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ABSTRACT

Beamforming and direction of arrival estimation are areas of array signal processing

devoted to extracting information of interest from signals received over the spatial aper-

ture of an antenna array. The need for these techniques is encountered in a broad range

of important engineering applications, including radar, sonar, wireless communications,

radio astronomy and biomedicine, and is still a vital area of research.

In the first part, we focus on the development of widely-linear adaptive beamforming

algorithms designed according to the constrained minimum variance (CMV) principle

for strictly non-circular sources. Specifically, we devise three adaptive algorithms based

on the Krylov subspace, applying the auxiliary vector filtering (AVF), the conjugate

gradient (CG), and the modified conjugate gradient (MCG) algorithms, which avoid

the covariance matrix inversion required by the constraint. The proposed adaptive

algorithms fully exploit the second-order statistics of the strictly non-circular data and

achieve significant performance gains.

The second part is concerned with direction finding algorithms in the beamspace

domain. It is demonstrated that operation in beamspace substantially reduces the

computational complexity while providing increased estimation performance compared

to the element space. Therefore, two Krylov subspace-based algorithms, employing

the AVF and the CG algorithm developed for direction finding, are extended to the

beamspace processing. The development is followed by an extensive performance eval-

uation, highlighting their superior resolution performance for closely-spaced sources at

a low SNR and a small sample size.

In the last part, we introduce a new strategy of incorporating prior knowledge for

direction finding to improve the estimation performance of unknown signal sources.

The novel approach is developed for situations with a limited data record and is based

on an enhanced covariance matrix estimate obtained by linearly combining the sample

covariance matrix and a prior known covariance matrix in an automatic fashion. As

a result, knowledge-aided MUSIC-type and ESPRIT-type direction finding algorithms

are devised and evaluated. Extensive studies to assess the performance illustrate that

the exploitation of prior knowledge is translated into a significantly better estimation

performance.
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1. Introduction 1

1. INTRODUCTION

Array signal processing is an active area of research in the broad field of signal process-

ing, and focuses on the problem of estimating signal parameters from data collected

over the spatial aperture of an antenna array, where the sensors are placed at distinct

spatial locations. The given estimation task is usually associated with the extraction

of desired information from impinging signals in the presence of noise and interference.

The antenna array addresses the estimation problem by exploiting the spatial sepa-

ration of the sensor elements to capture the propagating wavefronts, which originate

from energy-radiating sources. Common signal parameters of interest to be estimated

are the signal content itself, the directions of arrival of the signals, and their power. To

obtain this information, the sensor array data is processed using statistical and adap-

tive signal processing techniques. These schemes include parameter estimation and

adaptive filtering applied to array signal processing. The underlying set of principles

and techniques for sensor array signal processing is applicable in many versatile areas

[1, 2], including wireless communications, radar, sonar, biomedicine, seismology and

astronomy.

Among the most relevant topics within array signal processing are beamforming

[1] and direction of arrival estimation [1], which present inevitable challenges when

designing wireless communications systems. As this thesis focuses on the advancement

of these techniques for communications, the main problems to be solved are interference

suppression, source localization, source tracking, complexity reduction and general

performance improvements. For the sake of simplicity, the novel strategies developed

in this work rely on the use of a uniform linear sensor array. An extension to arbitrary

array geometries will be addressed in future work.

1.1 Adaptive beamforming

A ubiquitous task in array signal processing is the extraction of desired information

from propagating signals originating from a certain direction by employing an antenna

array equipped with multiple sensors. The array records the radiating wavefronts and

produces an observation vector at a given time instant, which is processed to obtain the
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information of interest. The most straightforward strategy to achieve this objective is

the weighted linear combination of the signals received at multiple spatially separated

sensor elements. By selecting the appropriate weights, signals from a particular direc-

tion can be emphasized while attenuating interfering signals from other directions. This

weighting process is referred to as beamforming or spatial filtering [2, 3]. Generally,

the steering of beams into specific angles by constructing the weights is equivalent to

designing a frequency-selective finite impulse response (FIR) filter for temporal signals.

The weighting applied to the received signal at each sensor element can either be fixed

and data-independent, or continuously adapted to track changes in the system and

to reject interference. The latter approach, termed adaptive beamforming, evidently

provides a better performance and is the focus of this thesis.

The adaptive algorithms used to adjust the weights for each sensor element are

designed by optimizing certain criteria according to the given properties. One of the

most relevant design criteria in practice is the constrained minimum variance (CMV)

approach [4], which does not require the transmission of a known training sequence

and only implies knowledge of the array geometry and the angle of the desired signal.

The CMV optimality criterion minimizes the total beamformer output power while

constraining the array response in the direction of the desired signal to be constant.

Due to its simplicity and effectiveness much effort has been devoted over the past few

decades to devise efficient adaptive algorithms in order to realize a practical beam-

former design [1,3,5]. Among the existing adaptive algorithms, the least mean squares

(LMS) method [5] as a representative of the low-complexity stochastic gradient tech-

niques adopts gradient vectors for the iterative computation of the weights and yields

an acceptable performance in many applications. However, its efficacy strongly de-

pends on the step size and the eigenvalue spread of the covariance matrix, resulting

in an insufficient convergence performance for certain scenarios [3]. An alternative

method is the recursive least squares (RLS) algorithm [5], which is independent of the

eigenvalue spread and thus attains a fast convergence speed. Nevertheless, its main

drawbacks are numerical instability and a relatively high complexity. An attractive

trade-off between the performance and the complexity of the LMS method and the

RLS technique is achieved by the conjugate gradient (CG) algorithm [6, 7] originally

derived to solve a linear system of equations. It forms successive residual vectors within

a number of iterations in order to update the beamforming weight vector, requiring a

lower computational cost compared to the RLS method for few iterations and provid-

ing a faster convergence rate than the LMS approach. A modified version of the CG

(MCG) algorithm derived to obtain further reduction of the complexity while main-

taining the same performance level was proposed in [8]. Another adaptive algorithm
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that has received considerable interest is the auxiliary vector filtering (AVF) technique

[9]. Similarly to the CG method, it utilizes an iterative procedure to update the weight

vector by adopting auxiliary vectors to approach the optimal solution. The AVF algo-

rithm was shown to outperform the performance of the RLS method with regard to the

convergence speed and the steady-state level, and to be the state-of-the-art algorithm

for adaptive beamforming [9].

1.2 Direction of arrival estimation

A second problem, which is extensively studied as part of the general field of array

signal processing, is the estimation of the direction of arrival (DOA). The objective

is to determine the angle of arrival of a given spatially propagating signal relative to

the antenna array. To this end, the spatial separation of multiple sensor elements

is exploited to obtain the location of the energy-radiating source. The result of the

estimation procedure is subsequently used for the beamforming design described in the

previous section to steer the beam towards this specific direction, in order to capture

or radiate maximal power. With the field of applications involving DOA estimation

constantly expanding, numerous direction finding techniques have been devised over

the past few decades [1, 10]. The most well-known parameter estimation strategies

discussed here can be classified into three main categories, namely conventional [11],

subspace-based [12–17], and maximum likelihood (ML) methods [18].

The concept of the conventional DOA estimation algorithms relies on the beam-

forming principle. These techniques successively steer the main beam in all possible

look directions and measure the output power [10], which is recorded in the form of a

pseudo spectrum over the angle range. The largest peaks in the pseudo spectrum are

associated with the DOA estimates. The most prominent approach within this class is

Capon’s method [11] based on the CMV criterion [4]. It minimizes the power induced

by interfering signals and noise while keeping the gain towards the look direction fixed.

Although the implementation of the conventional techniques is simple, they suffer from

a lack of angular resolution and require a large number of sensors to achieve a higher

resolution.

The class of subspace-based methods exploits a spectral decomposition of the covari-

ance matrix to achieve high-resolution DOA estimates. Among the most relevant tech-

niques are the multiple signal classification (MUSIC) [12], its extension Root-MUSIC

[13], the estimation of signal parameters via rotational invariance techniques (ESPRIT)

[14], its enhancement Unitary ESPRIT [15] and the recently proposed auxiliary vector

filtering (AVF) [16] and conjugate gradient (CG) [17] algorithms developed for direction
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finding. The MUSIC-type and the ESPRIT-type algorithms exploit the eigen-structure

of the covariance matrix, allowing a decomposition of the observation space into a sig-

nal subspace and a complementary noise subspace. Specifically, MUSIC scans over the

possible angle range and makes use of the orthogonality of the subspaces to obtain a

pseudo spectrum with increased resolution. The extension Root-MUSIC for uniform

linear arrays avoids the exhaustive search for peaks by applying a polynomial rooting

technique. The ESPRIT-type algorithms avoid the exhaustive peak search by dividing

the sensor array into two identical subarrays and benefit from the uniform displacement

of the subarrays. The Unitary ESPRIT additionally takes advantage of the fact that

the phase factors representing the displacement lie on the unit circle. The recently

developed AVF and CG algorithms iteratively generate an extended non-eigen-based

signal subspace containing the true signal subspace and the scanning vector itself. The

DOA estimates are determined by the search for the collapse of the extended signal

subspace as the scanning vector belongs to it. Whereas the AVF algorithm adopts aux-

iliary vectors to form the extended signal subspace, the CG method applies residual

vectors and can be considered as an extension of the AVF technique. Both approaches

provide high-resolution estimates at a low signal-to-noise ratio, and a small sample

size.

ML-type methods are based on a parametric approach. They effectively exploit

the underlying data model, resulting in sufficiently high accuracy superior to the con-

ventional and subspace-based methods. However, the efficiency is at the expense of

the computational intensity as a multidimensional search is required. An iterative ap-

proach to limit the computational effort is the alternating projection technique [18],

which transforms the optimization problem into a sequence of one-dimensional opti-

mization problems.

1.3 Overview and contributions

In this work, we deal with the advancement of array signal processing algorithms for the

applications of beamforming and direction finding, which are of significant relevance

in wireless communications.

Chapter 2 introduces the system model for array signal processing, focusing on

the subspace estimation for direction finding and the CMV criterion-based design for

adaptive beamforming.

Chapter 3 is concerned with the first major contribution, which is the develop-

ment of adaptive beamforming methods using Krylov-based algorithms for non-circular
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sources. By exploiting the widely-linear property that some of the signal sources are

non-circular, an improved performance can be achieved. Three efficient widely-linear

adaptive algorithms based on the AVF, the CG and the MCG algorithms, which avoid

the computation of the inverse of the covariance matrix are derived according to the

CMV criterion. Furthermore, their performance compared to the linear versions is

investigated and the complexity analyzed.

Chapter 4 deals with the extension of the Krylov subspace-based DOA estimation

algorithms to the operation in beamspace, which is the second major contribution. The

operation in the beamspace domain allows for a significant reduction of the complexity

while substantially increasing the estimation performance. The AVF and CG-based

direction finding techniques are developed for two different beamspace designs, provid-

ing improved performance over their counterparts in element space. Complexity and

performance assessments are also conducted.

Chapter 5 addresses the third contribution, focusing on knowledge-aided DOA

estimation. By exploiting a priori knowledge of some of the DOAs to be estimated,

the estimation accuracy of the unknown signal directions can be significantly enhanced.

A novel way of incorporating the prior knowledge for situations of a limited data

record and a low signal-to-noise ratio is developed. The proposed scheme is applied

to ESPRIT-type and MUSIC-type algorithms and the impact of the knowledge on the

estimation performance is extensively studied.

Chapter 6 concludes the key properties covered in this work, emphasizing the

relevance for the scientific community and discussing possible topics for future work.
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2. SYSTEM MODEL

This chapter presents the system model of the antenna array output at the receiver,

which provides the basis for the development of array signal processing algorithms.

Although the problems of adaptive beamforming and DOA estimation are different, the

fundamental model used for them is very similar. As stated earlier, the developments

throughout this work are based on the use of a uniform linear array (ULA). Hence, the

introduced system model is only valid for this class of array geometries.

2.1 Data model for direction of arrival estimation

Considering a spherical coordinate system, the DOA of an incident wavefront can be

determined by estimating the azimuth angle θ and the elevation angle φ. For the

sake of simplicity, we limit this model to the one-dimensional case, assuming that the

wavefront impinges on the sensor array in the horizontal plane, i.e. φ = π/2, so that

the azimuth angle θ entirely specifies the DOA. Corresponding to the schematic array

structure in Figure 2.1, additional assumptions to describe the system model are to be

made:

• The propagating wavefronts are assumed to be radiated by point sources.

• The sources are considered to be in the far field and the wavefronts are approxi-

mately planar.

x1 x2 xM

∆sin θ1

∆

θ1

s1
sd

x3

Fig. 2.1: Generic model of a ULA.
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• The signals are narrowband signals, so that a time delay corresponds to a phase

shift.

• The sensors are omni-directional, there is no coupling between them and the

array is perfectly calibrated.

Let us suppose that an M -element sensor array receives d (d < M) propagating wave-

fronts with the distinct DOAs θ = [θ1, . . . , θd]
T relative to the broad side of the array.

The ith of N available data snapshots of the (M × 1)-dimensional array output vector

can be modeled as

x(i) =
[
a(θ1) · · · a(θd)

]



s1(i)
...

sd(i)


+ n(i) = A(θ)s(i) + n(i), i = 1, . . . , N, (2.1)

where A(θ) ∈ C
M×d is the array steering matrix, whose columns are functions of the

unknown DOAs. The zero-mean vector s(i) ∈ C
d×1 represents the impinging complex

waveforms of the d signals and n(i) ∈ C
M×1 is the additive vector of white circularly

symmetric complex Gaussian noise with zero mean and variance σ2
n.

Considering a ULA equipped with equally spaced sensors as shown in Figure 2.1,

the (M × 1) steering vectors a(θn) corresponding to the nth source, n = 1, . . . , d, can

be expressed as

a(θn) =
[
1 ej2π ∆

λc
sin θn · · · ej2π(M−1) ∆

λc
sin θn

]T
, (2.2)

where ∆ denotes the distance of adjacent sensors of the ULA and λc is the signal

wavelength. In order to avoid spatial aliasing, ∆ is restricted to ∆ ≤ λc/2 in which

case the DOAs are limited to the interval −90◦ < θn < 90◦. Defining the spatial

frequencies µn ∈ [−π, π] as a result of the geometry in Figure 2.1 as

µn = 2π
∆

λc
sin θn, (2.3)

the model stated in (2.1) can be written as

x(i) =




1 1 · · · 1

ejµ1 ejµ2 · · · ejµd

...
...

...

ej(M−1)µ1 ej(M−1)µ2 · · · ej(M−1)µd




s(i) + n(i), (2.4)
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where the array steering matrix A(θ) exhibits the Vandermonde structure. Given the

entire data of the N snapshots, (2.4) can also be expressed compactly as

X =
[
x1 · · · xN

]
= A(θ)S + N ∈ C

M×N . (2.5)

2.2 Signal subspace estimation

The DOA estimation techniques considered in this work belong to the class of subspace-

based algorithms. Therefore, a brief review of the fundamental properties is covered in

this section.

2.2.1 True signal subspace

Due to the fact that the source data s(i) and the noise vector n(i) are modeled as

uncorrelated random variables, the covariance matrix of the noise-corrupted zero-mean

array output x(i) is calculated by

R = E

{
x(i)xH(i)

}
= A(θ)RssA

H(θ) + σ2
nIM ∈ C

M×M , (2.6)

where Rss = E{s(i)sH(i)} is the signal covariance matrix, which is diagonal if the

sources are uncorrelated and nondiagonal for partially correlated sources. The noise

covariance matrix E{n(i)nH(i)} = σ2
nIM , where IM denotes the M × M identity

matrix.

The eigenvalue decomposition (EVD) of the covariance matrix R can be expressed

as

R =
[
Us Un

]



Λd 0

0 0


+ σ2

nIM




UH

s

UH
n ,


 (2.7)

where the diagonal matrix Λd = diag{λn}dn=1 consists of the nonzero eigenvalues,

and Us and Un represent the orthogonal eigenvectors corresponding to the d largest

eigenvalues and the M − d smallest eigenvalues, respectively. The matrix Us is often

referred to as signal subspace S and its orthogonal complement Un is termed noise

subspace. Without additive noise, i.e., σ2
n = 0, it is evident from

R = A(θ)RssA
H(θ) = UsΛdU

H
s (2.8)

that A(θ) and Us span the same signal subspace S of dimension d, i.e.,

S = span{A(θ)} = span{Us}. (2.9)
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2.2.2 Direct data approach

In the direct data approach, a singular value decomposition (SVD) of the array output

matrix X is performed to estimate the signal and the noise subspace. Assuming that

the number of sources d, i.e., the rank, is known, X can be written as

X =
[
Ûs Ûn

]

Σ̂s 0

0 Σ̂n




V̂ H

s

V̂ H
n


 (2.10)

= ÛsΣ̂sV̂
H
s + ÛnΣ̂nV̂ H

n , (2.11)

where the diagonal matrices Σ̂s and Σ̂n contain the d largest singular values and the

M − d smallest singular values, respectively. The estimated signal subspace Ûs ∈
C
M×d comprises the singular vectors corresponding to Σ̂s and the noise subspace Ûn ∈

C
M×(M−d) is associated with Σ̂n. If only the signal subspace is to be estimated a rank-d

approximation of the SVD can be applied.

2.2.3 Covariance approach

In practical applications, the true covariance matrix R is unknown and needs to be

estimated. A widely used estimator for R is a sample-averaged approach, termed

sample covariance matrix, which is given by

R̂ =
1

N

N∑

i=1

x(i)xH(i) =
1

N
XXH ∈ C

M×M . (2.12)

Again, assuming the rank d is known, the EVD of the sample covariance matrix R̂

yields

R̃ =
[
Ûs Ûn

]

Λ̂s 0

0 Λ̂n




ÛH

s

ÛH
n


 (2.13)

= ÛsΛ̂sÛ
H
s + ÛnΛ̂nÛH

n , (2.14)

where the diagonal matrices Λ̂s and Λ̂n contain the d largest eigenvalues and the

M − d smallest eigenvalues, respectively. The estimated signal subspace Ûs ∈ C
M×d

is composed of the eigenvectors corresponding to Σ̂s and the noise subspace Ûn ∈
C
M×(M−d) complies with Σ̂n. If only the signal subspace is to be estimated a rank-d

approximation of the EVD can be applied. Both the direct data approach and the

covariance approach are theoretically equivalent.
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2.3 Data model for CMV beamforming

In order to describe adaptive beamforming techniques according to the constrained

minimum variance (CMV) principle, the same assumptions on the impinging wavefronts

as in the previous section are presumed. However, for the system model, we do not

restrict the sensor array to be a ULA as this property is not required by the adaptive

algorithms. Furthermore, we use a slightly different notation to distinguish between

the problems of DOA estimation and adaptive beamforming.

Assume that d narrowband signals from sources in the far field are impinging

on an arbitrarily formed array of M (M ≥ d) sensor elements with the DOAs θ =

[θ1, . . . , θd]
T . The ith of N available data snapshots of the (M × 1)-dimensional array

output vector can be modeled as

r(i) = A(θ)P 1/2s(i) + n(i), i = 1, . . . , N, (2.15)

where the zero-mean vector s(i) = [s1(i), . . . , sd(i)]
T ∈ C

d×1 represents the complex

signal waveforms, P = diag{σ2
1, . . . , σ

2
d} contains the signal powers on its diagonal,

n(i) ∈ C
M×1 is the vector of white circularly symmetric complex Gaussian noise with

zero mean and variance σ2
n, and the matrix A(θ) = [a(θ1), . . . ,a(θd)] ∈ C

M×d consists

of the array steering vectors corresponding to the d sources.

Corresponding to Figure 2.2, the output of the adaptive beamformer is generated

by appropriately weighting the sum of the signals at each sensor element. Then, the

output signal is sent back to the adaptive processor to update the weights subject

to the optimization of a cost function. The weighting process can be mathematically

θn

x1(i)

x2(i)

xM (i)

1

2

M

Sources

Sensors
1

2

d

∑∑∑

w∗

1

w∗

2

w∗

M

y(i)

Adaptive

Algorithm

Fig. 2.2: Block diagram of a narrowband beamformer.
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expressed as

y(i) = wHr(i), (2.16)

where w = [w1, . . . , wM ]T ∈ C
M×1 is the complex beamforming weight vector to be

designed. After estimating the DOAs in the environment and selecting a particular

source of interest with the signal direction θ1, the beamformer output in (2.16) can be

expanded as

y(i) =
√
σ2

1wHa(θ1)s1(i) + wH

(
K∑

k=2

√
σ2
ka(θk)sk(i) + n(i)

)
(2.17)

=
√
σ2

1wHa(θ1)s1(i) + wHu(i), (2.18)

where u(i) is the vector containing the interferers and the additive noise. The objective

is to keep the gain in the direction of the desired user fixed, i.e., wHa(θ1) = γ and the

gain of the interferers small wHu(i) ≈ 0. This can be achieved by CMV beamforming,

which formulates the objective as the constrained optimization problem

wopt = argmin
w

E

{
|y(i)|2

}
= E

{
|wHr(i)|2

}
= wHRw

subject to wHa(θ1) = γ,
(2.19)

where the covariance matrix R is estimated by the sample covariance matrix R̂ defined

in (2.12). The goal of (2.19) is to minimize the array output variance while maintaining

the response in the direction of the SOI.

Applying the method of Lagrange multipliers, the optimal solution for the mini-

mization problem is

wopt =
γR−1a(θ1)

aH(θ1)R−1a(θ1)
. (2.20)

Setting the constant γ = 1 yields the so-called minimum variance distortionless re-

sponse (MVDR). Note that the CMV criterion requires the knowledge of the DOA θ1

of the desired user and the array geometry to form the steering vector a(θ1). Further

details and a classification into linear CMV (LCMV) and widely-linear CMV (WL-

CMV) will be discussed in the next chapter.
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3. WIDELY-LINEAR ADAPTIVE

BEAMFORMING USING

KRYLOV-BASED ALGORITHMS

In this chapter, we develop three widely-linear constrained adaptive beamforming al-

gorithms based on the Krylov subspace, which are designed according to the minimum

variance principle. The proposed algorithms apply either the auxiliary vector filter-

ing (AVF) algorithm, the conjugate gradient (CG) algorithm or the modified conju-

gate gradient (MCG) algorithm to iteratively update the beamforming weight vector.

By exploiting the non-circularity of impinging signals via a widely-linear processing

technique, the output performance of these adaptive algorithms can be significantly

improved.

