,

∂J

∂ŵ∗(n+ 1)
= ŵ(n+ 1)− ŵ(n)

−UH(n)λ+ α
sgn(ŵ(n+ 1))

1 + ε|ŵ(n+ 1)|
(14)

Assuming that
sgn(ŵ(n+1))
1+ε|ŵ(n+1)| ≈ sgn[ŵ(n)]

1+ε|ŵ(n)| , and then we use

again the method of Lagrange multipliers to find the solution

ŵ(n+ 1) = ŵ(n) + μU+(n)e(n)

+ αU+(n)U(n)S(n)− αS(n)
(15)

where

U+(n) = UH(n)[U(n)UH(n)]−1

S(n) =
sgn[ŵ(n)]

1 + ε|ŵ(n)|
where ε is the shrinkage magnitude.

The RZA-APA is more sensitive to taps with small mag-

nitudes. The reweighted zero attractor takes more shrinkage

exerted on those taps for which magnitudes are comparable to

1/ε; and take less effort on the taps whose |ŵ(n)|�1/ε. In

this way, the bias of the RZA-APA can be reduced.

The same as ZA-APA, if we set the AP order N = 1, we

can also get the update formula of RZA-NLMS algorithm

from (15).

D. Computational Complexity Analysis

In this section, we discuss the computational complexity

of the existing and proposed algorithms. We assume there

are only Q non-zero taps in an M-length sparse system,

and the order of the APA is N . For data without time-

shifting structure, we detail the computational complexity of

the standard APA [1], and the proposed ZA-APA and RZA-

APA as shown in Table I. The computational complexity

requirements are described in terms of the number of complex

arithmetic operations, namely, additions and multiplications.

From the table, we note that the complexity of our proposed

algorithm is a little higher than that of the standard APA.

In addition, we can see that the RZA-APA has only Q more

additions and Q more multiplications than that of ZA-APA.



TABLE I

COMPUTE COMPLEXITY

Algorithm Additions Multiplications

APA N2M +MN N2M +N2 +MN
+Q−M +O(N3) +N +O(N3)

ZA-APA N2M +N2 N2M + 2N2

+3MN − 2N − 2M +3MN + 2N
+3Q+O(N3) +Q+O(N3)

RZA-APA N2M +N2 N2M + 2N2

+3MN − 2N − 2M +3MN +N +M
+4Q+O(N3) +2Q+O(N3)

IV. SIMULATION RESULTS

In this section, the performance of the ZA-APA (13) and

the RZA-APA (15) are compared with that of the standard

NLMS, RZA-NLMS and standard APA. Four experiments

have been designed to demonstrate their tracking and steady-

state performance. The parameters of the simulation system

are shown in Table II

TABLE II

TABLE OF PARAMETERS

Exp. Algorithm Step-size μ ZA α Reweighted ε

1 AP families 1.3 6×10−3 100
NLMS families 1.3 2×10−3 100

2 AP families 1.3 6×10−3 100
NLMS families 1.3 2×10−3 100

3 AP families 1.3 6×10−3 100
NLMS families 1.3 2×10−3 100

4 AP families 1 2×10−4 100
NLMS families 1 2×10−4 100
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In the first three experiments, there are 16 coefficients in the

time-varying system. Note that the number of non-zero taps

for each experiment are 1, 8 and 16. In the 1st experiment,

we set the 4th tap with value 1 and the others to zero, so that
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Fig. 4. Simulated MSD for experiment 3

it is a really sparse system with 1/16 factor of sparsity. In

the 2nd experiment, all the odd taps are set to 1, while all

the even taps remain equal to zero. For the 3rd experiment,

all the taps are set to 1, which means it is a totally non-

sparse system. In these three experiments, we choose step-

size μ = 1.3 to achieve balance between convergence rate and

steady-state performance.

For the first experiment, the average estimate of mean square

deviation (MSD) is shown in Fig. 2. As we can see from

the MSD results, when the system is very sparse, both the

ZA-APA and the RZA-APA achieve faster convergence rate

and better steady-state performance than the standard NLMS

and APA. And their convergence rate are also much faster

than RZA-NLMS. We can also see that if the AP order

N increase to 8, the misadjustment become larger, but it

can help to get a faster convergence rate. As we can see

from Fig. 3, when the number of non-zero taps increases to



50 100 150 200 250
−1

0

1
A

m
pl

itu
de

Delay

The impulse response
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8, the ZA-APA’s performance deteriorates, while the RZA-

APA still has the best convergence rate. And it also has the

best steady-state performance among the three APA-based

algorithms. In addtion, the increase of AP order can achieve

a better convergence rate, but it will also lead to a larger

misadjustment. When the sparsity continues to increase, as

what we can see from the Fig. 4, RZA-APA shows a robust

performance while the system is non-sparse.

In the fourth experiments, we introduce a 256-tap system

with 32 nonzero coefficients. The impulse response of the

system is shown in Fig. 5. Because this is a long system, it will

be much slower in convergence rate, so we choose step-size

μ = 1 to achieve balance between steady-state performance

and convergence rate. We can get that for this long sparse

system, the RZA-APA significantly outperforms the standard

NLMS and APA, as measured by a faster convergence rate

and a lower steady-state MSD.

V. CONCLUSIONS

In this paper, two affine projection algorithms have been

proposed for sparse system identification. The ZA-APA in-

troduces an L1-norm penalty of the coefficients into its cost

function, which can help to reduce the shrinkage in the

update formula. It can achieve a higher convergence rate

when the majority of coefficients are zero. And the RZA-

APA has been proposed to further improve the performance of

the ZA-APA algorithm, where a reweighted zero attractor is

devised to perform selective coefficient shrinkage. With the

help of the reweighted zero attractor, RZA-APA are better

both in convergence rate and steady-state performance. The

simulations have also shown that the ZA-APA the RZA-APA

improve on the standard APA in both tracking and steady-

state performance when the system is sparse, and the RZA-

APA also shows a robust performance for non-sparse systems.

Our future work will include how to choose the parameters of

zero-attracting algorithms in a more systematic way and how

to obtain analytical expressions to predict the level of MSD.
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