3.1 Introduction

Adaptive beamforming is an essential approach for estimating the properties of a signal

of interest at the sensor array output by weighting and combining the received signals

to filter the desired user and to reject interference. The key advantage of the adaptive

architecture is its ability to automatically adjust its weights to suit differences in the

observed scenario. This includes tracking of moving interferers, or adaptation to leaving

or entering signal sources in the system. Given its vast importance in multiple fields

such as radar, sonar, biomedicine and wireless communications, adaptive beamforming

has received considerable attention in the last few decades and numerous algorithms

have been reported [5]. One of the most popular criteria for designing a beamformer is

the linearly constrained minimum variance (LCMV) concept [4], which minimizes the

variance at the array output while maintaining a desired response in the direction of

the source of interest (SOI). This design criterion only requires the knowledge of the

steering vector of the desired signal.

In most existing estimation and filtering algorithms, it is often assumed that the re-

ceived vector r(i) is second-order circular as for quadrature phase-shift keying (QPSK)-
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modulated signals, where the conventional covariance matrix

R = E

{
r(i)rH(i)

}
∈ C

M×M (3.1)

fully describes the second-order statistics. However, in many modern telecommunica-

tions and satellite systems based on binary phase-shift keying (BPSK)-modulated or

amplitude-shift keying (ASK)-modulated signals, the observation signal r(i) features

second-order non-circularity, i.e., the complementary covariance matrix

C = E

{
r(i)rT (i)

}
6= 0 ∈ C

M×M (3.2)

and thus needs to be considered to optimally characterize the statistical properties of

the signals [19]. It was recently shown that fully exploiting the second-order statis-

tics, referred to as widely-linear (WL) processing, substantially improves the output

performance compared to that in the linear processing [19–21]. Consequently, several

widely-linear adaptive beamforming algorithms comprising the WL minimum variance

distortionless response (WL-MVDR) algorithm [21] and the WL recursive least squares

(WL-RLS) algorithm [22] have been devised. These approaches are either based on the

assumption of weak non-circularity [21] or strict non-circularity [22] of the signals. A

slight drawback associated with the strategy of widely-linear processing is the increased

complexity due to the extended dimensions as both the originally observed data vector

r(i) and its complex conjugate r∗(i) need to be processed. As the filtered data ordi-

narily occupies a large sample size and also, largely equipped sensor arrays are utilized

in practice, the widely-linear processing scheme further slows down the convergence

speed of the adaptive algorithms.

Among the well-established linearly constrained adaptive algorithms are the least

mean squares (LMS) approach [5], which requires a low computational complexity but

exhibits a slow convergence, and the recursive least squares (RLS) algorithm [5] that

converges fast but suffers from a high computational burden. Two more recently de-

veloped adaptive beamforming algorithms, namely the auxiliary vector filtering (AVF)

algorithm [9] and the conjugate gradient (CG) algorithm [8] [23], rely on the Krylov

subspace and iteratively update the filter weights in a stochastic gradient fashion. The

AVF algorithm is known to yield a high convergence speed and to outperform the

LMS and the RLS techniques. The iterative method based on the CG algorithm can

provide an attractive trade-off between the convergence performance and the compu-

tational complexity. Similarly to the AVF algorithm, it avoids the computation of

R−1 required by the constraint, saving significant computational resources. However,

it does not attain the performance level of the RLS algorithm. Despite the benefits
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of these Krylov-based methods, they require several iterations per data snapshot in

order to converge. Thus, a modified version of the CG algorithm employing only one

iteration per data update was developed in [23]. By making use of a degenerated

scheme, meaning that its residual vectors are not requested to be orthogonal to the

spanned Krylov subspace, the computational cost is further reduced while maintaining

the performance.

Motivated by the convergence speed-enhancing and complexity-reducing perfor-

mance of the Krylov-based adaptive algorithms, this chapter is concerned with the

development of these algorithms combined with the strategy of widely-linear process-

ing to overcome the issues of the increased complexity and the convergence speed

limitations. The resulting novel algorithms devised for strictly non-circular sources are

referred to as the WL-AVF, the WL-CG and the WL-MCG beamforming methods and

are designed according to the widely LCMV (WL-CMV) criterion. Requiring only the

a priori knowledge of the signal direction of the desired user, the proposed techniques

fully exploit the second-order statistics of the strictly non-circular signals in the system

and, at the same time, ensure the benefits of the Krylov-based algorithms. In connec-

tion with the development of the WL-AVF, the WL-CG, and the WL-MCG methods,

an analysis of their computational complexity is performed and their convergence ca-

pabilities are studied. For comparison purposes, their performance is contrasted with

the previously developed WL-LMS and the WL-RLS algorithms.

3.2 LCMV beamforming

We start by shortly reviewing the LCMV concept for adaptive beamforming. Adopting

the definition of the received vector r(i) stated in Section 2.3, the output of an adaptive

narrowband beamformer is given by

y(i) = wHr(i), (3.3)

where

w = [w1, . . . , wM ]T ∈ C
M×1 (3.4)

is the beamforming vector to be designed, which contains the complex weights that

multiply the signals at each sensor element. The adaptation of the weight vector

according to the LCMV optimality criterion is defined as the minimization of the

total output variance while simultaneously keeping the gain of the array into a desired

signal direction θ1 fixed. This formulation is equivalent to the reduction of the output

variance by suppressing the interference. Mathematically, the optimal weights wopt are
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computed by solving the constrained optimization problem

wopt = argmin
w

E

{
|y(i)|2

}
= E

{
|wHr(i)|2

}
= wHRw

subject to wHa(θ1) = γ,
(3.5)

where R is the M × M covariance matrix defined in (3.1), a(θ1) is the array steering

vector of the desired user with the DOA θ1, and γ is an arbitrary constant. Solving

the minimization problem by using the method of Lagrange multipliers, the optimal

solution for the calculation of the weights is obtained by

wopt =
γR−1a(θ1)

aH(θ1)R−1a(θ1)
. (3.6)

Setting the constant γ = 1 yields the so-called MVDR beamformer, meaning that

the desired signal is undistorted due to the gain of 1 and the output signal exhibits

minimum variance. Note that the LCMV criterion requires the knowledge of the DOA

of the SOI and the exact array geometry to form the steering vector a(θ1).

In order to assess the effectiveness of an adaptive beamformer, the signal-to-interference-

plus-noise ratio (SINR) for the particular signal direction θ1 at each snapshot i is

analyzed. The expression of the SINR is given by

SINR(i) =
σ2

1|wH(i)a(θ1)|2
E {|wH(i)v(i)|2} =

σ2
1|wH(i)a(θ1)|2
wH(i)Ruw(i)

, (3.7)

where σ2
1 is the power of the SOI and Ru is the M × M covariance matrix of the

interference plus noise. The maximum output SINR according to the LCMV criterion

can be derived as

SINRLCMV
max =

σ2
1aH(θ1)R

−1a(θ1)

1 − σ2
1aH(θ1)R−1a(θ1)

. (3.8)

The proof of equation (3.8) was moved to the Appendix A.1.

3.3 Non-circularity and WL-CMV beamforming

As the objective of this chapter is to develop WL adaptive beamforming algorithms for

non-circular sources, we first review the properties of non-circularity and then make

use of the resulting characteristics to design the WL-CMV optimization criterion to

generate the beamforming weight vectors.

Masterarbeit Jens Steinwandt



3. Widely-linear adaptive beamforming using Krylov-based algorithms 17

−2 −1 0 1 2
−2

−1

0

1

2

(a) ρ = 0

−2 −1 0 1 2
−2

−1

0

1

2

(b) ρ = 0.6 exp(jπ/2)

−2 −1 0 1 2
−2

−1

0

1

2

(c) ρ = 1 exp(jπ/2)

Fig. 3.1: Contour lines of complex Gaussian random variables with different ρ.

3.3.1 Non-circularity of signal sources

A signal is termed non-circular if the real and the imaginary part of its source symbols

are dependent, such that the lines of equal probability in the joint density function

are not circles anymore [24, 25]. Consequently, a signal is referred to as circular if the

opposite fact holds. For mathematical purposes, the non-circularity coefficient

ρ =
E {s2(i)}
E {|s(i)|2} = |ρ|ejψ (3.9)

is defined to provide a measure for the deviation from the circular symmetry. Thus,

the non-circularity coefficient is ρ = 0 if the signal is circular. Assuming a signal in

the system to be non-circular is not a distinct condition. Furthermore, it is essential to

distinguish between weak non-circularity and strict non-circularity. The requirement

for a weakly non-circular signal is 0 < |ρ| < 1 and a strictly non-circular signal implies

a non-circularity coefficient of |ρ| = 1. The contour lines of constant probability density

for the three cases depending on ρ are depicted in Figure 3.1. Note that the lines for

non-circular sources can have an arbitrary orientation ψ/2, which is determined by the

angle of (3.9) [24]. In the following development of the WL Krylov-based beamforming

algorithms, we assume the property of strict non-circularity of all the signals in the

system.

3.3.2 WL-CMV beamforming assuming strict non-circularity

In order to exploit the strict non-circularity of signals impinging on the sensor array, the

second-order statistics fully described by the covariance matrix R = E{r(i)rH(i)} and

the complementary covariance matrix C = E{r(i)rT (i)} need to be taken into account.

Thus, to make use of the additional information contained in C, the received vector r(i)
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and its complex conjugate r∗(i) are processed by applying a bijective transformation

T such that

r(i)
T−→ r̃(i) : r̃(i) = [rT (i), rH(i)]T ∈ C

2M×1, (3.10)

where r̃(i) is the augmented received vector. It is utilized by the designed beamformer

to design the augmented weight vector w̃ ∈ C
2M×1 and to generate the output y(i) =

w̃H r̃(i), which is termed widely-linear beamforming. In what follows, all the widely-

linear quantities are denoted by an over tilde. Expanding the augmented vector after

the bijective transformation, and taking into account the entire data block, yields

X̃ =


X

X∗


 =


 A(θ)S

A∗(θ)S∗


+


N

N ∗


 ∈ C

2M×N , (3.11)

where we used X to denote the array output matrix for beamforming to avoid confu-

sions with the covariance matrix R. As a result of the strict non-circularity assumption

with |ρ| = 1, the source symbols in S are real-valued and (3.11) can be rewritten as

X̃ =


A(θ)

A∗(θ)


S +


N

N ∗


 . (3.12)

A proof of the implication of real-valued symbols when presuming a non-circularity

coefficient of |ρ| = 1 is shown in Appendix A.2.

Applying the bijective transformation T to the LCMV optimization problem in

(3.5), we obtain a new optimization problem referred to as WL-CMV design criterion,

which is formulated as

w̃opt = argmin
w̃

E

{
|y(i)|2

}
= E

{
|w̃H r̃(i)|2

}
= w̃HR̃w̃

subject to w̃Hã(θ1) = γ,
(3.13)

where ã(θ1) = T {a(θ1)} is the augmented steering vector of the SOI and R̃ =

E{r̃(i)r̃H(i)} ∈ C
2M×2M is the augmented covariance matrix of the structure

R̃ =


 R C

C∗ R∗


 , (3.14)

where the covariance matrix R and the complementary covariance matrix C appear in

conjugate pairs. Solving the widely-linear minimization problem using the Lagrange
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multiplier yields the optimal solution given by

w̃opt =
γR̃−1ã(θ1)

ãH(θ1)R̃−1ã(θ1)
. (3.15)

The performance of a widely-linear adaptive beamformer is evaluated through the

WL SINR, which is expressed similarly to (3.7) as

SĨNR(i) =
σ2

1|w̃H(i)ã(θ1)|2
w̃H(i)R̃uw̃(i)

, (3.16)

where R̃u is the augmented covariance matrices of the interference plus noise. The

maximum output SINR in the WL case is given by

SINRWL-CMV
max =

σ2
1ãH(θ1)R̃

−1ã(θ1)

1 − σ2
1ãH(θ1)R̃−1ã(θ1)

. (3.17)

3.4 Widely-linear beamforming based on the AVF algorithm

In this part, the widely-linear adaptive beamforming algorithm adopting the AVF

technique, termed WL-AVF algorithm, is developed. It utilizes the auxiliary vectors

provided by the AVF algorithm to iteratively update the widely-linear weight vector

w̃. After introducing the general structure of the WL-AVF-based beamforming design,

the algorithm is derived in detail according to the previous work in [9].

Structure of the WL-AVF algorithm for beamforming

The general framework of the proposed beamformer based on the WL-AVF algorithm

is depicted in Figure 3.2. First, the augmented received vector r̃(i) is obtained by

applying a bijective transformation T to the received input vector r(i). The augmented

vector is then processed by the filter, whose complex weights are adjusted via the WL-

Filter
Design

WL-AVF
Algorithm

T {·}
r(i) y(i)r̃(i)

wK(i)

Fig. 3.2: Structure of the WL-AVF algorithm.
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AVF algorithm to generate the beamformer output y(i). The final weight wK(i) per

data update is computed after K iterations of the WL-AVF algorithm. In the following

derivation, we drop the time instant i to increase the readability.

Proposed WL-AVF algorithm

The development of the WL-AVF algorithm starts with the initialization of the aug-

mented weight vector w̃, which is chosen to be equal to the conventional matched filter

solution for a desired response γ in the direction θ1, given by

w̃0 = γ∗ ã(θ1)

‖ã(θ1)‖2 . (3.18)

Then, the weight vectors are iteratively updated in a stochastic gradient manner by

subtracting scaled auxiliary vectors g̃ that are constructed to be orthogonal to ã(θ1).

The successively computed augmented weight vectors are obtained by

w̃k = w̃k−1 − µkg̃k, k = 1, . . . , K, (3.19)

where µk is the step size for the kth iteration. The augmented auxiliary vectors g̃k are

designed to maximize the magnitude of the cross-correlation between g̃Hk r̃ and w̃H
k−1r̃,

subject to the orthonormality constraint with respect to ã(θ1) [9], which is formulated

by the optimization problem

g̃k = argmax
g̃k

∣∣∣E
{
w̃H
k−1r̃[g̃Hk r̃]H

} ∣∣∣

= argmax
g̃k

∣∣∣E
{
w̃H
k−1R̃g̃k

} ∣∣∣

s.t. g̃Hk ã(θ1) = 0, ‖g̃k‖ = 1.

(3.20)

According to [9], the solution to this problem is expressed by

g̃k =

(
I − ã(θ1)ãH(θ1)

‖ã(θ1)‖2

)
R̃w̃k−1

∥∥∥
(
I − ã(θ1)ãH(θ1)

‖ã(θ1)‖2

)
R̃w̃k−1

∥∥∥
(3.21)

Eventually, the value for the step size µk is determined by minimizing the variance at

the output, i.e.,

µk = min
µk

E

{
|w̃H

k r̃|2
}

(3.22)

with the solution

µk =
g̃Hk R̃w̃k−1

g̃Hk R̃g̃k
. (3.23)
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Tab. 3.1: The proposed WL-AVF algorithm

Initialization: w̃0 = γ∗ ã(θ1)

‖ã(θ1)‖2

for each snapshot i = 1, . . . , N

R̃dl(i) = λR̃dl(i − 1) + r̃(i)r̃H(i) + ξI2M

for iteration k = 1, . . . , K

g̃k =

(
I2M −

ã(θ1)ã
H (θ1)

‖ã(θ1)‖2

)
R̃dlw̃k−1∥∥∥

(
I2M −

ã(θ1)ã
H (θ1)

‖ã(θ1)‖2

)
R̃dlw̃k−1

∥∥∥
If ‖g̃k − g̃k−1‖ → 0, EXIT.

µk =
g̃H

k
R̃dlw̃k−1

g̃H
k

R̃g̃k

w̃k = w̃k−1 − µkg̃k
end

end

For the proof of (3.23), the reader is referred to Appendix A.3.

The proposed beamforming technique based on the WL-AVF algorithm is summa-

rized in Table 3.1, where the time instant i is included again to emphasize the adaptive

approach of obtaining the augmented weight vector for each snapshot. As the auxil-

iary vectors approach zero when k increases, the iterative procedure is terminated if

‖g̃k − g̃k−1‖ → 0.

Applying the developed WL-AVF beamforming algorithm to non-stationary sys-

tems, the covariance matrix R̃ is estimated by its recursive form using the exponentially

weighted estimate:

R̃(i) = λR̃(i− 1) + r̃(i)r̃H(i), (3.24)

where λ is the forgetting factor, which is close to but less than 1. The first initialization

of R̃(0) = δI2M , where a common value for δ = σ2
n. Furthermore, the diagonal loading

technique [26] is adopted to achieve more accurate estimates of R̃ for a small number

of available snapshots, i.e.,

R̃dl(i) = R̃(i) + ξI2M , (3.25)

where the diagonal loading factor ξ is typically chosen to be ξ = 10·σ2
n according to [27].

Other approaches to improve the estimates in short data records include reduced-rank

algorithms as in [28].

3.5 Widely-linear beamforming based on the CG algorithm

This part of the chapter deals with the derivation of the WL-CG algorithm for adaptive

beamforming in the case of strictly non-circular signals. The WL-CG algorithm forms
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Filter
Design w̃(i)

WL-CG
Algorithm

T {·}
r(i) y(i)r̃(i)

ṽK(i)

Fig. 3.3: Structure of the WL-CG algorithm.

orthogonal residual vectors, which are employed to iteratively update the widely-linear

weight vector w̃(i). Whereas the general structure is described first, the second part is

concerned with the development of the WL-CG method as an extension of the previous

work in [8, 23].

Structure of the WL-CG algorithm for beamforming

The block diagram of the WL-CG-based beamforming procedure depicted in Figure 3.3

exhibits a similar structure as for the WL-AVF algorithm. The bijective transformation

T applied to the original received vector r(i) yields the augmented received vector

r̃(i), which is processed by the filter to provide the output y(i). However, contrary

to the WL-AVF procedure, the WL-CG method iteratively updates a new defined

augmented vector ṽ(i) to avoid the computation of R̃−1 that is passed onto the filter

after performing K iterations of the WL-CG algorithm. Thus, the final beamforming

weight vector w̃(i) is computed in the filter design. Again, we drop the time instant i

in the following development.

The proposed WL-CG algorithm

In order to derive the WL-CG beamforming algorithm for non-circular sources, the

WL-CG method is applied to minimize the cost function [29]

min J(ṽ) = ṽHR̃ṽ − 2Re
{
ãH(θ1)ṽ

}
, (3.26)

where ṽ ∈ C
2M×1 is a newly defined augmented CG weight vector, which is different

from the beamforming weight vector w̃ to be designed. The CG method was originally

developed to solve the optimization problem in (3.26) [6]. However, by taking the

gradient of (3.26) with respect to the CG weight vector ṽ and equating it to zero,

it can be shown that minimizing the optimization problem in (3.26) is equivalent to
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solving the system of linear equations [23]

R̃ṽ = ã(θ1) ∈ C
2M×1. (3.27)

The WL-CG algorithm solves (3.27) by approaching the optimal weight solution step

by step via a line search along successive directions, which are sequentially determined

at each iteration [6]. The solution for the WL-CG optimization problem (3.26) is

obtained as

ṽ = R̃−1ã(θ1). (3.28)

As the expression R̃−1ã(θ1) also occurs in the optimal WL-CMV solution in (3.15),

the WL-CMV beamformer can thus be iteratively computed without the calculation

of R̃−1 by updating the new augmented CG weight vector ṽ as

ṽk = ṽk−1 + αkp̃k, k = 1, . . . , K, (3.29)

where p̃k is the direction vector, αk is the step size value to control its weight and k

is the iteration number. The directions p̃k are orthogonal with respect to R̃, termed

R̃-orthogonality, i.e.,

p̃Hk R̃p̃l = 0 (3.30)

for all k 6= l. The following direction was determined in the previous iteration and is

obtained by

p̃k+1 = g̃k + βkp̃k, (3.31)

where g̃k is the residual vector defined in [6] that is given by

g̃k = ã(θ1) − R̃ṽk. (3.32)

The step size αk is chosen to minimize the cost function in the determined direction

and βk ensures the R̃-orthogonality of the direction vectors p̃k in (3.30). According to

[6], both parameters are calculated by

αk =
g̃Hk−1p̃k

p̃Hk R̃p̃k
and βk =

g̃Hk g̃k

g̃Hk−1g̃k−1

. (3.33)

After K iterations of the WL-CG algorithm the augmented complex weight vector w̃

is formed as

w̃ =
γṽK

ãH(θ1)ṽK
. (3.34)

A summary of the proposed WL-CG-based beamforming technique is given in Table
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Tab. 3.2: The proposed WL-CG algorithm

Initialization: ṽ0(1) = 0, R̃dl(0) = δI2M

for each snapshot i = 1, . . . , N

R̃dl(i) = λR̃dl(i − 1) + x̃(i)x̃H(i) + ξI2M ,

p̃1(i) = g̃0(i) = ã(θ1) − R̃dl(i)ṽ0(i)
for iteration k = 1, . . . , K

d̃k(i) = R̃dl(i)p̃k(i)

αk(i) = [p̃Hk (i)d̃k(i)]
−1g̃Hk−1(i)p̃k(i)

ṽk(i) = ṽk−1(i) + αk(i)p̃k(i)

g̃k(i) = g̃k−1(i) − αk(i)d̃k(i)
βk(i) = [g̃Hk−1(i)g̃k−1(i)]−1g̃Hk (i)g̃k(i)
p̃k+1(i) = g̃k(i) + βk(i)p̃k(i)

end

ṽ0(i + 1) = ṽK(i)
w̃(i) = [ãH(θ1)ṽK(i)]−1γṽK(i)

end

3.2, where again the included time instant i indicates the adaptive way to obtain the

weight solution for each data snapshot.

As already outlined in the previous section, the covariance matrix R̃ is estimated by

its recursive form using the exponentially weighted estimate and incorporating diagonal

loading:

R̃dl(i) = λR̃dl(i− 1) + r̃(i)r̃H(i) + ξI2M , (3.35)

where the diagonal loading factor ξ is again chosen to be ξ = 10 · σ2
n [27].

3.6 Widely-linear beamforming based on the MCG algorithm

In this section, a modified version of the WL-CG method, termed WL-MCG algo-

rithm, is developed for widely-linear adaptive beamforming. Similarly to the WL-CG

algorithm, it applies residual vectors to update the beamforming weight vector in an

iterative fashion. However, it only requires one iteration of the CG algorithm per sam-

ple update. Again, the first part deals with the structure of the MCG method and in

the second part, the detailed algorithm is derived according to [8].

Structure of the WL-MCG algorithm for beamforming

The general structure of the WL-MCG algorithm for adaptive beamforming is shown as

a block diagram in Figure 3.4. The augmented received vector r̃(i) obtained after the

bijective transformation is processed by the WL-MCG algorithm to provide the weight
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Filter
Design

WL-MCG
Algorithm

T {·}
r(i) y(i)r̃(i)

w̃(i)

Fig. 3.4: Structure of the WL-MCG algorithm.

vector w̃(i) for the filter. The key advantage is the property that, unlike the WL-CG

developed in the previous section, the MCG method requires only one iteration per

data snapshot, saving computational resources. Furthermore it also adopts the new

defined augmented vector ṽ(i) to avoid the costly computation of R̃−1.

The proposed WL-MCG algorithm

Corresponding to the WL-CG beamforming method, the WL-MCG algorithm is an-

other way of solving the system of equations stated in (3.27) in the previous section.

The covariance matrix is estimated by using the diagonal-loading enhanced exponen-

tially weighted data window

ˆ̃
Rdl(i) = λ ˆ̃

Rdl(i− 1) + r̃(i)r̃H(i) + ξI2M , (3.36)

where λ is the forgetting factor and ξ the diagonal loading factor. According to [1],

the estimated covariance matrix can be approximated for a large sample size as

ˆ̃
Rdl(i) ≈ 1

1 − λ
(R̃ + ξI2M). (3.37)

Now, we define the new augmented weight vector ṽ(i) to avoid the computationally

expensive computation of ˆ̃
R

−1

dl (i) at each snapshot as

ṽ(i) = ˆ̃
R

−1

dl (i)ã(θ1). (3.38)

Inserting equation (3.37) into (3.38), we obtain

ṽ(i) =
(

1

1 − λ
(R̃ + ξI2M)

)−1

ã(θ1) (3.39)

for a sufficiently large number of snapshots.

Similarly to the WL-CG algorithm, the WL-MCG method iteratively computes the
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solution of (3.38) by updating the new defined augmented vector ṽ(i) as

ṽ(i) = ṽ(i− 1) + α(i)p̃(i), (3.40)

where the direction vector p̃(i) was determined at the previous snapshot by

p̃(i+ 1) = g̃(i) + β(i)p̃(i) (3.41)

and the residual vector g̃(i) is given by

g̃(i) = ã(θ1) − ˆ̃
R(i)ṽ(i). (3.42)

In order to realize sample-by-sample processing, a recursive expression for the residual

vector g̃(i) can be derived by taking into account the equations (3.42), (3.36), and

(3.40), leading to

g̃(i) = (1 − λ)ã(θ1) + λg̃(i− 1) −
(
r̃(i)r̃H(i) + ξI2M

)
ṽ(i− 1) − α(i) ˆ̃

R(i)p̃(i). (3.43)

The proof of (3.43) is shown in Appendix A.4.

The basic idea of the WL-MCG is to employ a degenerated scheme [8], meaning

that the obtained residual vector g̃(i) is not required to be orthogonal to the subspace

spanned by the previously determined direction vectors S = span{p̃(1), p̃(2), . . . , p̃(i)},

i.e., p̃H(i)g̃(l) 6= 0 for l < i. Under this condition the step size α(i) has to satisfy the

convergence bound defined according to [8, 23] as

0 ≤ E

{
p̃H(i)g̃(i)

}
≤ 0.5 E

{
p̃H(i)g̃(i− 1)

}
. (3.44)

To this end, premultiplying equation (3.43) by p̃H(i), taking the expectation of both

sides and considering (3.39) yields

E

{
p̃H(i)g̃(i)

}
≈ λE

{
p̃H(i)g̃(i− 1)

}
− E {α(i)}E

{
p̃H(i) ˆ̃

R(i)p̃(i)
}
, (3.45)

where the convergence of the adaptive algorithm is assumed, such that the approxima-

tion in (3.39) holds, and therefore

(1 − λ)ã(θ1) −
[
E

{
r̃(i)r̃H(i)

}
+ ξI2M

]
ṽ(i− 1) = 0. (3.46)

Inserting the obtained expression (3.45) into the convergence bound in (3.44) and
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Tab. 3.3: The proposed WL-MCG algorithm

Initialization: ṽ(0) = 0, R̃dl(0) = δI2M , p̃(1) = g̃(0) = ã(θ1)
for each snapshot i = 1, . . . , N

R̃dl(i) = λR̃dl(i − 1) + x̃(i)x̃H(i) + ξI2M ,

d̃(i) = R̃dl(i)p̃(i)

α(i) = [p̃H(i)d̃(i)]−1(λ − η)p̃H(i)g̃(i − 1) (0 ≤ η ≤ 0.5)
ṽ(i) = ṽ(i − 1) + α(i)p̃(i)

g̃(i) = (1 − λ)ã(θ1) + λg̃(i − 1) − [r̃(i)r̃H(i) + ξI2M ]ṽ(i − 1) − α(i)d̃(i)
β(i) = [g̃H(i − 1)g̃(i − 1)]−1[g̃(i) − g̃(i − 1)]H g̃(i)
p̃(i + 1) = g̃(i) + β(i)p̃(i)
w̃(i) = [ãH(θ1)ṽ(i)]−1γṽ(i)

end

rearranging the terms, we have that

(λ− 0.5)
E

{
p̃H(i)g̃(i− 1)

}

E

{
p̃H(i) ˆ̃

R(i)p̃(i)
} ≤ E {α(i)} ≤ λ

E

{
p̃H(i)g̃(i− 1)

}

E

{
p̃H(i) ˆ̃

R(i)p̃(i)
} . (3.47)

From (3.47), the inequality is satisfied if α(i) is computed by

α(i) = (λ− η)
p̃H(i)g̃(i− 1)

p̃H(i) ˆ̃
R(i)p̃(i)

, (3.48)

where 0 ≤ η ≤ 0.5 to fulfill the convergence criterion. The step size β(i) is computed

according to the Polak-Ribiere approach [30] to avoid the reset procedure [8] and is

stated as

β(i) =
[g̃(i) − g̃(i− 1)]H g̃(i)

g̃(i− 1)H g̃(i− 1)
. (3.49)

The proposed WL-MCG algorithm for widely-linear adaptive beamforming is sum-

marized in Table 3.3. It only performs one iteration of the CG algorithm per snapshot,

saving significant computational efforts. The diagonal loading factor ξ in the algorithm

is again chosen to be ξ = 10 · σ2
n [27].

3.7 Computational complexity

The computational effort of the WL processing is one of the most important aspects

to take into account when developing novel WL adaptive beamforming algorithms.

To this end, we evaluate the computational complexity of the proposed WL Krylov-

based beamforming algorithms and compare them to their linear counterparts. For
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comparison purposes, we first focus on the complexity of the linear algorithms, and

then consider the complexity of the WL algorithms.

3.7.1 Complexity of LCMV algorithms

The computational cost, shown in Table 3.4, is measured in terms of the arithmetical

operations, whereM is the number of sensor elements andK is the number of iterations.

The expressions in Table 3.4 are obtained from the work in [23]. It is evident that the

complexity of the AVF and the CG algorithm depends on the iteration number K.

Figure 3.5 illustrates the computational cost as a function of the number of sensors M .

The iteration numbers for the AVF and the CG method are chosen to be K = 4 and

K = 5 respectively, as these numbers are used in the following performance evaluation.

Comparing the cost of the linear Krylov-based algorithms to the RLS method, the AVF

technique clearly exceeds the computational requirements of the RLS method, whereas

the CG algorithm demands a slightly higher cost. The aforementioned trade-off of

the CG method only becomes apparent for a smaller number of iterations. However,

the MCG algorithm provides a lower computational burden than the RLS technique,

especially for a large number of sensors M , but still requires a higher cost than the

LMS algorithm.
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Fig. 3.5: Complexity in terms of arithmetic operations versus the sensors M .
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Tab. 3.4: Computational complexity of LCMV beamforming algorithms

Algorithm Additions Multiplications

LMS [5] 4M − 2 4M + 3

RLS [5] 4M2 − M − 1 5M2 + 5M − 1

AVF [9] K(4M2 + M − 2) + 5M2 − M − 1 K(5M2 + 3M) + 8M2 + 2M

CG [8] K(M2 + 4M − 2) + 2M2 − 1 K(M2 + 4M + 1) + 3M2 + 3

MCG [8] 2M2 + 7M − 3 3M2 + 9M + 4

Tab. 3.5: Computational complexity of WL-CMV beamforming algorithms

Algorithm Additions Multiplications

WL-LMS [21] 8M − 2 8M + 3

WL-RLS [22] 16M2 − 2M − 1 20M2 + 10M − 1

WL-AVF K(16M2 + 2M − 2) + 20M2 − 2 ∗ M − 1 K(20M2 + 6M) + 32M2 + 4M

WL-CG K(4M2 + 8M − 2) + 8M2 − 1 K(4M2 + 8M + 1) + 12M2 + 3

WL-MCG 8M2 + 14M − 3 12M2 + 18M + 4

3.7.2 Complexity of WL-CMV algorithms

The computational complexity for the WL beamforming algorithms is depicted in Table

3.5. Due to the WL processing, the analyzed algorithms developed for non-circular

sources consider the additional information contained in the augmented steering vector,

which can be interpreted as an array composed of twice as many sensor elements M .

Thus, the computational cost of all the WL beamforming methods increases by nearly

the same amount, complying with the structure of the augmented covariance matrix

R̃. As a result, the same observations for the linear methods also apply to the WL

case. According to Figure 3.5, where the number of iterations for the WL-AVF and

the WL-CG techniques is now K = 2 and K = 3 respectively, the gap between the

cost of the WL-RLS and the WL-CG is substantially decreased. The complexity of

some of the considered algorithms might be further reduced by using symmetries and

individual properties. However, these complexity reductions are beyond the scope of

this work and are left for future investigations.
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3.8 Simulation results

In this section, the output SINR performance of the proposed WL Krylov-based al-

gorithms in stationary and non-stationary scenarios is evaluated and compared to the

WL-RLS, the WL-LMS algorithm, and their linear counterparts. For the simulations,

we employ a ULA consisting of M = 24 sensor elements whose interelement spacing

equals half a signal wavelength. Among d sources in the system, the DOA of the desired

user with signal power σ2
1 = 1 is θ1 = 0◦, which is known beforehand by the receiver. All

the signals are assumed to be binary phase-shift keying (BPSK)-modulated, and γ = 1

is set to satisfy the condition for the MVDR leading to a maximum achievable SINR

performance. The diagonal loading factor is ξ = 10 · σ2
n and each curve is obtained by

averaging a total of 1000 runs. Notice that in the simulations the number of iterations

K for the WL-AVF and the WL-CG algorithm is fixed for all the realizations. The first

part of the computer simulations deals with the performance in stationary scenarios

and the second part is concerned with the performance assessment in non-stationary

scenarios.

3.8.1 Performance in stationary scenarios

In the first experiment, we examine the SINR performance of the proposed WL adaptive

beamforming algorithms in a stationary system. Assuming that there are d = 15 users

in the scenario, the d − 1 = 14 interfering signals impinge on the sensor array from

the directions (±10◦ · [1, . . . , (d − 1)/2]) with an input SNR = 10 dB and a signal-to-

interference ratio (SIR) of −20 dB. Due to the stationarity of the system, the forgetting

factor is set to be λ = 1.

Figure 3.6 shows the output SINR performance as a function of the number of

snapshots N . The number of iterations K for the AVF algorithm and for the WL-

AVF algorithm were found to be K = 4 and K = 2 and the iteration number for the

CG algorithm and the WL-CG algorithm is K = 3 and K = 5, respectively. The

amount of iterations was optimized to yield the best output performance in terms

of the convergence speed. The lower number of iterations for the WL version of the

AVF and the CG algorithm can be explained by the fact that the augmented weight

vector provides additional information and reaches the optimum solution with fewer

iterations. It is apparent from Figure 3.6 that all the WL beamforming algorithms

provide substantial improvements over the linear techniques in general. Specifically,

the proposed WL-AVF algorithm outperforms the adaptive WL-LMS and the WL-RLS

in terms of both the convergence and the steady state. The WL-CG method and the
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WL-MCG algorithm perform close to the level of the WL-RLS algorithm and outclass

the WL-LMS technique. However, as discussed in the previous section, the WL-MCG

algorithm significantly reduces the complexity of the WL-CG method. As seen for the

SINRWL-CMV
max compared to the SINRLCMV

max , by exploiting the additional information in

the presence of non-circular sources, a higher gain can be achieved. This is due to the

WL processing, where the augmented steering vector can be interpreted as a virtual

array with twice as many sensors.

The SINR performance as a function of the SNR is illustrated in Figure 3.7, where

the number of snapshots is fixed to N = 1000. As expected, the SINR increases with

the SNR, and for the SINRWL-CMV
max the additional gain is expressed by shifting the curve

for the SINRLCMV
max to a higher SINR. The proposed WL algorithms performs similarly

to the results in Figure 3.6. The WL-AVF method outperforms the WL-LMS and the

WL-RLS algorithm, whereas the WL-CG and the WL-MCG techniques almost reach

the level of the WL-RLS algorithm.

3.8.2 Performance in non-stationary scenarios

In the second experiment, the SINR performance in a non-stationary scenario is an-

alyzed and compared to the WL-LMS and the WL-RLS. The system starts with the

same scenario as in Figure 3.6, but with different power levels of the interfering signals,
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Fig. 3.8: Output SINR versus the number of snapshots N in a non-stationary scenario
with M = 24, d1 = 15, d2 = 12, SNR = 10 dB, λ = 0.998.
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namely 8 interferers with a power of 20 dB, 4 with 10 dB and 2 with 5 dB above the

level of the SOI. At the 1000th snapshot, 4 users with a signal power of 20 dB and

one user with 10 dB above the SOI leave the system, and 2 users with a power of

20 dB and 5 dB above the SOI enter the system. As can be seen in Figure 3.8, the

proposed WL-CG and the WL-MCG quickly adapt to the changed system and exhibit

the convergence speed and the steady-state level of the WL-RLS method. Thus, the

WL-CG and the WL-MCG approaches provide a better performance after a change in

the environment. Nevertheless, the same conclusion can not be drawn for the proposed

WL-AVF algorithm. After the changing event, it barely exceeds the convergence speed

of the WL-LMS method and only attains the level of the other algorithms after requir-

ing a significant number of data samples. This behavior is due to the relatively low

number of iterations of the AVF algorithm per data update. However, a larger iteration

number would decrease the performance in a stationary system. In consequence of the

fixed number of iterations K for the experiments, it is evident that the performance

can be improved by applying an automatic scheme to adaptively adjust K.

3.9 Conclusions

In this chapter, an extension of the Krylov subspace-based algorithms employing the

AVF, the CG and the MCG methods for adaptive beamforming to the WL process-

ing is developed, resulting in the WL-AVF, the WL-CG and the WL-MCG algorithm.

After exploring the performance advantages associated with the WL processing in the

face of implying a loss of the computational efficiency, the WL-CMV optimization

criterion is introduced to update the augmented beamforming weight vector. Then

by assuming strictly non-circular signals in the system, the general framework of the

three proposed adaptive algorithms is discussed and their detailed derivation presented.

The developed algorithms fully exploit the second-order statistics of the strictly non-

circular signals and avoid the computation of the inverse of the augmented covariance

matrix. Whereas the WL-AVF algorithm applies augmented auxiliary vectors within

a number of iterations to adapt the augmented weight vector at each data sample, the

WL-CG resorts to augmented residual vectors. The key benefit of the WL-MCG is

the fact that it only performs one iteration per data snapshot. To assess the compu-

tational requirements, an analysis of the complexity is conducted, which demonstrates

that the same computational behavior in the linear case also holds for the WL pro-

cessing. Specifically, the WL-AVF algorithm requires the highest complexity and the

WL-MCG the lowest cost. Furthermore, the SINR performance of these algorithms is

evaluated by computer simulations for stationary and non-stationary scenarios, where
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the number of iterations for the WL-AVF and the WL-CG method is optimized. It is

illustrated that the WL processing provides significant performance improvements over

the linear processing. In stationary scenarios, the WL-AVF algorithm outperforms the

WL-RLS method, and the WL-CG and the WL-MCG algorithm perform close to the

WL-RLS technique. Considering non-stationary scenarios, the WL-CG and the WL-

MCG method attain the performance of the WL-RLS approach after a change in the

system; however, the WL-AVF achieves a slower adaptation due to the lower number of

iterations. This motivates an automatic scheme for adaptively switching the iteration

number.
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4. BEAMSPACE DIRECTION FINDING

USING KRYLOV SUBSPACE-BASED

ALGORITHMS

In this chapter, we develop a new class of beamspace direction finding algorithms

based on the recently proposed Krylov subspace-based algorithms, which utilize a

non-eigenvector basis for the signal subspace. Combining their superior estimation

performance under severe conditions and the benefits of operation in beamspace, the

estimation accuracy is further improved while simultaneously reducing the computa-

tional complexity.

4.1 Introduction

The need for the DOA estimation of impinging signal wavefronts using sensor arrays is

encountered in a broad range of important engineering applications, including radar,

sonar, wireless communications, radio astronomy, etc. As a result of this extensively

studied problem, numerous high-resolution methods for estimating the signal directions

of multiple emitter sources have been proposed in the last few decades [1, 10]. Among

the most profitable signal localization techniques are the subspace-based methods, such

as MUSIC [12], Root-MUSIC [13] and ESPRIT [14], which are proven to yield excellent

capabilities. These algorithms are based on a subspace approach, where the measured

covariance matrix

R̂ =
1

N

N∑

i=1

x(i)xH(i) ∈ C
M×M (4.1)

from M sensor elements is decomposed into two orthogonal subspaces, named the sig-

nal and the noise subspace (cf. Section 2.2.1). The most effectively used factorization

to obtain estimates of orthonormal bases for these subspaces is the eigenvalue decom-

position of the covariance matrix R̂ in (4.1). Nevertheless, this theoretical approach is

subject to a major problem as its practical calculation is computationally intensive, re-

quiring O(M3) operations. Due to the cubic increase of the computational burden with
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the number of sensor elements, considerable research interest has emerged to address

this problem.

A new class of subspace-based methods for the DOA estimation, referred to as

Krylov subspace-based methods, adopting the auxiliary vector filtering (AVF) algo-

rithm [16] or the conjugate gradient (CG) algorithm [17], was recently proposed. These

techniques avoid the computation of an eigenvalue decomposition of the measured co-

variance matrix, but iteratively generate an extended signal subspace basis of rank d+1,

the so-called extended Krylov subspace. The successively created basis comprises the

estimated signal subspace of rank d and the dimension of the scanning vector itself.

While the AVF-based algorithm [16] forms the signal subspace from auxiliary vectors,

the CG-based method [17] applies the orthogonal residual vectors to span the extended

Krylov signal subspace. Then, the unknown signal directions are determined by search-

ing over the spatial spectrum for the rank-collapse of the extended signal subspace from

d + 1 to d, as the scanning vector belongs to it. This novel approach results into a

superior resolution performance for closely-spaced sources under severe conditions, i.e.,

at a low signal-to-noise ratio (SNR) and a small data record N . However, despite

utilizing a non-eigenvector basis for the signal subspace, these methods suffer from a

similar computational complexity to the eigenvector-based methods, as the extended

Krylov signal subspace is constructed for each search angle.

To overcome the challenging issue of the increased computational complexity for

large sensor arrays, the inclusion of a beamforming preprocessor was firstly proposed

in [31]. This approach, termed beamspace (BS) processing, significantly reduces the

computational cost by linearly transforming the original data into a lower-dimensional

subspace, the beamspace. Afterwards, the conventional direction finding methods are

applied to the reduced beamspace data to obtain the DOAs. In addition to the compu-

tational savings, operation in beamspace can provide further benefits over the element

space, such as an improved estimation accuracy and increased resolution capabilities.

The transformation into the beamspace of lower dimension can be physically inter-

preted as the utilization of less beams B than the number of sensors initially involved

in the DOA estimation. Nevertheless, this requires the search for signal sources is only

conducted in a limited subband of the entire spatial spectrum. Thus, a priori knowl-

edge about the approximate positions of the transmitting signal sources is necessary

to effectively reduce the complexity while simultaneously increasing the degree of res-

olution associated with the operation in the element space. If no prior information is

available, a two-step DOA estimation can be used. This implies a rough estimation of

the signal directions in the first step, and a fine estimation to exploit this information

in the second step. Another approach in the unknown case is parallel processing of
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overlapping sectors of the angle spectrum to cover the whole space.

These observations motivate the development of a beamspace implementation of

the Krylov subspace-based direction finding methods. As a consequence, computa-

tionally efficient versions of the AVF-based and the CG-based algorithm with im-

proved performance are presented in this chapter. In conjunction with these two pro-

posed algorithms, termed beamspace auxiliary vector filtering (BS AVF) algorithm and

beamspace conjugate gradient (BS CG) algorithm, their ability to reduce the complex-

ity and their achievable localization accuracy is studied. To this end, we compare the

proposed beamspace algorithms to BS MUSIC [32], BS Root-MUSIC [33], BS ESPRIT

[34]. In our development, we assume that there are only signal sources in the sector of

interest.

4.2 Beamspace processing

The strategy of beamspace DOA estimation can be divided into two stages as depicted

in Figure 4.1. The first processing step is concerned with the beamforming methodol-

ogy, where the M -dimensional output data associated with the incident signals at each

of the M sensor elements is passed through the beamforming preprocessor. If properly

designed on the basis of the prior knowledge, it provides the transformed data in the

B-dimensional beamspace, where B is the number of beams and d < B < M . In the

second stage, the DOA estimation scheme, the signal directions are estimated with

increased accuracy by processing the obtained beamspace data.

Employing the system model introduced in Section 2.1 the linear transformation

of the original data from C
M into C

B performed by the preprocessor is achieved by

θθn

x̃1

x̃2

x̃B

x1

x2

xM

1

2

M

Sources

Sensors

Beams
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2

d

Beam-

forming
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cessor

DOA

Esti-

mation

Fig. 4.1: Diagram of the beamspace environment.
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premultiplying the array output vector x(i) by the transformation matrix W . Thus,

the new beamspace snapshot vector is given by

x̃(i) = WHx(i) ∈ C
B×1 , (4.2)

where W is the M × B beamforming matrix consisting of the steering vectors that

generate beams pointing into the a priori information-based directions. In what follows,

all the quantities in beamspace are denoted by an over tilde. Taking into account the

available data record N , equation (4.2) can be compactly rewritten in matrix form as

X̃ = WHX ∈ C
B×N . (4.3)

Furthermore, we can expand the transformed output in the beamspace by using the

signal model stated in Section 2.1, which yields

X̃ = WHA(θ)S + WHN . (4.4)

The B ×B beamspace covariance matrix for a zero-mean x̃(i) is then computed by

R̃ = E

{
x̃(i)x̃H(i)

}
= WHRW , (4.5)

where R is the covariance matrix of dimension M ×M in the element space. Inserting

the expression for R into (4.5), we get

R̃ = WHA(θ)RssA
H(θ)W + σ2

nWHW , (4.6)

where Rss = E{s(i)sH(i)} is the signal covariance matrix that is diagonal if the incident

signals are uncorrelated. Assuming that the columns of W are orthonormal gives

WHW = I. (4.7)

Now, according to (4.2), we apply the same transformation to the steering vectors to

obtain their lower-dimensional beamspace versions, which are calculated by

ã(θn) = WHa(θn), n = 1, . . . , d. (4.8)

Employing the matrix version of (4.8) and using (4.7), we can rewrite equation (4.6)

as

R̃ = Ã(θ)RssÃ
H(θ) + σ2

nI ∈ C
B×B. (4.9)
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An eigenvalue decomposition enables us to express R̃ in terms of its eigenvalues and

corresponding eigenvectors, leading to

R̃ = ŨsΛ̃sŨ
H
s + ŨnΛ̃nŨH

n , (4.10)

where the diagonal matrices Λ̃s and Λ̃n in the beamspace domain contain the d largest

eigenvalues and the B − d smallest eigenvalues, respectively, and Ũs and Ũn represent

their corresponding orthonormal eigenvectors.

4.3 Beamspace transformation matrix

In order to maintain or even improve the degree of resolution compared to the element

space, the beamspace transformation matrix needs to be chosen properly. Otherwise

we may lose information, which can degrade the estimation performance. The design

of the transformation matrix is determined by the beam pattern, which is constructed

to suit for different characteristics in the system. More specifically, the columns of

the transformation matrix B can be physically interpreted as beams that point to

different angles. Thus, the performance of the operation in beamspace simply depends

on the properties of those beams. It was shown in [31] that an adequately designed

beamforming preprocessor leads to a more robust estimator regarding array calibration

perturbations and increases the ability to resolve two closely-spaced signals. The only

restriction as seen from (4.7) is the orthonormality of the beam vectors that form the

transformation matrix. Also, for the sake of convenience, we assume that a uniform

linear array (ULA) is employed. In this section, we discuss the properties of two

various beamspace matrices, namely the discrete Fourier transform (DFT) matrix and

the discrete prolate spheroidal sequences (DPSS) matrix.

4.3.1 Discrete Fourier transform (DFT) beamspace

The most common preprocessing scheme is the M ×B DFT matrix beamformer com-

posed of B consecutive columns of the M -point DFT matrix with d < B < M . The

output in the DFT beamspace is formed as

x̃B,m(i) = WH
B,mx(i) ∈ C

B×1 , (4.11)

where m denotes the first column of the DFT manifold 0 ≤ m ≤ (M − 1), which

is determined from the prior knowledge and thus selects the sector of interest. The

subscripts B and m in WB,m are intended to clarify the dependency on the number of
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beams B and the subband m under consideration, respectively. The resulting orthog-

onal beam pointing angles are equispaced by the distance ∆u = 2
M

, so that WB,m is

given by

WB,m =
[
w

(
m

2

M

)
,w

(
(m+ 1)

2

M

)
, . . . ,w

(
(m+B − 1)

2

M

)]
, (4.12)

where the DFT beamforming vector w(u) exhibits the Vandermonde structure

w(u) =
[
1, ejπu, . . . , ej(M−1)πu

]T ∈ C
M×1 (4.13)

with u ∈
{
m 2

M
, (m + 1) 2

M
, . . . , (m + B − 1) 2

M

}
defining the range of the sector of

interest.

4.3.2 Discrete prolate spheroidal sequences (DPSS) beamspace

Discrete prolate spheroidal sequences, also referred to as Slepian sequences, were firstly

introduced in the work of [35] and later on applied to beamspace processing in [36].

The basic idea is to maximize the ratio of the energy of the bth beam in the sector

defined by [−θ0, , θ0] to the total energy of the bth beam in the entire spatial spectrum

described by [−θ0, , θ0] , which can be formulated according to [1] as

αb =

∫ θ0
−θ0

|wH
b a(θ)|2 dθ

∫ π
−π |wH

b a(θ)|2 dθ b = 1, . . . , B, (4.14)

where wb is the bth columns of the transformation matrix WB,θ0 . Similar to the

previous section, the subscripts B and θ0 denote the number of beams B and the

width 2θ0 of the subband. Equation (4.14) can be more compactly expressed in matrix

form as

αb =
wH
b Kwb

2πwH
b wb

, (4.15)

where the (m,n) of K is defined by

K(m,n) =
2 sin[(m− n)θ0]

(m− n)
for m 6= n (4.16)

and

K(m,n) = 2θ0 for m = n. (4.17)

As shown in [1], maximizing the expression (4.15) corresponds to finding the B eigen-

vectors of the matrix K associated with the B largest eigenvectors. These eigenvectors

are termed DPSSs and construct the columns of WB,θ0 .
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Fig. 4.2: Comparison of the DFT and DPSS spatial filters with M = 32 and B = 7.

4.3.3 Comparison of the DFT and DPSS spatial filters

In this section, we compare the characteristics of the DFT and the DPSS spatial filters

in terms of their passband transmission and their stopband attenuation. Figure 4.2

shows the response of a sensor array composed of M = 32 elements, where both spatial

filters are formed by B = 7 beams and offer a bandwidth of 24◦. It is evident from

Figure 4.2 that the DFT and the DPSS filters perform similarly, but the passband of

the DPSS window exhibits a smaller ripple, and provides a better rejection performance

in the stopband as the peaks are significantly lower. According to these observations,

we expect a slightly better estimation performance of direction finding algorithms in

the DPSS beamspace than in the DFT beamspace.

4.4 Beamspace direction finding based on the CG algorithm

In this section, we apply the beamspace strategy to the direction finding technique

based on the conjugate gradient (CG) algorithm in order to reduce the dimensionality

of the data resulting in a lower computational complexity, and to further increase its

ability to resolve two closely-spaced signal sources under severe conditions. The novel

BS CG algorithm is developed according to the previous work in [16,17].

The originally proposed CG method [6] is used to minimize a cost function or,
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equivalently, to solve a linear system of equations. It approaches the optimal solu-

tion step by step via a line search along successive directions, which are sequentially

determined at each iteration [6]. Applying the CG algorithm to beamspace direction

finding, the system of equations, also known as the Wiener-Hopf equations, which is

iteratively solved for w at each scanning angle, is given by

R̃w̃ = b̃(θ), (4.18)

where R̃ is the covariance matrix of the transformed data (4.2) and b̃(θ) is the initial

vector depending on the search angle. The initialization for b̃(θ) is defined, according

to [17], as

b̃(θ) =
R̃ã(θ)

‖R̃ã(θ)‖
, (4.19)

where ã(θ) is the scanning vector in the beamspace, which is linearly transformed by

the beamspace covariance matrix R̃ and normalized. The scanning vector is expressed

corresponding to (4.8) as

ã(θ) = WHa(θ). (4.20)

The extended Krylov-based signal subspace of rank d+1 is generated by performing

d iterations of the BS CG algorithm summarized in Table 4.1. The set of orthogonal

residual vectors

G̃d+1(θ) =
[
b̃(θ), g̃1(θ) . . . , g̃d(θ)

]
, (4.21)

where b̃(θ) = g̃0(θ), spans the extended Krylov subspace composed of the true signal

subspace of dimension d and the scanning vector itself. All the residual vectors are

normalized apart from the last one. If θ ∈ {θ1, . . . , θd}, the initial vector b̃(θ) lies in

the true signal subspace A(θ) (cf. Section 2.2.1) and thus, the set of vectors G̃d+1(θ)

are also contained in the column space of A(θ) [17]. However, G̃d+1 is not a basis for

the true signal subspace so that the rank of the generated Krylov signal subspace drops

from d+ 1 to d. This implies that since g̃d(θ) is not a linear combination of the other

residual vectors because it is orthogonal to all of them, the following equation holds:

g̃d(θ) = 0, (4.22)

where g̃d(θ) is the last unnormalized residual vector.

In order to exploit this observation, the spectral function of the proposed BS CG

direction finding algorithm as defined in [16] is given by

P̃ (θn) =
1

‖g̃Hd (θn)G̃d+1(θn−1)‖2
, (4.23)
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Tab. 4.1: The proposed DFT BS CG algorithm

Beamspace transformation:

x̃B,m(i) = WH
B,mx(i), ãB,m(θ) = WH

B,ma(θ)

for each angle θ

d̃1(θ) = g̃0(θ) = b̃(θ), ρ̃0(θ) = g̃H0 (θ)g̃0(θ)

for k = 1, . . . , d

ṽk(θ) = R̃d̃k(θ)

α̃k(θ) = [d̃Hk (θ)ṽk(θ)]
−1ρ̃k−1(θ)

g̃k(θ) = g̃k−1(θ) − α̃k(θ)ṽk(θ)

ρ̃k(θ) = g̃Hk (θ)g̃k(θ)

β̃k(θ) = [ρ̃k−1(θ)]
−1ρ̃k(θ)

d̃k+1(θ) = g̃k(θ) + β̃k(θ)d̃k(θ)
end

end

where θn denotes the search angle in the entire angle range {−90◦, . . . , 90◦} with

θn = n∆◦ − 90◦, where ∆◦ is the search step and n = 0, 1, . . . , 180◦/∆◦. The ma-

trix G̃d+1(θn−1) contains all the residual vectors at the (n − 1)th angle and g̃d(θn) is

the last residual vector calculated at the current search step n. If θn ∈ {θ1, . . . , θd},

then g̃d(θn) = 0 and we expect to see a peak in the pseudo spectrum.

In practical applications, the true covariance matrix in the beamspace domain R̃

is unknown and needs to be estimated. Thus, the terms g̃d(θn) and G̃d+1(θn−1) in

the denominator become approximations and as a result, the spectral function defined

in (4.23) will merely provide a very large value but not approach infinity as for the

genuine covariance matrix. Eventually, a peak search algorithm is applied to obtain

the signal directions θ from the d largest peaks of the pseudo spectrum.

4.5 Beamspace direction finding based on the AVF algorithm

This section is concerned with the development of the DOA estimation algorithm in the

beamspace based on the auxiliary vector filtering (AVF) algorithm, which we refer to as

the BS AVF algorithm. The concept of iteratively generating a non-eigenvector basis

for the signal subspace and the search for the rank collapse of the extended Krylov

signal subspace is the same as for the CG-based version. This approach employs

the AVF algorithm to solve the system of equations in (4.18) for each search angle

step by step by utilizing auxiliary vectors. The AVF algorithm was firstly applied to

sensor signal processing by the adaptive filtering work in [9] and was then exploited for

direction finding in [16]. In this work, the latter algorithm is extended to the operation
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in beamspace to reduce the computational burden while enhancing the estimation

performance.

According to [16] and to Section 4.4, we start our development with the initial vector

b̃(θ) after performing the beamspace transformations stated in (4.2) and (4.20). Again,

the initialization for b̃(θ) is a normalized linear transformation of the transformed

scanning vector ã(θ) depending on the angle, i.e.,

b̃(θ) =
R̃ã(θ)

‖R̃ã(θ)‖
. (4.24)

Then, we aim to find an arbitrary fixed auxiliary vector g̃1(θ) that is orthonormal with

respect to b̃(θ) in the beamspace and maximizes the magnitude of the cross correlation

between b̃H(θ)x̃ and g̃H1 (θ)x̃. Formulating this concept as an optimization problem

with respect to the orthonormality constraint yields

g̃1(θ) = argmax
g̃1(θ)

∣∣∣E
{
b̃H(θ)x̃[g̃H1 (θ)x̃]H

} ∣∣∣

= argmax
g̃1(θ)

∣∣∣E
{
b̃H(θ)R̃g̃1(θ)

} ∣∣∣

s.t. g̃H1 (θ)b̃(θ) = 0, ‖g̃1(θ)‖ = 1.

(4.25)

The solution to this constraint problem is given in [16] as

g̃1(θ) =
(I − b̃(θ)b̃H(θ))R̃b̃(θ)

‖(I − b̃(θ)b̃H(θ))R̃b̃(θ)‖
. (4.26)

Now, in order to compute the first step to solve the beamspace-transformed system of

equations in (4.18), we define the iteration

w̃1(θ) = b̃(θ) − µ1(θ)g̃1(θ), (4.27)

where µ1(θ) is the step size, which is the solution of the minimization problem dealing

with the output power described as

µ1(θ) = min E

{
|w̃H

1 (θ)x̃|2
}

(4.28)

and is computed by [16]

µ1(θ) =
g̃H1 (θ)R̃b̃(θ)

g̃H1 (θ)R̃g̃1(θ)
. (4.29)

As the constructed extended Krylov signal subspace G̃d+1(θ) in the beamspace

domain includes the initial vector, d − 1 further iterations of this procedure above to

Masterarbeit Jens Steinwandt



4. Beamspace direction finding using Krylov subspace-based algorithms 45

Tab. 4.2: The proposed DFT BS AVF algorithm

Beamspace transformation:

x̃B,m(i) = WH
B,mx(i), ãB,m(θ) = WH

B,ma(θ)

for each angle θ

b̃(θ) = R̃ã(θ)

‖R̃ã(θ)‖
, g̃1(θ) = (I−b̃(θ)b̃H(θ))R̃b̃(θ)

‖(I−b̃(θ)b̃H(θ))R̃b̃(θ)‖

for k = 2, . . . , d− 1

g̃k(θ) =

(
I−

i=k−2∑
k−1

g̃i(θ)g̃H
i (θ)

)
R̃g̃k−1(θ)

∥∥∥∥
(

I−
i=k−2∑

k−1

g̃
i
(θ)g̃H

i
(θ)

)
R̃g̃k−1(θ)

∥∥∥∥

µn(θ) = −µn−1(θ)
g̃H

n (θ)R̃g̃n−1(θ)

g̃H
n (θ)R̃g̃n(θ)

end

g̃d(θ) = −µd−1(θ)

(
I −

i=d−2∑
d−1

g̃i(θ)g̃
H
i (θ)

)
R̃g̃d−1(θ)

end

determine the d auxiliary vectors are performed. It is important to note that the last

auxiliary vector is unnormalized. Similarly to the CG-based beamspace algorithm, the

auxiliary vector basis is formed in the following way:

G̃d+1(θ) =
[
b̃(θ), g̃1(θ) . . . , g̃d(θ)

]
. (4.30)

Considering the fact that this strategy requires the computation of the vectors w̃k(θ)

for each iteration k = 2, . . . , d − 1, a direct way of obtaining the d auxiliary vectors

was proposed in [37] and is summarized in Table 4.2 for the beamspace version.

Finally, by using the concept that g̃d(θ) = 0 if θ ∈ {θ1, . . . , θd}, we define the

spectral function for the pseudo spectrum in the same fashion as in (4.23) for the

CG-based version, yielding

P̃ (θn) =
1

‖g̃Hd (θn)G̃d+1(θn−1)‖2
. (4.31)

Once more θn is the search angle in the angle range {−90◦, . . . , 90◦} with θn = n∆◦ −
90◦, where ∆◦ is the search step and n = 0, 1, . . . , 180◦/∆◦. Again, G̃d+1(θn−1) contains

all the auxiliary vectors at the (n − 1)th angle, and g̃d(θn) is the last unnormalized

auxiliary vector calculated at the current search step n. If θn ∈ {θ1, . . . , θd}, then

g̃d(θn) = 0 and a peak occurs in the pseudo spectrum. The desired signal directions θ

are extracted from the location of the d largest peaks in the spatial spectrum.
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4.6 Computational complexity

As mentioned in the introduction, the key advantage of the operation in the beamspace

domain is to reduce the computational complexity linked with the conventional tech-

niques in element space. Therefore, in this part, we evaluate the computational cost of

the two proposed Krylov subspace-based methods, the BS AVF and the BS CG algo-

rithms, and compare them to the complexity of the classical direction finding methods

in element space as well as their beamspace versions. Considering the well-established

DOA estimation algorithms, such as MUSIC [12], Root-MUSIC [13] and ESPRIT [14],

the required subspace estimate for them is obtained by applying either a singular value

decomposition (SVD) to the received array output matrix X or an equivalent eigen-

value decomposition (EVD) of the covariance matrix R. As the dimensions of both

matrices are different, these two decompositions also cause different computational

costs. Thus, we distinguish between them in the following analysis.

4.6.1 Subspace estimation via SVD

The computational cost, depicted in Table 4.3 and Table 4.4, is measured in terms of

the number of additions and multiplications respectively, where M denotes the number

of sensor elements, B is the number of the beam pointing angles, d is the number of

signals, and ∆◦ is the search step. It is important to note that the arithmetic operations

in Table 4.3 and Table 4.4 assume the application of an SVD to estimate the signal

subspace for the conventional direction finding methods. Moreover, the search for peaks

in the pseudo spectrum is not considered as necessary for MUSIC and the CG algorithm

in order to provide a fair comparison of all the methods. It is evident from the two

tables that the BS AVF and the BS CG algorithm have a cost, which is variable with

O((180/∆◦)M2d) and depends on the search step ∆◦ as the Krylov signal subspace is

generated for each search angle. However, by performing the transformation into the

lower dimensional beamspace, the number of sensor elements M can be replaced by

the number of beams B although the transformation itself also needs to be taken into

account.

Figure 4.3 shows the complexity in terms of arithmetic operations of the analyzed

algorithms as a function of the number of sensor elements M . The number of beams

B is optimized for each direction finding algorithm in beamspace to provide the best

estimation performance. The proposed BS CG method requires B = 5 beams to

achieve its optimal performance, whereas the proposed BS AVF, the BS MUSIC, BS

Root-MUSIC, and the BS ESPRIT algorithms only demand B = 3 beams. This is due
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Tab. 4.3: Number of additions applying the SVD

Algorithm Additions

MUSIC [12] 180/∆◦(M2 − M(d − 1) − 2) + 8MN2

BS MUSIC [32] 180/∆◦(B2 − B(d − 1) − 2) + B(8N2 + N(M − 1) + M − 1)

Root-MUSIC [13] 2M3 − dM2 + M(8N2 − 2) + 1

BS Root-MUSIC [33] B4 + 3B3 − B2(d + 1) + B(8N2 + N(M − 1) + d − 2) + 1

ESPRIT [14] 2dM2 + M(d2 − 4d + 8N2) + 8d3 − d2 + 2d

BS ESPRIT [34] B2(M + 3d − 1) + B(2M2 + M(N − 4) + d2 − d)
+B(8N2 − N + 2) + 8d3

AVF [16] 180/∆◦(4dM2 + M(2d − 3) − 3d + 2) + M2(N − 1)

Proposed BS AVF 180/∆◦(4dB2 + B(2d − 3) − 3d + 2) + B2(N − 1)
+B(N(M − 1) + M − 1)

CG [17] 180/∆◦(M2(d + 1) + M(5d + 1) − 3d − 2) + M2(N − 1)

Proposed BS CG 180/∆◦(B2(d + 1) + B(5d + 1) − 3d − 2) + B2(N − 1)
+B(N(M − 1) + M − 1)

Tab. 4.4: Number of multiplications applying the SVD

Algorithm Multiplications

MUSIC [12] 180/∆◦(M2 + M(2 − d) − d) + 8MN2

BS MUSIC [32] 180/∆◦(B2 + B(2 − d) − d) + B(M(N + 1) + 8N2)

Root-MUSIC [13] 2M3 − dM2 + 8MN2

BS Root-MUSIC [33] B4 + 3B3 − B2(d − 4) + B(MN + 8N2 − 4)

ESPRIT [14] 2dM2 + M(d2 − 2d + 8N2) + 8d3 − d2

BS ESPRIT [34] B2(M + 3d − 1) + B(2M2 + M(N − 4) + 8N2 − N + d2)
−B(d − 2) + 8d3

AVF [16] 180/∆◦(M2(3d + 1) + M(4d − 2) + d + 2) + M2N

Proposed BS AVF 180/∆◦(B2(3d + 1) + B(4d − 2) + d + 2) + B2N + BM(N + 1)

CG [17] 180/∆◦(M2(d + 1) + M(6d + 2) + d + 1) + M2N

Proposed BS CG 180/∆◦(B2(d + 1) + B(6d + 2) + d + 1) + B2N + BM(N + 1)

to the iterative way of constructing the signal subspace by the residual vectors in the BS

CG method, which requires more input data. The curves in Figure 4.3 indicate that the

beamspace algorithms provide a significantly lower complexity than their counterparts

in element space as M increases. Specifically, the conventional AVF- and CG-based

algorithms in element space constitute a higher computational burden than the other

approach for a large array size. However, in the beamspace, the complexity of the

BS AVF and the BS CG method is significantly lower than the one of the beamspace
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Fig. 4.3: Complexity in terms of arithmetic operations versus the number of sensors M
applying the SVD with d = 3, N = 50, and ∆◦ = 1◦.

versions of MUSIC, Root-MUSIC and ESPRIT, where the BS AVF algorithm requires

the lowest complexity. The reason for the higher complexity of the beamspace methods

for small M is the applied transformation into the lower dimensional subspace, which

increases the number of operations.

4.6.2 Subspace estimation via EVD

Similarly to the previous part, in this section, we assess the computational complexity

of the proposed BS AVF and the BS CG algorithm when the EVD is applied to the

M × M covariance matrix R of the received array output data to estimate the signal

subspace. As the dimensions are smaller than for the processing of the entire (M×N)-

dimensional data block X, a lower computational burden can be expected. Again,

the required cost for the analyzed methods is measured in terms of the number of

arithmetic operations and depicted in Table 4.5 and Table 4.6. Once more, the peak

search is not considered and the EVD is applied to the data covariance matrix.

A visual comparison of the expressions in the tables is depicted in Figure 4.4. The

computational savings with regard to the dimensions when applying the EVD trans-

lates into a lower complexity of the conventional beamspace techniques. Thus, the

two proposed algorithms demand a higher computational burden. However, as the

complexity depends on the number of beams, it can be further reduced for large sen-
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Tab. 4.5: Number of additions applying the EVD

Algorithm Additions

MUSIC [12] 180/∆◦(M2 + M(1 − d) − 2) + 8M3

BS MUSIC [32] 180/∆◦(B2 + B(1 − d) − 2) + 8B3 + B(N(M − 1) + M − 1)

Root-MUSIC [13] 10M3 − dM2 − 2M + 1

BS Root-MUSIC [33] B4 + 11B3 − B2(d + 1) + B(N(M − 1) + d − 2) + 1

ESPRIT [14] 8M3 + 2dM2 + M(d2 − 4d) + 8d3 − d2 + 2d

BS ESPRIT [34] 8B3 + B2(M + 3d − 1) + B(2M2 + M(N − 4) + d2 − d)
−B(N − 2) + 8d3

AVF [16] 180/∆◦(4dM2 + M(2d − 3) − 3d + 2) + M2(N − 1)

Proposed BS AVF 180/∆◦(4dB2 + B(2d − 3) − 3d + 2) + B2(N − 1)
+B(N(M − 1) + M − 1)

CG [17] 180/∆◦(M2(d + 1) + M(5d + 1) − 3d − 2) + M2(N − 1)

Proposed BS CG 180/∆◦(B2(d + 1) + B(5d + 1) − 3d − 2) + B2(N − 1)
+B(N(M − 1) + M − 1)

Tab. 4.6: Number of multiplications applying the EVD

Algorithm Multiplications

MUSIC [12] 180/∆◦(M2 + M(2 − d) − d) + 8M3

BS MUSIC [32] 180/∆◦(B2 + B(2 − d) − d) + 8B3 + BM(N + 1)

Root-MUSIC [13] 10M3 − dM2

BS Root-MUSIC [33] B4 + 11B3 − B2(d − 4) + B(MN − 4)

ESPRIT [14] 8M3 + 2dM2 + M(d2 − 2d) + 8d3 − d2

BS ESPRIT [34] 8B3 + B2(M + 3d − 1) + B(2M2 + M(N − 4) − N + d2)
−B(d − 2) + 8d3

AVF [16] 180/∆◦(M2(3d + 1) + M(4d − 2) + d + 2) + M2N

Proposed BS AVF 180/∆◦(B2(3d + 1) + B(4d − 2) + d + 2) + B2N + BM(N + 1)

CG [17] 180/∆◦(M2(d + 1) + M(6d + 2) + d + 1) + M2N

Proposed BS CG 180/∆◦(B2(d + 1) + B(6d + 2) + d + 1) + B2N + BM(N + 1)

sor arrays by decreasing the parameter B and taking a slight loss of the estimation

performance. The computational benefit of the two proposed Krylov subspace-based

algorithms in beamspace mainly becomes apparent when the entire block of data snap-

shots is processed via the SVD. However, if each data snapshot is considered separately

by applying the EVD, the beamspace versions of MUSIC, Root-MUSIC and ESPRIT

still require a lower complexity than the proposed methods.
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Fig. 4.4: Complexity in terms of arithmetic operations versus the number of sensors M
applying the EVD with d = 3, N = 50, and ∆◦ = 1◦.

4.7 Simulation results

In this section, we extensively examine the efficacy of the two proposed Krylov subspace-

based algorithms in beamspace in terms of the estimation accuracy and the resolution

capability and compare them to the BS MUSIC, BS Root-MUSIC, BS ESPRIT and

their counterparts in element space. The first part of the simulations is concerned with

the comparison of all the algorithms in the DFT beamspace, and in the last part we

compare the DFT and the DPSS beamspace and analyze the behavior of the considered

methods for large sensor arrays to emphasize the link to practical implementations.

4.7.1 Comparison of the proposed algorithms in the DFT

beamspace

In order to ascertain the estimation performance of the proposed algorithms for closely-

spaced sources in the DFT beamspace, we employ a uniform linear array (ULA) con-

sisting of M = 10 omnidirectional sensors with interelement spacing ∆ = λc/2. We

assume that there are two uncorrelated complex Gaussian signals with equal power

impinging on the array, which are located at 35◦ and 40◦, where the angles of arrival

are measured with respect to the broadside of the array. Furthermore, we assume a

priori knowledge about the approximate positions of the DOAs to select the sector of
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interest as m = 2. The number of available snapshots at the array output is N = 50

and each curve is obtained by averaging a total of T = 2000 trials. In order to get

relevant results, we set the search step to ∆◦ = 0.1◦.

In the first experiment, the resolution performance of the BS AVF and the BS CG

algorithm in comparison to the conventional beamspace techniques is assessed. Figure

4.5 shows the probability of resolution as a function of the SNR, where the number of

beams B for each direction finding algorithm in beamspace is optimized to yield the

best performance. The signal sources are said to be resolved if the following criterion

holds:
d=2∑

l=1

|θ̂l − θl| <
|θ1 − θ2|

2
, (4.32)

where θl is the true direction of arrival and θ̂l the estimated angle of the lth source.

It is evident from Figure 4.5 that the resolution capability of the algorithms in

beamspace is generally higher compared to their counterparts in element space, since a

priori knowledge about the approximate positions of the sources is exploited. However,

this is not necessarily the case for the proposed BS AVF algorithm whose resolution

performance is slightly worse than its counterpart in element space for an SNR between

−3 and 5 dB. In our comparison, the proposed BS CG algorithm outperforms the

CG algorithm and demonstrates the best ability to resolve the two sources among

the existing methods in beamspace and in element space. The fact that the BS CG

algorithm reaches its best performance for B = 5 beams, while the BS AVF method

and the eigenvector-based schemes attain their maximum for only B = 3 beams is due

to the iterative way of constructing the signal subspace by the residual vectors, which

requires more data. We also note that at low SNR the CG method in element space still

resolves the two sources better than the eigenvector-based algorithms in beamspace.

However, the proposed BS CG method can further improve the performance of the

original CG method.

In Figure 4.6, the probability of resolution as a function of the number of snapshots

N is illustrated. In order to evaluate the performance under severe conditions, the SNR

is fixed at −7 dB. The BS CG algorithm clearly outperforms all the analyzed direction

finding techniques in beamspace and element space, and is able to resolve the two

sources at such a low SNR with more than 50 percent probability using only N = 20

snapshots. Also, it can be seen that the BS AVF algorithm substantially improves

the resolution performance of its counterpart but is outperformed by BS ESPRIT and

BS Root-MUSIC. We also verify that BS MUSIC, MUSIC, Root-MUSIC, ESPRIT,

and the AVF algorithm almost completely fail to separate the two sources under these

severe conditions.
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Fig. 4.5: Probability of resolution versus the SNR in the DFT beamspace with M = 10,
θ1 = 35◦, θ2 = 40◦, N = 50, m = 2.
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Fig. 4.6: Probability of resolution versus the number of snapshots N in the DFT
beamspace with M = 10, θ1 = 35◦, θ2 = 40◦, SNR = −7 dB, m = 2.
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Fig. 4.7: RMSE versus the SNR in the DFT beamspace with M = 10, θ1 = 35◦,
θ2 = 40◦, N = 50, m = 2.

In the last part, the estimation accuracy in terms of the root mean square error

(RMSE) is investigated, where the RMSE is estimated using T trials by

RMSE =

√√√√ 1

T

T∑

t=1

d∑

l=1

(
θl − θ̂l(t)

)2
. (4.33)

The investigated direction finding algorithms in beamspace and in element space are

compared to the deterministic Cramér-Rao lower bound (CRLB) [1]. It was derived

in [1] that the CRLB in beamspace is almost equal to the element-space CRLB if the

sources are well inside the sector of interest. Since this is the case in our study, only the

CRLB in the element space is applied as a reference for the comparison. The resulting

RMSE as a function of the SNR is presented in Figure 4.7. Again, all the beamspace

versions of the analyzed methods yield a higher estimation accuracy in the underlying

scenario. However, whereas the proposed BS AVF method only provides a limited

performance, the BS CG algorithm outperforms the beamspace versions of ESPRIT

and Root-MUSIC within the range of SNR = (−5, . . . , 5) dB. Thus, applying the

beamspace transformation to the original CG direction finding algorithm significantly

improves the estimation accuracy for each SNR value.
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4.7.2 Comparison of the DFT and DPSS beamspace

The aim of this section is to examine the potential of operating in the DFT and the

DPSS beamspace. It was stated in Section 4.3 that, apart from the applied direc-

tion finding method, the estimation performance mainly depends of the design of the

beamspace transformation matrix. To this end, we compare the efficacy of the DFT

and the DPSS beamspace for the two proposed Krylov subspace-based algorithms. For

the simulations, the same scenario from the previous section is chosen to simplify the

comparison and similarly to the DFT beamspace, the number of beams for the DPSS

beamspace is optimized to yield the best results.

According to Figure 4.8, the resolution performance of the BS CG algorithm in the

DPSS beamspace against the SNR is slightly better than that in the DFT beamspace.

Furthermore, the DPSS beamspace version of the AVF algorithm compensates the

deficiency of the DFT version for relatively high SNR values and thus provides an

enhanced resolution capability for closely-spaced sources.

The results shown in Figure 4.9 verify the conclusions drawn from the first figure.

The DPSS spatial filter yields a small improvement of the probability of resolution for

both proposed beamspace techniques as the data record increases.

Figure 4.10 evaluates the RMSE performance against the SNR and once more, the
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Fig. 4.8: Comparison of the DFT and DPSS beamspace regarding the probability of
resolution versus the SNR with M = 10, θ1 = 35◦, θ2 = 40◦, N = 50, m = 2.
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Fig. 4.9: Comparison of the DFT and DPSS beamspace regarding the probability of
resolution versus the number of snapshots N with M = 10, θ1 = 35◦, θ2 = 40◦,
SNR = −7 dB, m = 2.
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Fig. 4.10: Comparison of the DFT and DPSS beamspace regarding the RMSE versus
the SNR with M = 10, θ1 = 35◦, θ2 = 40◦, N = 50, m = 2.
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advantage of the DPSS beamspace becomes obvious. The proposed algorithms benefit

from the transformation into the lower-dimensional DPSS beamspace, outperforming

the versions associated with the DFT beamspace.

As evident from the simulation results, the spatial filter designed by using DPSS

tapers implicates a slight performance advantage over the DFT beamspace. This be-

havior was already anticipated in Section 4.3 based on the fact that the DPSS filter

provides a better rejection performance in the stopband and exhibits a smoother trans-

mission in the passband.

4.8 Conclusions

In this chapter, the extension of the recently proposed Krylov subspace-based direc-

tion finding techniques based on the auxiliary vector filtering (AVF) algorithm and

the conjugate gradient (CG) algorithm to the operation in the beamspace domain is

developed. After introducing the promising benefits associated with a reduced com-

plexity while enhancing the estimation performance of the beamspace approach, the

general concept and its dependency on the transformation matrix is highlighted. Thus,

two different ways of designing the beamspace, namely the discrete Fourier transform

(DFT) and the discrete prolate spheroidal sequences (DPSS) beamspace are analyzed

and compared. Eventually, the BS AVF algorithm and the BS CG algorithm are pro-

posed, which exploit the knowledge about approximate positions of signal sources to

significantly improve their estimation accuracy of closely-spaced sources at a low SNR

and a small data record size. While adopting either the residual vectors of the CG

algorithm or the auxiliary vectors of the AVF algorithm to iteratively generate the

signal subspace in the beamspace domain, they do not resort to an eigendecomposition

of the signal covariance matrix saving computational resources. To verify the reduction

of the computational burden, an extensive analysis of the complexity requirements is

conducted, which illustrates that the proposed beamspace algorithms unfold their re-

duced demands if the entire snapshot data block is processed. Moreover, the efficacy

of these algorithms is assessed by conducting simulations, where the number of beams

is optimized. It is shown that operation in beamspace substantially enhances the res-

olution capability and the estimation accuracy, where the BS CG outperforms the BS

AVF algorithm. Also, it is demonstrated that the operation in the DPSS beamspace

provides a higher estimation performance than that in the DFT beamspace.
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5. KNOWLEDGE-AIDED DIRECTION OF

ARRIVAL ESTIMATION

The goal of this chapter is to discuss a practical scenario, where prior knowledge of a

subset of the signal directions to be estimated is available. We develop an adaptive

procedure for processing this a priori knowledge to improve the estimation accuracy

of unknown sources in the environment and then devise direction finding algorithms

that exploit this information.

5.1 Introduction

Extracting the DOA from received signals impinging on an antenna array has long

been of great research interest, given its importance in a broad variety of array signal

processing related applications including radar, sonar, biomedical imaging, and wireless

communications. With the steady expansion of the field of applications in recent years,

the problem of high-resolution parameter estimation has attracted increased attention

in the last few decades, and many techniques reported in literature [1] were the result of

an extensive study. The most prominent DOA estimation schemes can be categorized

into Capon-type algorithms [1, 11], maximum-likelihood (ML) techniques [1, 10] and

subspace-based methods [1, 10].

Despite the numerous DOA estimation techniques developed over the years and all

their specific properties, advantages and drawbacks, their estimation accuracy mainly

depends on the estimate of the covariance matrix R of the M × 1 array output vector

x, which is defined for the ith of N available snapshots as

R = E

{
x(i)xH(i)

}
∈ C

M×M . (5.1)

In practical implementation, the true covariance matrix in (5.1) is unknown, but can
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be estimated via the commonly used sample-average formula given by

R̂ =
1

N

N∑

i=1

x(i)xH(i). (5.2)

Applying the estimation procedure in (5.2), the estimation accuracy of the covariance

matrix is essentially determined by the data record size N . Thus, in applications,

where the number of available snapshots approaches the number of sensor elements

M or is even smaller (N < M), the sample covariance matrix R̂ is a poor estimate

of the true covariance matrix R, which consequently degrades the performance of the

subsequent DOA estimation technique.

Considering a practical scenario, e.g., a radar application, with a low signal-to-noise

ratio (SNR) and stationary and non-stationary signal sources whose DOAs are to be

estimated, the knowledge of the signal directions of certain users can be effectively ex-

ploited in order to increase the estimation accuracy of non-stationary unknown sources.

Examples of stationary sources are signals coming from base stations or from static

users in the system. The knowledge of these DOAs that were previously estimated can

be efficiently processed in the form of a known a priori covariance matrix C.

Knowledge-aided (KA) signal processing techniques, which make use of a priori

knowledge of key parameters of interest such as the existence of jamming signals and

the clutter in radar and sonar systems, have recently gained significant attention [38–

44]. In KA techniques, the main issues are how to obtain the a priori knowledge

of the parameters of interest and how to process and exploit them. Prior work on

KA algorithms has considered the design of space-time adaptive processing (STAP)

techniques [38–41,43,44] and beamforming algorithms [42]. These methods have shown

superior performance to conventional approaches that do not rely on KA schemes when

the limited sample support is used in highly non-stationary clutter environments.

Several applications of KA techniques to the problem of DOA estimation have been

developed in the past. One of the most well-known approaches to incorporate prior

knowledge of specific signal directions to obtain improved DOA estimates is the so-

called constrained MUSIC algorithm [45]. It is based on an orthogonal projection of

the array output matrix onto the complement of the true signal subspace spanned

by the known steering vectors. While this concept estimates all the DOAs in the

system, its extension applying oblique projectors [46] is reduced to only estimating the

unknown DOAs. These methods provide substantial performance gains in terms of the

estimation accuracy if a large data record size N is available. However, under severe

conditions in the environment, such as a low SNR, and especially when N < M as

described above, they completely break down and fail to estimate the desired DOAs.
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To overcome this problem, the concept of effectively exploiting prior knowledge for

STAP and beamforming is applied to DOA estimation.

In this work, we derive a general preprocessing KA technique for high-resolution

parameter estimation, which can be applied to any DOA estimation scheme depending

on the estimate of the true covariance matrix R. The novel strategy is shown to

substantially improve the estimates of the covariance matrix by incorporating a priori

knowledge of the signal directions under severe conditions. The proposed technique

estimates the DOAs of all the present signals in the scenario and considers the general

case, where the known matrix C is rank deficient and the noise power is assumed to

be unknown. In order to evaluate the performance and the gain over the conventional

estimation schemes we apply the KA technique for DOA estimation to ESPRIT-type

methods, i.e., the standard ESPRIT algorithm [14] and the Unitary ESPRIT algorithm

[15] and to MUSIC-type methods, i.e., the classical MUSIC algorithm [12] and the

Root-MUSIC algorithm [13].

5.2 Enhanced covariance matrix estimation

In this section, we derive a strategy for computing an enhanced covariance matrix,

denoted as R̃, by linearly combining the a priori covariance matrix C and the sample

covariance matrix R̂ whose weights are automatically chosen based on the data and

the conditions in the scenario.

5.2.1 Computation of the a priori covariance matrix

Supposing the knowledge of the DOAs of k uncorrelated signals that are impinging on

the sensor array, the subset is defined as

θ̄ = [θ1, . . . , θk]
T . (5.3)

These signal directions θ̄ have been previously estimated by applying an arbitrary

direction finding scheme. Having θ̄ available, this information is processed to form an

(M ×M)-dimensional a priori covariance matrix C, which is rank deficient with rank

k and is computed by

C =
k∑

l=1

σ2
l a(θl)a

H(θl), l = 1, . . . , k, (5.4)
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where a(θl) is the array steering vector of the lth known DOA and σ2
l is the power of

the lth signal. Here, the signal powers σ2
l are also assumed to be previously estimated

via the prior applied estimation technique. The a priori covariance matrix C is then

further processed to provide an improved estimate of the true covariance matrix after

changed positions of unknown users. Rewriting equation (5.4) in matrix form, yields

C = A(θ̄)P AH(θ̄), (5.5)

where the diagonal matrix P = diag{σ2
1, . . . , σ

2
k} contains the powers of the k sources.

The computation of C in (5.4) implies accurate knowledge about the true directions

θ̄, which leads to a perfectly known a priori covariance matrix. However, in practical

applications, the DOAs θ̄ and the signal powers σ2
l are usually erroneous, so that C

becomes an approximation Ĉ, calculated as

Ĉ = A(ˆ̄θ)P̂ AH(ˆ̄θ). (5.6)

For convenience, we first proceed on the assumption that accurate knowledge of the

true signal directions is available and consider the inaccurate case later on.

5.2.2 Problem statement

In order to obtain the enhanced covariance matrix estimate R̃, we process the a priori

known matrix C according to [41] as a linear combination of the weighted C and the

weighted sample covariance matrix R̂. Applying the real-valued combination factors

α and β, the improved estimate R̃ is formulated as

R̃ = αC + βR̂, (5.7)

where the combination factors are constrained to α > 0 and β > 0, and C is restricted

to be positive semi-definite to ensure that R̃ is also positive semi-definite.

Now, the aim is to find optimal estimates of the weight factors α and β, which

efficiently combine C and R̂ depending on the data in the scenario. One of the most

commonly used criteria is the optimization of the parameters to minimize the difference

between the enhanced covariance matrix R̃ and the true covariance matrix R in a mean

square error (MSE) sense, i.e.,

min
α,β

MSE = E

{
‖R̃ − R‖2

F

}

s.t. R̃ = αC + βR̂,
(5.8)
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where ‖ · ‖F denotes the Frobenius matrix norm. Note that the optimization problem

is solved by minimizing the MSE with respect to the two parameters α and β, which

depend on each other and the unknown true covariance matrix R. The formulation

in (5.8) aims to support the poor sample covariance matrix estimate R̂ in the case of

a small data record size N and at a low SNR by simply adding the weighted a priori

covariance matrix C. The weight factors are automatically adjusted depending on the

data and properties of the system. Under severe conditions as mentioned above, we

expect α to be a large value and β to be small.

Another widely used constraint, which reduces the complexity of the optimization

problem is the function

R̃ = αC + (1 − α)R̂ (5.9)

with α being restricted to α ∈ (0, 1) to ensure the positive semi-definiteness of R̃.

This combination, in literature referred to as convex combination [41], provides the

benefit of minimizing the MSE subject to only one parameter and can be considered as

a special case of (5.8). However, since we aim for a more general description to obtain

an improved estimate of the covariance matrix, we focus on (5.7) in the following

development.

5.2.3 Computation of the optimal weight factors

The parameters α and β are determined by solving the minimization problem stated

in (5.8) in the following way [41]. Inserting the constraint (5.7) into the equation for

the MSE and expanding the expression by an algebraic manipulation, gives

MSE = E

{
‖R̃ − R‖2

F

}
= E

{
‖αC + βR̂ − R‖2

F

}

= E

{
‖αC + βR̂ + βR − βR − R)‖2

F

}

= E

{
‖αC − (1 − β)R + β(R̂ − R)‖2

F

}
. (5.10)

In order to further compute the result in (5.10) we make use of the following Lemmas:

Lemma 5.2.1. For any two matrices A ∈ C
p×q and B ∈ C

p×q the binomial formula

for the Frobenius matrix norm is given by

‖A + B‖2
F = ‖A‖2

F + ‖B‖2
F + 2〈A,B〉F , (5.11)
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where 〈·, ·〉F is the Frobenius norm inner product, which is defined as

〈A,B〉F =
p∑

i=1

p∑

j=1

aijbij. (5.12)

Lemma 5.2.2. For two Hermitian matrices A ∈ C
p×p and B ∈ C

p×p the following

identity for Frobenius norm inner products holds:

〈A,B〉F = Tr{AHB} = Tr{ABH}, (5.13)

where the Trace-operator of the matrix product AB is defined as in (5.12).

Using Lemma 5.2.1, equation (5.10) is computed as

MSE = E

{
‖R̃ − R‖2

F

}
= ‖αC − (1 − β)R‖2

F + β2
E

{
‖R̂ − R‖2

F

}

+ 2βE
{
〈R̂ − R, αC − (1 − β)R〉F

}
,

(5.14)

where the last term can be rewritten as

2βE
{
〈R̂ − R, αC − (1 − β)R〉F

}
= 2β〈E

{
R̂
}

− R, αC − (1 − β)R〉F . (5.15)

Now we adopt the property that the expected value E{R̂} = R as R̂ is an unbiased

estimate of R.

As easily seen, the first factor of the Frobenius norm inner product is zero and

therefore the whole term becomes

2βE
{
〈R̂ − R, αC − (1 − β)R〉F

}
= 〈E

{
R̂
}

− R
︸ ︷︷ ︸

0

, αC − (1 − β)R〉F

︸ ︷︷ ︸
0

. (5.16)

This leaves for the MSE the expression

MSE = E

{
‖R̃ − R‖2

F

}
= ‖αC − (1 − β)R‖2

F + β2
E

{
‖R̂ − R‖2

F

}
. (5.17)

In order to simplify the first term of (5.17) we require the following Corollary:

Corollary 5.2.3. For any two matrices A ∈ C
p×p and B ∈ C

p×p the following property

holds

Tr{AHB} > 0, (5.18)
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if A and B are positive semi-definite, i.e.,

xHAx ≥ 0 and xHBx ≥ 0, (5.19)

which also implies that A and B are Hermitian matrices whose eigenvalues are non-

negative.

Eventually, by using Lemma 5.2.1, Lemma 5.2.2 and Corollary 5.2.3 we have that

MSE = α2‖C‖2
F − 2α(1 − β)Tr{CHR}

+ (1 − β)2‖R‖2
F + β2

E

{
‖R̂ − R‖2

F

}
,

(5.20)

Our objective is now to determine the optimal parameters αopt and βopt, which min-

imize the obtained unconstrained optimization problem in (5.20). These are obviously

dependent on each other, such that we fix β to βopt while solving equation (5.20) for

the parameter α. Taking the gradient of (5.20) with respect to α and equating it to

zero gives
∂MSE(α, βopt)

∂α
= 2α‖C‖2

F − 2(1 − βopt)Tr{CHR} !
= 0. (5.21)

Then, in order to find the optimal solution αopt we rearrange the terms and get the

final equation

αopt =
(1 − βopt)Tr{CHR}

‖C‖2
F

. (5.22)

As we also need to determine the expression for the parameter βopt, inserting (5.22)

into equation (5.20) and substituting β for βopt, equation (5.20) becomes

MSE(β) =
(1 − β)2Tr2{CHR}‖C‖2

F

‖C‖4
F

− 2
(1 − β)2Tr2{CHR}

‖C‖2
F

+ (1 − β)2‖R‖2
F + β2

E

{
‖R̂ − R‖2

F

}
.

(5.23)

After some elementary computations we can simplify (5.23) as

MSE(β) =
(1 − β)2(‖R‖2

F‖C‖2
F − Tr2{CHR})

‖C‖2
F

+ β2
E

{
‖R̂ − R‖2

F

}
. (5.24)

To find the equation for the optimal parameter βopt, we equate the gradient of (5.24)

with respect to β to zero, which yields

∂MSE(β)

∂β
= 2βE

{
‖R̂ − R‖2

F

}
+ 2(β − 1)

‖R‖2
F‖C‖2

F − Tr2{CHR}
‖C‖2

F

!
= 0. (5.25)

Solving for β, the computation of the optimal parameter βopt can be compactly ex-
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pressed by

βopt =
γ

ρ+ γ
, (5.26)

where γ is defined as

γ =
‖R‖2

F‖C‖2
F − Tr2{CHR}
‖C‖2

F

(5.27)

and ρ is given by

ρ = E

{
‖R̂ − R‖2

F

}
. (5.28)

Note that during the derivation, the earlier stated constraint on the two combination

factors, namely αopt > 0 and βopt > 0 needs to be guaranteed. In order to prove this

property, we apply the Cauchy-Schwarz inequality and require the following Lemma

about its extension to matrices:

Lemma 5.2.4. For any two arbitrary matrices A ∈ C
p×p and B ∈ C

p×p the Cauchy-

Schwarz inequality for the Frobenius norm of these matrices is given by

|〈A,B〉F | ≤ ‖A‖2
F · ‖B‖2

F , (5.29)

which can be obtained from the Cauchy-Schwarz inequality for vectors.

From the Cauchy-Schwarz inequality in Lemma 5.2.4 it can be deduced for equation

(5.27) that γ is restricted to

γ > 0. (5.30)

The proof of equation (5.30) was moved to Appendix A.5 to enhance the readability of

the derivation. This restriction implies that αopt and βopt also have to be greater than

zero and therefore minimize the MSE.

For a derivation later on we can further simplify the expression for γ in (5.27) as

γ =
‖R‖2

F‖C‖2
F − Tr2{CHR}
‖C‖2

F

= ‖R‖2
F − Tr2{CHR}

‖C‖2
F

(5.31)

and by applying an algebraic manipulation, we have that

γ =
Tr2{CHR}

‖C‖2
F

− 2
Tr2{CHR}

‖C‖2
F

+ ‖R‖2
F

=

∥∥∥∥∥
Tr{CHR}

‖C‖2
F

C − R

∥∥∥∥∥

2

F

, (5.32)

where we applied Lemma 5.2.1 to obtain an equivalent equation (5.32) for γ.
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5.2.4 Estimation of the optimal weight factors

As the weight factors αopt and βopt depend on the true covariance matrix R, in practical

applications, R is unknown. Therefore, the combination weights αopt and βopt have to

be estimated by approximating R, that is for βopt

β̂opt =
γ̂

ρ̂+ γ̂
(5.33)

and for αopt we get

α̂opt =
Tr{CHR̂}

‖C‖2
F

(1 − β̂opt), (5.34)

with α̂opt and β̂opt being the estimates of αopt and βopt respectively, and where Tr{CHR}
in (5.22) is replaced by Tr{CHR̂}. Using expression (5.32) to compute γ, the estimate

γ̂ in (5.33) is given by

γ̂ =

∥∥∥∥∥
Tr{CHR̂}

‖C‖2
F

C − R̂

∥∥∥∥∥

2

F

, (5.35)

where we also replaced R by R̂ in the expression for the Frobenius norm. The estimate

ρ̂ of the parameter ρ is obtained according to the derivations in [41] as

ρ̂ =
1

N2

N∑

i=1

‖x(i)‖4
F − 1

N
‖R̂‖F . (5.36)

For further details about the deduction and assumptions to find this formulation for

ρ̂, we refer to the work in [41].

5.2.5 Improved estimation of the optimal weight factors

The previously derived estimates of the combination factors α̂opt and β̂opt are simply

obtained by replacing the unknown covariance matrix R by its sample-average version

R̂. However, the established estimate γ̂+ ρ̂ of the optimal γ+ ρ in the denominator of

(5.26) is suboptimal as γ̂+ ρ̂ is a biased estimate. Therefore, in this section, we aim to

develop an unbiased and in this context an enhanced estimate of the parameters αopt

and βopt.
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Rewriting the optimal estimate γ + ρ in denominator of (5.26) yields

γ + ρ =

∥∥∥∥∥
Tr{CHR}

‖C‖2
F

C − R

∥∥∥∥∥

2

F

+ E

{
‖R̂ − R‖2

F

}

= E





∥∥∥∥∥R̂ − Tr{CHR}
‖C‖2

F

C

∥∥∥∥∥

2

F



 (5.37)

Proof:

First of all we define a new factor ν containing the Tr{·} as

ν =
Tr{CHR}

‖C‖2
F

(5.38)

to simplify this expression for convenience in the following derivation. Now, starting

with the result of (5.37), we expand the terms in the Frobenius norm by using an

algebraic manipulation, i.e.,

E

{
‖R̂ − νC‖2

F

}
= E

{
‖R̂ − R + R − νC‖2

F

}
. (5.39)

This equation can be transformed by applying Lemma 5.2.2, yielding the form

E

{
‖R̂ − νC‖2

F

}
= E

{
‖(R̂ − R) + (R − νC)‖2

F

}

= E

{
‖R̂ − R‖2

F

}
+ E

{
‖R − νC‖2

F

}

+ 2E
{
〈R̂ − R,R − νC〉F

} (5.40)

The last part in (5.40) is then simplified as

2E
{
〈R̂ − R,R − νC〉F

}
= 2〈E

{
R̂
}

− R,R − νC〉F . (5.41)

Again, using the fact that R̂ is an unbiased estimate, i.e., E
{
R̂
}

= R, the Frobenius

inner product in equation (5.41) is zero. Hence, combining (5.39) and (5.40) leaves the

expression

E

{
‖R̂ − νC‖2

F

}
= E

{
‖R̂ − R‖2

F

}
+ E

{
‖R − νC‖2

F

}

= E

{
‖R̂ − R‖2

F

}
+ ‖νC − R‖2

F , (5.42)

which is the desired result.

The identity in (5.37) enables us to also estimate the optimal γ+ ρ as ‖R̂ − ν̂C‖2
F ,

which is an unbiased estimate that is smaller than ρ̂ + ‖R̂ − ν̂C‖2
F developed in the
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previous section. Applying this result to the expression for β̂opt and keeping γ̂ in the

numerator of (5.33), gives

β̂opt =
‖R̂ − ν̂C‖2

F

‖R̂ − ν̂C‖2
F

= 1, (5.43)

which needs to be avoided. Thus, after a simple rearrangement of the equations for

αopt and βopt we obtain

αopt = ν

(
ρ

γ + ρ

)
(5.44)

and

βopt = 1 − αopt

ν
. (5.45)

The corresponding improved estimates of αopt and βopt can now be estimated as

α̂opt = ν̂

(
ρ̂

‖R̂ − ν̂C‖2
F

)
(5.46)

and

β̂opt = 1 − α̂opt

ν̂
. (5.47)

Since the estimate β̂opt is not restricted to be positive as it was postulated for the

computation of the optimal combination factors, we enforce this property by using the

expression

β̂opt = max

((
1 − α̂opt

ν̂

)
, 0

)
(5.48)

instead of equation (5.47).

As we have derived two different ways of estimating the optimal combination fac-

tors αopt and βopt, we refer to the first one obtained in the previous section as linear

combination 1 (LC1) with the factors αopt1 and βopt1 and term the second one, derived

above, linear combination 2 (LC2) with the factors αopt2 and βopt2.

5.3 General knowledge-aided direction of arrival estimation

scheme

In this section, we introduce the general structure of the proposed KA DOA estimation

scheme. As the knowledge of static signal sources is sometimes available in practical

applications, the proposed strategy to incorporate this information is of fundamental

importance. As mentioned in Section 5.1, several KA techniques for DOA estimation

have been developed in the past [45, 46]. However, they require a large data record to

effectively exploit the prior knowledge of static signal directions and break down under
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severe conditions, such as at a low SNR and a small number of available snapshots

(N < M). The proposed method in this work performs best under exactly those

severe conditions. It is a general approach and can be applied to any direction finding

technique, which depends on the estimate of the covariance matrix of the array output

vector x. As the weighted a priori covariance matrix C is simply added to the sample

covariance matrix R̂ to obtain the enhanced covariance matrix estimate R̃ (cf. Section

5.2), only the signal subspace is improved and not necessarily the noise subspace.

In addition, it is important to note that, as opposed to the previously developed KA

DOA estimation method in [46], the proposed KA direction finding scheme estimates

the DOAs of all the signals θ in the system, including the known directions θ̄. However,

these DOAs can be distinguished from the unknown signal directions, so that their

estimation errors are neglected for the purpose of assessing the performance against

other methods.

5.3.1 Structure of KA DOA estimation

The structure of the KA direction finding scheme is depicted as a block diagram in

Figure 5.1, where the time index i denotes the estimation step in the scheme. Before

the actual KA method can be applied, a separate DOA estimation algorithm is required

to obtain the knowledge of the static DOAs in the system. This procedure is illustrated

in the upper path of Fig. 5.1. After the computation of the sample covariance matrix

R̂ at the step i− 1 the DOAs θ̄(i− 1) are extracted by an arbitrary direction finding

algorithm and the source powers on the diagonal of P (i − 1) are estimated. These

quantities are then passed onto the block to determine the a priori covariance matrix

C. At the next estimation step the KA scheme in the lower path comes into play. It

estimates the sample covariance matrix at the current step i and takes into account the

R̂(i− 1)

θ̄(i− 1)

Knowledge-Aided
DOA Estimation

Algorithm

C(i− 1)

A priori

Covariance
Matrix

Enhanced
Covariance
Matrix R̃(i)R̂(i)

Sample
Covariance
Matrix

DOA
Estimation
Algorithm

θ(i)x(i)

P (i− 1)

Fig. 5.1: Block diagram of the KA DOA estimation scheme.
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C(i − 1) from the previous step to provide the enhanced covariance matrix estimate

R̃. Eventually, the KA DOA estimation algorithm based on any technique that relies

on the covariance matrix estimate is employed to extract the signal direction estimates

with improved accuracy.

It is evident from Figure 5.1 that the operations in the upper path only need to

be carried out once and C can be processed as long as the static sources are present.

Hence, a rerun of the upper path is only necessary after a change of their positions.

Furthermore, it should be emphasized that the performance of the KA DOA algorithm

in practice depends on the accuracy of the known DOA provided by the first direction

finding method. Thus, in order to achieve a maximum gain, an appropriate technique

to get precise estimates needs to be chosen.

5.3.2 Computational complexity

Having discussed the general structure of the proposed KA direction finding scheme,

the computational complexity of this technique is analyzed. The computational cost of

incorporating the known information of the DOAs θ̄ to obtain the enhanced covariance

matrix estimate R̃ is measured in terms of the number of additions and multiplications.

Table 5.1 shows the analytical expressions depending on the number of sensors M , the

data record size N , and the number of the known signal directions k. To avoid the

computationally expensive matrix multiplication of the a priori covariance matrix C

and the sample covariance matrix R̂, which causes a cost of O(M3), we used the fact

that C can be expressed as the sum of rank-1 matrices and k is typically much less

than M . Therefore, it requires only O(M2)operations.

Apart from the computation of R̃, the complexity of the general KA DOA esti-

mation scheme depends on the cost of the two applied direction finding algorithms.

If these two DOA estimation algorithms use the same method, the overall computa-

tional complexity is slightly higher than twice the cost of the conventional approach

without prior knowledge. However, once the matrix C of the static signal directions

is determined it can be used for the improved estimation of further changes in the

Tab. 5.1: Computational complexity of the proposed versions of the KA scheme

KA version Additions Multiplications

LC1 2M2(5k + 3) + 2M(N − k + 1) − 3 4M2(3k + 2) + 6MN + 2

LC2 2M2(5k + 3) + 2M(N − k + 1) − 4 4M2(3k + 2) + 6MN + 3
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environment. Thus, even a costly DOA estimation algorithm to obtain highly accurate

DOAs is affordable as the KA scheme compensates a possibly moderate performance of

a low-complexity second direction finding technique. In order to reduce the complexity

of the proposed scheme, an adaptive strategy to combine the two covariance matrices

to yield the enhanced estimate can be adopted, which will be considered in future work.

5.4 Knowledge-aided ESPRIT-type direction of arrival estimation

Among the direction finding techniques that have been developed so far, ESPRIT-

type algorithms [1] are one of the most popular schemes. They belong to the class

of subspace-based methods, as the signal subspace, estimated via an eigenvalue de-

composition (EVD) of the covariance matrix R (cf. Section 2.2.3) or a singular value

decomposition (SVD) of the array output matrix X (cf. Section 2.2.2), is processed

to obtain the DOAs. The conventional ESPRIT-type direction finding methods are

applicable to any antenna array structure, which can be decomposed in two identical

subarrays displaced by a uniform distance. As this constraint holds for a large variety of

sensor arrays that are used in practice, these powerful DOA estimation algorithms are

of significant interest. In addition, ESPRIT-type algorithms are more computationally

efficient than other methods such as ML-type techniques and MUSIC-type algorithms.

In this section, we propose two KA-ESPRIT-type direction finding schemes based on

the standard ESPRIT algorithm [14] termed KA-ESPRIT algorithm and based on

the Unitary ESPRIT method [15], which we refer to as Unitary KA-ESPRIT. We note

again that the developed algorithms estimate the DOAs of all the signals in the system.

5.4.1 KA-ESPRIT

The key idea of the proposed KA-ESPRIT algorithm is to exploit a priori knowledge

about the DOAs θ̄. This known information is incorporated by applying the method

developed in Section 5.2 to obtain an enhanced covariance matrix R̃. Then, an im-

proved signal subspace estimate is processed via the standard ESPRIT algorithm.

Similarly to ESPRIT, we form a twofold subarray configuration, as each row of

the array steering matrix A(θ) corresponds to one particular sensor element of the

antenna array. The subarrays are specified by two (m × M)-dimensional selection

matrices J1 and J2, which choose m elements of the M existing sensors respectively,

where m is in the range d ≤ m < M . For maximum overlap, the matrix J1 selects

the first m = M − 1 elements and J2 selects the last m = M − 1 rows of A(θ). Since

two identical subarrays are obtained and the displacement vector is uniform, a steering
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vector of the second subarray is only a scaled version of the corresponding steering

vector of the first subarray. This property is termed shift invariance property and can

be expressed in compact form as

J1A(θ)Φ = J2A(θ), (5.49)

where

Φ = diag{ejµn}dn=1, (5.50)

which is the unitary (d × d)-dimensional diagonal matrix containing the spatial fre-

quencies µn given by

µn = 2π
∆

λc
sin θn. (5.51)

The array steering matrix A(θ) in (5.49) is unknown, however, it can be shown that

the columns of A(θ) and the columns of Us obtained from the true covariance matrix

R are two equivalent bases that span the same signal subspace S of dimension d (cf.

Section 2.2.1), i.e.,

S = span{A(θ)} = span{Us}. (5.52)

Thus, A(θ) can be expressed as a linear transformation of Us, i.e.,

A(θ) = UsT , (5.53)

where T ∈ C
d×d is a unitary matrix, which linearly combines the columns of Us to

form the basis columns vectors contained in A(θ). Now, the shift invariance equation

(5.49) can be rewritten as

J1UsΨ = J2Us (5.54)

with the transformation

Ψ = T ΦT −1 ∈ C
d×d, (5.55)

which is eigenvalue-preserving, so that the eigenvalues of Ψ are equal to the diagonal

elements in Φ.

In practical applications R and Us are unknown and need to be estimated. Conse-

quently, we apply a rank-d approximation based on the EVD of the enhanced covariance

matrix R̃ (cf. Section 2.2.3) to determine the estimated signal subspace Ûs ∈ C
M×d.

Note that we assume that the number of signals d is known beforehand. In the noisy

case, equation (5.54) becomes an approximation described as

J1ÛsΨ ≈ J2Ûs, (5.56)
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which represents an overdetermined set of equations that needs to be solved for Ψ by

using a suitable least squares method, such as least squares (LS), total least squares

(TLS) or structured least squares (SLS) [47].

Finally, the eigenvalues λn of Ψ contain the estimates of the spatial frequencies µn

computed as

µn = arg(λn), (5.57)

so that the DOAs θn can be calculated as

θn = arcsin

(
µnλc
2π∆

)
. (5.58)

A brief summary of the proposed KA-ESPRIT direction finding algorithm is given

in Table 5.2.

Tab. 5.2: The proposed KA-ESPRIT algorithm

1. Knowledge-Aided Processing:

• Compute the a priori covariance matrix C ∈ C
M×M by (5.4).

• Calculate the weight factors α̂opt and β̂opt to obtain the en-
hanced covariance matrix estimate R̃ ∈ C

M×M .

2. Signal Subspace Estimation:

• Compute the matrix Ûs ∈ C
M×d as the d principal eigenvectors

of the enhanced covariance matrix R̃

3. Invariance Equation:

• Solve the shift invariance equation J1ÛsΨ ≈ J2Ûs by using
the LS, TLS or SLS algorithm

4. DOA Estimation:

• Calculate the d eigenvalues of the solution Ψ = T ΦT −1 with
Φ = diag{ejµn}dn=1.

• Solve θn = arcsin
(
µnλc

2π∆

)
to obtain the DOAs.
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5.4.2 Unitary KA-ESPRIT

An extension to the standard ESPRIT-Algorithm is the popular Unitary ESPRIT al-

gorithm [15], which provides significant performance improvements and computational

benefits. By exploiting the fact that the displacement matrix Φ is unitary, the con-

cept of forward-backward averaging [48] is automatically included. It also transforms

the shift invariance equations into the real-valued domain reducing the computational

complexity dramatically. Forward-backward averaging itself is a preprocessing scheme

that uses symmetries of the array and virtually doubles the number of available data

samples without decreasing the array aperture. This technique substantially improves

the estimation accuracy and enables the decorrelation of coherent signals. Motivated

by these advantages, we apply the derived procedure of incorporating a priori knowl-

edge about the DOAs θ̄ to the Unitary ESPRIT algorithm, which is termed Unitary

KA-ESPRIT.

Preliminaries

Following the work in [49,50], we first review the definition of centro-Hermitian matrices

and introduce the feature of centro-symmetric sensor arrays.

Definition 5.4.1. A matrix M ∈ C
p×p is centro-Hermitian iff

M = ΠpM
∗Πp, (5.59)

where Πp is the exchange matrix defined as

Πp =




1

1

·
1




∈ R
p×p. (5.60)

Definition 5.4.2. A matrix Q ∈ C
p×p is called left Π-real if it satisfies

ΠpQ
∗
p = Qp. (5.61)

A sparse unitary left Π-real matrix for odd values of p is given by

Q2n+1 =
1√
2




In 0n×1 jIn

0Tn×1

√
2 0Tn×1

Πn 0n×1 −jΠn


 , (5.62)
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where 0Tn×1 is the zero vector. A unitary left Π-real matrix for even values of p is

obtained from (5.62) by dropping its center row and center column.

Definition 5.4.3. A sensor array is centro-symmetric if its elements are symmetric

with respect to the centroid and the center of the array is chosen as the phase reference.

As a ULA is centro-symmetric the array steering vector can be expressed as

a(µn) = e−j(M−1
2 )µn

[
1 ejµn · · · ej(M−1)µn

]
. (5.63)

Derivation of Unitary KA-ESPRIT

Using the Definition 5.4.3 on the centro-symmetry of the sensor array and the fact that

the displacement matrix Φ is unitary, it has been shown in [15] that the array output

matrix X can be replaced by

Z =
[
X ΠMX∗ΠN

]
∈ C

M×2N , (5.64)

where Z is the extended data matrix. This bijective transformation corresponds to

forward-backward averaging and essentially doubles the number of available snapshots,

leading to an increased estimation accuracy. It is easily proven that the array output

matrix X and its forward-backward averaged extension Z span the same signal sub-

space.

As the incorporated knowledge of the signal directions θ̄ provides an enhanced

covariance matrix estimate, we apply the concept of forward-backward averaging to

the covariance matrix yielding

R̃FB =
1

2

(
R̃ + ΠMR̃∗ΠM

)
∈ C

M×M . (5.65)

Besides the improved estimation accuracy Unitary KA-ESPRIT requires only real-

valued computations, which leads to significant reductions in the computational com-

plexity. In [49] it was proven that any centro-Hermitian matrix can be mapped into a

real-valued matrix of the same size. In order to make use of this meaningful property,

we first prove the centro-Hermitian characteristic of the forward-backward averaged

enhanced covariance matrix R̃FB. Applying Definition 5.4.1 leads to

ΠMR̃∗
FBΠM =

1

2

(
ΠMR̃∗ΠM + ΠMΠMR̃ΠMΠM

)

=
1

2

(
ΠMR̃∗ΠM + R̃

)
, (5.66)
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where we used the fact that ΠMΠM = I. Now, the mapping of (5.65) into the real-

valued domain is stated in the following Theorem:

Theorem 5.4.4. The covariance matrix R̃FB is transformed into a real-valued matrix

of the same size using the mapping

ϕ(R̃FB) = QH
MR̃FBQM , (5.67)

where QM is the unitary left Π-real matrix defined in (5.62). General proof for centro-

Hermitian matrices is provided in [49].

Proof:

Using Definition 5.4.2, we have that

QH
MR̃FBQM =

1

2

(
QH
MR̃QM + QH

MΠMR̃ΠMQM

)

=
1

2

(
QH
MR̃QM + QT

MR̃∗Q∗
M

)

= Re
{
QH
MR̃QM

}
. (5.68)

Thus, forward-backward averaging is accomplished by taking the real part of QH
MR̃QM .

Now, the real-valued signal subspace, denoted by Es ∈ C
M×d, can be estimated via a

real-valued EVD (cf. Section 2.2.3).

Based on the set of shift invariance equations derived in (5.49), we reexpress this

property in terms of a transformed array steering vector obtained by

d(µn) = QH
Ma(µn), (5.69)

which is real-valued if the array is centro-symmetric. Then the shift invariance equation

for each signal is given by

J1QMd(µn)ejµn = J2QMd(µn), (5.70)

where we also used the unitary nature of QM . Premultiplying both sides by QH
m yields

QH
mJ1QMd(µn)ejµn = QH

mJ2QMd(µn). (5.71)

Since the selection matrices J1 and J2 are real-valued and satisfy J1 = ΠmJ2ΠM , one

can show that

QH
mJ1QM = QH

mΠmΠmJ1ΠMΠMQM = QT
mJ2Q

∗
M . (5.72)
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Defining two new selection matrices K1 and K2 as

K1 = 2 · Re
{
QH
mJ2QM

}
and K2 = 2 · Im

{
QH
mJ2QM

}
, (5.73)

equation (5.71) can be rewritten as

(K1 − jK2)d(µn)ejµn = (K1 + jK2)d(µn). (5.74)

After rearranging the terms we obtain

K1d(µn)(ejµn − 1) = K2d(µn) · j(ejµn + 1). (5.75)

Now we multiply both sides by ej µn
2 yielding

K1d(µn)(ej µn
2 − e−j µn

2 ) = K2d(µn) · j(ej µn
2 + e−j µn

2 ). (5.76)

This enables us to write the shift invariance equation in the compact way

K1d(µn) · tan
(
µn
2

)
= K2d(µn). (5.77)

Expanding this equation for all the d signals, we get

K1DΩ = K2D, (5.78)

where Ω contains the spatial frequencies µn and is given by

Ω = diag
{

tan
(
µn
2

)}d

n=1
. (5.79)

Note that D = QH
MA, which is real-valued if the centroid is chosen as the phase

reference.

According to the considerations in (5.52) in the previous section, we observe that

in this case Es ∈ C
M×d and D ∈ C

M×d span the same real-valued signal subspace.

Thus D ∈ C
M×d can be expressed by a linear transformation of Es ∈ C

M×d, i.e.,

D = EsT , (5.80)

where T is a unitary matrix. Substituting (5.80) into (5.78) results in the real-valued

shift invariance equations

K1EsΥ = K2Es (5.81)
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with the transformation

Υ = T ΩT −1 ∈ C
d×d, (5.82)

which is again eigenvalue-preserving and contains the desired DOA.

In practice, the signal subspace Es is estimated. For the proposed Unitary KA-

ESPRIT algorithm we apply a rank-d approximation based on the EVD of the enhanced

covariance matrix R̃ to determine the estimated signal subspace Ês ∈ C
M×d. Taking

this into account, the overdetermined set of equations (5.81) becomes

K1ÊsΥ ≈ K2Ês, (5.83)

which is solved for Υ via LS, TLS or SLS. Then, the eigenvalues ωn of Υ provide the

estimates of the spatial frequencies µn computed as

µn = 2 · arctan(ωn), (5.84)

Tab. 5.3: The proposed Unitary KA-ESPRIT algorithm

1. Knowledge-Aided Processing:

• Compute the a priori covariance matrix C ∈ C
M×M by (5.4).

• Calculate the weight factors α̂opt and β̂opt to obtain the en-
hanced covariance matrix estimate R̃ ∈ C

M×M .

2. Signal Subspace Estimation:

• Compute the matrix Es ∈ C
M×d as the d principal eigenvectors

of the enhanced covariance matrix R̃

3. Invariance Equation:

• Solve the shift invariance equation K1EsΥ ≈ K2Es by using
the LS, TLS or SLS algorithm

4. DOA Estimation:

• Calculate the d eigenvalues of the solution Υ = T ΩT −1 with
Ω = diag{ωn}dn=1.

• Solve θn = arcsin
(
λc

π∆ arctan(ωn)
)

to obtain the DOAs.

Masterarbeit Jens Steinwandt



5. Knowledge-aided direction of arrival estimation 78

so that the DOAs θn can be calculated as

θn = arcsin

(
λcµn
2π∆

)
. (5.85)

The Unitary KA-ESPRIT algorithm is summarized in Table 5.3.

5.5 Knowledge-aided MUSIC-type direction of arrival estimation

Another class of well-known direction finding methods are the MUSIC-type algorithms

[1], which also belong to the subspace-based techniques as the signal subspace and the

noise subspace are estimated to determine the DOAs. Contrary to the ESPRIT-type

algorithms, MUSIC-type techniques are applicable to arbitrary array structures and

therefore receive a considerable attention in practice. However, they require a slightly

higher computational complexity than ESPRIT-type methods as a search for sources

in the whole angle range is necessary. In this section, we propose two KA-MUSIC-type

direction finding schemes based on the standard MUSIC algorithm [12], which we refer

to as KA-MUSIC algorithm, and based on the Root MUSIC method [13], a search-

free version for ULAs termed KA-Root-MUSIC. Again, we highlight the fact that the

developed algorithms estimate the DOAs of all the signals in the system.

5.5.1 KA-MUSIC

In analogy to [12], the basic idea of the proposed KA-MUSIC algorithm is to search

through the set of all possible steering vectors in the angle range to find those that are

orthogonal to the estimated noise subspace. Its performance clearly depends on the

accuracy of the noise subspace estimate. If knowledge about the DOAs of some signals

in the system is available, this estimate can be improved by incorporating the known

information to obtain an enhanced covariance matrix estimate as derived in Section

5.2. Thus, the KA-MUSIC algorithm is developed as follows:

The noise subspace, denoted as Ûn, is obtained via an EVD of the enhance covari-

ance matrix R̃, which was shown in Section 2.2.3 for covariance matrices in general.

The improved signal subspace Ûs and the improved noise subspace Ûn are orthogonal

to each other, i.e.,

Ûs ⊥ Ûn, (5.86)

which is the essential property exploited by the MUSIC algorithm.
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The set of all possible array steering vectors, also referred to as array manifold is

given by a(θi), where θi ∈ {−90◦, . . . , 90◦}. Defining a search step ∆◦, all the angles

θi in the angle range can be expressed as θi = n∆◦ − 90◦, where n = 0, 1, . . . , 180◦/∆◦.

Now, the MUSIC algorithm consecutively correlates all the steering vectors θi with

the noise subspace estimate Ûn. The correlation ci can be mathematically expressed

by

ci = ÛH
n a(θi). (5.87)

Is the search angle a true DOA of the set θ, then the corresponding steering vector

a(θi) belongs to the signal subspace Ûs. Specifically, it is contained in the steering

matrix A(θ) and therefore orthogonal to the noise subspace Ûn. Thus, the correlation

ci becomes

ci = ÛH
n a(θi) = 0. (5.88)

Exploiting this property in (5.88), the spectral function P (θi) termed pseudo spectrum

was deduced in [12] as

P (θi) =
1

‖ÛH
n a(θi)‖2

=
1

aH(θi)ÛnÛH
n a(θi)

. (5.89)

Note that the squared norm of the correlation ci is taken to obtain a real-valued

scalar for each search angle. In the case of a true DOA, equation (5.88) holds and the

estimated signal directions are the d largest peaks in the pseudo spectrum. As stated

earlier, the proposed KA scheme only improves the signal subspace estimate. Thus, by

making use of the property

ÛsÛ
H
s + ÛnÛH

n = IM , (5.90)

the spectral function in equation (5.89) is rewritten as

P (θi) =
1

aH(θi)[IM − ÛsÛ
H
s ]a(θi)

. (5.91)

A brief summary of the KA-MUSIC algorithm is given in Table 5.4.
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Tab. 5.4: The proposed KA-MUSIC algorithm

1. Knowledge-Aided Processing:

• Compute the a priori covariance matrix C ∈ C
M×M by (5.4).

• Calculate the weight factors α̂opt and β̂opt to obtain the en-
hanced covariance matrix estimate R̃ ∈ C

M×M .

2. Noise Subspace Estimation:

• Compute the matrix Ûn ∈ C
M×M−d as the M − d eigenvectors

corresponding to the M−d smallest eigenvalues of the enhanced
covariance matrix R̃.

3. Pseudo Spectrum:

• Compute

P (θi) =
1

aH(θi)[IM − ÛsÛ
H
s ]a(θi)

(5.92)

for each angle θi in the angle range.

4. DOA Estimation:

• Find the d largest peaks of the pseudo spectrum to obtain the
DOAs.

5.5.2 KA-Root-MUSIC

The KA-Root-MUSIC technique is an extension of the spectral KA-MUSIC algorithm,

which provides a higher estimation accuracy and a lower computational complexity.

However, it is only applicable for ULAs as the Vandermonde structure of the ULA is

exploited. The outcome of the spectral KA-MUSIC algorithm derived in the previous

section is the pseudo spectrum and in order to find the DOAs, an exhaustive search

for the d largest peaks needs to be conducted. Furthermore, the accuracy of the

locations of the peaks also depends on the search step ∆◦, which should be very small.

The proposed KA-Root-MUSIC algorithm addresses these problems by representing

the spectral function as a polynomial and determining its roots. In this section, the

KA-Root-MUSIC method is derived according to the work in [13].

Employing a ULA, we can define the array manifold polynomial vector

a(z) = [1, z, . . . , zM−1]T , (5.93)
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where

z = ejµn . (5.94)

The DOAs θ are contained in µn, which is defined as (5.51). Then the spectral function

(5.91) of the KA-MUSIC algorithm can be rewritten as

P−1(θi) = aH(θi)[IM − ÛsÛ
H
s ]a(θi). (5.95)

For convenience, we define the matrix C to be

Ĉ = IM − ÛsÛ
H
s , (5.96)

such that equation (5.95) can be simplified as

P−1(θi) = aH(θi)Ĉa(θi). (5.97)

As the KA-MUSIC spectrum exhibits d peaks, (5.97) will have d valleys. By repre-

senting (5.97) as a polynomial and using the identity (5.94), the spectrum is evaluated

on the unit circle and the d polynomial roots correspond to the DOAs. To find the

polynomial whose roots we want to determine, we replace the steering vector a(θi) by

the array manifold polynomial vector defined in (5.93), which yields

P−1(θi) = aT (z−1)Ĉa(z). (5.98)

This expression can also be written as a double summation to obtain

P−1(θi) =
M∑

p=1

M∑

q=1

z−pĈpqz
q =

M−1∑

p=0

M−1∑

q=0

z(q−p)Ĉpq, (5.99)

where Ĉpq are the elements in the pth row and the qth column of the matrix C. The

double summation can be further simplified by setting r = q − p and rewriting it as a

single sum, i.e.,

P−1(θi) =
M−1∑

r=−M+1

Ĉrz
r, (5.100)

where

Ĉr =
∑

r=p−q

Ĉpq, (5.101)

which is the sum of the elements along the rth diagonal. As the range of r is (−M+1) ≤
r ≤ (M − 1) equation (5.100) defines a polynomial of order 2M − 2 with 2M − 2 roots.

It can be shown that the roots form reciprocal conjugate pairs, which means that if

Masterarbeit Jens Steinwandt



5. Knowledge-aided direction of arrival estimation 82

z0 is a root of the polynomial, 1/z∗
0 is also a root of it as well. In the noise-free case

all the roots lie exactly on the unit circle. However, this is not true in the presence

of noise and although both roots still contain the same information in the phase, they

have reciprocal magnitude, such that one of them lies inside the unit circle and its

counterpart outside. The KA-Root-MUSIC algorithm then estimates the DOAs from

the d roots that are inside and closest to the unit circle.

Finally, the phase of the roots zn provides the information about the DOAs and is

obtained by

µn = arg(zn), (5.102)

so that the DOAs θn can be calculated as

θn = arcsin

(
λcµn
2π∆

)
. (5.103)

A brief summary of the KA-Root-MUSIC algorithm is given in Table 5.5. Note

that the estimated signal subspace Ûn results in an error ∆zn of the location of the

Tab. 5.5: The proposed KA-Root-MUSIC algorithm

1. Knowledge-Aided Processing:

• Compute the a priori covariance matrix C ∈ C
M×M by (5.4).

• Calculate the weight factors α̂opt and β̂opt to obtain the en-
hanced covariance matrix estimate R̃ ∈ C

M×M .

2. Noise Subspace Estimation:

• Compute the matrix Ûn ∈ C
M×M−d as the M − d eigenvectors

corresponding to the M−d smallest eigenvalues of the enhanced
covariance matrix R̃

• Determine Ĉ = IM − ÛsÛ
H
s .

3. Polynomial Rooting:

• Obtain the coefficients Ĉr by summing the rth diagonal of Ĉ.

• Find the (N − 1) root pairs and choose the d zeros within and
closest to the unit circle.

4. DOA Estimation:

• Solve θn = arcsin
(
λc

2π∆arg(zn)
)

to obtain the DOAs.
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root zn, which can be expressed by

∆zn = |∆zn|ejarg(∆zn). (5.104)

However, as the KA-Root-MUSIC technique only estimates the signal DOAs from the

phase of the root, the error in the magnitude will not affect the estimation of the

signal directions. Nevertheless, such radial errors do affect the pseudo spectrum of

the KA-MUSIC algorithm. Thus, the KA-Root-MUSIC method may provide a better

performance than the KA-MUSIC algorithm.

5.6 Simulations with accurate a priori knowledge

In this section, we analyze the estimation accuracy of the proposed KA methods,

where we first assume accurate knowledge of the known DOAs and then abandon this

assumption to investigate the case of inaccurate knowledge. For all the simulations, we

consider scenarios that pose severe challenges for the estimation process to emphasize

the capabilities of the developed techniques under the conditions of a low SNR and

a small data record size. Furthermore, we only compute the estimation errors of the

unknown signal sources and neglect the errors of the sources whose precise DOAs are

already known.

5.6.1 Comparison of LC1 and LC2 using KA-ESPRIT

In this section, the estimation performance of the two KA schemes developed in Section

5.2 is evaluated by applying the proposed KA-ESPRIT algorithm. The objective is to

compare the different strategies of estimating the optimal combination factors αopt

and βopt in order to find the one that yields a higher estimation accuracy. Thus, we

compare their performances in terms of the root mean square error (RMSE) to the

standard ESPRIT algorithm using LS and to the deterministic CRLB associated with

the number of unknown sources.

For the computer simulations, we use a ULA composed of M = 30 sensor elements

with an interelement spacing of ∆ = λc/2, where the azimuth angle 0◦ corresponds to

the broad side of the array. The number of available snapshots N is chosen to be 10,

which is significantly smaller than the number of sensor elements. Now, we assume that

there are d = 5 uncorrelated and equipowered signals with power σ2 = 1 impinging

on the sensor array. The signals are positioned at θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T and

the source symbols are drawn from a complex Gaussian distribution. Among these d
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Fig. 5.2: Comparison of the LC1 and LC2 regarding the RMSE versus the SNR with
M = 30, N = 10, d = 5 sources at θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2
sources at θ1 = −50◦ and θ5 = 70◦ considered known.
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Fig. 5.3: Combination factors of the LC1 and LC2 versus the SNR with M = 30,
N = 10, d = 5 sources at θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at
θ1 = −50◦ and θ5 = 70◦ considered known.
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Fig. 5.4: Comparison of the LC1 and LC2 regarding the RMSE versus the num-
ber of snapshots N with M = 30, SNR = −10 dB, d = 5 sources at
θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at θ1 = −50◦ and θ5 = 70◦

considered known.
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Fig. 5.5: Combination factors of the LC1 and LC2 versus the number of snap-
shots N with M = 30, SNR = −10 dB, d = 5 sources at θ =
[−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at θ1 = −50◦ and θ5 = 70◦ con-
sidered known.
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sources, we assume that the k = 2 sources at θ1 = −50◦ and at θ5 = 70◦ have been

estimated previously and are therefore known beforehand. All the simulated curves

are obtained by averaging the results over 3000 independent trials.

In the first experiment, we assess the RMSE performance as a function of the SNR.

The results depicted in Figure 5.2 show that the two versions of the proposed KA-

ESPRIT algorithm provide a significant gain over the standard ESPRIT algorithm,

especially at a moderate SNR. Thus, in this case, the performance advantage obtained

from the exploitation of a priori knowledge is translated into a considerably better

performance. Also, the gain attained by the estimate LC2 outclasses the one for LC1

reaching a maximum benefit of more than 5 dB over standard ESPRIT. When the SNR

is increased, the conventional ESPRIT algorithm is able to approach the performance

of the KA-ESPRIT method. The purpose of the simulations shown in Figure 5.3 is

to study the behavior of the estimated parameters α̂opt and β̂opt. It is evident that

the factor α which weights the a priori covariance matrix starts at a high value and

decreases as the SNR increases, whereas the parameter β associated with the sample

covariance matrix goes up. This characteristic is completely in line with the stated

theory that the prior knowledge in form of the matrix C is especially exploited in

the low SNR regime when the sample covariance matrix is a poor estimate. We also

notice that for LC2 the knowledge is exploited in a more efficient way, which explains

the better performance of this estimation strategy. Notice that the sum of α and β is

not restricted to be equal to 1, which is the case for the constraint (5.9) discussed in

Section 5.2 and implies a limitation.

In the second experiment, we evaluate the RMSE as a function of the number

of snapshots N , where the same scenario of the first experiment is considered. The

curves shown in Figure 5.4 illustrate that the gains of the proposed KA-ESPRIT algo-

rithm over the standard ESPRIT algorithm are more pronounced for situations with a

shorter data record. Again, the estimate LC2 outperforms LC1 and standard ESPRIT

converges to the KA-ESPRIT method as the number of snapshots increases. Figure

5.5 demonstrates the characteristic of the combinations factors against the number of

snapshots. The parameter α exhibits its highest values for a notably low data record

size and decreases as the snapshot number grows, whereas β behaves contrarily and

increases with the sample size. These properties explicitly support the achieved per-

formance gain.

As proven in Figure 5.2 and Figure 5.4, the benefits of exploiting prior knowledge are

most significant under severe conditions in the scenario. Furthermore, it is obvious that

LC2 provides slightly more accurate estimates of the two weight factors. Consequently,

we will only present the results obtained by these estimates in the following simulation
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Fig. 5.6: RMSE versus the SNR of KA-ESPRIT and FBA with M = 30, N = 10, d = 5
sources at θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at θ1 = −50◦ and
θ5 = 70◦ considered known.

0 20 40 60 80 100
−5

0

5

10

15

20

Number of snapshots N

R
M

S
E

 (
d
B

) 
o
f 
u
n
k
n
o
w

n
 D

O
A

s
 (

d
e
g
)

 

 
ESPRIT

ESPRIT + FBA

KA−ESPRIT

KA−ESPRIT + FBA

Det CRLB

Fig. 5.7: RMSE versus the number of snapshots N of KA-ESPRIT and FBA with
M = 30, SNR = −10 dB, d = 5 sources at θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T ,
k = 2 sources at θ1 = −50◦ and θ5 = 70◦ considered known.
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analysis.

In addition, we also take into the account the effect of forward-backward averaging

(FBA), which is known to be an efficient preprocessing method to smoothen the DOA

estimates for a low data record size [48]. The results are shown in Figure 5.6 and

Figure 5.7 as a function of the SNR and the number of snapshots respectively. It

is evident that even if FBA is applied, the benefits of prior knowledge are almost as

significant as for the non-smoothened case. Thus, the proposed KA scheme appears

to be a powerful way of incorporating a priori knowledge to substantially improve the

estimation accuracy at a low SNR and a small number of samples.

5.6.2 Comparison of the proposed KA DOA estimation

algorithms

This section aims to investigate the effect of a priori knowledge on the proposed KA

DOA estimation algorithms. As the direction finding methods exploit different prop-

erties, we also expect a different impact of prior knowledge in terms of the estimation

performance.

KA-ESPRIT and Unitary KA-ESPRIT

In the first part, the RMSE performance of the KA-ESPRIT and the Unitary KA-

ESPRIT algorithms is analyzed. Specifically, we focus on the various ways of solving

the shift invariance equations, namely LS, TLS, and SLS [47].

In the first experiment, we assess the capabilities of LS, TLS, and SLS for KA-

ESPRIT. For the sake of consistency we use the same scenario as in the previous section,

where the knowledge of θ1 = −50◦ and θ5 = 70◦ from θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T

was assumed with M = 30 and N = 10. The results depicted in Figure 5.8 show the

RMSE as a function of the SNR. It can be seen that the gain achieved by incorporating

prior knowledge is almost identical for the three approaches to solve the shift invariance

equation. Moreover, we notice that SLS is the only method that constitutes an efficient

estimator [47], which asymptotically approaches the deterministic CRLB, whereas LS

and TLS only provide a suboptimal estimation accuracy.

The same comparison as above is conducted for Unitary KA-ESPRIT in the second

experiment. Again, we keep the previous scenario and show the numerical outcome

in Figure 5.9. Similar to KA-ESPRIT, the SLS approach performs best and reaches

the CRLB as the SNR increases. However, the impact of the prior knowledge on the

estimation performance is different for all the three methods. While the gain for LS and
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Fig. 5.8: Comparison of KA-ESPRIT-type algorithms regarding the RMSE versus the
SNR with M = 30, N = 10, d = 5 sources at θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T ,
k = 2 sources at θ1 = −50◦ and θ5 = 70◦ considered known.
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Fig. 5.9: Comparison of Unitary KA-ESPRIT-type algorithms regarding the RMSE
versus the SNR with M = 30, N = 10, d = 5 sources at θ =
[−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at θ1 = −50◦ and θ5 = 70◦ con-
sidered known.
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TLS becomes smaller than for KA-ESPRIT, SLS exhibits a more pronounced benefit

if a priori knowledge is available. This significant gain almost attains a difference of

10 dB as evident from the scenario in Figure 5.9.

As illustrated in Figure 5.8 and in Figure 5.9, the method of SLS to solve the shift

invariance equations provides the best estimator for KA-ESPRIT and Unitary KA-

ESPRIT, and yields the highest gains for prior knowledge of signal directions in the

system. Thus, we limit our focus to this approach in the following simulations.

Comparison of all the proposed KA algorithms

The second part is concerned with the comparison of all the proposed KA-based direc-

tion finding algorithms. Once more we use the same scenario as before and estimate

the unknown signal sources. As discussed in the previous section, the method of SLS is

applied to the KA-ESPRIT and Unitary KA-ESPRIT. The simulation results in Fig-

ure 5.10 illustrate that all of the presented algorithms benefit from the proposed KA

scheme. However, the performance advantage is most significant for the KA-ESPRIT-

type algorithms, where gains up to 10 dB can be achieved. The benefit for the proposed

MUSIC-type methods is rather moderate, but still attains up to 5 dB. Furthermore,
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Fig. 5.10: Comparison of all the proposed KA algorithms regarding the RMSE ver-
sus the SNR with M = 30, N = 10, d = 5 sources at θ =
[−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at θ1 = −50◦ and θ5 = 70◦ consid-
ered known.
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Fig. 5.11: Comparison of KA-MUSIC-type and constrained MUSIC-type algorithms
regarding the RMSE versus the SNR with M = 30, N = 10, d = 5 sources
at θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at θ1 = −50◦ and θ5 = 70◦

considered known.

we notice that all the methods approach the deterministic CRLB, whereas KA-MUSIC

and Unitary KA-ESPRIT combined with SLS provide the most precise estimates for

the underlying scenario.

Comparison of KA-MUSIC-type and constrained MUSIC-type algorithms

The third part deals with the comparison of the proposed KA-MUSIC-type algorithms

to the constraint MUSIC-type methods proposed in [45]. The latter approach is based

on a projection onto the complement of the signal subspace spanned by the steering

vectors of the known DOAs, and was applied to MUSIC and Root-MUSIC. Thus, we

compare the proposed KA-MUSIC algorithm and the KA-Root-MUSIC algorithm to

the constraint MUSIC and the constraint Root-MUSIC method. According to the sim-

ulations shown in Figure 5.11, the MUSIC algorithms outperform the Root-MUSIC

methods for the chosen scenario. Specifically, the constraint MUSIC technique com-

pletely fails to efficiently estimate the DOAs if N < M , whereas the KA-MUSIC

algorithm slightly improves the estimation accuracy of the classical MUSIC method.

As for Root-MUSIC, the constraint approach and KA-Root-MUSIC yield an identical

performance gain over the Root-MUSIC algorithm without prior knowledge.
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Fig. 5.12: Comparison of the proposed KA algorithms regarding RMSE versus the SNR
for closely-spaced sources with M = 30, N = 10, d = 2 sources at θ =
[0◦, 2◦]T , k = 1 source at θ1 = 0◦ considered known.

5.6.3 Closely-spaced signal sources

In this section, we assess the performance of the proposed KA algorithms when two

closely-spaced signal sources are in the system. The sources transmit uncorrelated

complex Gaussian signals located at θ = [0◦, 2◦]T , where the source θ1 = 0◦ is consid-

ered known. Other than that, we assume the same sensor array as before with M = 30

elements and an available snapshot number of N = 10. The results of the simulations

are depicted in Figure 5.12 and demonstrate that KA-Root-MUSIC and KA-ESPRIT

with SLS achieve the highest gains compared to their conventional counterparts if one

of the closely-spaced DOAs is known. Also, KA-MUSIC turns out to be the worst

estimator while Unitary KA-ESPRIT combined with SLS is the closest to the CRLB.

5.6.4 Widely-spaced signal sources

Contrary to the previous section, the performance gain for the widely-spaced source

case is studied in this experiment. Again, we assume the same scenario as before, but

two uncorrelated complex Gaussian signal sources at θ = [−40◦, 40◦]T with θ1 = −40◦

considered known. Figure 5.13 illustrates the simulation results, and it is obvious that

exploiting prior knowledge of widely-spread signal sources is only beneficial for the KA-
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ESPRIT-type methods. However, the performance of the KA-MUSIC-type algorithms

is slightly decreased. This is due to the fact that for widely-spaced sources the noise

subspace estimate required for the MUSIC algorithms is perturbed.

5.6.5 Correlated signal sources

The purpose of this section is to investigate the behavior of the proposed KA direction

finding algorithms for highly correlated sources. In order to simulate this case, we use

the scenario from Section 5.6.1 and describe the degree of correlation via the correlation

factor ρ ∈ (0, 1), where ρ = 0 if the signals are uncorrelated and ρ = 1 for coherent

signals. In our simulations we set ρ to be 0.9 and compare all the proposed KA methods

to each other. The results shown in Figure 5.14 represent the effect of correlation on

the performance. In comparison to Figure 5.10, it can be seen that the efficiency of

all the algorithms is decreased as they no longer approach the CRLB. It is clear that

the proposed KA scheme is not able to decorrelate the signals, but it is capable of

increasing the estimation accuracy for all the KA methods at a low SNR. Once more,

the KA-ESPRIT-type algorithms attain the most significant performance gains and

KA-MUSIC and Unitary KA-ESPRIT perform best.
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Fig. 5.13: Comparison of the proposed KA algorithms regarding the RMSE versus the
SNR for widely-spaced sources with M = 30, N = 10, d = 2 sources at
θ = [−40◦, 40◦]T , k = 1 sources at θ1 = −40◦ considered known.
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Fig. 5.14: Comparison of the proposed KA algorithms regarding the RMSE versus
the SNR for correlated sources with M = 30, N = 10, d = 5 sources at
θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at θ1 = −50◦ and θ5 = 70◦

considered known and ρ = 0.9.

5.7 Simulations with inaccurate a priori knowledge

It was shown in the previous section that incorporating a priori knowledge by using the

proposed KA scheme leads to substantial performance gains in terms of the estimation

accuracy of all the proposed algorithms. However, our assumption was based on the

precise knowledge of the signal directions. In this section, we extend this presumption

to the case of imprecise knowledge and analyze the influence of those errors on the

performance.

For the simulations, we assume again that there are d = 5 signal sources at θ =

[−50◦,−10◦, 10◦, 20◦, 70◦]T , but we allow an error of 1◦ for the known directions θ1 and

θ5, so that θ1 = −51◦ and θ5 = 69◦. Figure 5.15 depicts the curves and it is evident

that compared to Figure 5.10 the perturbed knowledge of the DOAs only results into

a small performance degradation. Thus, for reasonably small errors, the proposed KA

scheme provides a certain robustness against imprecise knowledge. However, larger

errors cause the estimation performance of the KA algorithms to be less accurate

than their conventional counterparts. Furthermore, the proposed algorithms exhibit

a performance degradation in the presence of inaccurate knowledge. A solution to

this problem needs to be developed so that the combination weights of the covariance
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Fig. 5.15: Comparison of the proposed KA algorithms regarding the RMSE versus the
SNR with inaccurate knowledge and M = 30, N = 10, d = 5 sources at
θ = [−50◦,−10◦, 10◦, 20◦, 70◦]T , k = 2 sources at θ1 = −51◦ and θ5 = 69◦

considered known.

matrices are automatically adjusted in a way that only the sample covariance matrix

is used if the knowledge exceeds a certain level of impreciseness. Nevertheless, this is

an issue for future work.

5.8 Conclusion

In this chapter, a novel way of incorporating a priori knowledge of a subset of the DOAs

to improve the estimation accuracy under severe conditions is proposed and extensively

discussed. After introducing the problem statement for cases when only a limited data

record is available and the sample covariance matrix is a poor estimate, the idea of

using prior knowledge for space-time adaptive processing (STAP) is effectively applied

to DOA estimation. The concept of a weighted combination of a covariance matrix

containing the knowledge and of the sample covariance matrix is formulated as an

optimization problem, which is solved for the weight factors using two different ways.

Having analyzed the general structure of the proposed knowledge-aided (KA) scheme,

the KA-ESPRIT-type algorithms based on standard ESPRIT and Unitary ESPRIT

and the KA-MUSIC-type algorithms based on MUSIC and Root-MUSIC are presented

as methods which incorporate this KA concept. The estimation performance of these
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proposed algorithms is then evaluated via computer simulations. It is shown that the

exploitation of a priori knowledge is translated into a substantially better performance

for situations with a shorter data record and a low SNR. In particular, the perfor-

mance advantage depends on the direction finding methods and is more pronounced

for KA-ESPRIT-type algorithms, especially when structured least squares (SLS) is

used to solve the shift invariance equations. A comparison to previously developed

knowledge-aided MUSIC-type algorithms, such as constraint MUSIC [45], reveals that

the proposed KA-MUSIC-type methods outperform the constrained MUSIC and per-

form identically to the constrained Root-MUSIC. Furthermore, it is demonstrated that

the effect of prior knowledge is considerably larger in the case of closely-spaced signal

sources compared to widely-spaced sources. Also, it is shown that the gains for un-

correlated sources can be maintained if the signals are highly correlated. To conclude

the study, it is illustrated that the proposed KA direction finding scheme exhibits a

certain robustness for reasonably small errors, and only large deviations from the true

DOA degrade the estimation accuracy.

Regarding the practical relevance of the proposed KA DOA estimation scheme, it

should be emphasized that several scenarios exist where a priori knowledge of static

signal directions is available and can be exploited. Some examples are, signals from

base stations or static users and radar applications, where the signal is backscattered

by stationary objects with known positions. For these practical scenarios the proposed

KA direction finding scheme is a powerful way of incorporating prior knowledge under

severe conditions and can be applied to any direction finding algorithm, which relies

on the estimate of the sample covariance matrix.
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6. SUMMARY AND FUTURE WORK

In this work, advanced array signal processing algorithms for beamforming and direc-

tion finding are devised and discussed.

The first part is concerned with the development of widely-linear adaptive beam-

forming algorithms designed according to the minimum variance principle that can

exploit the properties of non-circular sources for an improved performance. The re-

cently proposed Krylov subspace-based adaptive algorithms apply either the AVF, the

CG or the MCG algorithm to iteratively update the beamforming weight vector and

avoid the costly computation of the covariance matrix inversion. After discussing the

advantages of the widely-linear processing, the aforementioned Krylov-based meth-

ods are devised to make use of this concept. The proposed algorithms fully exploit

the second-order statistics of the signals that are assumed to be strictly non-circular.

These new methods are then compared to the existing adaptive algorithms in terms

of the required computational complexity and the performance in stationary and non-

stationary scenarios. As a result, it is shown that the widely-linear processing adopted

for the proposed techniques provides significant performance gains over the conven-

tional way of designing the beamforming weights. It is also outlined that among the

proposed algorithms the WL-MCG method requires the lowest computational cost and

the WL-AVF outperforms all the existing techniques in stationary scenarios. In fu-

ture work, the assumption of the strict non-circularity will be generalized to the weak

non-circularity of the signals.

In the second part, we develop innovative algorithms for direction finding that op-

erate in the beamspace domain and achieve better performance while dealing with

the increased dimensions of large systems. A novel class of subspace-based direction

finding methods employing the AVF and the CG algorithm is shown to yield superior

estimation performance for closely-spaced sources at a low SNR and a small sample

size. By extending these concepts to the strategy of beamspace processing, two new

Krylov subspace-based direction finding methods are developed for two different ways

of designing the beamspace. The proposed algorithms are then analyzed through com-

plexity and performance evaluations, and compared to previously developed methods.

It is shown that operation in beamspace substantially enhances the resolution capa-
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bility and the estimation accuracy of the proposed algorithms, where the CG-based

method outperforms the AVF-based algorithm.

Finally, a novel way of incorporating prior knowledge for direction finding is pro-

posed. Having knowledge of a subset of the signal directions to be estimated, the es-

timation performance of unknown directions can be substantially improved. Existing

knowledge-aided methods apply projection and polynomial rooting techniques to ex-

ploit this information. The new strategy is developed for situations with a limited data

record and is based on an enhanced covariance matrix estimate obtained by linearly

combining the sample covariance matrix and a prior known covariance matrix in an

automatic fashion. Therefore, MUSIC-type and ESPRIT-type algorithms are devised,

which employ the proposed scheme. Extensive simulations assessing the performance

illustrate that the exploitation of prior knowledge is translated into significantly better

performance. In particular, it is shown that the performance advantage depends on

the direction finding methods and is more pronounced for ESPRIT-type algorithms.

A derivation of a Cramér-Rao lower bound for the proposed knowledge-aided scheme

will be considered in future work.
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Appendix A

DERIVATIONS

A.1 Proof of equation (3.8)

We start by inserting the optimal solution wopt for γ = 1 in equation (3.6) into (3.7),

rewritten as

SINR =
σ2

1wHa(θ1)a
H(θ1)w

wHRuw
, (A.1)

which yields

SINR =
σ2

1

(
R−1a(θ1)

aH(θ1)R−1a(θ1)

)H
a(θ1)a

H(θ1)
(

R−1a(θ1)
aH(θ1)R−1a(θ1)

)

(
R−1a(θ1)

aH(θ1)R−1a(θ1)

)H
Ru

(
R−1a(θ1)

aH(θ1)R−1a(θ1)

) . (A.2)

Taking into account that R−1 is a Hermitian matrix, we have that

SINR =
σ2

1

(
aH(θ1)R−1

aH(θ1)R−1a(θ1)

)
a(θ1)a

H(θ1)
(

R−1a(θ1)
aH(θ1)R−1a(θ1)

)

(
aH(θ1)R−1

aH(θ1)R−1a(θ1)

)
[R − σ2

1a(θ1)aH(θ1)]
(

R−1a(θ1)
aH(θ1)R−1a(θ1)

) , (A.3)

where the interference-plus-noise covariance matrix Ru is expressed by the difference

of the covariance matrix and the signal covariance matrix. Rearranging the expression

(A.3), we obtain

SINR =
σ2

1aH(θ1)R
−1a(θ1)a

H(θ1)R
−1a(θ1)

aH(θ1)R−1a(θ1) − σ2
1aH(θ1)R−1a(θ1)aH(θ1)R−1a(θ1)

(A.4)

=
σ2

1aH(θ1)R
−1a(θ1)a

H(θ1)R
−1a(θ1)

aH(θ1)R−1a(θ1) [1 − σ2
1aH(θ1)R−1a(θ1)]

(A.5)

=
σ2

1aH(θ1)R
−1a(θ1)

1 − σ2
1aH(θ1)R−1a(θ1)

, (A.6)

which is the desired result.
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A.2 Real-valued source symbols for strict non-circularity

The proof starts with rewriting the augmented array output matrix in (3.11) as

X̃ =


 A(θ)S

A∗(θ)S∗


+


N

N ∗


 ∈ C

2M×N (A.7)

=


A(θ)

0


S +


 0

A∗(θ)


S∗ +


N

N ∗


 . (A.8)

According to [21], the complex conjugate signal matrix S∗ can be decomposed by an

orthogonal projection onto S as

S∗ = Ψ∗S +
[
P
(
Id − |Ψ|2

)] 1
2

S′, (A.9)

where Ψ = diag{ρ1, . . . , ρd} contains the non-circularity coefficients of the d signal

sources on its diagonal and P = diag{σ2
1, . . . , σ

2
d} contains the signal powers on its

diagonal. The matrix S′ is the part that is orthogonal to S. Inserting (A.9) into (A.8),

we obtain

X̃ =


A(θ)

0


S +


 0

A∗(θ)



[
Ψ∗S +

[
P
(
Id − |Ψ|2

)] 1
2

S′
]

+


N

N ∗


 , (A.10)

which can be expressed as

X̃ =


 A(θ)

A∗(θ)Ψ∗


S +


 0

A∗(θ)



[
P
(
Id − |Ψ|2

)] 1
2

S′ +


N

N ∗


 . (A.11)

Now we assume that all the signals are strictly non-circular, i.e., |ρ| = 1 and that

the phase is ψ = 0, which is given for, e.g., BPSK-modulated signals. Thus (A.11)

simplifies to

X̃ =


A(θ)

A∗(θ)


S +


N

N ∗


 . (A.12)

It is event from (A.12) that the source symbol matrix S is real-valued, which completes

the proof.
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A.3 Proof of equation (3.23)

In order to prove equation (3.23), we start by inserting (3.19) into (3.22), which gives

E

[
|w̃H

k r̃|2
]

= w̃H
k R̃w̃k (A.13)

=
(
w̃H
k−1 − µkg̃

H
k

)
R̃ (w̃k−1 − µkg̃k) (A.14)

= w̃H
k−1R̃w̃k−1 − 2µkg̃

H
k R̃w̃k−1 + µ2

kg̃
H
k R̃g̃k. (A.15)

Taking the gradient with respect to µk and equating it to zero, yields

∂
(
w̃H
k R̃w̃k

)

∂µk
= 2g̃Hk R̃w̃k−1 + 2µkg̃

H
k R̃g̃k

!
= 0. (A.16)

After a simple rearrangement, the step size µk can be computed by

µk =
g̃Hk R̃w̃k−1

g̃Hk R̃g̃k
. (A.17)

A.4 Proof of equation (3.43)

We start the derivation by inserting (3.42) and (3.36) into the expression

g̃(i) = ã(θ1) − ˆ̃
R(i)ṽ(i), (A.18)

resulting in

g̃(i) = ã(θ1) −
(
λ ˆ̃

Rdl(i− 1) + r̃(i)r̃H(i) + ξI2M

)
(ṽ(i− 1) + α(i)p̃(i)) . (A.19)

Rearranging the terms, we get

g̃(i) = ã(θ1) −
(
λ ˆ̃

Rdl(i− 1)ṽ(i− 1) + r̃(i)r̃H(i)ṽ(i− 1)
)

−
(
ξI2M ṽ(i− 1) + ˆ̃

R(i)α(i)p̃(i)
)
,

(A.20)

which can be further simplified by applying an algebraic manipulation, leading to

g̃(i) = ã(θ1) − λã(θ1) + λ
(

ã(θ1) − ˆ̃
Rdl(i− 1)ṽ(i− 1)

)

− r̃(i)r̃H(i)ṽ(i− 1) − ξI2M ṽ(i− 1) − ˆ̃
R(i)α(i)p̃(i). (A.21)
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Again, equation (3.42) is used to obtain the desired result

g̃(i) = (1 − λ)ã(θ1) + λg̃(i− 1) −
(
r̃(i)r̃H(i) + ξI2M

)
ṽ(i− 1) −α(i) ˆ̃

R(i)p̃(i). (A.22)

A.5 Proof of equation (5.30)

Applying the Cauchy-Schwarz inequality for matrices introduced in Lemma 5.2.4 to

the Hermitian matrices C ∈ C
M×M and R ∈ C

M×M gives

|〈R,C〉F | ≤ ‖C‖2
F · ‖R‖2

. (A.23)

This expression can be formulated according to Lemma 5.2.2 as

Tr2{CHR} ≤ ‖C‖2
F · ‖R‖2

F . (A.24)

After rearranging the terms, i.e.,

0 ≤ ‖C‖2
F · ‖R‖2

F − Tr2{CHR} (A.25)

and writing out the Frobenius norms and the trace, we obtain

0 ≤
M∑

i=1

M∑

j=1

|cij|2
M∑

i=1

M∑

j=1

|rij|2 −
M∑

i=1

M∑

j=1

(cijrij)
2, (A.26)

which is always greater than zero as the first term contains the second term. The ex-

pression in (A.26) is only zero if the matrices C and R are identity matrices. However,

this is not the case for the KA scheme.

The equation for γ is defined as

γ =
‖R‖2

F‖C‖2
F − Tr2{CHR}
‖C‖2

F

. (A.27)

From the above relations, we can conclude that the numerator is always greater than

zero and thus, γ > 0, which concludes the proof.
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ACRONYMS

ASK Amplitude-Shift Keying

AVF Auxiliary Vector Filtering

BPSK Binary Phase Shift Keying

BS BeamSpace

CG Conjugate Gradient

CRLB Cramér-Rao Lower Bound

DFT Discrete Fourier Transform

DOA Direction Of Arrival

DPSS Discrete Prolate Spheroidal Sequences

ESPRIT Estimation of Signal Parameters via Rotational

Invariance Techniques

EVD EigenValue Decomposition

FIR Finite Impulse Response

KA Knowledge-Aided

LCMV Linearly Constrained Minimum Variance

LC Linear Combination

LMS Least Mean Squares

LS Least Squares

MCG Modified Conjugate Gradiant

ML Maximum Likelihood

MSE Mean Square Error

MUSIC MUltiple SIgnal Classification

MVDR Minimum Variance Distortionless Response

QPSK Quadrature Phase-Shift Keying

RLS Recursive Least Squares

RMSE Root Mean Square Error

SINR Signal-to-Interference-plus-Noise Ratio

SLS Structured Least Squares

SNR Signal-to-Noise Ratio

SOI Source Of Interest
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STAP Space-Time Adaptive Processing

SVD Singular Value Decomposition

TLS Total Least Squares

ULA Uniform Linear Array

WL-CMV Widely-Linearly Constrained Minimum Variance

WL Widely-Linear
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SYMBOLS AND NOTATION

Frequently used symbols

M

N

d

θ

IM

ΠM

Number of sensor elements of the array

Number of snapshots

Number of incident signals

Direction of arrival

The M ×M identitiy matrix

The M × M exchange matrix having only

ones on its anti-diagonal and zeros elsewhere

Notation and operators

a, b, c

a, b, c

A, B, C

x∗

AT

AH

Re {x}
Im {x}
E {x}
‖a‖
‖A‖F
〈A,B〉F
Tr{A}
diag{x}

span{A}

Scalars

Column vectors

Matrices

Complex conjugate of x

Transpose of matrix A

Hermitian transpose of A

Real part of x

Imaginary part of x

Expected value of the random vector x

The Euclidean norm of the vector a

The Frobenius norm of the matrix A

The Frobenius norm inner product of A and B

The trace of the matrix A

Square matrix with the elements of the

vector x on its diagonal

Vector space spanned by the columns of the

matrix A
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THESES

T1: The well-known Krylov-based adaptive beamforming algorithms employing the

minimum variance principle are insufficiently designed if the signal sources are

strictly non-circular.

T2: By widely-linear processing, these adaptive algorithms can be advanced to fully

exploit the strict non-circularity, providing significantly better convergence and

steady-state performance.

T3: The resolution performance of the existing Krylov subspace-based direction find-

ing methods can be further improved by operation in the beamspace, which

simultaneously reduces the computational complexity.

T4: The beamspace transformation matrix applying discrete prolate spheroidal se-

quences constitutes a more adequate beamspace design and provides more accu-

rate parameter estimates.

T5: Incorporating prior knowledge in the direction finding procedure is an efficient

way of enhancing the estimates of signal directions. Previously developed strate-

gies to exploit this information break down in extreme conditions. A more robust

approach developed in this work utilizes the prior knowledge to improve the co-

variance matrix and performs best under exactly those severe conditions.

T6: The performance advantage of the proposed knowledge-aided direction finding

scheme is more pronounced in combination with ESPRIT-type algorithms.
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